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A b s t r a c t  

A system that  combines CTL model checking and trace theory for verifying 
speed-independent asynchronous circuits is described. This system is able to verify 
a large and useful class of liveness and fairness properties, and is able to find safety 
violations after examining only a small fraction of the circuit's state space in many 
cases. An extension has been implemented that allows the verification of circuits 
that are not speed-independent, but instead rely on assumptions about the relative 
delays of their components for correct operation. This greatly expands the class 
of circuits that can be automatically verified, making the verifier a more useful 
toot in the design of asynchronous circuits. The system is demonstrated on several 
fair mutual exclusion circuits, including a speed-independent version that  is verified 
correct. It  is also shown that  given quite weak assumptions about  the relative delays 
of components, the problem of designing a fair mutual  exclusion circuit using a 
potentially unfair mutual exclusion element becomes almost trivial. 

1 I n t r o d u c t i o n  

1.1 B a c k g r o u n d  

Much has been written about automatically verifying speed-independent asynchronous 
circuits using specifications expressed by formulas in the propositional temporal logic 
CTL [2,4,7]. A model checker has been implemented that verifies that a circuit satisfies a 
CTL formula, in time linear in both the length of the formula and the number of states of 
the circuit. CTL can express a wide range of specifications, including a large and useful 
class of liveness and fairness properties. However, some often used specifications, such 
as requiring that a circuit have no hazards, are tedious to express. Also, the entire state 
graph of a circuit must be constructed before any formulas can be checked. This can be 
a serious disadvantage when verifying a circuit with an error, since the state graph of 
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such a circuit is often several orders of magnitude larger than that  of a similar correct 
circuit. 

Another technique for verifying speed-independent asynchronous circuits is based on 
trace theory [5,6] as described by Dill. In this theory, a trace is a string of symbols, where 
each symbol is the name of a wire in the circuit being modeled. A trace represents a 
possible behavior of a circuit; the presence of a symbol in a trace represents a transition 
on the corresponding wire. All the possible behaviors of a circuit can be represented by 
a set of traces. Dill's technique differs from other theories based on traces by having 
trace s~ructures that  contain two sets of traces, a success se~ and a failure set, rather 
than just one set. Trace structures are used to represent both circuits and specifications. 
Dill described the implementation of an automatic verifier that  checks a circuit against 
a specification in time linear in the number of states of both the specification and the 
circuit. Checking that  a circuit has no hazards is a special case of checking that  it has no 
failures, which is done automatically whenever a circuit is verified against a specification. 
Also, the trace theory verifier often finds errors in circuits after constructing only a small 
fraction of the states of the circuit. However, trace theory specifications cannot express 
any liveness or fairness properties. 

CTL and trace theory based verification have been applied to only a very limited 
class of circuit timing models. Trace theory is only applicable to speed-independent 
circuits. Using such a conservative timing model forces sacrifices in circuit performance 
and complexity in order to assure correctness. In addition to the speed-independent 
model, CTL has been used with the unit delay model [2]. The unit delay model is quite 
liberal; it makes strong assumptions about  the behavior of circuit components. It is 
possible, therefore, that  circuits that  are verified correct under the unit delay model may 
not actually work as desired in practice. Neither the speed-independent model or the unit 
delay model accurately represent the designers knowledge of the performance of circuit 
components.  This limits the usefulness of verifiers based on these timing models. 

1 . 2  N e w  R e s u l t s  o f  t h i s  P a p e r  

A verifier that  combines CTL model checking and trace theory based verification has 
been implemented. It combines CTL's  ability to express liveness and fairness properties 
with trace theory's  ability to easily check for hazards and find safety violations without 
constructing a complete state graph. 

We have extended trace theory in order to verify asynchronous circuits that  are not 
speed-independent. This extension has been implemented in an automatic verifier. Var- 
ious parameters of a gate's performance, including minimum and maximum delay, can 
be modeled. The potentially unbounded delays of devices in a metastable state can also 
be accurately modeled. Thus, circuits that  depend on the relative delays of their compo- 
nents for correct operation can be accurately modeled and verified, making the verifier 
a useful tool in the design of these kinds of circuits. 

One of the example circuits analyzed is a new speed-independent fair mutual  ex- 
clusion circuit [3]. This circuit was designed using a variant of Martin's method for 
"compiling" circuits from CSP programs [10]. Using the verifier's ability to model tim- 
ing assumptions, we show that such a complicated circuit is not necessary for practical 
fair mutual  exclusion. Given reasonable timing assumptions, fair mutual  exclusion can 
be implemented with a rather trivial circuit. 
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1 . 3  O u t l i n e  o f  P a p e r  

Sections 2 and 3 give a short  summary  of CTL and trace theory based verification. 
The combining of these two verification methods is described in Section 4. Two speed- 
independent fair mutual  exclusion circuits are verified as examples. Section 5 describes 
extending the system to handle a wide range of t iming models. The verification of two 
fair mutual  exclusion circuits that  use a variant of the 3/2 rule is described. Concluding 
remarks are in Section 6. 

2 CTL and the  M o d e l  Checker  

CTL formulas are built up f rom a set of atomic propositions. We use AP to denote the 
set of atomic propositions, which in our context is equal to the set of wire names of the 
circuit being modeled. If  an atomic proposition is true in a given state, tha t  is interpreted 
as meaning that  the corresponding wire is high in that  state. The  formal syntax of CTL 
is: 

1. Every atomic proposition p E AP is a CTL formula. 

2. If  f l  and f2 are CTL formulas, then so are - ' f l ,  f l  A f~, A X  f l ,  E X  f l ,  A[fl U f2], 
and E[fl U f2]. 

The symbols -~ and A have the s tandard interpretations of logical negation and conjunc- 
tion, respectively. X is the nexttime operator,  the formula A X f I  ( E X f l )  intuitively 
means tha t  f l  holds in every (in some) immediate  successor of the the current state. U 
is the until operator.  A description of the meaning of U uses the notion of a path, which 
is an infinite sequence of s tates such that  each s tate  is followed by one of its immediate  
successors. The formula Air1 U f2] (E[fl U f2]) intuitively means tha t  for every pa th  (for 
some path) there exists an initial prefix of the pa th  such tha t  f2 holds at the last s ta te  
of the prefix and f l  holds a t  all other states along the prefix. 

We also use the following abbreviations in writing CTL formulas: 

1. A F ( f )  =_ A[irue U f] intuitively means that  f holds in the future along every path;  
tha t  is, f is inevitable. 

2. E F ( f )  = E[true U f] intuitively means tha t  there is some path  that  leads to a s tate  
in which f holds; tha t  is, f potentially holds. 

3. EG( f )  -- -~AF(-~f) means tha t  there is some path  on which f holds at  every state. 

4. AG(f )  -- -,EF(-~f) means tha t  f holds at every s tate  on every path; tha t  is, f 
holds globally. 

The semantics of CTL formulas are defined with respect to a labeled state-transit ion 
graph called a CTL structure. The nodes of this graph correspond to states of the circuit 
being represented. The t ruth  of a CTL formula is relative to a CTL structure and a s tate  
in that  structure. A formula may  also be true relative to just  a structure,  in which case 
it is true relative to the structure and the s tar t  s ta te  designated in tha t  structure. Each 
state is labeled with the set of atomic propositions that  are true in tha t  state. Each s ta te  
also has associated with it the set of states tha t  are its immediate  successors. 



337 

In verifying circuits, we are often interested only in correctness along fair execution 
paths.  For example, we may not wish to consider a pa th  in which one gate fires infinitely 
often while another  gate, which is firable, does not fire at  all. This is handled by modifying 
the semantics of  CTL so tha t  all pa th  quantifiers range over only fair paths. The  fair 
pa ths  of  a part icular  circuit are specified by giving a list of CTL formulas, called fairness 
constraints. A pa th  is fair if and only if for every fairness constraint, there are infinitely 
many  states on the pa th  tha t  satisfy that  constraint.  

The  Extended Model Checker (EMC) does automat ic  verification using CTL. A ses- 
sion with EMC starts  with the loading of a description of the CTL structure of the 
circuit, along with any associated fairness constraints. Then CTL formulas are entered, 
and EMC checks whether they are satisfied by the circuit. For formulas that  are not 
satisfied EMC outputs  a counterexample path,  if one exists, tha t  illustrates why the 
formula does not hold. 

3 Trace T h e o r y  

We can only give a short overview of trace theory in the space of this paper; the interested 
reader m a y  refer to [5] and [6]. In trace theory based verification digital circuits and 
their specifications are modeled by trace structures, which are ordered 4-tuples of the 
form 7- = ( I , O , S , F ) .  The set I is the set of names of the input wires of the circuit; O 
is the set of output  wire names. The set A = I t 3 0  is called the alphabet of 7". The sets 
S ( the success set) and F (the failure set) are regular sets of finite strings, called traces, 
over the a lphabet  A. Each trace models a possible behavior of the circuit by having each 
symbol  in the trace represent a transition on the corresponding wire. This means that  
only the order of transitions is represented, not the actual times at which the transitions 
O c c u r .  

The S set and the F set are used to give partial  specifications. A partial  specification 
of a device describes requirements for the proper use of the device, and specifies the 
behavior  of  the device given that  those requirements are satisfied. In a trace structure, 
the set S describes the behaviors of a device when it is used properly. The set F describes 
behaviors resulting from improper  use. For example, in asynchronous circuits a gate is 
typically modeled so tha t  the F set contains all behaviors that  cause a hazard and the 
S set contains all behaviors that  do not cause a hazard. 

The set P = S U F  is the set of all possible traces. The S and P sets must  be 
prefix-closed, and P must  be non-empty. For some non-deterministic devices (such as 
the vending machine example in [11], which is also discussed in [5]) a given trace can be 
both  a success and a failure, so the S and F sets need not be disjoint. Also, no circuit 
can control its inputs, which is modeled by requiring that  P I  C P (if A and B are sets 
of  strings or symbols, then A B  = {ab : a E A  and b E B } ) .  This is called the receptiveness 
requirement. 

Trace theory cannot  explicitly model simultaneous transitions, transitions are always 
modeled as occurring in some total  order. This does not mean that  simultaneous tran- 
sitions are not allowed to occur in the circuits being modeled, however. An atomicity 
assumpt ion is applied requiring that  the simultaneous transition of two wires must  have 
exactly the same effect on the s tate  of the circuit as non-simultaneous transitions of the 
signals in either one order or the other, similarly for simultaneous transitions of more 
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than two wires. This assumption is quite reasonable for digital circuits, and it greatly 
simplifies the theory and the implementation of the verifier. 

As an example, consider how a buffer might be modeled by a trace structure 7" = 
(I,  O, S, F).  Let b be the name of the input wire of the buffer, and let x be the name of 
the output  wire. Then I = {b} and O = {x}. Assume that  both  the input and the output  
of the buffer are initially low. We define the set of successful behaviors of the buffer to 
be those behaviors in which the environment does not cause a hazard. Thus, the set S 
of successful behaviors is equal to (bx)*(b + e). If the environment does cause a hazard, 
then we do not restrict the ensuing behavior of the circuit, so F = (bx)*bb(b + x)*. 

Consider two variations of the above buffer. The first buffer always eventually fires 
when it is put  in a firable state. The second buffer sometimes might never fire. Both of 
these buffers would be modeled by exactly the same trace structure. This is an example 
of trace theory's  inability to model liveness properties. 

A composition operation can be defined on trace structures. Let To = (I0, O0, So, F0) 
and ~ = ( Iz ,O1,S1,F1)  be trace structures. The composition of To and :Y1 is defined 
when O0 and O1 are disjoint. The set of outputs of the composition is O0 U O1, the set 
of inputs is (I0 U/1)  - (O0 U O1). Let A0 = I0 U 00, P0 = So t3 F0, A1 = / 1  u Oz, and 
Pz = S1 UF1. Also, let A = AoUA1,  i.e., the alphabet of the composition. I f x  is a trace 
in A*, define the projection x [Ao to be the trace formed from x by removing all symbols 
not in A0. The S and F sets of the composition are given by 

S = { x e A *  : X ] A o e S O A ~ [ A I E S 1 }  , 

F = { x e A *  : ( X I . o e F O A x l A ~ e F , ) V  

(XlAoe F0 ^ =lA, e Sl) v 
(=]Aoe S0 ^ =lA, e F1)}- 

A trace structure (I ,  O, S, F )  is said to be failure flee when F is empty. If the 
composition of several trace structures is failure free, then the components have been 
composed in such a way that  each of their environmental requirements has been satisfied. 
The trace theory verifier can efficiently check whether the composition of a set of trace 
structures is failure free. If a composition is not failure free, then usually only a small 
fraction of the state space needs to be explored before a short error trace can be given. 

Let To and T1 be trace structures. Then, To conforms to T1 (written To _ T1) if 
I0 = / 1  and O0 = O1 and for any trace structure T, the composition of T and TI being 
failure free implies that  the composition of T and To is failure free. The idea captured 
here is that  if circuit works correctly with Tz as a component,  then it works correctly with 
T1 replaced by To (up to safety properties). If To _~ Tz and T1 __ To, then To and T1 are 
conformation equivalent. This means that  To and T1 are functionally interchangeable. 
There exists a canonical form for trace structures such that  two canonical trace structures 
are conformational equivalent if and only if they are equal. 

A trace structure T1 can also be used to represent a specification. A circuit To satisfies 
the specification T1 if To conforms to T1. Checking that  a circuit satisfies a specification 
would be very expensive if it required checking the failure freedom of compositions with 
all possible trace structures. However, there exists an operation on trace structures, 
called mirroring, tha t  makes checking conformation practical. If T = (I,  O, S, F )  is a 
canonical trace structure, then T M - (O, I ,  S, A* - P )  is its mirror. If T '  has the same 
inputs and outputs as T, then the composition of T '  and T M is failure free if and only if 
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T ~ conforms T. Thus, checking if a circuit satisfies a specification only requires checking 
if the composit ion of the circuit with the mirror of the specification is failure free, which 
can be done efficiently. I f  there is an error in the circuit, then usually on a small fraction 
of the states of the composition need to be explored before a failure is found. When a 
failure is found, a short  trace of the transitions tha t  led to the failure is output  to the 
u s e r .  

4 Combining  CTL and Trace Theory 

Verifying a circuit with both trace theory and CTL involves two steps. The  first step 
is to use trace theory to construct the trace structure representing the composition of 
the circuit with some environment. The environment may be constructed by computing 
the mirror of a specification. If  the composition has a failure, then this is detected by 
the verifier during the construction of the trace s tructure representing the composition, 
usually after only a small fraction of the s tructure has been constructed. After detecting 
a failure, the verifier does a breadth first search to find a shortest  failure trace, which is 
useful for debugging. In this case, no CTL verification is done, and debugging consists 
of a t t empt ing  to remove the safety violation detected by the trace theory verifier. 

I f  the composition is failure free, then it is converted to a CTL structure  for use by 
the CTL model checker. This conversion requires tha t  extra information be carried with 
the trace structures tha t  represent components  of the circuit. Trace structures do not 
explicitly represent the digital values of wires, but  CTL structures have this information 
in the labels of each state. So the verifier adds to trace structures the initial values of the 
wires of the circuit. The values of the wires in all s tates is determined using the following 
construction. The  states in the CTL structure tha t  is constructed are each n + 1 tuples 
(where n is the number  of  signals in the circuit): one element of the tuple is the s tate  
number  of the corresponding s ta te  in the au toma ta  representing the trace structure of 
the composition, the other n entries are the values of each of the n signals. The  initial 
s ta te  and the next-s tate  relation of the CTL structure are defined in the obvious way. A 
CTL structure  constructed in this way could have many  more states, even exponentially 
more, then the trace s tructure au tomata  from which it was constructed. Our experiments  
indicate tha t  in practice, however, the increase in the number of states is usually no more 
than  a factor of 2, and there is often no increase at  all. 

Correct  verification using the model checker depends on having fairness constraints 
tha t  describe liveness and fairness properties of the circuit components.  Ideally infor- 
mat ion about  fairness constraints should be included in the trace structures that  model 
circuit components.  When trace structures are converted to CTL structures the fair- 
ness constraints  would automatical ly  be included. However, the including of fairness 
constraints in CTL structures is currently done by hand by the user of the verifier. 

Once the CTL structure is constructed, the next step is to use the model  checker to 
verify tha t  the circuit satisfies the desired CTL formulas. When a formula is not satisfied, 
the model checker outputs  a counterexample trace, if one exists, to show why the formula 
is not satisfied. 

As an example of verification using both trace theory and CTL, consider the fair 
mutua l  exclusion circuit in Figure 1. The signals ai and bi are request inputs, and ao 

and bo are mutual ly  exclusive acknowledge outputs.  A 4-phase handshaking protocol is 
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Figure 1: Proposed circuit for fair mutual exclusion. 

used, initially all wires are low. The heart  of the circuit is a mutual  exclusion element 
that  is not assumed to be fair. Also used in the circuit are two synchronizers. 

A synchronizer has two inputs, D (data) and S (strobe), and two outputs, D F  (data 
false) and D T  (data true). When S goes high, the synchronizer samples the value of 
D. If D is stable at low voltage, then D F  is raised. If D is stable at high voltage, 
then D T  is raised. It is guaranteed that  D F  and D T  will never be high simultaneously. 
Once either D F  or D T  is raised, they do not go low until S is taken low, regardless 
of how D changes, if  D changes between when S is raised and either D F  or D T  is 
raised, then the synchronizer can go into a metastable state, and either D F  or D T  may 
go high. The synchronizer can also go into a metastabte state if D changes within a 
small amount of time (called the setup time of the synchronizer) before S is raised. The 
notion of setup time can not be accurately represented in the speed-independent model. 
In [9], synchronizers are assumed to have a setup time of zero, which is a rather liberal 
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assumption. A more conservative alternative is to model a synchronizer so that  the 
output  in response to raising S is deterministic only if D has not changed since previous 
raising of S. Such a synchronizer is said to have a setup time of one cycle. If a circuit 
is verified correct using a synchronizer with a setup time of one cycle, then that circuit 
will also be correct if a synchronizer with a setup time of zero is used instead. The 
converse, however, is not true. We will assume that  synchronizers have a setup time of 
zero when verifying circuits under the speed-independent model. Later, we will address 
the implications of this assumption. 

When the circuit in Figure 1 is verified, a bug is found in less than 40 seconds. (All 
t iming information in this paper is based in running the verifier on a Sun-3/60 with Sun 
Common Lisp version 2.1.1.) The verifier can output  a shortest length trace showing 
the bug, which can be summarized as follows. The input bi remains low throughout the 
trace. The signals ai and ao go through one request/acknowledge cycle, this leaves bif 
high. Because we are using the speed-independent model, bif may remain high for an 
arbitrarily long time. Next, ai goes high again, which eventually causes ao to go high. 
But ao can go high before bif returns to a low state, causing a failure in the synchronizer. 

The problem is that  in the above trace, ao is allowed to go high when bif might still 
be high. This can be fixed by replacing the and-gate that  drives aodbif with a C-element 
(the inverted input remains inverted). The corresponding change is also made to the 
and-gate tha t  drives bodaif. This way, bif must go low before aod can go low, which 
must happen before ao can go high. 

The error in this circuit could also be found, in theory, using the model checker. How- 
ever, as currently implemented, this would require constructing the entire CTL structure 
of the circuit, which our analysis has shown to have at least 400,000 states. This demon- 
strates how much more effective trace theory can be at finding safety violations quickly. 
It has been proposed that  the model checker be implemented using "lazy" state con- 
struction, which might allow it find errors without constructing the full CTL structure. 
But since the verifier determines the t ru th  of a formula by marking each state of the 
CTL structure with the t ru th  values of the sub-formulas, there is good reason to believe 
that  even a "lazy" model checker would still construct many more states than the trace 
theory verifier before finding a bug. 

The modification described above does not solve all of the problems with the circuit, 
but  the verifier can be used iteratively to find bugs and output  error traces that  greatly 
simplify debugging. The circuit shown in Figure 2 can be derived in this way. Trace 
theory verifies that  this circuit has no safety errors after examining 1332 states in about 
50 seconds. 

However, it is not possible to check the liveness or fairness properties of this circuit 
using only trace theory. So we use the system to construct the CTL structure correspond- 
ing to the circuit. For this circuit, constructing the CTL structure caused no increase in 
the number of states needed to model the circuit. Using the model checker, we can verify 
that  the formulas A G  A F  (ai'VV ao) and A G A F  (hi ¢~ bo) are true for the circuit. This 
means that  for every state the circuit might reach, it will eventually reach a state in which 
ai and ao have the same value. This implies, among other things, that  every request 
made of the circuit is eventually acknowledged. This liveness property depends on the 
assumption that  whenever a user starts a four-phase handshake, it always completes it 
and thus releases the mutual  exclusion element. This assumption was represented using 
the fairness constraints ao ~ ~ai  and bo ~ ~bi.  
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Figure 2: Correct speed-independent fair mutual  exclusion circuit. 

The above analysis was done using synchronizers with a setup t ime of zero. If  syn- 
chronizers with a setup t ime of one cycle are used instead, the sys tem can verify tha t  
there are no safety errors in the circuit, jus t  as before. However, a deadlock is discovered 
when liveness properties are checked using CTL. One such deadlock is as follows. The 
circuit first completes a cycle on the b channel, then bi remains low. Then ai goes high. 
When ao goes high in response, the synchronizer can raise bit. As long as bi remains 
low, the circuit can make no further progress and is deadlocked. This is an example of 
the importance of being able to check liveness properties of the circuit. If  only safety 
properties where checked, one might conclude that  the circuit is correct for synchronizers 
with a setup t ime of one cycle, even though there is a deadlock. 

There is a way to solve the deadlock problem described above. A synchronizer with 
a setup time of zero can be implemented with a synchronizer with a setup t ime of one 
cycle by adding some extra  circuitry. The  details are described in [3]. The key idea 
is to strobe the synchronizer twice every t ime the da ta  is to be synchronized, ignoring 
the synchronizers response to the first strobe. This implementat ion of a synchronizer 
with a setup t ime of zero can be used in the circuit in Figure 2. The  result is a speed- 
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independent  fair mutual  exclusion that  is correct even though it uses synchronizers with 
a setup t ime of one cycle. 

There  has been debate  concerning whether it is possible to build a speed-independent 
or delay-insensitive fair mutua l  exclusion circuit [1,9,12]. In [9], Mart in a t tempted  to show 
tha t  such a circuit existed by constructing one. Unfortunately, Mart in later discovered 
an error in his circuit [8]. The trace theory verifier has also found errors in this circuit. 
The  circuit presented in Figure 2, which has been verified correct, provides an example 
of a speed-independent  fair mutua l  exclusion circuit. 

5 Timing  mode l s  

In the verification methods we've discussed so far, only speed-independent circuits can 
be represented. We wish to extend trace theory to allow the representation of a large 
class of  t iming models for different circuit components.  We call the extended theory trace 
theory with discrete time. The extension allows traces to contain additional symbols not 
corresponding to physical wires. The presence of such a symbol in a trace represents the 
passage of some amount  of time. More formally, we allow trace structures of the form 
(I ,  O, V, S, F) ,  where V is a set of  symbols (disjoint from I and O), and where S and F 
are sets of traces over the alphabet  A = I U O U V. The elements of V do not correspond 
to any physical wires, so they are called virtual wire names. In order to give an intuitive 
explanation of the intended meaning of such structures, we will only consider the case in 
which V contains a .,~ingle element, call it ~. 

The presence of a ~o in a trace indicates the passage of a unit of  time, call it r .  The 
trace ~ z ~  represents a single behavior in which a transition occurs on wire x at  t ime 
To + 2r, where To is the t ime at  which the behavior described by the trace began. Traces 
in trace theory with discrete t ime can also be interpreted as approximating continuous 
time. Interpreted in this way the above trace represents the set of behaviors in which a 
transit ion occurs on wire z at  a t ime t such tha t  To + 2r  _< t < To + 3r. 

Figure 3 is an au t om a t a  describing the S set of a buffer with input b, output  x, and 
vir tual  wire p. Notice tha t  since S is prefix closed, all of the states in this au tomata  are 
accepting states. The  F set of this buffer is equal to ( S I  - S)A*.  Interpreted in discrete 
time, this buffer clearly has a minimum delay of 2r  and a max imum delay of 3r. We say 
such a buffer obeys a discrete 3/2 rule. 

In continuous time, the 3/2  rule states that  the minimum delay of each component  is 
2 units and the m a x i m u m  delay is 3 units. The buffer in Figure 3 approximates  a buffer 
tha t  obeys the 3/2 rule in continuous time. To see this, consider the set of continuous 
t ime behaviors equal to the union of the sets of behaviors represented by each trace in 
the P set of the buffer in Figure 3. Any behavior a continuous 3/2 rule buffer might 
display is contained in this set. 

We have also developed a version of trace theory called trace theory with continuous 
time in which every transit ion in a trace has a real number associated with it to represent 
the exact t ime at  which the transition took place. By proving relationships between the 
two kinds of  trace theory, we can increase our confidence that  trace theory with discrete 
t ime accurately models physical systems. I t  can be shown for a large class of specifications 
and component  models tha t  if a circuit conforms to a specification when modeled with 
trace theory with discrete time, then it is also conforms to the specification in trace 
theory with continuous time. If  the specifications and component  models are restricted 
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Figure 4: Example circuit for demonstrating effects of timing assumptions. 

somewhat more, then the converse is also true. Contained in this set is a large class of 
specifications that  include timing properties such as requiring a circuit to respond to an 
input within a certain amount of time. As an example of why the converse is not true 
in general, consider two buffers in series with input b and output  x, and three buffers in 
series with input c and output  y. If b transitions before c, then by the continuous 3/2 
rule, z will transition before y. In the discrete 3/2 rule, x is guaranteed to precede y if 
and only if b transitions before c and there is a ~ between the b and c transitions. This 
illustrates that  there can be extra behaviors in trace theory with discrete time that  are 
not in trace theory with continuous time. These extra behaviors can cause a circuit to 
not conform to a specification in trace theory with discrete time. 

Although the discrete 3/2 rule is not as strong as the continuous 3/2 rule, it does 
place useful restrictions on the order of transitions in a circuit. As an example of this, we 
consider a circuit formed using the output of a pulse generator as the input to a buffer 
as in Figure 4. The pulse generator has a period of 8r  and a 50% duty  cycle. Its S set 
is described by the automata  in Figure 5 and its F set is empty. The buffer is the same 
as that  represented in Figure 3. 

The trace structure representing the resulting circuit has an empty F set and its S 
set is given by the automata  in Figure 6. Since the maximum delay of the buffer is 3 r  
and the pulse generator waits 4r  between output t ing transitions, there are never two 
consecutive b transitions without an z transition in between. This fact could not be 
represented with the speed-independent timing model. 

Timing models other than the 3/2 rule can also be represented. It  is clear how to 
modify the buffer in Figure 3 to have a minimum delay of m r  and a maximum delay of 
n r  for any non-negative integers m and n such that  m < n. The buffer can also be made 
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Figure 5: Automata  that  accepts the S set of a pulse generator. 
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Figure 6: Automata  representing the behavior of the example circuit in Figure 4. 

to have an unbounded maximum delay by removing state 4 and adding a transition on 
from state 3 back to state 3. 

The trace theory verifier has been extended to include virtual wires in this way. This 
is combined with CTL as before. If a composition is failure free then the resulting finite 
automata,  the behaviors of which reflect any timing assumptions made, is converted to 
a CTL structure. 

As an example of verifying circuits using timing models, consider again the circuit in 
Figure 1. We will analyze this circuit using the discrete 3/2 timing model. We model each 
of the gates to have a minimum delay of 2v and a maximum delay of 3v. The outputs of 
the synchronizers and the mutual  exclusion element have a minimum delay of 2r. When 
these two components are in a metastable state, we cannot bound their delay; otherwise 
their maximum delay is 37". The mutual  exclusion element may be in a metastable state 
when both  of its inputs are high and both its outputs are low; otherwise, it is guaranteed 
not to be metastable. The synchronizer may go into a metastable state if the D input 
changes to soon before the strobe input S goes high, or after the strobe goes high and 
before any output  goes high. We define a setup time of 3r  for the synchronizers: if the 
D input is stable for 3v before the strobe goes high, and remains stable until an output  
goes high, then the synchronizer is assumed to not go into a metastable state. 

Under these timing assumptions, trace theory verifies the circuit in about 200 seconds 
after examining 3826 states. The fairness of the circuit is verified using CTL as before. 
Thus, this circuit, which appeared to be incorrect in our previous analysis, is in fact 
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Figure 7: Simplified circuit for fair mutual  exclusion under the discrete 3/2 rule. 

correct given reasonable timing assumptions. This circuit is smaller and simpler than 
the circuit we showed to be correct in the speed-independent model. 

We can do even bet ter  than this. The circuit in Figure 1 does not make use of the 
maximum delay of the arbiter in states that  are not metastable. Rather than an elaborate 
circuit using synchronizers to insure fairness, we design a circuit that limits the rate at 
which a user can reissue requests. Then the mutual  exclusion element is guaranteed 
to respond to a request from one user before receiving the second of two requests from 
another user. This results in the rather trivial circuit in Figure 7. The verifier quickly 
shows that this circuit satisfies all the necessary safety and liveness properties. The 
delays insure that  no user can make requests quickly enough to cause unfair behavior, 
e v e n  if the mutual  exclusion element is unfair. The circuit is faster and much simpler 
than the previous circuits. If there is a known lower bound on the delay from when the 
circuit takes an acknowledge low to when the corresponding user takes its request high, 
then some or all of the delays in the circuit in Figure 7 can be safely removed, resulting 
in a n  e v e n  faster circuit. 

The previous example shows that  given reasonable assumptions on the relative delays 
of components, designing a fair mutual exclusion circuit is almost trivial. This is not a 
surprising result, the problem of speed-independent fair mutual  exclusion is often per- 
ceived to be of only theoretical interest. However, to the author 's  knowledge, this is the 
first time this result has been demonstrated by an automatic verifier. The ability of this 
verifier to accurately model this kind of phenomenon increases its usefulness as a design 
tool. 

6 Conc lus ions  and Future  R e s e a r c h  

We have presented a verification system that  combines the advantages of CTL and trace 
theory. The resulting system often finds bugs after exploring only a small fraction of the 
states of a circuit, greatly simplifies checking for hazards, and allows the verification of 
liveness and fairness properties. 

We have also shown how this verifier has been extended to use more liberal timing 
models than the speed-independent model. Our example indicates how this can aid in 
the design and verification of circuits tha t  are smaller and faster than similar speed- 
independent circuits. It is also possible to verify circuits against specifications that  
include timing properties such as requiring a circuit to respond to an input within a 
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certain amount of time. 
Although the verifier presented here uses time linear in the number of states in the 

circuit, the time used can be exponential in the number of components of the circuit. 
Though we see no way to improve the asymptotic worst case performance of the verifier, 
we believe its performance on typical circuits can be improved. One way to do this uses 
the fact that in many physically plausible timing models the order of two physical wire 
names in a trace is irrelevant when there is no virtual wire name between them. This fact 
can be used to reduce the number of states explored during the verification of a circuit 
using such a timing model. 

There is nothing about the method presented here that restricts its application to 
asynchronous circuits, it could also be applied to other concurrent systems. Using this 
method to study examples of other kinds of concurrent systems is an area for future 
research. 
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