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Copyright © 2019 Yuanzhi Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Measuring node importance in complex networks has great theoretical and practical significance for network stability and
robustness. A variety of network centrality criteria have been presented to address this problem, but each of them focuses only on
certain aspects and results in loss of information. Therefore, this paper proposes a relatively comprehensive and effective method
to evaluate node importance in complex networks using a multicriteria decision-making method.This method not only takes into
account degree centrality, closeness centrality, and betweenness centrality, but also uses an entropy weighting method to calculate
the weight of each criterion, which can overcome the influence of the subjective factor. To illustrate the effectiveness and feasibility
of the proposed method, four experiments were conducted to rank node importance on four real networks. The experimental
results showed that the proposed method can rank node importance more comprehensively and accurately than a single centrality
criterion.

1. Introduction

In recent years, the study of complex network theory has
received sustained attention in various academic fields, such
as aviation networks [1, 2], power networks [3–5], social
networks [6–8], and biological networks [9–11]. By collecting
and analyzing data from actual networks, researchers have
studied the statistical characteristics [12, 13] and the dynamic
behavior of networks [14]. The results showed that the status
of nodes in actual complex networks is unequal. Moreover,
scale-free characteristics [15–17] indicate that the effect on
function and structure of different nodes may vary greatly
and that the cascading effect [18–20] and propagation effect
[21] of the network will be affected by a few important nodes.

The term “important nodes” refers to certain nodes that
can affect network structure and function to a greater extent
than other nodes in the network [22]. Therefore, evaluating
node importance is of great theoretical and practical sig-
nificance [23, 24]. For example, it can be used to prevent
the spread of disease [25, 26], stop the diffusion of rumors
[27, 28], ensure the smooth flow of aviation networks [1],
prevent power grids from being powered off [29, 30], and
keep communication networks connected [31, 32].

Current methods of node importance analysis include
social network methods and systems science methods [33].
The social network methods assume that node importance is
equivalent to significance and do not destroy network con-
nectivity. On the contrary, system science methods assume
that node importance is equivalent to the destructiveness of
removing nodes from the network and that node importance
can be determined by analyzing connectivity indictors of the
deleted nodes network. Systems science methods damage the
network system, resulting in network topology changes that
lose information about the relationships between nodes, but
social network methods can keep the original appearance of
the network. Hence, in this paper, social network methods
using relevant indictors of node centrality are generally used.

Although existing centrality criteria have been widely
used, they do have some shortcomings and deficiencies.
Degree centrality (DC) [34] assumes that the greater the
number of adjacent nodes, the greater their influence. This
is an expression of node importance, but it only considers
local information about nodes, ignoring global network
structure. Closeness centrality (CC) [35] is represented by the
reciprocal of the distance between the given node and other
nodes in the network. It can be treated as a measurement
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Figure 1: Kite network.

Table 1: Degree centrality, closeness centrality, and betweenness centrality of each node in the Kite network.

DC CC BC
node value node value node value
Diane 0.6667 Fernando 0.6429 Heather 0.0160
Fernando 0.5556 Garth 0.6429 Fernando 0.0099
Garth 0.5556 Diane 0.6000 Ike 0.0093
Andre 0.4444 Heather 0.6000 Garth 0.0080
Beverly 0.4444 Andre 0.5294 Diane 0.0012
Carol 0.3333 Beverly 0.5294 Andre 0.0010
Ed 0.3333 Carol 0.5000 Beverly 0.0010
Heather 0.3333 Ed 0.5000 Jane 0.0000
Ike 0.2222 Ike 0.4286 Ed 0.0000
Jane 0.1111 Jane 0.3103 Carol 0.0000

of how long it takes information to spread from a given
node to others, but it will fail when handling networks with
disconnected components. Betweenness centrality (BC) [36]
measures node importance by means of the ratio of the
shortest path over the nodes to the number of all paths.
It compensates for the limitations of degree centrality and
closeness centrality, but problems still exist. If many nodes
do not belong to the shortest path of other node pairs, then
the result for betweenness centrality will be zero [37]. In
addition, other node importance ranking methods are also
widely used, such as eigenvector centrality [38], subgraph
centrality [39], cumulative nomination [40], PageRank [41],
and others. In this regard, Liu et al. [42], Lü et al. [43],
and Sun et al. [44] have provided excellent summaries. A
large number of experts and researchers have tried to find
measures to evaluate node importance from different per-
spectives, but only one aspect of node importance is reflected,
and in an actual network, describing node importance with
a single indicator will give one-sided results. To illustrate
the problem, the Kite network [45] is shown in Figure 1,
and the values of degree centrality, closeness centrality,
and betweenness centrality are given in Table 1. Evidently,
Diane is of greatest importance using degree centrality,
and the most influential nodes using closeness centrality
are Fernando and Garth. However, Fernando, Garth, and
Diane are ranked second, fourth, and fifth, respectively,
according to betweenness centrality. Based on the above

analysis, it is clear that using different centrality criteria to
identify important nodes in a network will produce different
results.

To overcome the shortcomings of node importance
ranking using a single criterion, a range of criteria must
be considered that affect node importance from different
perspectives. Therefore, this paper proposes a multicriteria
decision-making (MCDM)method to rank node importance
effectively. MCDM has been widely used in many fields
[46–50], and in various MCDM studies, the Technology for
Order Preference by Similarity to an Ideal Solution (TOPSIS)
method [51] has been successfully applied in different fields
[52, 53], while the entropy weighting (EW)method [54], as an
important objective weighting method, has also been applied
in many fields [55–57].

Therefore, the TOPSISmethod and the entropyweighting
method were combined to propose a novel method called
EW-TOPSIS. The proposed method is based on degree
centrality, closeness centrality, and betweenness centrality
and computes node importance through integrated compu-
tation of these criteria. Because the measurement of node
importance takes into account multiple factors that impact
node importance without a one-sided emphasis on any
single factor, the measurement is more accurate compared
to when using a single criterion. Moreover, compared with
other multicriteria decision-making methods, the proposed
method uses an entropy weighting method to calculate
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the weight of each criterion, overcoming the disadvantage
of the original TOPSIS using equal weights. This research
solves the problem of partial and inaccurate ranking of
node importance. It provides a beneficial supplement to
network node importance measurement, enriches existing
research on complex networks, and has great academic value.
To demonstrate the effectiveness of the proposed method,
four real networks (Zachary’s karate club, the dolphin social
network, American college football, and jazz musicians)
were used as experimental data. The susceptible-infected (SI)
model [58] was chosen to examine the spread of the influence
of the nodes ranked by the proposed method and by a single
criterion. The experimental results reveal the superiority of
the proposed method.

The primary contributions of this paper can be summa-
rized as follows:

(i) A novel method of node importance ranking in
complex networks based on multicriteria decision making
is proposed. It comprehensively combines the advantages of
various criteria from different perspectives and makes the
measurement more accurate and universal.

(ii) An entropyweightingmethod is proposed to calculate
the weight of each criterion. It can overcome the influence of
subjective factors and obtain an objective result.

(iii) Four experiments on four real networks have been
conducted, and the experimental results show that the
proposed method has superior performance in identifying
important nodes in complex networks.

The rest of this paper is organized as follows. Section 2
briefly introduces the definitions of a graph and of some
centrality criteria.The proposedmethod to rank node impor-
tance using the entropy weighting method and TOPSIS is
illustrated in Section 3. Section 4 evaluates the performance
of the proposed method based on four real networks. Finally,
Section 5 presents conclusions.

2. Node Importance Criteria

An undirected network can be denoted as 𝐺 = (𝑉, 𝐸, 𝐴),
where 𝑉 = {V1, V2, . . . , V𝑛} and 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚} ⊆ 𝑉 × 𝑉
are the sets of nodes and edges, respectively. 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is
the adjacency matrix of the network; if there is a connection
between node 𝑖 and node 𝑗, 𝑎𝑖𝑗 = 1; otherwise, 𝑎𝑖𝑗 = 0.
Definition 1 (degree centrality). The degree of node 𝑖 denotes
the number of neighbor nodes, expressed as [34]

𝑘𝑖 = 𝑛∑
𝑗

𝑎𝑖𝑗. (1)

Then degree centrality can be denoted as in the following
equation:

𝐷𝐶 (𝑖) = 𝑘𝑖𝑛 − 1. (2)

Degree centrality reflects the ability of a node to communicate
directly with other nodes. The greater the value of degree
centrality, the more important the node.

Definition 2 (closeness centrality). The closeness centrality of
node 𝑖 is defined as the reciprocal of the sum of the shortest
distances to all other nodes, expressed as [35]

𝐶𝐶 (𝑖) = 𝑛 − 1∑𝑛𝑗=1 𝑑𝑖𝑗 , (3)

where 𝑑𝑖𝑗 is the distance between node 𝑖 and node 𝑗. If
there is no reachable path between node 𝑖 and node 𝑗, then𝑑𝑖𝑗 = ∞ (1/𝑑𝑖𝑗 = 0). Closeness centrality can be treated as
a measurement of a node’s importance through the average
spread time of information in the network. The greater the
value of closeness centrality, the more important the node.

Definition 3 (betweenness centrality). The betweenness of
node 𝑖 is defined as the fraction of shortest paths between all
node pairs that pass through node 𝑖, as given by [36]

𝐵 (𝑖) = ∑
𝑠,𝑡 ̸=𝑖

𝑔𝑠𝑡 (𝑖)𝑔𝑠𝑡 , (4)

where 𝑔𝑠𝑡(𝑖) represents the number of shortest paths between
node 𝑠 and node 𝑡 which pass through node 𝑖, and 𝑔𝑠𝑡 is the
number of all possible shortest paths between node 𝑠 and
node 𝑡.

The betweenness centrality of node 𝑖 is the normalization
of 𝐵(𝑖). For an undirected network, the maximum possible
number of node pairs is (𝑛 − 1)(𝑛 − 2)/2, and betweenness
centrality can be expressed as

𝐵𝐶 (𝑖) = 2𝐵𝑖(𝑛 − 1) (𝑛 − 2) . (5)

Betweenness centrality can be understood as the ability of a
node to control the network flow traveling along the shortest
path in the network. The greater the value of betweenness
centrality, the more important the node.

The above criteria canmeasure node importance, but they
are a one-sided way to rank node importance with a single
criterion. Therefore, to conduct a more comprehensive and
objective ranking of node importance, a novel method is
proposed here, integrating the above criteria based on the
entropy weighting method and TOPSIS.

3. Proposed Method

TOPSIS is a commonmethod to solve multicriteria decision-
making problems. Original TOPSIS has been used to identify
important nodes [33, 59, 60]. However, original TOPSIS
simply gives equal weight to each criterion, ignoring that
different criteria play different roles in the decision-making
process.

3.1. Constitute the Weighted Decision Matrix. If the set of
nodes in a network is 𝑉 = {V1, V2, . . . , V𝑛} and the set of
centrality criteria is 𝐶 = {𝑐1, 𝑐2, 𝑐3} = {𝐷𝐶,𝐶𝐶, 𝐵𝐶}, then
V𝑖(𝑐𝑗) (𝑖 = 1, 2, . . . , 𝑛; 𝑗 = 1, 2, 3) represents the value of the jth
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criterion for the ith node.Thedecisionmatrix can be obtained
as

𝐷 = [[[[[[[

V1 (𝑐1) V1 (𝑐2) V1 (𝑐3)
V2 (𝑐1) V2 (𝑐2) V2 (𝑐3)... ... ...
V𝑛 (𝑐1) V𝑛 (𝑐2) V𝑛 (𝑐3)

]]]]]]]
. (6)

Because the dimension is different for each criterion, it is
necessary to eliminate the dimensional differences among
criteria and standardize the decision matrix. The criteria can
be divided into benefit criteria (the higher the criterion, the
more important the node) and cost criteria (the higher the
criterion, the less important the node).The above-mentioned
three criteria are all benefit criteria.

For cost criteria, the standardization process can be
expressed as

𝑟𝑖𝑗 = V𝑖 (𝑐𝑗)max
− V𝑖 (𝑐𝑗)

V𝑖 (𝑐𝑗)max
− V𝑖 (𝑐𝑗)min

. (7a)

Similarly, for benefit criteria it is expressed as

𝑟𝑖𝑗 = V𝑖 (𝑐𝑗) − V𝑖 (𝑐𝑗)min

V𝑖 (𝑐𝑗)max
− V𝑖 (𝑐𝑗)min

, (7b)

where V𝑖(𝑐𝑗)min = min{V𝑖(𝑐𝑗) | 1 ≤ 𝑖 ≤ 𝑛}, V𝑖(𝑐𝑗)max =
max{V𝑖(𝑐𝑗) | 1 ≤ 𝑖 ≤ 𝑛}.

The normalized decision matrix can be denoted as 𝑅 =(𝑟𝑖𝑗)𝑛×3.
The entropy weighting method, which is used to calculate

the weight of each criterion, determines the weight according
to the variability of the criterion. The information entropy of
the jth criterion is denoted as

𝐸𝑗 = − 1
ln 𝑛
𝑛∑
𝑖=1

𝑟󸀠𝑖𝑗 ln 𝑟󸀠𝑖𝑗, (8)

where 𝑟󸀠𝑖𝑗 = 𝑟𝑖𝑗/∑𝑛𝑘=1 𝑟𝑘𝑗.
When 𝑟󸀠𝑖𝑗 = 0, then 𝑟󸀠𝑖𝑗 ln 𝑟󸀠𝑖𝑗 = 0.
Then the weighting coefficient of the jth criterion can be

calculated as

𝑤𝑗 = 1 − 𝐸𝑗∑3𝑘=1 (1 − 𝐸𝑘) . (9)

Multiplying the columns of the normalized decision matrix
by the associated weights yields the weighted decisionmatrix,
which can be denoted as

𝑌 = (𝑤𝑗𝑟𝑖𝑗) = [[[[[[[

𝑤1𝑟11 𝑤2𝑟12 𝑤3𝑟13𝑤1𝑟21 𝑤2𝑟22 𝑤3𝑟23... ... ...𝑤1𝑟𝑛1 𝑤2𝑟22 𝑤3𝑟𝑛3

]]]]]]]
. (10)

3.2. Calculate the Distance to the Ideal Solution. The positive
ideal solution 𝐴+ and the negative ideal solution 𝐴− are
defined as follows:

𝐴+ = { max
𝑖∈{1,2,...,𝑛}

(𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3)} = {𝑦+1 , 𝑦+2 , 𝑦+3 } , (11a)

𝐴− = { min
𝑖∈{1,2,...,𝑛}

(𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3)} = {𝑦−1 , 𝑦−2 , 𝑦−3 } . (11b)

Thus, the distance of each scheme to the positive ideal
solution and the negative ideal solution can be calculated by
the following equations, respectively:

𝑆+𝑖 = √ 3∑
𝑗=1

(𝑦𝑖𝑗 − 𝑦+𝑗 )2, (12a)

𝑆−𝑖 = √ 3∑
𝑗=1

(𝑦𝑖𝑗 − 𝑦−𝑗 )2. (12b)

3.3. Rank Node Importance. The closeness degree to the ideal
solution can be calculated as

𝑍𝑖 = 𝑆−𝑖(𝑆−𝑖 + 𝑆+𝑖 ) , (𝑖 = 1, 2, . . . , 𝑛) . (13)

The closeness degree is the measurement of a node’s impor-
tance, and the vector of node importance can be simply
denoted as

𝑇𝑒 = [𝑍1, 𝑍2, . . . , 𝑍𝑖, . . . , 𝑍𝑛] . (14)

When 𝑇𝑒 is ranked in descending order based on the value
of each node’s importance, the resulting node importance
ranking is obtained as

𝑇󸀠𝑒 = 𝑠𝑜𝑟𝑡 [𝑇𝑒] = 𝑠𝑜𝑟𝑡 ([𝑍1, . . . , 𝑍𝑖, . . . , 𝑍𝑛])
= [𝑇󸀠𝑒1, . . . , 𝑇󸀠𝑒𝑗, . . . , 𝑇󸀠𝑒𝑛] , (15)

where 𝑇󸀠𝑒𝑗 ∈ {𝑍1, . . . ,Z𝑖, . . . , 𝑍𝑛}, 𝑗 ∈ [1, 𝑛], 𝑠.𝑡. 𝑇󸀠𝑒𝑗 ≥ 𝑇󸀠𝑒𝑗+1.
Combinedwith the above theoretical analysis, the specific

steps of node importance ranking in complex networks can
be given as in Algorithm 1.

4. Simulation and Analysis

4.1. Experimental Data. This section describes the use of
four actual networks to verify the feasibility and effectiveness
of the proposed method. (i) Zachary’s karate club [61] is a
social network that Zachary has observed among a karate
club’s 34 members in an American university over a few
years. Each node represents a member of the club, and an
edge represents the connection between two members of the
club. (ii) The dolphin social network [62] is a social network
that was observed by Lusseau and Newman in a group of
New Zealand bottlenose dolphins for seven years. Each node
represents a dolphin, and an edge represents the frequency
of contact between two dolphins. (iii) The American college



Mathematical Problems in Engineering 5

Input: Decision matrix𝐷.
Output: The result of ranking 𝑇󸀠𝑒 = 𝑠𝑜𝑟𝑡[𝑇𝑒] = [𝑇󸀠𝑒1, 𝑇󸀠𝑒2, . . . , 𝑇󸀠𝑒𝑗, . . . , 𝑇󸀠𝑒𝑛].
Step 1. Constitute the weighted decision matrix.

(i) Calculate the normalized decision matrix 𝑅 by Equations (7a) and (7b).
(ii) Determine the weights of the criteria using Equation (9) based on the entropy weighting method.
(iii) The weight of each criterion is brought into Equation (10), and the weighted decision matrix 𝑌 is constructed.

Step 2. Calculate the distance to the ideal solution.
(i) Calculate the positive ideal solution 𝐴+ and the negative ideal solution 𝐴− by Equations (11a) and (11b), respectively.
(ii) Obtain the distance of each scheme to the ideal solution by Equations (12a) and (12b), respectively.

Step 3. Output the result of ranking.
(i) Calculate the closeness degree to the ideal solution 𝑍𝑖 by Equation (13).
(ii) Rank the nodes’ importance in descending order using Equation (15), and the result of the node importance

ranking can be obtained as 𝑇󸀠𝑒 = 𝑠𝑜𝑟𝑡[𝑇𝑒] = [𝑇󸀠𝑒1, 𝑇󸀠𝑒2, . . . , 𝑇󸀠𝑒𝑗, . . . , 𝑇󸀠𝑒𝑛].
Algorithm 1: Specific steps of node importance ranking in complex networks.

Table 2: Top 10 nodes ranked by DC, CC, BC and EW-TOPSIS.

Karate club Dolphin
Rank DC CC BC EW-TOPSIS Rank DC CC BC EW-TOPSIS
1 34 1 1 1 1 15 37 37 37
2 1 3 3 34 2 46 41 2 2
3 33 34 34 3 3 38 38 18 46
4 3 32 33 33 4 34 46 46 18
5 2 33 32 32 5 52 21 38 38
6 32 9 6 2 6 18 2 41 41
7 4 14 2 6 7 21 15 8 8
8 9 20 28 9 8 30 29 52 52
9 14 2 24 4 9 58 34 30 15
10 24 4 9 14 10 2 8 58 30

Football Jazz musicians
Rank DC CC BC EW-TOPSIS Rank DC CC BC EW-TOPSIS
1 1 59 1 1 1 136 136 136 136
2 2 81 4 4 2 60 60 60 60
3 3 89 21 21 3 132 168 153 153
4 4 107 22 59 4 168 70 5 5
5 6 7 39 17 5 70 83 149 149
6 7 1 59 22 6 99 132 189 189
7 8 16 17 39 7 108 122 167 167
8 16 17 2 7 8 83 194 96 96
9 54 25 7 2 9 158 174 115 83
10 68 93 83 83 10 7 158 83 70

football [63] network describes American football games
between Division IA colleges during the regular season in Fall
2000. Each node is a player, and an edge represents a regular
season game between the two teams. (iv) Jazz musicians [64]
is a collaborative network between jazz musicians. Each node
is a jazz musician, and an edge denotes that two musicians
have played together in a band.

4.2. Experimental Analysis

4.2.1. Experiment 1: Compare the Top 10 Nodes between
the EW-TOPSIS Method and Centrality Criteria. In this

experiment, the EW-TOPSIS method is used to identify the
top 10 nodes based on the four actual networks, and the
three centrality criteria DC, CC, and BC are also used for
comparison. Table 2 shows the comparison results.

According to Table 2, in the karate club network, com-
paring the top 10 nodes of the EW-TOPSIS method and DC
and CC, nine of the nodes in their top 10 lists are the same.
Between the EW-TOPSIS method and BC, eight of the nodes
in their top 10 lists are the same. In the dolphin network, the
number of nodes in the top 10 lists thatwere the samebetween
the EW-TOPSIS method and the centrality criteria (DC, CC,
and BC) was seven, seven, and nine, respectively. In the top
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Table 3: Maximum frequency comparison of the four methods.

DC CC BC EW-TOPSIS
Karate club 32.35% 17.65% 55.88% 5.88%
Dolphin 14.52% 4.84% 25.81% 3.23%
Football 57.39% 6.96% 0.87% 0.87%
Jazz musicians 4.55% 3.03% 45.96% 1.52%

10 list of the football network, four of the nodes were the
same between the EW-TOPSIS method and DC and CC, and
the top-10 nodes were all the same when comparing the EW-
TOPSIS method and BC. In the jazz musicians network, the
top twonodes (node 136 andnode 60) using the fourmethods
were the same, which says that node 136 and node 60 are the
most important nodes and that node 136 is more important
than node 60.

By comparing the top 10 nodes using four methods based
on four actual networks, it is clear that the ranking results
of DC, CC, BC, and the EW-TOPSIS method are different.
Different centrality criteria measure node importance from
different perspectives. The EW-TOPSIS method comprehen-
sively considers multiple criteria, and the ranking results are
more scientific and reasonable.

4.2.2. Experiment 2: Compare the Frequency of Nodes with the
Same Ranking. Different nodes may have the same ranking,
which makes it impossible to rank nodes with the same
ranking accurately. For a node importance ranking method,
the higher the frequency of the same ranking, the worse the
performance of the rankingmethod.Therefore, the frequency
of nodes with the same ranking can be used as an indicator
to measure the performance of the method. The frequency
of nodes with same ranking was compared using the four
methods, with the results shown in Figure 2. For more
comparisons between the existing centrality criteria and the
proposed method, the maximum frequencies of nodes with
the same ranking are compared in Table 3.

According to Figure 2, the frequency of nodes with the
same ranking in the EW-TOPSIS method is the lowest,
whereas the three centrality criteria generate nodes with the
same ranking in varying degrees. FromTable 3, for the karate
club network, the maximum frequency of nodes with the
same ranking as sorted by BC is 55.88 percent, but with
the proposed method, it is only 5.88 percent. In the dolphin
network, the maximum frequency of nodes when sorted by
BC reaches 25.81 percent, but with the proposed method,
it is 3.23 percent. The gap is even larger in the football
network, where the maximum frequency as sorted by DC is
as high as 57.39 percent, but that with the proposedmethod is
0.87 percent. The difference also exists in the jazz musicians’
network. The conclusion can be drawn that the EW-TOPSIS
method is more effective than the three centrality criteria
from this perspective.

4.2.3. Experiment 3: Compare the Average Infection Ability
of the Top 10 Nodes. In this experiment, the SI model is

used to examine the infection ability of the top 10 nodes.
The importance of nodes can be regarded as equivalent to
infection ability; that is to say, the higher the importance of a
node is, the stronger its infection ability will be. Therefore,
the average infection ability of nodes can be used as an
indicator to evaluate the effectiveness of a ranking method.
In the SI model, every node has a susceptible state and an
infected state; infected nodes infect susceptible nodes with
a certain probability, and nodes cannot be recovered once
infected. The infection source node 𝑖 (𝑖 = 1, 2, . . . , 10) is
chosen from the top 10 list, the number of infected nodes will
reach 𝑛𝑖𝑡 after 𝑡 (𝑡 = 1, 2, . . . , 𝑁) intervals of spread, and the
average infection ability of the top 10 nodes can be defined as𝐼(𝑡) = ∑10𝑖=1 𝑛𝑖𝑡/10. In this experiment, the number of spread
intervals was set to 𝑡 = 50. To eliminate environmental ran-
domness, 1000 Monte Carlo simulations were used to make
the simulation environment more scientific and reasonable.
Figure 3 shows the results of this experiment.

In Figure 3, the average number of infected nodes
increases with time and finally reaches a stable value. In
the karate club network, the curves in Figure 3(a1) almost
overlap, and the same is the case in Figure 3(a2). DC and
CC showed similar performance to the EW-TOPSIS method,
with nine of the same nodes in the top 10 list. Figure 3(a3)
shows that the average number of infected nodes with the
EW-TOPSIS method is slightly higher than with BC, which
indicates that the performance of the EW-TOPSIS method is
slightly superior to that of BC. In the dolphin network, from
Figures 3(b1) and 3(b3), the average number of infected nodes
by the EW-TOPSIS method is larger than that by DC and
BC in each time interval; obviously, the EW-TOPSIS method
outperforms DC and BC. The EW-TOPSIS method showed
similar performance to CC, as shown in Figure 3(b2). In the
football network, the curves in Figures 3(b1), 3(b2), and 3(b3)
almost overlap; that is to say, the performance between the
EW-TOPSIS method and DC, CC, and BC is similar. This is
also the case for the jazzmusicians’ network between the EW-
TOPSIS method and DC and CC, as shown in Figures 3(d1)
and 3(d2). Figure 3(d3) shows that the EW-TOPSISmethod is
clearly superior to BC not only because it generates a greater
average number of infected nodes, but also because it has
more stable mean square errors.

In addition, the spread time to reach a state of 90 percent
infected nodes by the EW-TOPSIS method is 11 intervals, but
by BC, it is 14 intervals. Clearly, the EW-TOPSIS method has
better performance than DC and BC for both the average
number of infected nodes and the spread velocity, and the
performance of the EW-TOPSIS method is similar to that of
CC.
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Figure 2: Frequency of nodes with the same ranking using the four methods.

In short, the proposed method has almost the same
performance as DC and is slightly better than CC. In the case
of BC, it is obvious that the proposedmethod performs better.
Hence, the experimental results illustrate the effectiveness of
the proposed method.

4.2.4. Experiment 4: Compare the Average Infection Ability of
a Single Node. To compare further the ranking performance

of the four methods, the average infection abilities of a single
node at the same infection rate are compared, with the results
shown in Figure 4.

For the karate club network, from Figure 4(a), it is clear
that node 34 ≻ node 3 ≻ node 33, where “≻” denotes “more
important than,” and the simulation is consistent with the
EW-TOPSIS method, but contrary to DC, CC, and BC. In
the dolphin network as shown in Figure 4(b), it can be
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Figure 3: Average infection ability of the top 10 nodes between the EW-TOPSIS method and the centrality criteria.
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Figure 4: : Average infection ability of a single node.

concluded that node 2 ≻ node 37, which is consistent with
the EW-TOPSIS method, CC, and BC, but contrary to DC.
Similarly, in the football network, node 7 ≻ node 2. In the
jazz musicians’ network, node 83 ≻ node 168, which can be
seen from Figure 4(d) and is consistent with the EW-TOPSIS
method and BC, but contrary to DC and CC.

The four experiments described above indicate that the
proposed method has better performance than a single
centrality criterion. Node importance is ranked with different
methods, and the top 10 nodes of the four real networks
are obtained. Based on the ranking results, the frequency of

nodes with the same ranking is analyzed, and it is discovered
that the proposed method has the lowest frequency; that
is to say, the proposed method is more effective from this
perspective. In addition, an indicator called the average
infection ability is defined to describe the infection ability
of the top 10 nodes, and the average infection ability of the
top 10 nodes is obtained with the SI model. The proposed
method performed better in terms of both infection scale and
spread velocity. The infection abilities of a single node were
also compared, and the results demonstrate the superiority
of the proposed method.
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Many criteria are used to rank node importance in
complex networks, which considers only one aspect of net-
works. To solve this problem, amulticriteria decision-making
method has been proposed here to perform a comprehensive
evaluation of node importance. In this study, an entropy
weighting method was used to obtain criterion weights that
can overcome the subjective effect existing in other methods
[33, 59, 60]. The method proposed here enriches existing
research on complex networks and has great academic value.

5. Conclusions

This paper proposes a novel method of node importance
ranking based on an entropy weighting method and TOPSIS.
The proposed method takes multiple centrality criteria as its
decision criteria and uses an entropy weighting method to
obtain the corresponding weight of each criterion, thus over-
coming the effect of subjective factors. Multiple criteria were
chosen fromdifferent perspectives on complex networks, and
the advantages of each criterion were combined to obtain
more objective and reasonable ranking results. To verify
the effectiveness of the proposed method, four experiments
based on four actual networks were conducted, and the SI
model was used to simulate the spread ability of the top
10 nodes. The experimental results show that the proposed
method has superior performance.

In this paper, the proposed method is applicable to
undirected and unweighted networks, but a complex network
may be directed and weighted in real life, and therefore a
future research object of the authors is directed and weighted
networks. Furthermore, experiment 2 showed that there are
still some nodes with the same ranking; in such a case,
how should their ranking be determined? In addition, some
researchers have found that node importance is involved
in dissemination mechanisms in addition to network topol-
ogy. Therefore, future research will focus on a combination
method of dynamic characteristics and network structure to
measure node importance.

Data Availability

The simulation data used to support the findings of this study
are available from the corresponding author upon request.

Additional Points

Highlights. (1) A novel method of node importance ranking
in complex networks based on multicriteria decision making
is proposed. (2) The proposed method comprehensively
combines centrality criteria from different perspectives. (3)
An entropy weighting method, which can overcome the
influence of subjective factors, is proposed to obtain the
weight of each criterion. (4) Experimental results show
that the proposed method outperforms a single centrality
criterion.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work described in this paper is supported by the
National Natural Science Foundation of China (Grant
No. 61472443). We thank International Science Editing
(http://www.internationalscienceediting.com) for editing
this paper.

References

[1] K.-Q. Cai, J. Zhang, W.-B. Du, and X.-B. Cao, “Analysis of
the Chinese air route network as a complex network,” Chinese
Physics B, vol. 21, no. 2, pp. 596–602, 2012.

[2] M. Zanin andF. Lillo, “Modelling the air transport with complex
networks: a short review,”The European Physical Journal Special
Topics, vol. 215, no. 1, pp. 5–21, 2013.

[3] Y. Yang, T. Nishikawa, and A. E. Motter, “Small vulnerable sets
determine large network cascades in power grids,” Science, vol.
6365, no. 358, article 3184, 2017.

[4] P. H. J. Nardelli, N. Rubido, C. Wang et al., “Models for the
modern power grid,” The European Physical Journal Special
Topics, vol. 223, no. 12, pp. 2423–2437, 2014.

[5] W.-L. Fan, X.-M. Zhang, S.-W.Mei, and S.-W. Huang, “Vulnera-
ble transmission line identification considering depth of K-shell
decomposition in complex grids,” IETGeneration, Transmission
& Distribution, vol. 12, no. 5, pp. 1137–1144, 2018.

[6] S. Ni, W. Weng, and H. Zhang, “Modeling the effects of social
impact on epidemic spreading in complex networks,” Physica A:
Statistical Mechanics and its Applications, vol. 390, no. 23-24, pp.
4528–4534, 2011.

[7] S. Pei, L. Muchnik, J. S. Andrade Jr., Z. Zheng, and H. A.
Makse, “Searching for superspreaders of information in real-
world social media,” Scientific Reports, vol. 4, article 5547, 2014.

[8] A. N. Arularasan, A. Suresh, and K. Seerangan, “Identification
and classification of best spreader in the domain of interest over
the social networks,” Cluster Computing, pp. 1–11, 2018.

[9] L. Wang and X. Li, “Spatial epidemiology of networked
metapopulation: an overview,” Chinese Science Bulletin, vol. 59,
no. 28, pp. 3511–3522, 2014.

[10] X.-P. Yuan, Y.-K. Xue, and M.-X. Liu, “Dynamic analysis of
a sexually transmitted disease model on complex networks,”
Chinese Physics B, vol. 22, no. 3, Article ID 030207, 2013.

[11] Y. Shang, “Degree distribution dynamics for disease spreading
with individual awareness,” Journal of Systems Science and
Complexity, vol. 28, no. 1, pp. 96–104, 2015.

[12] R. Albert and A. Barabási, “Statistical mechanics of complex
networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97,
2002.

[13] M. E. J. Newman, “The structure and function of complex
networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[14] X. Li, Z. H. Liu, and B. H. Wang, “On spreading dynamics on
networks,” Complex System, vol. 07, no. 2, pp. 33–37, 2010.

[15] A. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[16] G. Caldarelli, Scale-free networks: complex webs in nature and
technology, Oxford University Press, Oxford, UK, 2007.

[17] A. L. Barabási, “Scale-free networks: a decade and beyond,”
Science, vol. 325, no. 5939, pp. 412-413, 2009.

[18] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack
tolerance of complex networks,” Nature, vol. 406, no. 6794, pp.
378–382, 2000.

http://www.internationalscienceediting.com


Mathematical Problems in Engineering 11

[19] K. Hu, T. Hu, and Y. Tang, “Model for cascading failures with
adaptive defense in complex networks,” Chinese Physics B, vol.
19, no. 8, pp. 65–71, 2010.

[20] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
“Catastrophic cascade of failures in interdependent networks,”
Nature, vol. 464, no. 7291, pp. 1025–1028, 2010.

[21] R. PastorSatorras and A. Vespignani, “Immunization of com-
plex networks,” Physical Review E Statistical Nonlinear & Soft
Matter Physics, vol. 66, Article ID 036104, 2002.
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[43] L. Lü, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, and T.
Zhou, “Vital nodes identification in complex networks,” Physics
Reports, vol. 650, pp. 1–63, 2016.

[44] R. Sun and W. B. Luo, “Review on evaluation of node impor-
tance in public opinion,”Application Research of Computers, vol.
29, no. 10, pp. 3606–3608, 2012.

[45] D. Krackhardt, “Assessing the Political Landscape: Structure,
Cognition, and Power inOrganizations,” Administrative Science
Quarterly, vol. 35, no. 2, pp. 342–369, 1990.

[46] Y. Deng, F. T. S. Chan, Y. Wu, and D. Wang, “A new linguis-
tic MCDM method based on multiple-criterion data fusion,”
Expert Systems with Applications, vol. 38, no. 6, pp. 6985–6993,
2011.

[47] M. Abdel-Basset, G. Manogaran, M. Mohamed, and N. Chil-
amkurti, “Three-way decisions based on neutrosophic sets and
AHP-QFD framework for supplier selection problem,” Future
Generation Computer Systems, vol. 89, pp. 19–30, 2018.

[48] M. Abdel-Basset, M. Gunasekaran, M. Mohamed, and N.
Chilamkurti, “A framework for risk assessment, management
and evaluation: Economic tool for quantifying risks in supply
chain,” Future Generation Computer Systems, vol. 90, pp. 489–
502, 2019.

[49] Y. Deng and F. T. S. Chan, “A new fuzzy dempster MCDM
method and its application in supplier selection,”Expert Systems
with Applications, vol. 38, no. 8, pp. 9854–9861, 2011.

[50] X. Deng, Y. Hu, Y. Deng, and S. Mahadevan, “Environmental
impact assessment based on D numbers,” Expert Systems with
Applications, vol. 41, no. 2, pp. 635–643, 2014.

[51] C. L. Hwang and K. Yoon, Multiple Attribute Decision Making:
Methods and Applications, vol. 186, Springer, Heidelberg, Ger-
many, 1981.

[52] A. Awasthi, S. S. Chauhan, and S. K. Goyal, “A fuzzy multi-
criteria approach for evaluating environmental performance of
suppliers,” International Journal of Production Economics, vol.
126, no. 2, pp. 370–378, 2010.

[53] V. Chang,M. Abdel-Basset, andM. Ramachandran, “Towards a
Reuse Strategic Decision Pattern Framework–fromTheories to
Practices,” Information Systems Frontiers, pp. 1–18, 2018.
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