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ABSTRACT 

Single-cell transcriptomic methods classify new and existing cell types very effectively, but alternative 

approaches are needed to quantify the individual regulatory states of cells in their native tissue 

context. We combined the tissue preservation and single-cell resolution of laser capture with an 

improved preamplification procedure enabling RNA sequencing of 10 microdissected cells. This in situ 
10-cell RNA sequencing (10cRNA-seq) can exploit fluorescent reporters of cell type in genetically 

engineered mice and is compatible with freshly cryoembedded clinical biopsies from patients. 

Through recombinant RNA spike-ins, we estimate dropout-free technical reliability as low as ~250 

copies and a 50% detection sensitivity of ~45 copies per 10-cell reaction. By using small pools of 

microdissected cells, 10cRNA-seq improves per-cell reliability and sensitivity beyond existing 

approaches for single-cell RNA sequencing (scRNA-seq). Accordingly, in multiple tissue and tumor 

settings, we observe 1.5–2-fold increases in genes detected and overall alignment rates compared to 

scRNA-seq. Combined with existing approaches to deconvolve small pools of cells, 10cRNA-seq 
offers a reliable, unbiased, and sensitive way to measure cell-state heterogeneity in tissues and 

tumors. 

 

INTRODUCTION 

Tumors are complex mixtures of cells that are heterogeneous in their genetics, lineage, and 

microenvironment (1,2). Whole-tumor profiles of genes and transcript abundances yield inter-tumor 

differences that are clinically important for patient prognosis (3-5), but these cellular profiles are 

population averages (6). The tumor microenvironment contains several different cell types that vary 

among cases (7-12). At the single-cell level, cancer cells are heterogeneous and genetic subclones 
evolve as the disease progresses (13,14). Tumor cells also display non-genetic heterogeneity and 
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can switch between regulatory states in a reversible and context-dependent manner (15-17). 

Together, these variations dictate phenotypic differences such as proliferative index, metastatic 

potential, and response to therapy (16,18-22). 

 Assessing intra-tumor heterogeneity of gene regulation requires precise transcriptomic 
measurements of a very small number of cells isolated from within the tumor context. The current 

methods for single-cell RNA sequencing (scRNA-seq) are powerful in their ability to profile thousands 

of individual cells and identify differences in genotype or lineage within a mixed population. However, 

the first step of most large-scale scRNA-seq methods is some form of tissue dissociation and single-

cell isolation, which can alter transcriptional profiles and confound downstream analyses (23,24). 

Further, scRNA-seq methods struggle with technical variability, including "dropout" of medium-to-low 

abundance transcripts that yield zero aligned reads (25-28). The 3–20% conversion efficiency 

(25,26,29-31) of RNA to amplifiable cDNA is problematic given estimates that 90% of the 
transcriptome is expressed at 50 copies or fewer per cell (32). While valid for the most consistently 

expressed genes and markers within a sample, scRNA-seq data miss a large proportion of the 

transcriptome (32,33). Measuring single-cell expression profiles in situ is even more challenging 

because of losses incurred during biomolecule extraction as well as non-mRNA contaminants, which 

can be considerable in stroma-rich specimens. Collectively, these hurdles make it difficult to measure 

tumor-cell regulatory heterogeneities reliably and evaluate their functional consequences. 

 Multiple studies have reported a pronounced improvement in gene detection and technical 

reproducibility when using 10–30 cells of starting material rather than one cell (31,34-39). The 
increased cellular RNA offsets losses incurred during reverse transcription, enabling more reliable 

downstream amplification. The gains are irrespective of amplification strategy and detection platform, 

and they are more dramatic than when increasing the starting material another tenfold to 100 cells. 

Previously, we combined the technical advantages of 10-cell pooling with the in-situ fidelity of laser-

capture microdissection (LCM) to devise a random-sampling method called “stochastic profiling” 

(38,39). The method identifies single-cell regulatory heterogeneities by analyzing the statistical 

fluctuations of transcriptomes measured repeatedly as 10-cell pools microdissected from a cell 
lineage (38,40). Pooling improves gene detection and technical reproducibility; repeated sampling is 

used to extract single-cell information. Genes with bimodal regulatory states (41) create skewed 

deviations from a null model of biological and technical noise, which parameterize the underlying 

population-level distribution more accurately than single-cell measurements (36,42). By applying 

stochastic profiling to breast-epithelial spheroids and gene panels measured by quantitative PCR or 

microarray, we uncovered multiple regulatory states relevant to 3D organization and stress responses 

(18,43,44). However, this early work did not stringently evaluate the importance of sample integrity for 

primary tissues from animals or patients, nor did it involve probe-free measures of 10-cell data like 
RNA sequencing. 

 Here, we report improvements in sample handling, amplification, and detection that enable 

RNA sequencing of 10-cell pools isolated from tissue and tumor biopsies by LCM and its extensions. 

We find that cryoembedding of freshly isolated tissue pieces is crucial to preserve the localization of 

genetically encoded fluorophores in engineered mice used for fluorescence-guided LCM. By 
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incorporating ERCC spike-ins at non-disruptive input amounts in the amplification, we calibrate 

sensitivity and provide a standard reference to compare with other scRNA-seq methods (45). Sample 

tagging and fragmentation (tagmentation) is accomplished by Tn5 transposase (46), which is 

compatible with the revised procedure as well as with past 10-cell amplifications. We sequence 
archival samples that had previously been measured by BeadChip microarray to provide a side-by-

side comparison of transcriptomic platforms with limiting material (38,47). Applying 10-cell RNA 

sequencing (10cRNA-seq) to various mouse and human cell types isolated by LCM, we obtain 

substantially better exonic alignments and gene coverage relative to prevailing scRNA-seq methods. 

The realization of 10cRNA-seq by LCM creates new opportunities for stochastic profiling (42) and 

other unmixing approaches (36) to deconvolve single-cell regulatory states in situ. 

 

MATERIALS AND METHODS 

Cell and tissue sources 

The MCF10A-5E breast epithelial cell samples were described previously (38). KP1 small-cell lung 

cancer cells (48) were grown as spheroids in RPMI Medium 1640 with 10% FBS, 1% penicillin-

streptomycin, and 1% glutamine. KP1 spheroids were pelleted and mixed in Neg-50 (Richard-Allan 

Scientific) before cryoembedding. Cspg4-CreER;Trp53F/F;Nf1F/F;Rosa26-LSL-tdT mice (49) were 

housed in accordance with IACUC Protocol #3955. Animals were administered 200 mg/kg tamoxifen 

by oral gavage for five days, and brains were harvested at 12 days or 183 days after the last 

administration. A labeled glioma arising the olfactory bulb at 165 days after the last tamoxifen 
administration was also used. Breast cancer samples were collected as ultrasound-guided core 

needle biopsies during diagnostic visits in accordance with IRB Protocol #19272. Each core biopsy 

was divided into multiple pieces before cryoembedding. Unless otherwise indicated, all samples were 

freshly cryoembedded in a dry ice-isopentane bath and stored at –80ºC wrapped in aluminum foil. 

Cryosectioning 

Samples were equilibrated to –24ºC in a cryostat before sectioning. 8 µm sections were cut and 

wicked onto Superfrost Plus slides. To preserve fluorescence localization of tdT and EGFP, slides 

were precooled on the cutting platform for 15–30 sec before wicking, and the section was carefully 

placed atop the cooled slide with forceps equilibrated at –24ºC. Then, the slide was gently warmed 

from underneath by tapping with a finger until the section was minimally wicked onto the slide. All 
wicked slides were stored in the cryostat before transfer to –80ºC storage on dry ice. Frost buildup 

was minimized by storing cryosections in five-slide mailers. 

Staining, dehydration, and laser-capture microdissection 

For cryosections lacking fluorophores, slides were stained and dehydrated as described previously 

(38,39). Briefly, slides were fixed immediately in 75% ethanol for 30–60 sec, rehydrated quickly with 

water, stained with nuclear fast red (Vector Labs) containing 1 U/ml RNAsin-Plus (Promega) for 15 
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sec, and rinsed two more times with water before dehydrating with 70% ethanol for 30 sec, 95% 

ethanol for 30 sec, and 100% ethanol for 1 min and clearing with xylene for 2 min. tdT- and EGFP-

labeled cryosections were not stained and instead began with the 70% ethanol dehydration step that 

also provided solvent fixation. After air drying, slides were microdissected immediately on an Arcturus 
XT LCM instrument (Applied Biosystems) using Capsure HS caps (Arcturus). The smallest spot size 

was used, and typical instrument settings of ~50 mW power and ~2 msec duration yielded ~25 µm 

spot diameters capturing 1–3 cells per laser shot. 

RNA extraction and first-strand synthesis 

RNA extraction and first-strand synthesis were similar to earlier protocols (38,39) with some minor 

modifications. HS caps were eluted for 1 hr at 42ºC with 4 µl of digestion buffer containing 1.25x First-

strand buffer (Invitrogen), 100 µM dNTPs (Roche), 0.08 OD/ml oligo(dT)24 with or without 5’-biotin 

modification (IDT), and 250 µg/ml proteinase K (Sigma). Samples containing ERCC spike-ins included 

a four-million-fold dilution of ERCC spike-in mixture 1 (Ambion). Eluted samples were centrifuged into 

0.5 ml PCR tubes at 560 rcf for 2 min, the digestion buffer was quenched with 1 µl of digestion stop 
buffer containing 2 U/µl SuperAse-in (Invitrogen) and 5 mM freshly prepared PMSF (Sigma). 4.5 µl of 

the quenched extract was transferred to a 0.2 ml PCR tube, and reverse transcription was performed 

with 0.5 µl of SuperScript III (Invitrogen) for 30 min at 50ºC followed by heat inactivation at 70ºC for 15 

min. Samples were placed on ice and centrifuged for 2 min at 18,000 rcf on a benchtop 

microcentrifuge. 

Streptavidin bead cleanup of biotinylated first-strand products 

For 5’-biotin-containing samples, streptavidin magnetic beads (Pierce) were prepared in a 0.2 ml PCR 

tube on a 96S Super Magnet Plate (Alpaqua). Beads (6 µl per sample) were magnetized, aspirated, 

and resuspended in binding buffer (5 µl per sample) containing 1x First-strand buffer (Invitrogen), 4 M 

NaCl, and 0.02% (vol/vol) Tween-20. 5 µl of resuspended beads were added after first-strand 

synthesis, and samples were incubated for 60 min at room temperature with mixing every 15 min. 
Beads were pelleted on the magnet plate, resuspended in 100 µl high-salt wash buffer (50 mM Tris 

[pH 8.3], 2 M NaCl, 75 mM KCl, 3 mM MgCl2, 0.01% Tween-20). Beads were pelleted again on the 

magnet plate, and the pellet was washed once with 100 µl high-salt wash buffer. Next, beads were 

resuspended in 100 µl low-salt wash buffer (50 mM Tris [pH 8.3], 75 mM KCl, 3 mM MgCl2) and 

transferred to a fresh 0.2 ml PCR tube. Beads were pelleted again on the magnet plate, and the pellet 

was washed once with 100 µl low-salt wash buffer. After the last wash, the beads were resuspended 

in 5 µl 1x First-strand buffer for RNAse H treatment and poly(A) tailing. 

RNAse H treatment and poly(A) tailing 

RNAse H digestion and poly(A) tailing were performed exactly as described previously (38,39). 

Briefly, template mRNA strands were hydrolyzed for 15 min at 37ºC with 1 µl of RNAse H solution 
containing 2.5 U/ml RNAse H (USB Corporation) and 12.5 mM MgCl2. After RNAse H treatment, 

cDNA templates were poly(A)-tailed with 3.5 µl of 2.6x tailing solution containing 80 U terminal 
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transferase (Roche), 2.6x terminal transferase buffer (Invitrogen) and 1.9 mM dATP. The tailing 

reaction was incubated for 15 min at 37ºC and then heat-inactivated at 65ºC for 10 min. Samples 

were placed on ice and spun for 2 min at 18,000 rcf on a benchtop centrifuge.  

Poly(A) PCR 

Poly(A) PCR was carried out with several modifications to the earlier procedure (38,39). To each 

tailed sample, 90 µl of poly(A) PCR buffer was added to a final concentration of 1x ThermoPol buffer 

(New England Biolabs), 2.5 mM MgSO4, 1 mM dNTPs (Roche), 100 µg/ml BSA (Roche), 3.75 U Taq 
polymerase (NEB) and 1.5 U Phusion (NEB) and 2.5 µg AL1 primer 

(ATTGGATCCAGGCCGCTCTGGACAAAATATGAATTCTTTTTTTTTTTTTTTTTTTTTTTT). Each 

reaction was split into three thin-walled 0.2 ml PCR tubes and amplified according to the following 

thermal cycling scheme: four cycles of 1 min at 94ºC (denaturation), 2 min at 32ºC (annealing) and 2 

min plus 10 sec per cycle at 72ºC (extension); 21 cycles of 1 min at 94ºC (denaturation), 2 min at 

42ºC (annealing) and 2 min 40 sec plus 10 sec per cycle at 72ºC (extension). The tubes were cooled, 

placed on ice, and the reactions from three tubes for each sample were pooled and amplified 
according to the following thermal cycling scheme: five cycles of 1 min at 94ºC (denaturation), 2 min 

at 42ºC (annealing) and 6 min at 72ºC (extension). Amplified samples were stored at −20°C until 

further use. 

Poly(A) PCR re-amplification 

For sequencing, poly(A) PCR cDNA samples were reamplified as before (38,39) in a 100 µl PCR 

reaction containing 1x High-Fidelity buffer (Roche), 3.5 mM MgCl2, 200 µM dNTPs (Roche), 100 

µg/ml BSA (Roche), 5 µg AL1 primer, and 1 µl of poly(A) PCR sample. Each reaction was amplified 

according to the following thermal cycling scheme: 1 min at 94ºC (denaturation), 2 min at 42ºC 

(annealing) and 3 min at 72ºC (extension). The appropriate number of PCR cycles was determined by 

a pilot reamplification containing 20 µl of the PCR reaction above plus 0.25x SYBR Green monitored 

on a CFX96 real-time PCR instrument (Bio-Rad). The number of amplification cycles for each sample 
was selected to ensure that the reamplification remained in the exponential phase and there was 

sufficient cDNA for SPRI bead purification (typically 5–12 cycles). 

SPRI bead purification 

Re-amplified samples were purified twice with 70% (vol/vol) Ampure Agencourt XP SPRI beads. SPRI 

beads were equilibrated to room temperature for 30 min, and 70 µl beads were added to the 100 µl 

reamplification product. After a 15-min incubation at room temperature, samples were magnetized for 

5 min. The supernatant was removed with a gel-loading pipette tip, leaving ~5 µl volume in the well. 

Beads were gently washed twice on the magnet with 200 µl freshly prepared 80% (vol/vol) ethanol 

and aspirated with a gel-loading pipette tip. Residual ethanol was removed after the second wash, 

and beads were air-dried at room temperature for 10 min before resuspension in 10 µl elution buffer 
(10 mM Tris-HCl [pH 8.5]). Samples were magnetized at room temperature for 1 min, and the eluted 
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supernatant was transferred to a new 0.2 ml PCR tube. The 10 µl elution was purified a second time 

with 7 µl beads and the same incubation, ethanol wash, and elution conditions as the first purification. 

RNA sequencing and analysis 

Bead-purified cDNA libraries were quantified with the Qubit dsDNA BR Assay Kit (Thermo Fisher) 

using a seven-point standard curve and a CFX96 real-time PCR instrument (Bio-Rad) for detection. 

Samples were diluted to 0.2 ng/µl before tagmentation with the Nextera XT DNA Library Preparation 

Kit (Illumina) according to the manufacturer’s earlier recommendation to purify libraries with 180% 
(vol/vol) SPRI beads (Fig. S7). For each run, samples were multiplexed at an equimolar ratio, and 1.3 

pM of the multiplexed pool was sequenced on a NextSeq 500 instrument with NextSeq 500/550 

Mid/High Output v1/v2 kits (Illumina) at an average read depth of 4.2 million reads per sample (Fig. 

S6) or 7.5 million reads per sample (all others). Adapters were trimmed using fastq-mcf in the EAutils 

package (version ea-utils.1.1.2-537) with the following options:  -q 10 -t 0.01 -k 0 (quality threshold 10, 

0.01% occurrence frequency, no nucleotide skew causing cycle removal). Quality checks were 

performed with FastQC (version 0.11.7) and multiqc (version 1.5). Datasets were aligned to either the 
human (GRCh38.84) or the mouse (GRCm38.82) transcriptome along with reference sequences for 

ERCC spike-ins using RSEM (version 1.3.0) with the following options:  --bowtie2 --single-cell-prior --

paired-end (Bowtie2 transcriptome aligner, single-cell prior to account for dropouts, paired end reads). 

RSEM read counts were converted to transcripts per million (TPM) by dividing each value by the total 

read count for each sample and multiplying by 106. Mitochondrial genes and ERCC spike-ins were not 

counted towards the total read count during TPM normalization. The number of genes with TPM > 1 

for each sample was calculated relative to the number of unique Ensembl IDs for the organism 

excluding ERCC spike-ins. 

Analysis of public scRNA-seq datasets 

FASTQ files were downloaded from GSE75330, GSE60361, GSE103354 (plate-based), GSE66357, 

GSE113197, and PRJNA396019. FASTQ files were not available for the droplet-based dataset of 
GSE103354; therefore, BAM files were downloaded from SRR7621182 and converted to FASTQ 

format. Adapters were trimmed using fastq-mcf with the following options:  -q 10 -t 0.01 -k 0 (quality 

threshold 10, 0.01% occurrence frequency, no nucleotide skew causing cycle removal). To compare 

with the other datasets, seqtk (version 1.3) was used to clip 15 bp unique molecular identifiers from 

the beginning of sequences in GSE60361 and GSE75330. All RNA-seq datasets were aligned to 

either the human (GRCh38.84) or the mouse (GRCm38.82) transcriptome as well as reference 

sequences for ERCC spike-ins, using RSEM with the following options:  --bowtie2 --single-cell-prior 
(Bowtie2 transcriptome aligner, single-cell prior to account for dropouts). GSE113197 and 

PRJNA396019 also used --paired-end (paired end reads). TPM conversion and gene detection 

quantification were calculated as above. 

qPCR 
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For detection of specific targets in poly(A) PCR samples, qPCR was performed on a CFX96 real-time 

PCR instrument (Bio-Rad) as previously described (50). 0.1 µl or 0.01 µl of each preamplification was 

used with the qPCR primers listed in Supplementary Table S1. For relative quantification between 

ERCC spike-ins, qPCR amplicons were purified by gel electrophoresis, extracted, ethanol 
precipitated, and quantified by spectrophotometry. Purified amplicons were used to create a six-log 

standard curve based on ERCC amplicon copy number. All spike-ins were normalized to ERCC130 

copy numbers to obtain relative abundance. 

Paired analysis of BeadChip microarrays and 10cRNA-seq 

Microarray data (GSE120030) (38) were batch processed with the lumi R package (51) using a 

detection threshold of 0.05 and simple scaling normalization to obtain log2-normalized values that 

were converted to log10-normalized values. Gene names from the BeadChip files were merged to the 

extent possible with Ensembl IDs from the RSEM alignments by using HUGO Gene Nomenclature 

synonym tables to match current and retired gene names. 

 

RESULTS 

Methods for profiling small quantities of cellular RNA have evolved considerably over the past 
decade, but they all involve the same fundamental steps:  1) cell isolation, 2) RNA extraction, 3) 

reverse transcription, 4) preamplification, and 5) detection (52). The original protocol for in situ 10-cell 

profiling combines LCM for cell isolation followed by proteinase K digestion for RNA extraction (39). 

The extracted material undergoes an abbreviated high-temperature reverse transcription with 

oligo(dT)24, and cDNA is carefully preamplified by poly(A) PCR (53) that generates sufficient 3’ ends 

for microarray labeling and hybridization (39) (Figure 1). 

 Unsurprisingly, the earliest steps in the procedure are the most critical for achieving the 

maximum amount of amplifiable starting material. To avoid losses, steps 1–4 (cell isolation through 

preamplification) are normally performed without intermediate purification. Therefore, buffers and 

reagents must be carefully tested and titrated to be mutually compatible throughout the “one-pot” 

protocol. Since description of the procedure (38,39), multiple commercial providers merged or were 

acquired, leading to the discontinuation of multiple RNAse inhibitors, the Taq polymerase, and the 

BeadChip microarrays. The collective disruptions in sourcing prompted a modernization of 10-cell 
profiling toward RNA-seq of primary material at a biopsy scale, including how tissue–tumor samples 

were handled before the start of the procedure (Figure 1). 

Protein localization for LCM requires fresh cryoembedding 

To minimize extra handling steps that could degrade RNA, in situ profiling of clinical samples is 

ordinarily performed with rapid histological stains (38,52,54,55) (Figure 1). LCM can also be guided by 

fluorescence in place of histology when using cells or animals engineered to encode genetic labels 

(56,57). However, new challenges arise when seeking to preserve localization and brightness of 
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encoded fluorophores during single-cell isolation and RNA extraction. Compared to polysome-bound 

mRNAs, fluorescent proteins diffuse much more readily, and chromophores may be damaged by the 

fixation and dehydration steps needed to preserve RNA integrity. Fluorescent-protein structure is 

preserved by chemical fixatives, but covalent crosslinking of biomolecules is unsuitable for extracting 
RNA from tissue. Fluorescence-guided profiling therefore entails a competing set of tradeoffs that 

must be balanced for optimal performance. 

 We reasoned that the greatest flexibility would be afforded by reporter mice expressing 

tandem-dimer Tomato (tdT)—a bright, high molecular-weight derivative of DsRed (58). Key handling 

parameters were evaluated using Cspg4-CreER;Trp53F/F;Nf1F/F;Rosa26-LSL-tdT mice, a model of 
malignant glioma (49). In these animals, administration of tamoxifen elicits sparse labeling of 

oligodendrocyte precursor cells (OPCs) in the brain, enabling fluorescence retention to be assessed 

in single cells. Extensive optimization of cryosectioning and wicking conditions was required to 

preclude fluorophore diffusion while ensuring reliable LCM pickup (see Methods). We found that an 

accelerated 70-95-100% ethanol series (38,39) maintained tdT fluorescence and localization of 

labeled cells through xylene clearing and dehydration (Figure 2A). Separately, using freshly 

embedded tissue from a “mosaic analysis of double markers” (MADM) animal that labels various brain 

lineages with EGFP, tdT, or both (59,60), we confirmed that EGFP fluorescence was also acceptably 
retained with the 70-95-100% ethanol series (Supplementary Figure S1). Although EGFP diffusion 

was noticeably greater compared to tdT owing to its smaller size (~28 kDa vs. ~54 kDa), we could 

nonetheless reliably identify the cell bodies of single EGFP-positive cells for LCM. Surprisingly, we 

found that fresh-tissue embedding was critically important for preserving single-cell localization and 

brightness. Snap-freezing before cryoembedding caused considerable loss and delocalization of tdT 

fluorescence, even when prefrozen material was rapidly embedded in dry ice-isopentane (–40ºC) 

(Figure 2B,C). For mechanically challenging tissues in which embedding support is important for 

cryosectioning, we conclude that fresh-tissue embedding is essential for maximum biomolecular 
retention and integrity. 

Improving poly(A) preamplification for modern RNA-seq 

Previously, in situ 10-cell profiling was optimized for quantification by BeadChip microarray (38,39), 

but microarrays have been supplanted by RNA-seq for unbiased measures of the transcriptome (61) 

(Figure 1). An advantage of RNA-seq is that nucleic acids are detected regardless of origin, enabling 

use of exogenous RNA standards to calibrate sensitivity and quantitative accuracy when spiked into a 

biological sample (62-64). The versatility of RNA-seq is also a caveat, because all nucleic acids in a 

sample will be sequenced, including unwanted preamplification byproducts and contaminating DNA 

from mitochondria or the nucleus (65-67). In the original scRNA-seq report that used a variant of 

poly(A) PCR, only 37 ± 9% of sequenced reads aligned to RefSeq transcripts (68), and exonic 
alignment rates below 50% remain common (69). Therefore, we focused improvements to poly(A) 

preamplification towards ensuring that most sequencing reads aligned to the 3' ends of cellular 

mRNAs. 
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 In poly(A) PCR, cDNA is 3’ adenylated and then preamplified with a universal T24-containing 

primer called AL1 (53). We previously found that the amount of AL1 strongly influenced overall 

sensitivity of gene detection, with improvements noted at concentrations as high as 25 µM (39). 

Excess AL1 also drives nonspecific amplification of low molecular-weight primer concatemers (70), 
which do not influence gene measurements by quantitative PCR or microarray but create 

overwhelming contamination for RNA-seq. To improve poly(A) PCR, we screened a range of 

commercial Taq and proofreading polymerases along with empirical blends of those that maximized 

the intended ~500 bp cDNA products relative to nonspecific concatemer. We obtained a better-than-

additive preamplification by combining Taq and Phusion polymerases (see Methods). An equal 

mixture of the two enzymes dramatically increased the yield of ~500 bp preamplification products 

relative to nonspecific concatemer (Figure 3A, lower). The empirical blend also significantly improved 

the preamplification of both high-abundance (GAPDH) and low-abundance (PARN) targets as 
measured by quantitative PCR (Figure 3A, upper). The two-enzyme blend further enabled a 10-fold 

decrease in AL1 primer concentration without detectable loss in preamplification efficiency (Figure 

3B). The Taq-Phusion combination was superior for a primary breast-cancer biopsy (Figure 3) as well 

as two murine tissue sources:  a murine small-cell lung cancer line derived from Trp53∆/∆Rb∆/∆ lung 

epithelium (48) and tdT-labeled OPCs (Supplementary Figure S2 and S3), illustrating its generality. 

The enzyme modification created a viable starting point for combining poly(A) PCR preamplification 

with RNA-seq. 

 Sensitivity, accuracy, and precision of the updated poly(A) PCR approach were assessed 

using recombinant RNA spike-ins as internal positive controls (64). A dilution of ERCC spike-ins was 

defined that did not detectably perturb the measured abundance of endogenous transcripts in RNA 

equivalents from 10 microdissected cells (Figure 4A). After poly(A) PCR of the spike-in dilution plus 

100 pg RNA (~10 cells), we measured the relative abundance of individual spike-ins, using 

quantitative PCR (qPCR) to eliminate RNA-seq read depth as a complicating factor. Purified qPCR 
end products served as an absolute reference of each spike-in for cross-comparison (see Methods). 

We observed good linearity across 22 spike-ins spanning an abundance of ~104 (Figure 4B). 

Deviations, technical noise, and dropouts all increased considerably for spike-ins below ~250 copies 

per reaction, consistent with previous reports (25). This collective measurement uncertainty restricts 

interpretation of single-cell data to highly expressed transcripts, but 10-cell pooling reduces the 

threshold to ~25 copies on average per cell. With poly(A) PCR, we did not observe qualitative dropout 

in more than 50% of technical replicates for spike-ins as dilute as four copies per reaction (ERCC85; 
Figure 4B), indicating good sensitivity. RNA spike-ins do not mimic the characteristics of endogenous 

transcripts extracted from cells, but they can provide a common reference to benchmark 

preamplification methods for RNA-seq (45). These experiments indicated that the improved poly(A) 

preamplification was sufficiently reliable for unbiased profiling of 10-cell transcriptomes. 

 For RNA extraction from the LCM cap, an optimized digestion buffer is used containing 
proteinase K to release mRNAs from precipitated ribosomes (38). Proteinase K also digests 

nucleosomes, which may cause elution of contaminating genomic DNA. In past and current analyses 
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of human LCM samples preamplified ± reverse transcription, we never found genomic copies of 

genes amplified within ~0.4% of measured mRNA transcripts (∆Cq ≥ 8 for 16 genes measured in four 

human cell types, Supplementary Figure S4). For mouse tissues, however, genomic copies were 

more prevalent and variable, with some genes measured as abundantly without reverse transcription 
as with it (Figure 5A and Supplementary Figure S4). Gel electrophoresis showed weak-but-detectable 

bands above the desired ~500 bp product in preamplifications without reverse transcription, implying 

nonspecific amplification (Figure 5A, lower). Concerned that the murine genome could compete with 

the amplification of cDNA, we appended an intermediate purification following reverse transcription 

with 5’-biotin-modified oligo(dT)24. Biotinylated cDNA was purified on streptavidin-conjugated 

magnetic beads, which could be separated from contaminants in the LCM extract and used as a 

starting template for poly(A) preamplification. Addition of the biotin cleanup step mildly improved the 

amplification of cDNAs and, importantly, eliminated the confounding abundance of murine genomic 
DNA (Figure 5B). We recommend biotinylated oligo(dT)24 and bead purification for mouse samples 

considering the recurrent challenges with genomic DNA (Supplementary Figure S4 and see 

Discussion). 

 Poly(A) PCR samples are kept dilute to avoid saturating the preamplification, but aliquots can 

be carefully reamplified up to microgram scale for hybridization (38,39). In preparing libraries for 
sequencing, we pursued tagmentation using Tn5 transposase because addition of sequencing 

adapters is sterically impossible within the ~40 bp distal ends of a PCR amplicon (71). The steric 

restrictions of Tn5 were advantageous for pruning away the long, A-repetitive universal primer from 

poly(A) amplicons that would otherwise be wastefully sequenced. Commercial Tn5 tagmentation kits 

(Nextera XT) require 1000-fold less material than past microarray hybridizations, prompting 

reevaluation of how the 10-cell libraries were prepared. We retained the mid-logarithmic 

reamplification approach described previously (38) but substituted paramagnetic Solid Phase 

Reversible Immobilization (SPRI) beads for library purification (72). Two rounds of purification with 
70% (vol/vol) SPRI beads eliminated ~99% of primer dimers and concatemers in 10-cell 

reamplifications from various sources (Figure 6 and Supplementary Figure S5). Reamplified samples 

yielding at least 200 ng of purified product (Supplementary Figure S6) were tagmented at 1-ng scale 

according to the Nextera XT protocol. Although poly(A) amplicon sizes are centered at ~500 bp 

(Figure 1), we found that the higher SPRI bead ratio recommended for 300–500 bp inputs (180% 

[vol/vol] beads) was essential for purification of tagmented libraries (Supplementary Figure S7). Under 

these conditions, both new and archival poly(A) PCR preamplifications are compatible with RNA 
sequencing. 

Paired comparison of 10-cell transcriptomics by BeadChip microarray and RNA-seq 

Poly(A) PCR provides an abundant source of material for transcript quantification, creating an 
opportunity to revisit 10-cell samples profiled earlier on BeadChip microarrays. In the original 

application of stochastic profiling, 10-cell samples were microdissected from 3D spheroids of a clonal 

human breast-epithelial cell line (38). We sequenced 18 biological replicates from this study (6.6 ± 2.3 

million reads) along with three 10-cell pool-and-split controls that assessed technical variability 
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(29,38). Technical correlation was as high within pool-and-split replicates measured by RNA-seq as 

when the same replicates were measured by microarray (R ~ 0.9; Figure 7B,C,D,F–H). For both 

platforms, undetectable genes in one technical replicate were quantified up to ~102 = 100 transcripts 

per million (TPM) or ~103.3 = 2000 BeadChip fluorescence intensity in another replicate. Among 
detected genes with at-least one technical replicate yielding zero measured TPM, we found that RNA-

seq correlated with BeadChip intensity across replicates (R ~ 0.4, p ~ 0; Supplementary Figure S8A). 

The concordance between the two platforms strongly argues that transcript losses are authentic 

dropout events (73), not artifacts of RNA-seq read depth or BeadChip detection sensitivity. Combining 

the reliable detection limits of 100 TPM (Figure 7B,C,F) and ~250 ERCC copies/reaction (Figure 4B), 

we predict (250 copies/reaction)/(10 cells/reaction x 100 TPM) = 250,000 mRNA copies per cell, 

consistent with published estimates (35). 

 When 10-cell transcript representation was compared, we found that RNA-seq TPM and 

BeadChip microarray intensities were correlated (R ~ 0.6; Figure 7A,E,I), albeit not as strongly as 

reported elsewhere (47,74). Some genes yielded background fluorescence on microarrays but 

moderate-to-high TPM, likely due to BeadChip probe sequences absent from the amplicons 

generated by poly(A) PCR. Among genes with a median TPM > 1000 by RNA-seq, we identified 27 

BeadChip probes exhibiting a median fluorescence less than 102.5. The median distance of the 27 
probes from the 3’ end of the corresponding gene was 845 bases (IQR:  492–1392 bases), upstream 

of the distal ~500 bp 3’ ends amplified by poly(A) PCR. The probe-independent nature of RNA-seq 

reinforces one of its critical advantages for 10-cell transcriptomics. 

 We also evaluated quantitative concordance of the 18 10-cell samples measured both by 

BeadChip microarray and RNA-seq. The variance of 7713 genes was twice their mean value 
measured on each platform, suggesting significant biological variation across the 18 samples (p < 

0.01). For biologically variable genes, the median sample-by-sample Pearson correlation between 

BeadChip microarray and RNA-seq was 0.42 (interquartile range:  0.16–0.63), with 599 transcripts 

showing R ≥ 0.8 (Supplementary Figure S8B). Considering a median TPM of 17 (interquartile range:  

4–49) for the 10-cell data analyzed, these cross-platform correlations fall within the range reported for 

TCGA microarrays and RNA-seq (R ~ 0.4–0.9) (74). Our retrospective analysis indicates that 

10cRNA-seq data corroborate BeadChip microarrays and provide broader access to 3’ mRNA ends 

not represented on oligonucleotide probe sets. 

Advantages of 10cRNA-seq for diverse mouse and human cell types 

Last, we aggregated the intermediate revisions to 10-cell transcriptomic profiling (Figure 1) and asked 
whether there were more-overarching benefits to sequencing small pools versus single cells. Different 

methods for scRNA-seq have already been rigorously compared by multiple groups (45,69). Since a 

10-cell approach could be adopted by many of these approaches, we focused instead on the data 

quality from published scRNA-seq datasets of various types relative to similar cells profiled by our 

10cRNA-seq approach, including biological replicates and pool-and-split controls. We identified two 

scRNA-seq datasets for murine OPCs (75,76), two for murine lung neuroendocrine cells (77), two for 
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human breast cancer (78,79), and one for MCF-10A cells (80). All raw data were identically 

processed and aligned to the transcriptome with RSEM (81). Using transcriptome references 

stringently emphasized exonic read alignments, and the RSEM model for expectation maximization 

enabled the degeneracy of 3’-end sequences to contribute to transcript quantification. Data quality 
was gauged by the percentage of reads aligned, and sensitivity was assessed by the number of 

Ensembl genes with an estimated TPM greater than one. 

 For the mouse cell types, we observed significant increases in gene detection between 

10cRNA-seq and certain scRNA-seq datasets (Figure 8A). OPCs isolated by fluorescence-guided 

LCM showed better gene detection with 10cRNA-seq compared to scRNA-seq of OPCs purified by 
fluorescence-activated cell sorting (GSE75330) (76). Interestingly, gene detection in the sorted OPCs 

was also poorer than when OPCs were collected randomly in a cell atlas of the mouse cortex 

(GSE60361) (75), emphasizing the stresses caused by non-LCM methods of enrichment. We were 

unable to detect a significant increase in gene detection between small-cell lung cancer cells profiled 

by 10cRNA-seq and single neuroendocrine cells randomly dissociated from the mouse airway and 

profiled by plate-based scRNA-seq (77). However, neuroendocrine cells are so rare in this tissue that 

plate-based scRNA-seq was very underpowered (n = 5 cells). When droplet-based scRNA-seq was 

used to increase statistical power to n = 92 cells, there was a significant reduction in gene sensitivity 
compared to 10cRNA-seq profiling the equivalent of 120 cells (n = 12 10-cell replicates). In cases 

where gene sensitivities were comparable, we noted dramatically improved alignment rates for 

10cRNA-seq (Figure 8B), reinforcing the efficiency of data collection by adopting a 10-cell approach. 

 Results were similar but even more striking for human cell types (Figure 8C,D). 10cRNA-seq 

of MCF-10A cells and primary breast cancer cells routinely exceeded 10,000 Ensembl genes, the 
upper limit for any single cell profiled by three different scRNA-seq methods (78-80). Exonic alignment 

rates were also all significantly higher and comparable to the 10cRNA-seq alignments obtained with 

murine cells. The data suggest that mouse and human transcriptomes are sufficiently annotated to be 

used as reference alignments for limiting quantities of RNA, such as that extracted by LCM in situ for 

10cRNA-seq. 

DISCUSSION 

Single-cell transcriptomics has expanded or rewritten the catalog of cell types in tissues, organs, and 

organisms (77,82-87). Yet, scRNA-seq does not obviate the need for complementary approaches, 

which accurately profile regulatory-state changes within a given cell lineage (40). The technical 

advances reported here demonstrate the immediate feasibility of 10cRNA-seq for mouse and human 
samples obtained in situ by LCM. We combined straightforward extensions of ERCC spike-ins and 

tagmentation with new approaches for fluorescence-guided LCM and cDNA purification that may 

prove beneficial for other applications (Figure 1). Although small-sample RNA-seq is never fully 

dissociated from tissue acquisition or cell handling, our data illustrate a workflow that can be paused 

and restarted when LCM is used as an intermediate step. 
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 Previous descriptions of fluorescence-guided LCM relied upon fluorophores added by lectins, 

antibodies, or viruses (56,57,88). Through careful optimization of cryoembedding and LCM, we 

identified conditions that preserved the most-common fluorescent proteins used to engineer the 

mouse germ line. Compatibility with genomically encoded labels creates new opportunities for 
combining 10cRNA-seq with lineage tracing (89) to examine early regulatory-state changes in 

development and disease. Compared to fluorophore localization, RNA integrity was not as exquisitely 

sensitive to sample preparation and handling. Nevertheless, we recommend fresh cryoembedding of 

all samples in case other protein-guided approaches, such as immuno-LCM (90), might be pursued. 

The breast core biopsies profiled here were prospectively obtained and cryoembedded during an 

outpatient procedure. However, a nearly identical protocol has been deployed intra-operatively for 

surgical pathology (91), implying that fresh cryoembedding is not prohibitive for biobanked clinical 

samples. 
 A startling result from the revised protocol was the extent of poly(A) amplification observed in 

murine samples when reverse transcription was omitted. Nonspecific amplification was not as 

prominent in human samples obtained by LCM, pointing to specific differences in genome 

composition and the susceptibility to priming with AL1. A plausible explanation lies in transposable 

elements—specifically, the distinct classes of short interspersed nuclear elements (SINEs) in rodents 

and humans (92). Human-specific Alu SINEs and rodent-specific B-type SINEs both contain stretches 

of 10–20 As that could partially anneal to the T homopolymer sequence on the 3’ end of AL1 (93). 

However, to amplify during poly(A) PCR, an antisense SINE must be sufficiently nearby. The mouse 
genome is ~20% smaller than humans, and B-type SINEs are ~25% more numerous in mice 

compared to Alu SINEs in humans (92). The differences reduce the expected spacing of sense-

antisense SINEs from ~6 kb in humans to ~4 kb in mice, consistent with a prior analysis of sense-

antisense SINEs around transcription start sites (94). The shorter average spacing may be close 

enough for genomic fragments to compete with the ~500 bp cDNA amplicons generated during 

reverse transcription (Figure 3, 5A). Such nonspecific products were prevented from coamplifying with 

cDNA by using biotinylated oligo(dT)24 and streptavidin beads, akin to the bead capture and primer 
extension of droplet-based approaches (30,95). This strategy may prove useful in other non-murine 

settings, such as suspension cells, where genomic contamination will be more extensive than LCM 

(39). 

 ERCC spike-ins provide a standard to compare 10cRNA-seq against single-cell methods for 

transcriptomic profiling. Using the metrics of Svennson et al. (45), we estimate a 50% detection 

sensitivity of 45 copies per reaction (90% nonparametric CI: [15–485]) and a Pearson product-

moment correlation coefficient of R = 0.86 (90% nonparametric CI: [0.71–0.91] from n = 72 samples). 

The R accuracy is somewhat lower than prevailing techniques, but that may be overly pessimistic 
because 10cRNA-seq uses such a dilute mix of spike-ins (4 million-fold dilution of the ERCC stock). 

Detection sensitivity is comparable to that reported for the most popular plate-based scRNA-seq 

methods, including SMART-seq2 (96) and CEL-seq (97). The strength of 10cRNA-seq lies in the use 

of 10-cell pooling to improve the per-cell sensitivity beyond the best microfluidic- and droplet-based 
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approaches for scRNA-seq (45). Adopting a 10-cell approach may also prove beneficial for other 

approaches, such as the recent pairing of SMART-seq2 with LCM (34). 

 When 10cRNA-seq was compared to scRNA-seq, we often observed significant 

improvements in exonic alignment. Methods for scRNA-seq typically yield exonic alignment rates 
below 50% (80), with the remainder of aligned reads splitting equally between intronic and intergenic 

sequences (96). 10cRNA-seq achieves exonic alignments of 70% or higher despite using oligo(dT)-

primed reverse transcription with the same potential to prime internal A homopolymer sequence as 

with scRNA-seq (98,99). Interestingly, in one instance of similarly high exonic alignment (GSE66357, 

Figure 8B), the RNA-printing approach to scRNA-seq incorporated a DNase treatment absent from all 

other methods (80). This study also yielded a significantly reduced gene-detection sensitivity 

compared to 10cRNA-seq. Commingling genomic DNA may dilute exonic alignment percentages and 

inflate the number of genes detected due to chance sequencing of genomic DNA from exonic loci. 
Multiple scRNA-seq approaches incorporate unique molecular identifiers appended to oligo(dT) 

(45,80,100). The identifiers avoid redundantly counting the same product of reverse transcription, and 

they also retrospectively exclude sequenced reads that do not come from cDNA. The biotin cleanup 

approach we devised for mouse cells (Figure 5) achieves cDNA selection prospectively in situations 

where genomic contamination may be problematic. 

 Our work illustrates that 10-cell profiling can extend beyond microarrays (42) and quantitative 

PCR (36,37) to compete favorably with scRNA-seq. Although ill-suited for lineage mapping of highly 

mixed cell populations (40), 10cRNA-seq exploits the precision of LCM to target specific cell types in 
situ and define their regulatory heterogeneities. LCM is also advantageous for sequencing cells that 

are delicate or difficult to dissociate rapidly (34). We anticipate immediate applications of 10cRNA-seq 

to cancer biology, where the initiation, progression, and diversification of tumors could be tackled in 

modern animal models as well as in patients. 
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TABLE AND FIGURES LEGENDS 

Figure 1. A revised transcriptomic pipeline for in situ 10-cell RNA sequencing. Substantive changes 
are indicated in green and gray. 
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Figure 2. Fresh cryoembedding preserves tandem-dimer Tomato (tdT) fluorescence and localization 

better than snap-frozen alternatives. Brain samples from Cspg4-CreER;Trp53F/F;Nf1F/F;Rosa26-LSL-

tdT animals were (A) freshly cryoembedded in Neg-50 medium with dry ice-isopentane (–40ºC), (B) 
snap-frozen in dry ice-isopentane and then cryoembedded, or (C) snap-frozen and slowly 
cryoembedded in a cryostat (–24ºC). Low- and high-magnification images were captured with the 

factory-installed color camera on the Arcturus XT LCM instrument. Images were exposure matched 

and are displayed with a gamma compression of 0.67. Insets have been rescaled to emphasize tdT 

diffusion away from the cell body. Scale bar is 25 µm. 

Figure 3. A blend of Taq–Phusion polymerases improves selective poly(A) amplification of cDNA and 
reduces AL1 primer requirements. Cells were obtained by LCM from a human breast biopsy and split 

into 10-cell equivalent amplification replicates. (A) Poly(A) PCR was performed with 15 µg of AL1 

primer with Taq alone (10 units), Phusion alone (4 units) or Taq/Phusion combination (3.75 units/1.5 

units). (B) Poly(A) PCR was performed with either 25, 5, 2.5 or 0.5 µg of AL1 primer and the Taq–

Phusion blend from (A). Above—Relative abundance for the indicated genes and preamplification 

conditions was measured by quantitative PCR (qPCR). Data are shown as the median inverse 

quantification cycle (40–Cq) ± range from n = 3 amplification replicates and were analyzed by two-

way (A) or one-way (B) ANOVA with replication. Below—Preamplifications were analyzed by agarose 
gel electrophoresis to separate poly(A)-amplified cDNA from nonspecific, low molecular-weight 

concatemer (n.s.). Qualitatively similar results were obtained separately three times. 

Figure 4. Optimized ERCC spike-in dilutions assess poly(A) PCR sensitivity and dynamic range 

without suppressing cDNA amplification of endogenous transcripts. (A) 100 pg RNA was 

supplemented with ERCC Mix 1 at the indicated dilutions and amplified via optimized poly(A) PCR. 
ERCC and endogenous gene abundances were measured by qPCR, and data are shown in 

grayscale as the inverse quantification cycle (40–Cq) from n = 4 amplification replicates. Negative 

effects of the ERCC spike-ins on endogenous genes (lower) were assess by two-way ANOVA with 

replication. (B) ERCC Mix 1 (6.23 x 104 copies) was spiked into 100 pg RNA and amplified via 

optimized poly (A) PCR. Proportional abundance of ERCC standards was estimated with a seven-log 

dilution series from purified qPCR end products. Data are shown as the median 40–Cq (black) for 22 

ERCC spike-in standards from n = 8 amplification replicates (gray) with undetected “dropouts” 

reported below (circles). 

Figure 5. Poly(A) amplification of murine sequences without reverse transcription is eliminated with 

5’-biotin-modified oligo(dT)24 and streptavidin bead cleanup. (A) Reverse transcription-free 

preamplification of genomic DNA confounds accurate quantification of some mRNAs. (B) Bead 

cleanup eliminates nonspecific preamplification of genomic DNA. Above—Data are shown as the 

median inverse quantification cycle (40–Cq, gray) of n = 3 independent experiments (three 
amplification replicates per experiment). Differences with and without bead cleanup were assessed by 

Wilcoxon rank sum test in MATLAB. Below—Preamplifications were analyzed by agarose gel 

electrophoresis to separate poly(A)-amplified cDNA from nonspecific, low molecular-weight 
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concatemer (n.s.) and genomic amplification. Electrophoretic traces were analyzed by densitometry to 

the left of the image, with genomic amplicons highlighted (arrows). 

Figure 6. Iterative SPRI bead purification eliminates low molecular-weight contaminants before 

tagmentation. (A) Poly(A) PCR reamplifications (38) of 10-cell human breast cancer samples were 

analyzed by gel electrophoresis without purification or after one (1x) or two (2x) rounds of purification 

with 70% (vol/vol) SPRI beads. (B) Contaminating low molecular-weight concatemers are significantly 

reduced after two rounds of SPRI bead purification. Data are shown as the mean (gray) of n = 3 

independent reamplifications (circles) each purified three times (+). Differences were assessed by 

two-way ANOVA with replication. 

Figure 7. Paired comparison of 10-cell transcriptomes profiled by BeadChip microarray and 10cRNA-

seq. (A–I) Three pool-and-split 10-cell replicates from before (38) were reamplified, purified, and 

tagmented for RNA-seq. Cross-correlations between replicates and measurement platforms are 

shown long with the log-scaled Pearson correlation (R). 

Figure 8. Improved gene detection and exonic alignment rates for 10cRNA-seq compared to scRNA-

seq. (A) Detection of murine Ensembl genes for mouse oligodendrocyte precursor cells (OPCs) and 

lung neuroendocrine-derived cells. (B) Alignment rate comparison for OPCs and lung 

neuroendocrine-derived cells. (C) Detection of human Ensembl genes for MCF-10A cells and human 

breast cancer cells. (D) Alignment rate comparison for MCF-10A cells and human breast cancer cells. 

Public scRNA-seq data were obtained from the indicated accession numbers:  sc1=GSE75330, 

sc2=GSE60361, sc3a=GSE103354 (plate-based), sc3b=GSE103354 (droplet-based), 
sc4=GSE66357, sc5=GSE113197, sc6=PRJNA396019. 10cRNA-seq data were aggregated from 

independent 10-cell samples (circles) and 10-cell equivalents from pool-and-split controls. Pool-and-

split controls from the same day are indicated with non-circular markers corresponding to the shared 

day. Pairwise differences between 10-cell and single-cell methods were assessed by permutation 

test. 
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