
Combining CTL, Trace Theory and Timing Models

J e r r y R. Burch*

School of C o m p u t e r Science
Carnegie Mellon Univers i ty

P i t t s b u r g h , PA 15213

A b s t r a c t

A system that combines CTL model checking and trace theory for verifying
speed-independent asynchronous circuits is described. This system is able to verify
a large and useful class of liveness and fairness properties, and is able to find safety
violations after examining only a small fraction of the circuit's state space in many
cases. An extension has been implemented that allows the verification of circuits
that are not speed-independent, but instead rely on assumptions about the relative
delays of their components for correct operation. This greatly expands the class
of circuits that can be automatically verified, making the verifier a more useful
toot in the design of asynchronous circuits. The system is demonstrated on several
fair mutual exclusion circuits, including a speed-independent version that is verified
correct. It is also shown that given quite weak assumptions about the relative delays
of components, the problem of designing a fair mutual exclusion circuit using a
potentially unfair mutual exclusion element becomes almost trivial.

1 I n t r o d u c t i o n

1.1 B a c k g r o u n d

Much has been written about automatically verifying speed-independent asynchronous
circuits using specifications expressed by formulas in the propositional temporal logic
CTL [2,4,7]. A model checker has been implemented that verifies that a circuit satisfies a
CTL formula, in time linear in both the length of the formula and the number of states of
the circuit. CTL can express a wide range of specifications, including a large and useful
class of liveness and fairness properties. However, some often used specifications, such
as requiring that a circuit have no hazards, are tedious to express. Also, the entire state
graph of a circuit must be constructed before any formulas can be checked. This can be
a serious disadvantage when verifying a circuit with an error, since the state graph of

*This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 4976, Amendment 20, under Contract Number F33615-87-C~1499, monitored by
the Air Force Wright Aeronautical Laboratories.
The National Science Foundation also sponsored this research effort under Contract Number CCR-
8722633.
The views and conclusions contained in this document are those of the author and should not be
interoreted as representing the official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the US Government.

335

such a circuit is often several orders of magnitude larger than that of a similar correct
circuit.

Another technique for verifying speed-independent asynchronous circuits is based on
trace theory [5,6] as described by Dill. In this theory, a trace is a string of symbols, where
each symbol is the name of a wire in the circuit being modeled. A trace represents a
possible behavior of a circuit; the presence of a symbol in a trace represents a transition
on the corresponding wire. All the possible behaviors of a circuit can be represented by
a set of traces. Dill's technique differs from other theories based on traces by having
trace s~ructures that contain two sets of traces, a success se~ and a failure set, rather
than just one set. Trace structures are used to represent both circuits and specifications.
Dill described the implementation of an automatic verifier that checks a circuit against
a specification in time linear in the number of states of both the specification and the
circuit. Checking that a circuit has no hazards is a special case of checking that it has no
failures, which is done automatically whenever a circuit is verified against a specification.
Also, the trace theory verifier often finds errors in circuits after constructing only a small
fraction of the states of the circuit. However, trace theory specifications cannot express
any liveness or fairness properties.

CTL and trace theory based verification have been applied to only a very limited
class of circuit timing models. Trace theory is only applicable to speed-independent
circuits. Using such a conservative timing model forces sacrifices in circuit performance
and complexity in order to assure correctness. In addition to the speed-independent
model, CTL has been used with the unit delay model [2]. The unit delay model is quite
liberal; it makes strong assumptions about the behavior of circuit components. It is
possible, therefore, that circuits that are verified correct under the unit delay model may
not actually work as desired in practice. Neither the speed-independent model or the unit
delay model accurately represent the designers knowledge of the performance of circuit
components. This limits the usefulness of verifiers based on these timing models.

1 . 2 N e w R e s u l t s o f t h i s P a p e r

A verifier that combines CTL model checking and trace theory based verification has
been implemented. It combines CTL's ability to express liveness and fairness properties
with trace theory's ability to easily check for hazards and find safety violations without
constructing a complete state graph.

We have extended trace theory in order to verify asynchronous circuits that are not
speed-independent. This extension has been implemented in an automatic verifier. Var-
ious parameters of a gate's performance, including minimum and maximum delay, can
be modeled. The potentially unbounded delays of devices in a metastable state can also
be accurately modeled. Thus, circuits that depend on the relative delays of their compo-
nents for correct operation can be accurately modeled and verified, making the verifier
a useful tool in the design of these kinds of circuits.

One of the example circuits analyzed is a new speed-independent fair mutual ex-
clusion circuit [3]. This circuit was designed using a variant of Martin's method for
"compiling" circuits from CSP programs [10]. Using the verifier's ability to model tim-
ing assumptions, we show that such a complicated circuit is not necessary for practical
fair mutual exclusion. Given reasonable timing assumptions, fair mutual exclusion can
be implemented with a rather trivial circuit.

336

1 . 3 O u t l i n e o f P a p e r

Sections 2 and 3 give a short summary of CTL and trace theory based verification.
The combining of these two verification methods is described in Section 4. Two speed-
independent fair mutual exclusion circuits are verified as examples. Section 5 describes
extending the system to handle a wide range of t iming models. The verification of two
fair mutual exclusion circuits that use a variant of the 3/2 rule is described. Concluding
remarks are in Section 6.

2 CTL and the M o d e l Checker

CTL formulas are built up f rom a set of atomic propositions. We use AP to denote the
set of atomic propositions, which in our context is equal to the set of wire names of the
circuit being modeled. If an atomic proposition is true in a given state, tha t is interpreted
as meaning that the corresponding wire is high in that state. The formal syntax of CTL
is:

1. Every atomic proposition p E AP is a CTL formula.

2. If f l and f2 are CTL formulas, then so are - ' f l , f l A f~, A X f l , E X f l , A[fl U f2],
and E[fl U f2].

The symbols -~ and A have the s tandard interpretations of logical negation and conjunc-
tion, respectively. X is the nexttime operator, the formula A X f I (E X f l) intuitively
means tha t f l holds in every (in some) immediate successor of the the current state. U
is the until operator. A description of the meaning of U uses the notion of a path, which
is an infinite sequence of s tates such that each s tate is followed by one of its immediate
successors. The formula Air1 U f2] (E[fl U f2]) intuitively means tha t for every pa th (for
some path) there exists an initial prefix of the pa th such tha t f2 holds at the last s ta te
of the prefix and f l holds a t all other states along the prefix.

We also use the following abbreviations in writing CTL formulas:

1. A F (f) =_ A[irue U f] intuitively means that f holds in the future along every path;
tha t is, f is inevitable.

2. E F (f) = E[true U f] intuitively means tha t there is some path that leads to a s tate
in which f holds; tha t is, f potentially holds.

3. EG(f) -- -~AF(-~f) means tha t there is some path on which f holds at every state.

4. AG(f) -- -,EF(-~f) means tha t f holds at every s tate on every path; tha t is, f
holds globally.

The semantics of CTL formulas are defined with respect to a labeled state-transit ion
graph called a CTL structure. The nodes of this graph correspond to states of the circuit
being represented. The t ruth of a CTL formula is relative to a CTL structure and a s tate
in that structure. A formula may also be true relative to just a structure, in which case
it is true relative to the structure and the s tar t s ta te designated in tha t structure. Each
state is labeled with the set of atomic propositions that are true in tha t state. Each s ta te
also has associated with it the set of states tha t are its immediate successors.

337

In verifying circuits, we are often interested only in correctness along fair execution
paths. For example, we may not wish to consider a pa th in which one gate fires infinitely
often while another gate, which is firable, does not fire at all. This is handled by modifying
the semantics of CTL so tha t all pa th quantifiers range over only fair paths. The fair
pa ths of a part icular circuit are specified by giving a list of CTL formulas, called fairness
constraints. A pa th is fair if and only if for every fairness constraint, there are infinitely
many states on the pa th tha t satisfy that constraint.

The Extended Model Checker (EMC) does automat ic verification using CTL. A ses-
sion with EMC starts with the loading of a description of the CTL structure of the
circuit, along with any associated fairness constraints. Then CTL formulas are entered,
and EMC checks whether they are satisfied by the circuit. For formulas that are not
satisfied EMC outputs a counterexample path, if one exists, tha t illustrates why the
formula does not hold.

3 Trace T h e o r y

We can only give a short overview of trace theory in the space of this paper; the interested
reader m a y refer to [5] and [6]. In trace theory based verification digital circuits and
their specifications are modeled by trace structures, which are ordered 4-tuples of the
form 7- = (I , O , S , F) . The set I is the set of names of the input wires of the circuit; O
is the set of output wire names. The set A = I t 3 0 is called the alphabet of 7". The sets
S (the success set) and F (the failure set) are regular sets of finite strings, called traces,
over the a lphabet A. Each trace models a possible behavior of the circuit by having each
symbol in the trace represent a transition on the corresponding wire. This means that
only the order of transitions is represented, not the actual times at which the transitions
O c c u r .

The S set and the F set are used to give partial specifications. A partial specification
of a device describes requirements for the proper use of the device, and specifies the
behavior of the device given that those requirements are satisfied. In a trace structure,
the set S describes the behaviors of a device when it is used properly. The set F describes
behaviors resulting from improper use. For example, in asynchronous circuits a gate is
typically modeled so tha t the F set contains all behaviors that cause a hazard and the
S set contains all behaviors that do not cause a hazard.

The set P = S U F is the set of all possible traces. The S and P sets must be
prefix-closed, and P must be non-empty. For some non-deterministic devices (such as
the vending machine example in [11], which is also discussed in [5]) a given trace can be
both a success and a failure, so the S and F sets need not be disjoint. Also, no circuit
can control its inputs, which is modeled by requiring that P I C P (if A and B are sets
of strings or symbols, then A B = {ab : a E A and b E B }) . This is called the receptiveness
requirement.

Trace theory cannot explicitly model simultaneous transitions, transitions are always
modeled as occurring in some total order. This does not mean that simultaneous tran-
sitions are not allowed to occur in the circuits being modeled, however. An atomicity
assumpt ion is applied requiring that the simultaneous transition of two wires must have
exactly the same effect on the s tate of the circuit as non-simultaneous transitions of the
signals in either one order or the other, similarly for simultaneous transitions of more

338

than two wires. This assumption is quite reasonable for digital circuits, and it greatly
simplifies the theory and the implementation of the verifier.

As an example, consider how a buffer might be modeled by a trace structure 7" =
(I, O, S, F). Let b be the name of the input wire of the buffer, and let x be the name of
the output wire. Then I = {b} and O = {x}. Assume that both the input and the output
of the buffer are initially low. We define the set of successful behaviors of the buffer to
be those behaviors in which the environment does not cause a hazard. Thus, the set S
of successful behaviors is equal to (bx)*(b + e). If the environment does cause a hazard,
then we do not restrict the ensuing behavior of the circuit, so F = (bx)*bb(b + x)*.

Consider two variations of the above buffer. The first buffer always eventually fires
when it is put in a firable state. The second buffer sometimes might never fire. Both of
these buffers would be modeled by exactly the same trace structure. This is an example
of trace theory's inability to model liveness properties.

A composition operation can be defined on trace structures. Let To = (I0, O0, So, F0)
and ~ = (Iz ,O1,S1,F1) be trace structures. The composition of To and :Y1 is defined
when O0 and O1 are disjoint. The set of outputs of the composition is O0 U O1, the set
of inputs is (I0 U/1) - (O0 U O1). Let A0 = I0 U 00, P0 = So t3 F0, A1 = / 1 u Oz, and
Pz = S1 UF1. Also, let A = AoUA1, i.e., the alphabet of the composition. I f x is a trace
in A*, define the projection x [Ao to be the trace formed from x by removing all symbols
not in A0. The S and F sets of the composition are given by

S = { x e A * : X] A o e S O A ~ [A I E S 1 } ,

F = { x e A * : (X I . o e F O A x l A ~ e F ,) V

(XlAoe F0 ^ =lA, e Sl) v
(=]Aoe S0 ^ =lA, e F1)}-

A trace structure (I , O, S, F) is said to be failure flee when F is empty. If the
composition of several trace structures is failure free, then the components have been
composed in such a way that each of their environmental requirements has been satisfied.
The trace theory verifier can efficiently check whether the composition of a set of trace
structures is failure free. If a composition is not failure free, then usually only a small
fraction of the state space needs to be explored before a short error trace can be given.

Let To and T1 be trace structures. Then, To conforms to T1 (written To _ T1) if
I0 = / 1 and O0 = O1 and for any trace structure T, the composition of T and TI being
failure free implies that the composition of T and To is failure free. The idea captured
here is that if circuit works correctly with Tz as a component, then it works correctly with
T1 replaced by To (up to safety properties). If To _~ Tz and T1 __ To, then To and T1 are
conformation equivalent. This means that To and T1 are functionally interchangeable.
There exists a canonical form for trace structures such that two canonical trace structures
are conformational equivalent if and only if they are equal.

A trace structure T1 can also be used to represent a specification. A circuit To satisfies
the specification T1 if To conforms to T1. Checking that a circuit satisfies a specification
would be very expensive if it required checking the failure freedom of compositions with
all possible trace structures. However, there exists an operation on trace structures,
called mirroring, tha t makes checking conformation practical. If T = (I, O, S, F) is a
canonical trace structure, then T M - (O, I , S, A* - P) is its mirror. If T ' has the same
inputs and outputs as T, then the composition of T ' and T M is failure free if and only if

339

T ~ conforms T. Thus, checking if a circuit satisfies a specification only requires checking
if the composit ion of the circuit with the mirror of the specification is failure free, which
can be done efficiently. I f there is an error in the circuit, then usually on a small fraction
of the states of the composition need to be explored before a failure is found. When a
failure is found, a short trace of the transitions tha t led to the failure is output to the
u s e r .

4 Combining CTL and Trace Theory

Verifying a circuit with both trace theory and CTL involves two steps. The first step
is to use trace theory to construct the trace structure representing the composition of
the circuit with some environment. The environment may be constructed by computing
the mirror of a specification. If the composition has a failure, then this is detected by
the verifier during the construction of the trace s tructure representing the composition,
usually after only a small fraction of the s tructure has been constructed. After detecting
a failure, the verifier does a breadth first search to find a shortest failure trace, which is
useful for debugging. In this case, no CTL verification is done, and debugging consists
of a t t empt ing to remove the safety violation detected by the trace theory verifier.

I f the composition is failure free, then it is converted to a CTL structure for use by
the CTL model checker. This conversion requires tha t extra information be carried with
the trace structures tha t represent components of the circuit. Trace structures do not
explicitly represent the digital values of wires, but CTL structures have this information
in the labels of each state. So the verifier adds to trace structures the initial values of the
wires of the circuit. The values of the wires in all s tates is determined using the following
construction. The states in the CTL structure tha t is constructed are each n + 1 tuples
(where n is the number of signals in the circuit): one element of the tuple is the s tate
number of the corresponding s ta te in the au toma ta representing the trace structure of
the composition, the other n entries are the values of each of the n signals. The initial
s ta te and the next-s tate relation of the CTL structure are defined in the obvious way. A
CTL structure constructed in this way could have many more states, even exponentially
more, then the trace s tructure au tomata from which it was constructed. Our experiments
indicate tha t in practice, however, the increase in the number of states is usually no more
than a factor of 2, and there is often no increase at all.

Correct verification using the model checker depends on having fairness constraints
tha t describe liveness and fairness properties of the circuit components. Ideally infor-
mat ion about fairness constraints should be included in the trace structures that model
circuit components. When trace structures are converted to CTL structures the fair-
ness constraints would automatical ly be included. However, the including of fairness
constraints in CTL structures is currently done by hand by the user of the verifier.

Once the CTL structure is constructed, the next step is to use the model checker to
verify tha t the circuit satisfies the desired CTL formulas. When a formula is not satisfied,
the model checker outputs a counterexample trace, if one exists, to show why the formula
is not satisfied.

As an example of verification using both trace theory and CTL, consider the fair
mutua l exclusion circuit in Figure 1. The signals ai and bi are request inputs, and ao

and bo are mutual ly exclusive acknowledge outputs. A 4-phase handshaking protocol is

340

S
~c
DT

DI~ bif

aodbit

a o l l
a o

bou

m

---~D

D'I ait
Sync

S~

b--.--~ bodait

Figure 1: Proposed circuit for fair mutual exclusion.

used, initially all wires are low. The heart of the circuit is a mutual exclusion element
that is not assumed to be fair. Also used in the circuit are two synchronizers.

A synchronizer has two inputs, D (data) and S (strobe), and two outputs, D F (data
false) and D T (data true). When S goes high, the synchronizer samples the value of
D. If D is stable at low voltage, then D F is raised. If D is stable at high voltage,
then D T is raised. It is guaranteed that D F and D T will never be high simultaneously.
Once either D F or D T is raised, they do not go low until S is taken low, regardless
of how D changes, if D changes between when S is raised and either D F or D T is
raised, then the synchronizer can go into a metastable state, and either D F or D T may
go high. The synchronizer can also go into a metastabte state if D changes within a
small amount of time (called the setup time of the synchronizer) before S is raised. The
notion of setup time can not be accurately represented in the speed-independent model.
In [9], synchronizers are assumed to have a setup time of zero, which is a rather liberal

341

assumption. A more conservative alternative is to model a synchronizer so that the
output in response to raising S is deterministic only if D has not changed since previous
raising of S. Such a synchronizer is said to have a setup time of one cycle. If a circuit
is verified correct using a synchronizer with a setup time of one cycle, then that circuit
will also be correct if a synchronizer with a setup time of zero is used instead. The
converse, however, is not true. We will assume that synchronizers have a setup time of
zero when verifying circuits under the speed-independent model. Later, we will address
the implications of this assumption.

When the circuit in Figure 1 is verified, a bug is found in less than 40 seconds. (All
t iming information in this paper is based in running the verifier on a Sun-3/60 with Sun
Common Lisp version 2.1.1.) The verifier can output a shortest length trace showing
the bug, which can be summarized as follows. The input bi remains low throughout the
trace. The signals ai and ao go through one request/acknowledge cycle, this leaves bif
high. Because we are using the speed-independent model, bif may remain high for an
arbitrarily long time. Next, ai goes high again, which eventually causes ao to go high.
But ao can go high before bif returns to a low state, causing a failure in the synchronizer.

The problem is that in the above trace, ao is allowed to go high when bif might still
be high. This can be fixed by replacing the and-gate that drives aodbif with a C-element
(the inverted input remains inverted). The corresponding change is also made to the
and-gate tha t drives bodaif. This way, bif must go low before aod can go low, which
must happen before ao can go high.

The error in this circuit could also be found, in theory, using the model checker. How-
ever, as currently implemented, this would require constructing the entire CTL structure
of the circuit, which our analysis has shown to have at least 400,000 states. This demon-
strates how much more effective trace theory can be at finding safety violations quickly.
It has been proposed that the model checker be implemented using "lazy" state con-
struction, which might allow it find errors without constructing the full CTL structure.
But since the verifier determines the t ru th of a formula by marking each state of the
CTL structure with the t ru th values of the sub-formulas, there is good reason to believe
that even a "lazy" model checker would still construct many more states than the trace
theory verifier before finding a bug.

The modification described above does not solve all of the problems with the circuit,
but the verifier can be used iteratively to find bugs and output error traces that greatly
simplify debugging. The circuit shown in Figure 2 can be derived in this way. Trace
theory verifies that this circuit has no safety errors after examining 1332 states in about
50 seconds.

However, it is not possible to check the liveness or fairness properties of this circuit
using only trace theory. So we use the system to construct the CTL structure correspond-
ing to the circuit. For this circuit, constructing the CTL structure caused no increase in
the number of states needed to model the circuit. Using the model checker, we can verify
that the formulas A G A F (ai'VV ao) and A G A F (hi ¢~ bo) are true for the circuit. This
means that for every state the circuit might reach, it will eventually reach a state in which
ai and ao have the same value. This implies, among other things, that every request
made of the circuit is eventually acknowledged. This liveness property depends on the
assumption that whenever a user starts a four-phase handshake, it always completes it
and thus releases the mutual exclusion element. This assumption was represented using
the fairness constraints ao ~ ~ai and bo ~ ~bi.

342

-l°oFl
aou

a o

DF [~-~-'~

D

DT~ ak

Sync I

bou

Figure 2: Correct speed-independent fair mutual exclusion circuit.

The above analysis was done using synchronizers with a setup t ime of zero. If syn-
chronizers with a setup t ime of one cycle are used instead, the sys tem can verify tha t
there are no safety errors in the circuit, jus t as before. However, a deadlock is discovered
when liveness properties are checked using CTL. One such deadlock is as follows. The
circuit first completes a cycle on the b channel, then bi remains low. Then ai goes high.
When ao goes high in response, the synchronizer can raise bit. As long as bi remains
low, the circuit can make no further progress and is deadlocked. This is an example of
the importance of being able to check liveness properties of the circuit. If only safety
properties where checked, one might conclude that the circuit is correct for synchronizers
with a setup t ime of one cycle, even though there is a deadlock.

There is a way to solve the deadlock problem described above. A synchronizer with
a setup time of zero can be implemented with a synchronizer with a setup t ime of one
cycle by adding some extra circuitry. The details are described in [3]. The key idea
is to strobe the synchronizer twice every t ime the da ta is to be synchronized, ignoring
the synchronizers response to the first strobe. This implementat ion of a synchronizer
with a setup t ime of zero can be used in the circuit in Figure 2. The result is a speed-

343

independent fair mutual exclusion that is correct even though it uses synchronizers with
a setup t ime of one cycle.

There has been debate concerning whether it is possible to build a speed-independent
or delay-insensitive fair mutua l exclusion circuit [1,9,12]. In [9], Mart in a t tempted to show
tha t such a circuit existed by constructing one. Unfortunately, Mart in later discovered
an error in his circuit [8]. The trace theory verifier has also found errors in this circuit.
The circuit presented in Figure 2, which has been verified correct, provides an example
of a speed-independent fair mutua l exclusion circuit.

5 Timing mode l s

In the verification methods we've discussed so far, only speed-independent circuits can
be represented. We wish to extend trace theory to allow the representation of a large
class of t iming models for different circuit components. We call the extended theory trace
theory with discrete time. The extension allows traces to contain additional symbols not
corresponding to physical wires. The presence of such a symbol in a trace represents the
passage of some amount of time. More formally, we allow trace structures of the form
(I , O, V, S, F) , where V is a set of symbols (disjoint from I and O), and where S and F
are sets of traces over the alphabet A = I U O U V. The elements of V do not correspond
to any physical wires, so they are called virtual wire names. In order to give an intuitive
explanation of the intended meaning of such structures, we will only consider the case in
which V contains a .,~ingle element, call it ~.

The presence of a ~o in a trace indicates the passage of a unit of time, call it r . The
trace ~ z ~ represents a single behavior in which a transition occurs on wire x at t ime
To + 2r, where To is the t ime at which the behavior described by the trace began. Traces
in trace theory with discrete t ime can also be interpreted as approximating continuous
time. Interpreted in this way the above trace represents the set of behaviors in which a
transit ion occurs on wire z at a t ime t such tha t To + 2r _< t < To + 3r.

Figure 3 is an au t om a t a describing the S set of a buffer with input b, output x, and
vir tual wire p. Notice tha t since S is prefix closed, all of the states in this au tomata are
accepting states. The F set of this buffer is equal to (S I - S)A*. Interpreted in discrete
time, this buffer clearly has a minimum delay of 2r and a max imum delay of 3r. We say
such a buffer obeys a discrete 3/2 rule.

In continuous time, the 3/2 rule states that the minimum delay of each component is
2 units and the m a x i m u m delay is 3 units. The buffer in Figure 3 approximates a buffer
tha t obeys the 3/2 rule in continuous time. To see this, consider the set of continuous
t ime behaviors equal to the union of the sets of behaviors represented by each trace in
the P set of the buffer in Figure 3. Any behavior a continuous 3/2 rule buffer might
display is contained in this set.

We have also developed a version of trace theory called trace theory with continuous
time in which every transit ion in a trace has a real number associated with it to represent
the exact t ime at which the transition took place. By proving relationships between the
two kinds of trace theory, we can increase our confidence that trace theory with discrete
t ime accurately models physical systems. I t can be shown for a large class of specifications
and component models tha t if a circuit conforms to a specification when modeled with
trace theory with discrete time, then it is also conforms to the specification in trace
theory with continuous time. If the specifications and component models are restricted

344

q0

Start - ~

Figure 3: Automata that accepts the S set of a 3/2 rule buffer.

Pulse
Gen.

b
~ X

Figure 4: Example circuit for demonstrating effects of timing assumptions.

somewhat more, then the converse is also true. Contained in this set is a large class of
specifications that include timing properties such as requiring a circuit to respond to an
input within a certain amount of time. As an example of why the converse is not true
in general, consider two buffers in series with input b and output x, and three buffers in
series with input c and output y. If b transitions before c, then by the continuous 3/2
rule, z will transition before y. In the discrete 3/2 rule, x is guaranteed to precede y if
and only if b transitions before c and there is a ~ between the b and c transitions. This
illustrates that there can be extra behaviors in trace theory with discrete time that are
not in trace theory with continuous time. These extra behaviors can cause a circuit to
not conform to a specification in trace theory with discrete time.

Although the discrete 3/2 rule is not as strong as the continuous 3/2 rule, it does
place useful restrictions on the order of transitions in a circuit. As an example of this, we
consider a circuit formed using the output of a pulse generator as the input to a buffer
as in Figure 4. The pulse generator has a period of 8r and a 50% duty cycle. Its S set
is described by the automata in Figure 5 and its F set is empty. The buffer is the same
as that represented in Figure 3.

The trace structure representing the resulting circuit has an empty F set and its S
set is given by the automata in Figure 6. Since the maximum delay of the buffer is 3 r
and the pulse generator waits 4r between output t ing transitions, there are never two
consecutive b transitions without an z transition in between. This fact could not be
represented with the speed-independent timing model.

Timing models other than the 3/2 rule can also be represented. It is clear how to
modify the buffer in Figure 3 to have a minimum delay of m r and a maximum delay of
n r for any non-negative integers m and n such that m < n. The buffer can also be made

345

Start

Figure 5: Automata that accepts the S set of a pulse generator.

\ Start x I

(
F

)
x

¢

)

Figure 6: Automata representing the behavior of the example circuit in Figure 4.

to have an unbounded maximum delay by removing state 4 and adding a transition on
from state 3 back to state 3.

The trace theory verifier has been extended to include virtual wires in this way. This
is combined with CTL as before. If a composition is failure free then the resulting finite
automata, the behaviors of which reflect any timing assumptions made, is converted to
a CTL structure.

As an example of verifying circuits using timing models, consider again the circuit in
Figure 1. We will analyze this circuit using the discrete 3/2 timing model. We model each
of the gates to have a minimum delay of 2v and a maximum delay of 3v. The outputs of
the synchronizers and the mutual exclusion element have a minimum delay of 2r. When
these two components are in a metastable state, we cannot bound their delay; otherwise
their maximum delay is 37". The mutual exclusion element may be in a metastable state
when both of its inputs are high and both its outputs are low; otherwise, it is guaranteed
not to be metastable. The synchronizer may go into a metastable state if the D input
changes to soon before the strobe input S goes high, or after the strobe goes high and
before any output goes high. We define a setup time of 3r for the synchronizers: if the
D input is stable for 3v before the strobe goes high, and remains stable until an output
goes high, then the synchronizer is assumed to not go into a metastable state.

Under these timing assumptions, trace theory verifies the circuit in about 200 seconds
after examining 3826 states. The fairness of the circuit is verified using CTL as before.
Thus, this circuit, which appeared to be incorrect in our previous analysis, is in fact

346

>ao

bo

Figure 7: Simplified circuit for fair mutual exclusion under the discrete 3/2 rule.

correct given reasonable timing assumptions. This circuit is smaller and simpler than
the circuit we showed to be correct in the speed-independent model.

We can do even bet ter than this. The circuit in Figure 1 does not make use of the
maximum delay of the arbiter in states that are not metastable. Rather than an elaborate
circuit using synchronizers to insure fairness, we design a circuit that limits the rate at
which a user can reissue requests. Then the mutual exclusion element is guaranteed
to respond to a request from one user before receiving the second of two requests from
another user. This results in the rather trivial circuit in Figure 7. The verifier quickly
shows that this circuit satisfies all the necessary safety and liveness properties. The
delays insure that no user can make requests quickly enough to cause unfair behavior,
e v e n if the mutual exclusion element is unfair. The circuit is faster and much simpler
than the previous circuits. If there is a known lower bound on the delay from when the
circuit takes an acknowledge low to when the corresponding user takes its request high,
then some or all of the delays in the circuit in Figure 7 can be safely removed, resulting
in a n e v e n faster circuit.

The previous example shows that given reasonable assumptions on the relative delays
of components, designing a fair mutual exclusion circuit is almost trivial. This is not a
surprising result, the problem of speed-independent fair mutual exclusion is often per-
ceived to be of only theoretical interest. However, to the author 's knowledge, this is the
first time this result has been demonstrated by an automatic verifier. The ability of this
verifier to accurately model this kind of phenomenon increases its usefulness as a design
tool.

6 Conc lus ions and Future R e s e a r c h

We have presented a verification system that combines the advantages of CTL and trace
theory. The resulting system often finds bugs after exploring only a small fraction of the
states of a circuit, greatly simplifies checking for hazards, and allows the verification of
liveness and fairness properties.

We have also shown how this verifier has been extended to use more liberal timing
models than the speed-independent model. Our example indicates how this can aid in
the design and verification of circuits tha t are smaller and faster than similar speed-
independent circuits. It is also possible to verify circuits against specifications that
include timing properties such as requiring a circuit to respond to an input within a

347

certain amount of time.
Although the verifier presented here uses time linear in the number of states in the

circuit, the time used can be exponential in the number of components of the circuit.
Though we see no way to improve the asymptotic worst case performance of the verifier,
we believe its performance on typical circuits can be improved. One way to do this uses
the fact that in many physically plausible timing models the order of two physical wire
names in a trace is irrelevant when there is no virtual wire name between them. This fact
can be used to reduce the number of states explored during the verification of a circuit
using such a timing model.

There is nothing about the method presented here that restricts its application to
asynchronous circuits, it could also be applied to other concurrent systems. Using this
method to study examples of other kinds of concurrent systems is an area for future
research.

Acknowledgements
Ed Clarke has been my advisor during this work, which could not have been completed
without his guidance. David Dill provided much help and encouragement. My many
discussions with Alain Martin about disciplined methods for designing asynchronous
circuits were necessary preparation for designing the fair mutual exclusion circuits in
this paper. I also had helpful discussions with David Long.

References
[1] David L. Black. On the existence of fair delay-insensitive arbiters: trace theory and

its limitations. Distributed Computing, 1(4):205-225, 1986.

[2] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification
of sequential circuits using temporal logic. IEEE Transactions on Computers, C-
35(12):1035-1044, 1986.

[3] Jerry R. Butch. The design of a delay-insensitive fair mutual exclusion circuit. In
Preparation.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244-263, 1986.

[5] David L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. PhD thesis, Department of Computer Science, Carnegie Mel-
lon University, :988.

[6] David L. Dill. Trace theory for automatic hierarchical verification of speed-
independent circuits. In Jonathan Allen and F. Thomson Leighton, editor, Advanced
Research in VLSI: Proceedings of the Fifth MIT Conference, MtT Press, 1988.

[7] David L. Dill and Edmund M. Clarke. Automatic verification of asynchronous cir-
cuits using temporal logic. IEE Proceedings, Part E 133(5), 1986.

348

[8] Alain :l. Martin, Personal Communication.

[9] Alain J. Martin. A Delay-Insensitive Fair Arbiter. Technical Report 5193:TR:85,
California Institute of Technology, Computer Science Department, 1985.

[10] Alain J. Martin. A synthesis method for self-timed vlsi circuits. In Proceedings of
the IEEE International Conference on Computer Design, 1987.

[11] Robin Milner. Lecture Notes in Computer Science. Volume 92: A Calculus of Com-
municating Systems. Springer-Verlag, 1980.

[12] Jan Tijmen Udding. A formal model for defining and classifying delay-insensitive
circuits and systems. Distributed Computing, 1(4):197-204, 1986.

