
Journal of ELECTRICAL ENGINEERING, VOL. 61, NO. 3, 2010, 183–188

TRANSPARENT PROXY FOR SECURE E–MAIL

Juraj Michalák — Ladislav Hudec
∗

The paper deals with the security of e-mail messages and e-mail server implementation by means of a transparent SMTP
proxy. The security features include encryption and signing of transported messages. The goal is to design and implement
a software proxy for secure e-mail including its monitoring, administration, encryption and signing keys administration. In
particular, we focus on automatic public key on-the-fly encryption and signing of e-mail messages according to S/MIME
standard by means of an embedded computer system whose function can be briefly described as a brouter with transparent
SMTP proxy.

K e y w o r d s: security of e-mail messages, encryption, signing, software proxy, S/MIME standard, transparent SMTP
proxy

1 INTRODUCTION

Nowadays we live in the world where an enormous
number of common people with only pseudo-understand-
ing of technical details are fairishly using personal com-
puters and the Internet in a large extent. It was a diffi-
cult task for IT personnel to achieve this goal. If we lived
in an utopian world, there would be no danger of using
all those new technologies. But empathy is an exception
rather than a rule. Therefore, security has been devel-
oping all the time. Security as the result of humanity or
bestiality? Security is a source of the complicacy for com-
mon users. There are two basic types of security settings,
simplified (mainly for common users) and professional se-
curity settings, which have an impact on the quality of
security. Finally the acquired security depends also on
the end- user interaction. Solutions without end-user in-
teraction like IPsec1, VPN2 and TLS/SSL3 are preferred
because of common users who do not like to interact too
much and they are the origin of a considerable number of
security incidents too.

Solutions mentioned above provide security for the
transfer between communication endpoints and are insuf-
ficient for such a type of communication like SMTP (Sim-
ple Mail Transfer Protocol [6]), where messages travel
from the node, where message was created to the destina-
tion node potentially via several nodes. S/MIME4 is an
appropriate standard for secure electronic mail messag-
ing [10, 4]. In this paper, S/MIME is employed to provide
automatic secure electronic mail messaging between orga-
nization boundaries without a common user interaction
needed and without necessity of extensive configuration
changes to existing infrastructure. The proposed embed-
ded computer system was implemented in GNU/Linux
environment with the use of a linux bridge, ebtables, net-
filter, iptables, advanced routing and experimental trans-

parent proxy support in linux kernel to achieve brouter
with transparent SMTP proxy functionality (see 4.2). In

order to get the S/MIME and X.5095 [2] certification
functionality, cryptlib [5] was chosen as the basic cryp-
tographic library.

2 EMBEDDED COMPUTER SYSTEM

Alix system board from PC Engines as embedded com-
puter system was chosen. It contains 5x86 compatible
CPU and runs Voyage Linux operating system (Debian
derivative) which has been developed directly for this
platform. This environment is very similar to standard
GNU/Linux PC.

2.1 Technical details

The Alix system board is equipped with [7]:

– 500 MHz AMD Geode LX800 CPU

– 256 MB DDR DRAM

– Storage: CompactFlash socket

– Power: DC jack or passive POE, min. 7 V to max.
20 V, peak power consumption is about 6 W without
miniPCI cards and USB devices

1IPsec (Internet Protocol Security) is suite of protocols for se-

curing IP (Internet Protocols) communication in network layer of

the OSI (Open Systems Interconnection) reference model.
2VPN (Virtual Private Network) has many applications. One

common is authentication and content encryption.
3TLS (Transport Layer Security)/SSL (Secure Socket Layer) are

cryptographic protocols for security and integrity of communication

over TCP/IP.
4S/MIME (Secure/Multipurpose Internet Mail Extensions) is

standard for public key encryption and signing of message encap-

sulated in MIME.
5X.509 is an ITU-T standard forPKI(PublicKey Infrastructure).

∗ Slovak University of Technology, Faculty of Informatics and Information Technologies, Ilkovičova 3, 842 16 Bratislava, Slovakia;
juraj.michalak@gmail.com, lhudec@fiit.stuba.sk

DOI: 10.2478/v10187-010-0026-3, ISSN 1335-3632 c© 2010 FEI STU

184 J. Michalák — L. Hudec: TRANSPARENT PROXY FOR SECURE E-MAIL

Fig. 1. Network environment overview

– Three front panel LEDs, one pushbutton

– Expansion: 1 miniPCI slot, LPC bus

– Connectivity: 3x 100Mbit Ethernet channels (Via
VT6105M 10/100)

– I/O: DB9 serial port, dual USB 2.0 port

– Board size: 6× 6 (152.4× 152.4 mm)

3 DESIGNED SOFTWARE OVERVIEW

The presented embedded computer system provides
automatic security for the messages transported between
organization boundaries. More accurately, it provides a
transparent SMTP proxy [13] for communication between
the local and remote SMTP server and according to the
designed logic it is able to encrypt and sign or decrypt and
sign verify the authenticity of the transported messages
by S/MIME standard. The benefit of this transparent
solution is that there is no need to change the existing
local network configuration.

The transparent proxy with a secure e-mail application
is represented by the local process on the embedded sys-
tem. SMTP communication passing over the embedded
system has to be redirected into TCP/IP stack6 of Linux
kernel in order to be delivered to that local process and
the rest of communication is bridged7. Therefore, the em-
bedded system is considered a brouter8. The local process
performs on-the-fly processing of SMTP communication
because it has to be transparent, provide proxy function-
ality and also the storage resources of embedded system
are limited. Two email cryptographic standards were an-
alyzed, OpenPGP and S/MIME [10]. Only the latter was
adopted because the electronic signature is placed after
the signed data in its message format, which is inevitable
for on-the-fly signing (signature can be computed after
all of message data are known [10]).

As S/MIME was adopted, PKI based on X.509 is used
for certificate creation, registration, verification, revoca-
tion and other handling. CMP protocol is adopted for cer-
tificate registration and embedded system acts as regis-
tration authority to the Certification Authority. The cen-

tral management server is designed for certificate distri-
bution in the community9 of our embedded systems but
also a local administration web interface could be used
to manage the local certificate database of one embedded
system. At the moment certificates distribution between
our embedded systems is done manually and administra-
tion via a configuration file (accessible via SSH).

4 DETAILS OF CONCEPT

In the previous section we have described the basic
concept of our solution. More details are mentioned in
this section.

4.1 Experimental transparent proxy support

The original title of this feature is Tproxy [1] and it
allows us to:

– Redirect sessions destined to the outer network to a
local process using a packet filter rule.

– Make it possible for a process to listen to connections
on a foreign address.

– Make it possible for a process to initiate a connection
with a foreign address as a source.

4.2 Brouter with transparent SMTP proxy

Two ethernet interfaces (eth0, eth1) of the embedded
system compose a virtual bridge interface (see bridge in
Fig. 2) which is implemented by the Linux bridge [12].
All communication passing our system is bridged except
SMTP, which is redirected to a kernel routing process.

6TCP/IP stack or Internet protocol Suite is set of communica-
tion protocols and may be viewed as set of layers.

7Network bridge connects multiple network segments at data

link layer according to the IEEE 802.1D standard.
8Brouter or Bridge Router works as network bridge and as

router at the same time.
9Community of embedded systems is set of embedded systems

which are intended to secure the email messages transferred with

one another.

Journal of ELECTRICAL ENGINEERING 61, NO. 3, 2010 185

Fig. 2. Detailed view of brouter with transparent proxy

This is implemented by ebtables [3, 9] as follows. The
destination MAC address of the incoming SMTP frames

(on eth0 and eth1 interfaces) is replaced by a virtual
bridge MAC address. So the frames are destined to the

virtual bridge interface and the kernel is on assumption
that it is acting as a router.

The SMTP communication is then in the kernel rout-
ing process redirected to our local process which finally

establishes connection with the SMTP client (initiator of
connection) and server. Both are assuming that they are
communicating directly. This is achieved by an experi-

mental transparent proxy support in the kernel, iptables
and policy routing [1]. More precisely the packets related

to SMTP communication are marked, on the basis of this
marks are routed by a separate routing table and deliv-

ered locally. The local process is able to get the IP address
of the original destination server via the standard socket

API and to create connection to the original destination
server with client IP address as source address. This pro-
cess is illustrated in Fig. 2.

Finally, the local process provides an application proxy
with the mentioned automatic on-the-fly encryption and

signing as security service for SMTP.

Two modes of bridge interface are designed:

1. IP mode. Bridge interface has an assigned local IP ad-
dress (statically or dynamically by the local DHCP10

server). So the embedded system is reachable from the
local network.

2. Fully transparent mode. The bridge interface has a
special IP address assigned (only for internal usage,

to have functional kernel routing process) and has

disabled the ARP11 protocol. ARP table is managed

by a self implemented ARP manager tool which in-

spects SMTP packets in order to insert address map-

ping records into ARP table. This mode of opera-

tion is unconventional but provides a fully transparent

and plug-and-play solution with possible administra-

tion through the central management server or locally

via a serial console.

4.3 On-the-fly S/MIME

Our local application must understand SMTP [6] and

MIME12 [4] in order to collect enough information to

make message encryption or decryption decision. For

S/MIME enveloping and signing we have used cryptlib

cryptographic library [5]. The output of the used cryptlib

routines is in the form of a binary DER13 encoded CMS14

object, which has to be encapsulated into MIME entity

in order to transfer the secured message via SMTP.

10DHCP (Dynamic Host Configuration Protocol) is network
application protocol used by devices in order to obtain configuration

for its operation in an Internet Protocol network environment.
11ARP (Address Resolution Protocol) is protocol for building

table which is used for translation of network layer address into
data link layer address.

12MIME (Multipurpose Internet Mail Extensions) is Internet

standard for messages.
13DER (Distinguished Encoding Rules) is message transfer syn-

tax standard by the ITU. DER is subset of BER (Basic Encoding
Rules) providing exactly one way to encode an ASN.1 value, what

is must in cryptography.
14CMS (Cryptographic Message Syntax) is the IETF standard

for cryptographic protected messages. It is based on PKCS#7.

186 J. Michalák — L. Hudec: TRANSPARENT PROXY FOR SECURE E-MAIL

4.3.1 S/MIME enveloping

S/MIME e-mail message securing is based on encapsu-
lation. The process of signing and encrypting the message
is composed of subsequent steps. Firstly the message is
signed and the result is CMS object which is encapsulated
into MIME entity. That MIME entity is then encrypted
and again encapsulated into MIME entity.

For example we look at S/MIME encryption process
[10]:

1. Generate pseudo-random session key for symmetric
encryption algorithm.

2. For each recipient, encrypt the session key with his
public key.

3. For each recipient, prepare a block RecipientInfo that
contains an identifier of the recipients public key cer-
tificate, an identifier of the session key encryption al-
gorithm, and the encrypted session key.

4. Encrypt the MIME entity content with the session
key — the CMS object was created which consists of
RecipientInfo block and encrypted MIME entity.

5. Create new MIME entity from that CMS object which
has to be encoded into textual form (eg by Base64
encoding).

4.3.2 S/MIME de-enveloping

De-enveloping is a counter operation to enveloping.
Theoretically the process of encapsulation in S/MIME en-
veloping has no constrained depth. In our application we
have implemented on-the-fly de-enveloping with a kind
of automatic abstract data structure (Autodeenvelope),
which can handle theoretically an unlimited S/MIME en-
capsulation depth. Autodeenvelope works in the follow-
ing manner. It analyzes the MIME header of message to
identify S/MIME encrypted or signed message. Then if
needed or possible the message is decrypted or the sig-
nature is checked. This process is repeatedly applied to
the message inside Autodeenvelope in order to get the
original/plain form of the message. It means that the in-
put is the S/MIME secured message and the output is a
plain message.

4.4 Message securing logic

First we divide the community of users into two sets
called local and remote users. Local users own e-mail ac-
counts on the local SMTP server and by contrast remote
users own e-mail accounts on remote SMTP servers. Ev-
ery embedded system has its own private key and certifi-
cate (key pair) for common security service. Its certificate
(public key) has to be distributed to other systems and
then the incoming messages, encrypted with its public
key, are decrypted with its private key. Additionally for
the advanced security, users also can have their own pri-
vate key and certificate on the embedded system.

The basic premise is that our application on the em-
bedded system has available a local private key database

of local users and certificate database of remote embed-
ded systems, local users and remote users. The latter one
contains certificates of all remote embedded systems and
users for which the messages will be encrypted (also as
premise). These databases are managed locally by SSH
access, by web interface or in an automatic fashion by
the central management server. Messages can be signed
only with the use of the embedded systems private key
because message authenticity is always considered with
regard to the embedded system. The embedded system
signs messages not users workstation. This is called do-
main signing seeing that our embedded system is assigned
to domain.

Basic rules for message securing:

– Encrypt outbound message if the recipients certificate
(or only remote embedded systems certificate) is avail-
able. Then sign the message with private key of sender
or embedded system.

– If recipients certificate is not available, outbound mes-
sage is not encrypted. Optionally sign the message
with use of senders private key, but create detached
S/MIME signature because it is probable that recip-
ient has no S/MIME capable tool. This can lead to
expansion of S/MIME because recipient can be inter-
ested by presence of that digital signature in received
message.

– Inbound encrypted message is decrypted if the corre-
sponding private key is available.

– If inbound message is signed, the signature is checked
with use of attached certificate or certificate chain.
Then that certificate (or certificate chain) has to be
checked if it can be trusted. It is trusted if it is al-
ready in local database or its trust can be checked via
its CA certificate if it is in local database. Else the at-
tached certificate is stored into database of untrusted
certificates for later trust check.

The question is what to do with messages for multiple
mixed recipients who are recipients with and without
certificate in local database. There are two policies for
this situation, the first one is restrictive where message
is encrypted and sent only to recipients with available
certificate. Second is liberal, message is handled as with
the first policy and in addition it is sent unaltered to
recipients without certificate in local database.

Problem is that message sending has to be divided in
encrypted message sending and unaltered message send-
ing. It has two solutions:

– Second concurrent connection to original destination
SMTP server is created for unaltered message deliv-
ery. Some SMTP servers prohibit multiple concurrent
connections from one source, what means that this so-
lution is not usable every time.

– Second concurrent connection to dedicated SMTP Re-
lay server is created for unaltered message delivery.
That server then delivers unaltered message to origi-
nal destination SMTP server. Our embedded system
attempts to apply the first solution and the result of
this effort is stored into database for given destination

Journal of ELECTRICAL ENGINEERING 61, NO. 3, 2010 187

Fig. 3. Development and test environment – network topology

SMTP server. If result is negative second solution is
used.

4.5 Example

Our embedded system is called as CSTP (Crypto-
graphic SMTP Transparent Proxy) system. Test envi-
ronment (Fig. 3) is virtual (VMWare Workstation) ex-
cept one real CSTP system in Amd domain. Amd SMTP
server is configured to forward all outgoing messages via
Mulholland SMTP server.

First example of usage is the most complicated one.
It is processing of message for multiple mixed recipi-
ents. In Amd domain we send message from juro@amd
to juro@intel, julia@intel and fedor@mulholland. The
SMTP server Amd starts the transfer of that message to
the Mulholland server. The CSTP system in Amd domain
has certificate of the Intel CSTP system and “julia@intel
in its local database, so the message for Intel domain users
is going to be encrypted. The Amd CSTP system creates
second connection to the Mulholland SMTP server for
unaltered message tranfer to fedor@mulholland. Then the
message is signed and encrypted. Fedor receives original
message, which could be optionally signed by the Amd
CSTP system. The Mulholland SMTP server forwards
the signed and encrypted version of message to the Intel
SMTP server. The Intel CSTP system uses its private key
for decryption of forwarded message and checks its signa-
ture. Juro and Julia receive original form of message.

Second and last example is similar but message is sent
only to julia@intel who is specific user because her private
key is not in the Intel CSTP system database (it is stored
on her own workstation). Message is signed and encrypted
by the Amd CSTP system. The Intel CSTP system is
not possible to decrypt message — lack of Julia’s private
key. So Julia receives secured S/MIME message and it
is decrypted by her e- mail client application. Also the
signature is checked, but with warning that message was
signed by cstpbox@amd and not by its sender juro@amd.

4.6 Concurrent server design

Our embedded system has to handle many hundreds
or thousands of concurrent connections between SMTP
clients and server. Nowadays the huge volume of spam
is also considerable. So there is a need to have good
concurrent server design.

Thread pool design pattern was used in form of pre-
threaded server with main thread connection accept [11].

5 CONCLUSION

Our embedded computer system provides confiden-
tiality, integrity and authenticity for electronic messages
transferred between organization boundaries according to
S/MIME standard. Network transparency and minimal
requirements for changes in the existing infrastructure
and configuration are its worthwhile features. For its ad-
ministration, a serial console and local SSH access can be
used (in the future also web interface and central man-
agement server). The central management server is also
responsible for automatic distribution of certificates in
the community of embedded systems. At this time it is
done manually by SSH. At least one certification author-
ity is required because of PKI and optionally one SMTP
relay server is required because of the mentioned solution
for delivery of messages with mixed recipients.

The design of some application parts is modular which
affords the opportunity to easily implement for example a
new cryptographic module with the use of another cryp-
tographic library (eg openssl).

We see a large field for expansion of our solution. Its-
geat potential is in the early SPAM detection combined
with tar-pitting (slow down of suspected connections) and
in protection against DoS and DDoS via hybrid network
architecture of our application – event-based approach
combined with thread-based and with the use of connec-
tion multiplexing.

188 J. Michalák — L. Hudec: TRANSPARENT PROXY FOR SECURE E-MAIL

Acknowledgement

This paper was worked out in the frame of a Diploma
thesis Embedded systems for encryption of applica-
tion protocols and in the frame of the VEGA project
No. 1/0649/09 entitled Security and reliability in dis-
tributed computer systems and mobile computer net-
works.

References

[1] BALAZS, S. : Introduction to TProxy and its Features, [Online;

accessed December 2nd, 2008]. Available at:
http://www.balabit.com/downloads/files/tproxy/README.txt.

[2] COOPER, D.—SANTESSON, S.—FARRELL, S. et al : Inter-

net X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, [Online]. May 2008. RFC (Re-
quest for Comments) series 5280. Available at:
http://tools.ietf.org/html/rfc5280.

[3] Ebtables: Ethernet Bridge Frame Table Administration. [Online;
accessed December 2nd, 2008]. May 2007. Available at:
http://ebtables.sourceforge.net/ebtables-man.html.

[4] FREED, N.—BORENSTEIN, N. : Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bod-
ies. [Online], November 1996. RFC (Request for Comments) se-

ries 2045. Available at: http://tools.ietf.org/html/rfc2045.

[5] GUTMANN, P. : Cryptlib Security Toolkit [Online]. Version
3.3.2, July 2008. Available at:
ftp://ftp.franken.de/pub/crypt/cryptlib/manual.pdf.

[6] KLENSIN, J. : Simple Mail Transfer Protocol. [Online], October
2008. RFC (Request for Comments) series 5321. Available at:
http://tools.ietf.org/html/rfc5321.

[7] PC Engines GmbH: Alix.2 / Alix.3 / Alix.6 series system boards.
[Online; accessed February 16th, 2009]. Available at:
http://www.pcengines.ch/pdf/alix2.pdf.

[8] RAMSDELL, S. : Secure/Multipurpose Internet Mail Exten-
sions (S/MIME) Version 3.1 Message Specification. [Online],
July 2004. RFC (Request for Comments) series 3851. Available

at: http://tools.ietf.org/html/rfc3851.

[9] SCHUYMER, B.—FEDCHICK, N. : Ebtables/Iptables interac-
tion on a Linux-based Bridge, [Online; accessed December 2nd,

2008]. Available at:
http://ebtables.sourceforge.net/br fw ia/br fw ia.pdf.

[10] STALLINGS, W. : Cryptography and Network Security Princi-
ples and Practices, 4th ed. Prentice Hall, 2005..

[11] STEVENS, W. R.—FENNER, B.—RUDOFF, A. M. : UNIX

Network Programming: The Sockets Networking API, 3rd ed.

Vol. 1, Chapter 30. Client/Server Design Alternatives, Addison

Wesley, 2003 -13-141155-1..

[12] The Linux Foundation: Net: Bridge. [Online; accessed December

2nd, 2008]. Available at:

http://www.linuxfoundation.org/en/Net:Bridge.

[13] Transparent SMTP proxy. In Wikipedia: the free encyclope-

dia [Online]. St. Petersburg (Florida): Wikimedia Foundation,

2001-, last modified on 24 January 2009. Available at:

http://en.wikipedia.org/wiki/Transparent SMTP proxy.

Received 24 September 2009

Juraj Michalák (Ing) was born on June 12, 1985 in Tr-

nava. Currently he is software developer at the Innovatrics

s.r.o., Bratislava. In 2007 he received Bc diploma with magna

cum laude in computer engineering from Faculty of Informat-

ics and Information Technologies, Slovak Technical University

and was awarded by the Dean’s price for his Bachelor project.

In 2009 he received Ing. diploma at the same faculty and his

Master’s thesis was awarded by the Dean’s price.

Ladislav Hudec (doc, Ing, CSc), currently Associate Pro-
fessor of Computer Science and Engineering and Director in
charge of the Institute of Applied Informatics, Faculty of Infor-
matics and Information Technology, Slovak Technical Univer-
sity. In 1974 he received Ing diploma with summa cum laude
in electronics from Faculty of Nuclear Sciences and Physical
Engineering, Czech Technical University, Prague, in 1985 he
received CSc degree (PhD) in Computer Machinery from the
Faculty of Electrical Engineering, Slovak Technical University,
Bratislava, in 1989 he was appointed Associate Professor. He is
author or co-author over 40 scientific papers published in jour-
nals and proceedings of the conferences and over 50 technical
papers in the field of fault tolerant computing, embedded sys-
tems, parallel computing and computer security. He led over
20 research grants and industrial projects. He reads lectures
on Computer Architecture, Computer Security and Security
in Internet. Dr Hudec is member of the IEEE, he is member
and Vice-President of the Slovak Association for Information
Security (SASIB), member of the Information System Audit
and Control Association (ISACA) and the Heraldic club of
Slovakia. During 1993-2010 he served as Slovak national coor-
dinator at the European Cooperation in Science and Technol-
ogy (COST).

