
Verification of Object Oriented Programs Using

Class Invariants

Kees Huizing, Ruurd Kuiper, and SOOP?

Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven,
The Netherlands,

keesh@win.tue.nl, wsinruur@win.tue.nl

Abstract. A proof system is presented for the verification and deriva-
tion of object oriented programs with as main features strong typing, dy-
namic binding, and inheritance. The proof system is inspired on Meyer’s
system of class invariants [12] and remedies its unsoundness, which is al-
ready recognized by Meyer. Dynamic binding is treated in a flexible way:
when throughout the class hierarchy overriding methods respect the pre-
and postconditions of the overridden methods, very simple proof rules
for method calls suffice; more powerful proof rules are supplied for cases
where one cannot or does not want to follow this restriction.
The proof system is complete relative to proofs for properties of pointers
and the data domain.

1 Introduction

Although formal verification is not very common in the discipline of object ori-
ented programming, the importance of formal specification is generally acknowl-
edged ([12]). With the increased interest in component based development, it
becomes even more important that components are specified in an unambigu-
ous manner, since users or buyers of components often have no other knowledge
about a component than its specification and at the same time rely heavily on its
correct functioning in their framework. The specification of a class, sometimes
called contract, usually contains at least pre- and postconditions for the public
mehtods and a class invariant.

A class invariant expresses which states of the objects of the class are con-
sistent, or “legal”. An object that doesn’t satisfy the class invariant has an
uninterpretable state that should only occur during an update of the object.
Therefore, whenever an object is handed over from one piece of the code to the
other (and therefore possibly from one developer to another), one should be able
to assume the class invariant to hold for the object. Of course, this is what the
term “invariant” conveys. Nevertheless, the usual practice in verification is too

? Research group Systematic Object Oriented Programming, at the time of conception
of this paper consisting of Lex Bijlsma, Rik van Geldrop, Louis van Gool, Kees
Hemerik, Kees Huizing, Ruurd Kuiper, Onno van Roosmalen, Jaap van der Woude,
and Gerard Zwaan

T. Maibaum (Ed.): FASE2000, LNCS 1783, pp. 208–221, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Verification of Object Oriented Programs Using Class Invariants 209

weak to guarantee this invariance. According to this practice, one proves that
every (public) method that starts in a state satisfying the invariant will also
terminate in a state satisfying the invariant. As Meyer already remarks, this
does not in general guarantee invariance [12] and hence, leads to unsoundness.
When the call chain of methods can visit a certain object twice, the second call
may find the object in an inconsistent state, i.e., not satisfying the invariant.
This situation of reentrance, sometimes called call-back, occurs in many object
oriented designs. Another problem may occur when a class invariant depends on
the state of more than one object. In this case, changing the state of one object
may break the invariant of another [15]. In this paper, this problem is called
vulnerability.

To overcome these problems, we formulate a proof system that does guarantee
true invariance of the class invariants. This leads to more proof obligations than
just “assuming that the invariant holds before, prove that it holds after”, but it
makes problems with call-backs and fragile base classes [15] visible as early as
possible in the development.

Proof theoretic approaches comparable to ours but not dealing specifically
with the questions addressed in the present paper, i.e., call-backs and vulner-
ability, can be found in, e.g., [9,14,13,8,10]. A somewhat more different proof
theoretic approach appears in [1]. A semantically oriented approach, aiming for
automated object-oriented verification, is proposed in [6].

2 Framework

2.1 Programming Language

The proof system works in principle for any object oriented, strongly typed pro-
gramming language. For our notation, we stay closely to Java [3]. With strongly
typed, we mean that every expression has a static type and that type incompat-
ibilities render a program illegal.

Furthermore, we expect our language to have dynamic binding, so we assume
that values of expressions have a dynamic type that can be different from the
static type of the expression. We assume that there is a subtype relation of
types, which is a partial order. We assume that the language is type safe, i.e., the
dynamic type of an expression is always a subtype of the static type. In practice, a
language is seldom type safe in the sense that every legal, or compilable, program
is type safe. Of course, one could design proof rules to prove that a program is
indeed type safe. We will not go into this further. Inheritance follows subtyping.
When C is a subclass of D, C is also a subtype of D.

2.2 Object References

An object reference is an expression that refers to an object or equals the special
constant null. The value null does not refer to an object, hence it cannot be
dereferenced, i.e., no method call or other member access can be applied to null.



210 Kees Huizing, Ruurd Kuiper, and SOOP

We thus assume that object references are never undefined (such as pointing to
garbage). This assumption can be achieved by having no explicit object deletion
in the language but relying on automatic garbage collection instead. Non-null
object references are equal if and only if they refer to the same object. Object
references may occur in statements as well as in assertions.

The special variable this always refers to the currently active object, i.e.,
the object to which the currently executing method belongs. We assume that the
only object that can be changed at any moment during execution is the currently
active object. This can be achieved by not allowing assignments to fields of other
objects, or more severely, only allowing access to objects via method calls. This
latter restriction is advised in many object oriented design methodologies.

We assume that the static type of object references is always known. The
proof system can derive equality and inequality of reference and type expressions.
About the type system we assume:

1. the subtype relation <: is transitive and reflexive;
2. we do not have subsumption, i.e., A <: B does not imply that any expression

of type A is of type B;
3. if o.x is a type correct expression, it refers to a member that is declared in (a

supertype of) the dynamic type of o; this member is uniquely determined,
though not statically. If o is null, the value of the expression is undefined.

A new object of class C is created by the expression new C(). After creation,
the constructor associated to class C, if it exists, is executed. In this paper, we
allow at most one constructor per class. For the purpose of the proof system, we
consider the expression new as a method call. The result value is a reference to
the newly created object.

2.3 Assertion Language

The assertion language is first order predicate logic with local program variables
as free variables. Concerning instance variables (also known as attributes), there
is a slight complication, since their value depends on the object they belong to.
Therefore, instance variables should always be prefixed with a reference to the
object they belong to. In many cases, this reference is this, and this reference
is silently assumed when we omit it, but it may be any other expression that
yields an object reference.

Every assertion in the proof system is associated to a class. For the pre- or
post-condition of a method, it is the class that the method belongs to; for class
invariants it is that class, obviously; for annotations in the code it is the class
the code is associated to. This class is called the type of the assertion. When an
assertion is prefixed with an object reference, it is to be evaluated in the context
of that object. We define this syntactically, as follows:

Definition: Let P be an assertion of type C and o an object reference of type C
or a subtype thereof. Then we define o.P ≡ P [this/o]).

An unprefixed assertion is silently assumed to have this as a prefix.
If o = null, the value o.P is undefined. Note that this never has value null.



Verification of Object Oriented Programs Using Class Invariants 211

2.4 Proof System

In an object-oriented program, the notion of a main program has more or less
disappeared, leaving a set of classes for the “user” (programmer, developer)
to work with. Therefore, the purpose of a proof system for object-orientation
is not to prove a certain program correct, but to prove a system of classes
correct. To achieve this, to every class we associate a class invariant and a pair
of pre/postconditions to every method in the class. This specification can be
used to infer properties about his own program. The proof system provides a
method to prove that the class indeed satisfies its specification. Before we go
into class invariants, we first give a sketch how pre- and postconditions are used
in the proof system.

The idea is to put at certain places in the program text assertions that
should be true whenever program execution arrives at that point. This is proved
by fulfilling proof obligations, which are either implications in predicate logic, or
Hoare-triples[7]. All methods are annotated with assertions. A legal annotation
has assertions in at least the following places:

– before and after the body of the method;
– before and after every method call (including new statements).

Assume that an annotated method m in class C looks as follows (because the
Java-style braces that surround blocks of code clash with Hoare-triple braces,
we use begin and end for program blocks):

{pre}
void m(void) begin
{Q1}
... // code without method calls
{R1}
o1.method1();
{Q2}
.
.
.
{Rn−1}
on−1.methodn−1();
{Qn}
... // code without method calls
{Rn}

end
{post}

So every method call oi.methodi is surrounded by a pair (Ri, Qi+1), and
the other pieces of code (so-called local code segments) by pairs (Qi, Ri). To
get consistent subscripting, it may be necessary to insert an empty statement
between Q1 and R1 or Qn and Rn, in case the method begins or ends with a
method call.



212 Kees Huizing, Ruurd Kuiper, and SOOP

Then we have the following proof three obligations. How to fulfill the last
two, we will address later.

1. prove:

this.pre ⇒ Q1

Rn ⇒ this.post

2. for every two assertions Qi and Ri that are separated by local code Pi, prove
the Hoare triple:

{Qi}Pi{Ri}

3. for every two assertions Ri and Qi+1, surrounding method call o.methodi(),
prove:

{Ri}o.methodi(){Qi+1}

We have simplified matters somewhat. We assumed that the method has no
parameters, and we assume that the method body can indeed be written as a
sequence of local code segments and method calls. It is relatively straigthforward
to remove these simplifications; we will not go into this.

The second type of proof obligations, we call local proof obligations. How
these proofs are established is not the concern of this paper. One can substitute
one’s favourite proof system, applied to one’s favourite programming language,
using one’s favourite assertion language.

Regarding the third proof obligation, we recall the proof obligation for ordi-
nary procedure calls. In that case, we would have to prove

Ri ⇒ premethodi
and postmethodi

⇒ Qi+1

where prem and postm are the pre- and postcondition of the procedure, [4].
For method calls, the situation is somewhat more complicated and how to

formulate the proof obligation in that case is the subject of the next section.

2.5 Proving Pre- and Postconditions for Methods

Before we discuss what has to be done for methods, we introduce some notation.

Notation

– Td(o), Ts(o) denote dynamic resp. static type of o
– o.m denotes method m of the dynamic type of o (cf. Java method call)
– o :m denotes method m of the static type of o
– mC denotes method m in class C, so o :m = mTs(o)

– D <: C denotes that D is a subtype of C; note that the subtype relation is
reflexive, so D = Cimplies D <: C.



Verification of Object Oriented Programs Using Class Invariants 213

Methods are specified by pre- and postconditions, just like procedures in or-
dinary sequential programming languages. Apart from a funny syntax to specify
the first parameter, the important difference with procedures is that methods
have dynamic binding. From the syntax of a method call like o.m(), we can not
deduce which method will be executed, and, consequently, we do not know which
pre/postcondition pair should be used. We propose two different solutions, which
do not necessary exclude each other.

1. During class design, make sure that an overriding method (a method of a
subclass that redefines a method of a superclass), can really substitute the
method it overrides. I.e., the precondition of the overriding method should
be weaker than the precondition of the method it overrides, and the post-
condition should be stronger1. This leads to the proof obligations:
For any two types D <: C that both define method m, prove:

– premC ⇒ premD

– postmD ⇒ postmC

Now we may use the following axiom in our proofs:

{o.preo:m}o.m(){o.posto:m}

2. Keep information about the dynamic type of an object in the assertions;
then use the following axiom:

{Td(o) = C ∧ o.premC}o.m(){o.postmC}

At object creation, dynamic type information is inserted into the assertions,
for instance by the following axiom:

{true}o = newC(){Td(o) = C}

Likewise for assignment:

{Td(o′) = C}o = o′{Td(o) = C}

These axioms take care of the type information, but of course don’t capture
all of the behaviour of object creation and assignment; we assume that the rest
of the proof system takes care of that.

These two solutions do not exclude each other. Nevertheless, if 1 is used for a
certain class C, then the associated proof obligations must be proved for C and
all its subtypes. An advantage of approach 2 is that no such additional proof
obligations are incurred. However, an advantage of approach 1 over approach 2
is that no dynamic type information needs to be recorded in the assertions.

1 This is basically the methodology as elaborated in more detail in [10]



214 Kees Huizing, Ruurd Kuiper, and SOOP

3 Class Invariants

The proof system described above can be unwieldy. One of the key issues of
object oriented design is that objects represent something, possibly an object in
the real world, or a more abstract entity, which is more than just the data that
it contains. This means that, whenever one uses an object in a correctness proof,
one may assume that it satisfies certain semantic properties. These properties
are commonly shared among all objects of the same type and since object types
are represented by classes in object oriented languages, they are called class
invariants [12]. This is essentially an extension of the notion of representation
invariant. Representation invariants are a well-known and powerful concept in
the verification of data structures. In addition to representation invariants, a
class invariant may talk about properties of linked objects too. Class invariants
simplify the specification of methods by factoring out common properties. Fur-
thermore, class invariants help simplifying correctness proofs: at a method call,
there is in general only a proof obligation for the precondition of the method,
not for the invariant of the called object, as we will see later.

We associate a class invariant with every class (when omitted, we assume the
invariant to be true), and we write IC for the invariant associated to class C. We
use the notation o.I for the class invariant of the actual class of o evaluated in
the context of the object referred to by o. Note that this depends on the dynamic
type of o, and without information about this dynamic type, we cannot deduce
anything from o.I. This is different from the expression o.P where P is a known
predicate. The expression o.I, however, is merely an expression and is not an
abbreviation for a predicate. Similar to the pre/postconditions for methods, we
give two approaches.

1. Make sure that the invariant of a subtype is a strengthening of the invariant
of the supertype. Formally,

Proof obligation: Whenever D <: C, then prove ID ⇒ IC , preMC ⇒ preMD ,
and postMD ⇒ postMC .
Then we can use the following

Axioms:

o.I ⇒ o :I o :prem ⇒ o.prem o.postm ⇒ o :postm

This approach captures an important principle of object-oriented design: a
subclass should be a specialization of its superclass, hence properties that
hold for objects of a certain type C (here modelled by the class invariant
IC) should also hold for objects of subtypes of C.

2. Collect dynamic type information in assertions and use the following rules:

Td(o) = C

o.I ⇔ o.IC

Td(o) = C

o.prem ⇔ o.premC

Td(o) = C

o.postm ⇔ o.postmC



Verification of Object Oriented Programs Using Class Invariants 215

Soundness of these rules follows from [10], where, in a different setting, the
same proof obligations appear. In fact, the proof obligation of preMC ⇒ preMD

compromises completeness when D has more variables (attributes) than C. In
that case, approach 2 can be used, or approach 1 should be refined along the
lines of [10].

3.1 Where Do Class Invariants Hold?

Until now, we have not defined what it means for a class to satisfy its specifica-
tion. We will do that now.

For pre/postcondition pairs, we would want that a method that is called
in a state where the precondition holds should terminate in a state where the
postcondition holds.

For class invariants, it is less evident what should be required. It is unrealistic
to have class invariants hold all the time. When the data in an object changes,
it is often not possible to keep the invariant valid during the whole process.
However, when an object is handed over, or when a method is invoked on an
object, this object should be in a consistent state. Otherwise, the receiver of the
object can hardly do anything useful with it. Since it is the purpose of class
invariants to describe that an object is in a consistent state, we would want our
class invariants to hold in these states.

Definition 1. A class invariant IC is valid if it holds for all existing objects of
type C during the following points of program execution:

– at the beginning of any method execution, except for a new object at the
beginning of the execution of its constructor

– at the end of any method execution.

3.2 Proof Obligations for Class Invariants

We want to design a proof system that allows us to derive validity for class
invariants. For this purpose, we have to extend the system of section 2 with
additional proof obligations.

3.3 Simple Case

In the simplest case it suffices to prove that the invariant of an object holds at
exit of any method that changes the object, including any constructor of that
object:

1. For any constructor c() of class C prove {true}bodyc{IC}
2. for any plain method m(), prove {prem ∧ I}bodym{postm ∧ IC}



216 Kees Huizing, Ruurd Kuiper, and SOOP

This proof system may be unsound, however, when there is re-entrance. Re-
entrance occurs when a chain of method calls returns to an object earlier in the
chain. For example, consider an object α that executes a method m. Halfway, m
calls a method on object β and this methods calls back on α by method n. When
n starts, m is not finished, so the proof obligation above does not guarantee that
α’s invariant holds. Re-entrance is in particular possible in situations where call-
back mechanisms are exploited.

To accommodate this, we have to require that the invariant holds just before
any method call in the body of a method. This leads to the following structure.

– assumption At the beginning of the method body and after every method
call, assume that the invariant holds.

– obligation At the end of the method body and before every method call,
prove that the invariant holds.

Note that we can strengthen the assumption with invariants of any other
object, for instance, objects that are handed to a method via parameters can be
assumed consistent.

This is not enough, however. Suppose object o refers to object p in its in-
variant. Then, changing p may invalidate the invariant of o. This suggests the
following definition. This is the so-called forward-backward problem, described
by Meyer. In this example, two objects keep references to one another. When
this is expressed in the invariant of one of these objects, this invariant could be
violated by changing the other object. This notion is captured in the following
definition.

Definition 2. When object reference o of type D occurs in invariant IC , we
say that objects of class C are vulnerable to (objects of) class D. o is called the
vulnerability reference.

Given an execution state, an object α is semantically vulnerable to an object
β if a change to β can invalidate the invariant of α.

The idea now is to strengthen the proof obligation above with obligations
to prove the invariants of all objects that are vulnerable to the current class.
For this purpose, we need a reference to the vulnerable object. The next section
deals with this problem.

3.4 Referencing Vulnerable Objects

Suppose we have a linked list of objects of class C. Every object has a field n
that references the next object in the list (possibly null), and an integer field
x. If we want to express that the list is strictly decreasing, we need as invariant

IC : x 6= null→ x > n.x

Then, each object in the list is vulnerable to the next one. For instance, a method
m that increases x would maintain the invariant of the current object, but would



Verification of Object Oriented Programs Using Class Invariants 217

invalidate the invariant of the previous object in the list. So we need a proof
obligation that can talk about the previous object in the list, although in general
objects don’t have such a reference, as this example shows. This problem is not
restricted to this example. In many cases, there are one-way references and when
such a reference occurs in the invariant, the referenced object cannot talk about
the object that is vulnerable to its changes.

For this purpose, we introduce logical variables (sometimes called freeze vari-
ables or specification variables, [4]) in the method body that refer to the vulner-
able objects. For every method in class B and expression o of type B occurring
in the invariant of class A, the assertion at the start of the method body may
be strengthened by expressions of the form

X.o = this∨X = null

where X is of type A.

3.5 Proof System

Gathering these ideas together, we come to the following scheme of proof obli-
gations.

Let M be a method of class C, annotated as in section 2.4, let r1 . . . rk be
the vulnerability references of C, then do the following2 for every 1 ≤ i ≤ n.

1. (pre-condition) choose object references p1, . . . , pm, and prove
pre ∧ p1.I ∧ . . . ∧ pm.I ∧ (X1.r1 = this∨X1 = null) ∧ . . . ∧ (Xk.rk =
this∨Xk = null) ⇒ Q1

when M is a constructor, none of the pi may equal this;
2. (local code segment Pi)prove {Qi}Pi{Ri};
3. (pre condition method call oi.Mi) prove Ri ⇒ oi.preMi ;
4. (local invariant) Ri ⇒ I
5. (vulnerable invariants) for every vulnerability reference rj prove Xj 6= null∧

Ri ⇒ Xj :I;
6. (post-condition method call) choose object references q1, . . . , qm and prove

oi.postMi ∧ q1.I ∧ . . . ∧ qm.I ⇒ Qi;
7. (post-condition) Rn ⇒ post.

Remarks

ad 1 These invariants are free to choose. Any object reference that is in scope
can be used, referring via member fields of the current object or via param-
eters of M . Object references that are not in scope are not forbidden, but
are useless in proofs.

ad 2 For this, we rely on the underlying proof system. Note that Pi does not
contain any method calls.

2 When method M is inherited from a superclass B, these proof obligations have to
be redone in case the invariant of C is stronger than the invariant of B.



218 Kees Huizing, Ruurd Kuiper, and SOOP

ad 3 Again, two approaches can be followed here. When it has been proved
that preMi

C
⇒ preMi

D
for every class D <: C, it suffices to prove oi :preMi .

Otherwise, some type information about oi must be used.
ad 6 Analogous to 3, when it has been proved that postMi

D
⇒ postMi

C
, then

the proof obligation reduces to oi :postMi∧ etc. Otherwise, type information
about oi must be used.

4 Example

This example shows how to deal with vulnerability. Consider two classes A and
B, where objects in A hold a reference to those in B, but not the other way
round. Changing the value of an object in class B may invalidate the invariant
of an object in class A. Hence, objetcs in class A are vulnerable to B.

{IA: x>ref.y}
class A begin

B ref;
int x;

end

{IB: true}
class B begin

int y;

void dec() begin
{Q1}
y:=y-1;
{R1}

end;

void inc() begin
{Q2}
y:=y+1;
{R2}

end
end

Obviously, dec() leaves IA intact, whereas inc() doesnot necessarily.
To prove the correctness of dec(), we choose

Q1 : (X.ref = this∨X = null) ∧ y = N ∧X.x > X.ref.y

(the last conjunct is the invariant for X).

R1 : X.x > N ∧ y = N − 1

X.x > N follows from the fact that X.x is immutable to this segment and
X.ref.y = this.y = N . From R1 the required X.x > X.ref.y can easily be
deduced.



Verification of Object Oriented Programs Using Class Invariants 219

The proof obligation that R2 implies X.I cannot be satisfied, which is of
course what we want.

5 Soundness and Completeness

This section briefly sketches the proofs of soundness and completeness.
To define these notions, we assume that there is always a main program

that starts out with no objects allocated. As far as verification is concerned,
we consider this main program as a method body with pre- and postconditions
equivalent to true.

Following [11], we define an execution of the program as a maximal, in our
case also terminating, sequence of transitions between program states.

Definition 3. An execution e of program P is a terminating transition sequence
σ0

l1−→ . . .
ln−→ σn where the σi denote program states and each label li either

denotes

1. a local tranisition, i.e., a sequence of local steps, corresponding to a local code
segment, not involving method calls or object creation; which local transitions
are allowed is defined by the semantics of the programming language that is
used and is not of interest here;

2. or a method call o.m();
3. or a return transition, corresponding to the termination of a method; which

method is terminated is determined by the balance of calls and returns in the
previous part of the execution sequence.

Since we are only studying partial correctness, we can restrict ourselves to
terminating executions. This means in particular that dereferencing of null-
referencing will never occur, since this would lead to abortion.

We assume that the proof system is sound for local transitions, i.e., whenever
{Q}P{R} has been proven for a local code segment P , it is true, i.e., every
terminating execution of P starting in a state satisfying Q will end in a state
satisfying R.

In the following, the phrase “all class invariants hold” (in a state σ or during
an execution e), means that the invariants of all allocated objects (in σ or in the
states of e) evaluate to true.

Theorem 1 (Soundness). Let a program be given with all proof obligations
satisfied and an execution sequence with all class invariants holding in σ0. Then
all class invariants hold for all objects at all states σi in the transition sequence.

Proof Let a program and an execution sequence e = σ0
l1−→ . . .

ln−→ σn be
given as in the theorem. Note that all states σi correspond to points in the
code that are annotated in the correctness proof. By induction to i, we prove
that all class invariants hold during e and furthermore that the assertions from
the correctness proof hold in the corresponding states. For i = 0 it holds by
assumption. For i > 0, there are three cases.



220 Kees Huizing, Ruurd Kuiper, and SOOP

1. li denotes a local transition in class C for code segment Pj . By induction,
[[Qj ]]σi−1 and by soundness of the proof system for local transitions and
p.o. (proof obligation) 2, [[Rj ]]σi. Now consider an object α of class D. If
D is not vulnerable to C, it is obvious that [[α.ID]]σi−1 ⇔ [[α.ID]]σi. If
[[α]]σi−1 = [[this]]σi−1, and hence [[α]]σi = [[this]]σi, then [[α.IC ]]σi follows
from [[Rj ]]σi and p.o. 4. If D is vulnerable to C via r, we know by p.o. 5
that R ⇒ (X 6= null⇒ X :I). Since X is a free variable here and we have
soundness for local transitions, this must hold for any valuation of X , in
particular for X = α. Since α refers to an actual object, it can’t be null
and, knowing that [[Rj ]]σi, [[α.I]]σi must be true.

2. li denotes a method call oj .Mj . When this is not a constructor, no object has
changed state between σi−1 and σi and hence all invariants are maintained.
When the method call is a constructor call, a new object has been created in
σi. For this object, however, the invariant is not required at σi. Furthermore,
by induction [[Rj ]]σi−1 and then by p.o. 3, [[oi.preMj ]]σi−1. By the semantics
of the method call, we then know that [[pre]]σi and because all invariants are
maintained, [[pk.I]] holds for arbitrary pk. When we choose a valuation for
the Xk that satisfies Xk.rk = this ∨Xk = null (which is always possible),
we know that [[Q1]]σi because of p.o. 1.

3. li denotes a return transition. Then no objects have changed their state and
hence all invariants are maintained. The proof that [[Qj]]σi is analogous to
the previous point, now using p.o. 6 and p.o. 7.

end of proof

In the following definition, an annotation of the program refers to the anno-
tation in section 3.5, in which postconditions may be strengthened. Why this is,
is explained below.

Theorem 2 (Completeness). Let a program be given of which all executions
satisfy at method calls the corresponding preconditions and at both calls and
returns all class invariants. Then there exists an annotation of the program and
the classes such that all proof obligations are fulfilled.

We have to allow that postconditions are strengthened, because otherwise it may
be impossible to fulfill proof obligation 6.

Now we can prove completeness if we have a complete proof system without
class invariants. Then we can strengthen the postconditions in such a way that
they imply the necessary class invariants.This must be possible, since the class
invariants are holding in the corresponding states, by assumption.

This proof depends on the existence of a complete proof system for the chosen
object oriented programming language. In the literature various proof systems
can be found ([2,5]), although they differ somewhat from our approach.

6 Conclusion

The above approach extends the practical applicability of Object Oriented ver-
ification using pre and post conditions and invariants; its soundness and com-
pleteness is argued. One could perhaps view the notion of completeness as not



Verification of Object Oriented Programs Using Class Invariants 221

fully satisfactory - we are studying other notions that do not depend on changing
contracts, viz. strengthening postconditions, taking into account the extension
with subclasses.

Future work considers furthering the practical use of the approach through
establishing simplifying (preferably syntactical) restrictions. Correctness of the
resulting method could then be argued on the basis of the framework presented
here.

References

1. M. Abadi and K.R.M. Leino, A Logic of Object-Oriented Programs,
in TAPSOFT ’97, LNCS 1214, Springer, 1997.

2. P.H.M. America and J.J.M.M. Rutten, A Parallel Object-Oriented
Language: Design and semantic foundations, PhD thesis, Free Uni-
versity of Amsterdam, 1989.

3. K. Arnold and J. Gosling, The Java programming language, 2nd ed.,
Addison-Wesley, 1997.

4. K.R. Apt and E.-R. Olderog, Verification of sequential and concur-
rent programs, Springer-Verlag, 1991.

5. F.S. de Boer, Reasoning about dynamically evolving process struc-
tures: A proof theory for the parallel object-oriented language POOL,
PhD thesis, Free University of Amsterdam, 1991.

6. U. Hensel, M. Huisman, B. Jacobs, and H. Tews, Reasoning about
Classes in Object-Oriented Languages: Logical Models Tools, in
ESOP at ETAPS 1998, Springer-Verlag, 1998.

7. C.A.R. Hoare, An axiomatic basis for computer programming, Com-
munications of the ACM, 12, pp. 576–583, 1969.

8. H.B.M. Jonkers, Upgrading the pre- and postcondition technique.
In VDM ’91: Formal Software Development Methods, LNCS 551,
Springer-Verlag, 1991.

9. K. Rustan M. Leino, Toward Reliable Modular Programs, Phd. The-
sis, California Institute of Technology, Pasadena, 1995.

10. B. Liskov and J. Wing, A behavioral notion of subtyping, ACM
TOPLAS , 16:6, pp. 1811-1841, 1994.

11. Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Con-
current Systems. Springer-Verlag, 1992.

12. B. Meyer, Object-Oriented Software Construction, Prentice Hall,
1988.

13. A. Poetzsch-Heffter and P. Müller, Logical foundations for typed
object-oriented languages, in D. Gries and W.P. de Roever, editors,
Programming Concepts and Methods (PROCOMET), 1998.

14. A. Poetzsch-Heffter, Specification and verification of object-oriented
programs, Habilitation, TU Muenchen, 1997.

15. C. Szyperski, Component software : Beyond object-oriented program-
ming, Addison-Wesley, 1998.

16. J.Warmer, A. Kleppe, The Object Constraint Language, Addison-
Wesley, 1999.


	Introduction
	Framework
	Programming Language
	Object References
	Assertion Language
	Proof System
	Proving Pre- and Postconditions for Methods

	Class Invariants
	Where Do Class Invariants Hold?
	Proof Obligations for Class Invariants
	Simple Case
	Referencing Vulnerable Objects
	Proof System

	Example
	Soundness and Completeness
	Conclusion

