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LOWER BOUNDS FOR MOMENTS

OF AUTOMORPHIC L-FUNCTIONS

OVER SHORT INTERVALS

GUANGHUA JI

(Communicated by Wen-Ching Winnie Li)

Abstract. Let L(s, π) be the principal L-function attached to an irreducible
unitary cuspidal automorphic representation π of GLm(AQ). The aim of the
paper is to give a simple method to show the lower bounds of mean value for
automorphic L-functions over short intervals.

1. Introduction

An important problem in analytic number theory is to estimate the moments

Ik(T ) =

∫ 2T

T

∣∣∣∣L
(
1

2
+ it, π

)∣∣∣∣
2k

dt

for all kinds of L-functions L(s, π). For the Riemann zeta-function ζ(s), a conjecture

states that the 2k-th moment should be asymptotic to CkT (log T )
k2

for a positive
constant Ck, where k is a positive real number. The correct upper bound of Ik(T )
for ζ(s) is known only for k ≤ 2, while the correct lower bound is proved for all
rational k ≥ 0,

Ik(T ) � T (log T )k
2

.

Actually, this latter result was proved by Ramachandra [11] for all positive in-
tegers k, by Heath-Brown [4] for all positive rational numbers k, and under the
Riemann Hypothesis by Ramachandra [10] for all positive real numbers k. In [1]
the authors propose conjectures for the full asymptotics of the moments of gen-
eral L-functions. In particular, the paper provides conjectures for the moments of
the Riemann zeta-function, the family of primitive Dirichlet L-functions, quadratic
twists of L-functions, and automorphic L-functions attached to cusp forms.

Let π be an irreducible unitary cuspidal automorphic representation of GLm(AQ)
and s = σ + it ∈ C. Then the principal L-function [3] attached to π is given by
Euler products of local factors for σ > 1,

L(s, π) =
∏
p<∞

L(s, πp)

=

∞∑
n=1

aπ(n)

ns
,
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where

L(s, πp) =
m∏
j=1

(
1− απ(p, j)p

−s
)−1

with {απ(p, j) : 1 ≤ j ≤ m} being complex Satake parameters of π at the finite
place πp according to the local Langlands correspondence. If p is unramified, its
local L-factor is of the form L(s, πp) = Pp(p

−s)−1, where Pp(x) is a polynomial of
degree at most m and Pv(0) = 1. We can write the local factors at ramified places
v in the same form with the convention that some of the απ(p, j) may be zero.

In this paper, we give a simple method to obtain lower bounds for integral
moments of the principal L-function L(s, π) over short intervals. Our main theorem
is as follows.

Theorem 1.1. Let π be an irreducible cuspidal automorphic representation of
GLm(AQ) and let k be any positive real number. Then uniformly in σ,∫ T+H

T

|L (σ + it, π)|k dt � H

for all T ≥ T0 for some sufficiently large T0, σ ≥ 1/2, and T ≥ H ≥ log1+ε T with
any ε > 0.

2. Automorphic L-functions and some lemmas

Let π be an irreducible cuspidal automorphic representation of GLm(AQ). De-
note the complete L-function by

Λ(s, π) = q
s
2L(s, π∞)L(s, π),

where q is an integer called the arithmetic conductor of π and

L(s, π∞) =
m∏
j=1

ΓR(s+ µj).

Here ΓR(s) = πs/2Γ
(
s
2

)
, and {µj : 1 ≤ j ≤ m} are local complex parameters of π

at the infinite place ∞.
The following statements collect together analytic facts about principal L-func-

tions which we will use for our proofs.
(A1) The Dirichlet series

L(s, π) =
∞∑

n=1

aπ(n)

ns

converges absolutely in the half-plane �s > 1, and we have (see [9])∑
n≤X

|aπ(n)|2 � X1+ε.(2.1)

(A2) The complete L-function Λ(s, π) has an analytic continuation to the whole
complex plane and satisfies the functional equation [3]

Λ(1− s, π̃) = ε(π)Λ(s, π),

where ε(π), a complex number of modulus 1, is the root number, π̃ is the contra-

gredient representation of π, and Lv(s, π̃) = Lv(s̄, π) for any place v.
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(A3) Λ(s, π) is an entire function of order one, bounded in vertical strips with
finite width with exponential decay as |�s| → ∞; see [2], [3].

(A4) The zeros of Λ(s, π), that is, the nontrivial zeros of L(s, π), lie in the open
critical strip 0 < �s < 1; see [6]. In particular, L(s, π) is nonvanishing in the
half-plane �s ≥ 1.

(A5) Bounds toward the generalized Ramanujan conjecture, [8], [12], are

|απ(p, j)| ≤ p
1
2−

1
m2+1 if π is unramified at p,

|�µj | ≤
1

2
− 1

m2 + 1
if π is unramified at ∞.

We also need the some lemmas. The following result of Littlewood establishes
the connection between zeros of an analytic function and its mean-value estimates.

Lemma 2.1. Let φ(s) be analytic and nonzero on the rectangle D with vertices α,
β, α+ iT , and β + iT , where α < β. Then

2π
∑
ρ∈D

Dist(ρ) =

∫ T

0

log |φ(α+ it)|dt−
∫ T

0

log |φ(β + it)|dt

+

∫ β

α

arg φ(σ + iT )dσ −
∫ β

α

arg φ(σ)dσ,(2.2)

where the sum runs over the zeros ρ of φ(s) in D, and Dist(ρ) is the distance from
ρ to the left edge of the rectangle.

Proof. This is a revised version of the classical Littlewood lemma. See Titchmarsh
[13], Sections 9.9 and 9.15. �

Lemma 2.2. (1) Let N(T ) be the number of nontrivial zeros ρ = β+ iγ of L(s, π)
such that 0 < β < 1 and 0 < γ ≤ T . Then

N(T + 1)−N(T ) � log T.(2.3)

(2) For any s = σ + it in the strip −2 ≤ σ ≤ 2, |t| ≥ t0, where t0 is a fixed
positive constant, we have

L′

L
(s, π) =

∑
|t−γ|≤1

1

s− ρ
+O(log |t|).(2.4)

(3) With the same notation as in (2), we have

logL(s, π) =
∑

|t−γ|≤1

log(s− ρ) +O(log |t|).(2.5)

Proof. For proofs of (1) and (2), see Iwaniec and Kowalski [5], Proposition 5.7, or
Liu and Ye [7], Lemma 4.3. We integrate (2.4) along the straight line from s = σ+it
to 2 + it. By (2.3), if t is not the ordinate of a zero, then

logL(s, π) = logL(2 + it, π) +
∑

|t−γ|≤1

log(s− ρ)

−
∑

|t−γ|≤1

log(2 + it− ρ) +O(log |t|)

=
∑

|t−γ|≤1

log(s− ρ) +O(log |t|).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3572 GUANGHUA JI

This proves the lemma. �

3. Proof of Theorem 1.1

We apply Lemma 2.2 with φ(s) = L(s, π), β = 2, and α = σ0 for some 1/2 ≤
σ0 ≤ 1. If T is not the ordinate of a zero, then

2π
∑
ρ∈D

Dist(ρ) =

∫ T

0

log |L(σ0 + it, π)|dt−
∫ T

0

log |L(2 + it, π)|dt

+

∫ 2

σ0

argL(σ + iT, π)dσ +K(σ0),(3.1)

where K(σ0) is independent of T .

Lemma 3.1. If 1/2 ≤ σ ≤ 1 and T is sufficiently large, then

2π
∑
ρ∈D

Dist(ρ) =

∫ T

0

log |L(σ + it, π)|dt+O(log T ),(3.2)

where D is the rectangle with vertices σ, 2, σ + iT , and 2 + iT .

Proof. We define

Λπ(n) =

m∑
j=1

α�
π(p, j) log p

if n = p� with � being a positive integer and 0 otherwise. By (A5), we have

Λπ(n) � n
1
2−

1
m2+1 log n.

For σ > 1, we deduce

logL(s, π) =
∑
p

∞∑
n=1

Λπ(p
n)

(log pn)pns

=
∞∑

n=2

Λπ(n)

(log n)ns
.

Therefore, ∫ T

0

log |L(2 + it, π)|dt = �
(∫ T

0

logL(2 + it, π)dt

)

= �
( ∞∑

n=2

Λπ(n)

(log n)n2

n−iT − 1

−i log n

)

� 1.(3.3)

Since | arg(σ + iT − ρ)| ≤ π for 1/2 ≤ σ ≤ 1, we deduce by (2.5) and then (2.3)
that

argL(σ + iT, π) = � (logL(σ + iT, π))

=
∑

|T−γ|≤1

arg(σ + iT − ρ) +O(log T )

� log T.(3.4)
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The lemma immediately follows from (3.1), (3.3), and (3.4). �

Proof of Theorem 1.1. According to (3.2), we get

2π
∑
ρ∈D

Dist(ρ) =

∫ T+H

T

log |L(σ + it, π)|dt+O(log T ),(3.5)

where H = log1+ε T with any fixed ε > 0 and D is the rectangle with vertices σ+iT ,
2 + iT , σ+ i(T +H), and 2+ i(T +H). The left-hand side of (3.5) is nonnegative.
Hence, there exists a constant C > 0 such that∫ T+H

T

log |L(σ + it, π)|dt ≥ −C log T,

where 1/2 ≤ σ ≤ 1. Now recall that if a < b, f(t) ≥ 0 for a ≤ t ≤ b and f(t) is a
continuous real function on the interval [a, b], then

1

b− a

∫ b

a

log f(t)dt ≤ log

(
1

b− a

∫ b

a

f(t)dt

)
,

which is an easy consequence of the inequality between the arithmetic and geometric
means of nonnegative numbers. Taking f(t) = | logL(σ + it, π)|k for any fixed
positive real number k, we get

log

(
1

H

∫ T+H

T

|L(σ + it, π)|kdt
)

≥ 1

H

∫ T+H

T

log |L(σ + it, π)|kdt

=
k

H

∫ T+H

T

log |L(σ + it, π)|dt

≥ −Ck
log T

H
.

Hence, ∫ T+H

T

|L(σ + it, π)|kdt ≥ H exp

(
−Ck

log T

H

)

= H

(
1 +O

(
log T

H

))
� H,

for log1+ε T ≤ H ≤ T with any ε > 0. This completes the proof of Theorem 1.1. �
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