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Emergence of higher-level neuron properties using a hierarchical
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Essential to visual tasks such as object recognition is the formation of effective representations that generalize from specific
instances of visual input. Neurons in primary visual cortex are typically hypothesized to efficiently encode image structures such
as edge and textures from natural scenes. Here this paper proposed a novel hierarchical statistical distribution model to generalize
higher-level neuron properties and encode distributed regularities that characterize local image regions. Two layers of our
hierarchical model are presented to extract spiking activities of excitatory neurons decorrelated by inhibitory neurons and to
construct the statistical patterns of input data, respectively. Trained on whitened natural images, parameters including neural
connecting weights and distribution coding weights are estimated by their corresponding learning rules. To prove the feasibility
and effectiveness of our model, several experiments on natural images are conducted. Adapting our model to natural scenes
yields a distributed representation for higher-order statistical regularities. Comparison results provide insight into higher-level
neurons which encode more abstract and invariant properties.
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1 Introduction

It has been hypothesized that primate visual system has
evolved to accurately encode environmental signals with the
minimal consumption of biological resources [1]. The retina
transmits visual information to the brain with its anatomical
and functional properties [2,3]. This pathway provides a
natural choice for the study of coding efficiency [4]. Adapted
to the statistic natural images, neurons in the primary visual
cortex (V1) represent basic image features such as local or-
ientation and edge using an efficient code [5]. However, a
number of nonlinear effects, such as visual attention [6–8]
and lateral inhibition [9,10], are difficult to be explained with
those properties of simple cells. Neurons in the early visual
areas extract simple features, which are transmitted to neu-

rons in higher visual areas of primate visual cortex [11].
Thus, the perception of complex properties emerges from
neuronal activity in higher visual areas, which carry neces-
sary information for a completion of different tasks such as
classification [12,13], object recognition [14] and pose es-
timation [15].
Even though individuals collected by the stimulus at the

retina are inherently highly variables, they can be efficiently
processed by the brain. Previous theoretical work has been
done to explore the biological feasibility of explaining as-
pects of higher-level visual processing [16,17]. Early visual
neurons such as the Gabor filter [18] and the Derivative of
Gaussian (DoG) filter [19] are typically described as linear
feature detectors. These filters have similar shapes to the
receptive fields (RFs) of orientation-tuned cells in V1.
Sparse coding has emerged as a useful principle for under-
standing neural representations in the cortex. Several quali-
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tative features of the RFs of neurons in V1 have been re-
produced by establishing a sparse and independent local
network (SAILnet) for natural images [20]. When retinal
ganglion cells transmit the spatial information of natural
images to the brain, a high level of efficiency with near-
optimal redundancy appears in visual signaling by the retina
[21]. An extended spiking model called E-I Net [22] is
presented by adding a separate population of inhibitory
neurons to provide conformance to Dale’s Law. A hybrid
method based on SIFT feature and sparse coding [23] is
presented for image classification, and reached a competitive
performance on public datasets.
To formulate the higher-level neuron properties, a standard

model of visual cortex [24] is proposed for object recognition
in a quantitative way. The standard model consists of four
layers of alternate simple S units and complex C units. A
series of extended methods [25,26] are developed based on
the standard model. A multiscale convolutional network is
presented to extract dense feature vectors by encoding re-
gions of multiple sizes [27,28]. To capture higher-order
nonlinear structure and represent nonstationary data dis-
tributions, a hierarchical Bayesian model [29] is presented
through the generalization of independent component ana-
lysis (ICA). A distribution coding model [30] is proposed
using the neural activity and probability distribution.
In this paper, a novel hierarchical statistical distribution

model is proposed based on neural spiking activity and their
internal distribution regularities. Being different from those
traditional methods, two layers of hierarchical model are
utilized to extract high-order structures from the nature
images for target classification. The presented model can
classify the abstract properties of input data. The dynamic
spiking layer extracts image representations with spiking
activities of excitatory neurons that decorrelated by separate
inhibitory neurons. The distribution coding layer then con-
structs the statistical patterns of those spiking outputs. The
contributions of this paper can be illustrated as: (1) the
higher-order statistical regularities are considered for the
presented hierarchical model; (2) adapting the presented
hierarchical model to natural scenes can yield a distributed
representation for higher-order statistical regularities, which
can been further applied to target detection.

2 Hierarchical statistical distribution model

The hierarchical statistical distribution model is illustrated
schematically in Figure 1.
The hierarchy stacks two neural activity extraction layers,

thereby representing distributions of images patches. The
statistical patterns are characterized by a Gaussian distribu-
tion with a fixed mean of zero and a covariance that is a
function of the neural activity [30]. At the first layer, spiking

activity of the retina ganglion cells is computed with some
Gabor-like receptive fields. These responses are then en-
coded with a non-linear transformation layer to construct the
statistical patterns at the second layer.

2.1 Dynamic spiking layer

The dynamic spiking layer consists of excitatory neurons (E)
and inhibitory neurons (I) in separate populations. This layer
obtains the dynamic spiking activity of these excitatory
neurons. Instead of the activity of those simple cells that
laterally inhibit each other directly [20], the excitatory neu-
rons are decorrelated by those inhibitory ones. The inhibitory
neurons provide feedback inhibition to excitatory ones to
cancel out the redundant part and decorrelate the activity of
excitatory neurons. Similar to LIF neurons [22], these neu-
rons work together to learn a sparse representation of the
input signal without violating Dale’s Law.
Neurons at this layer compute a sparse representation of

input data, which identifies visual features that match the
Gabor-like receptive fields. The population of excitatory
neurons receives retina input from whitened image patch,
along with the feedback inhibition from the population of
inhibitory neurons. The inhibitory neurons can receive input
from the excitatory ones and send inhibition back. The in-
hibitory neurons also inhibit each other. Each connection can
be viewed as the signal transfer process from pre-synaptic
neuron to post-synaptic neuron. The neurons in this layer are
fully connected and the connection diagram is shown as
Figure 2. Three connection types between the excitatory and
inhibitory neurons are defined by respective connection
weights (i.e., Q E I is the weight from excitatory neurons to
inhibitory neurons, Q I E is the weight from inhibitory neu-
rons to excitatory neurons, and Q I I is the weight between
inhibitory neurons). Connections between the input image
patch and excitatory neurons are also represented as the
connection weights Q in E (not shown in Figure 2).
Each E cell and I cell can be viewed as a pair of one

feedforward excitatory connection and one feedback in-
hibitory connection. On the basis of those connecting
weights, neural spiking activities of those excitatory cells
constitute the sparse representation of the input stimuli.
The neuron state of these populations can be updated by

the dynamic spiking function, which is similar to LIF neu-
rons [22]:

y t y t u t Q( + 1) = ( )(1 ) + ( ) , (1)i
C
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where C is the neuron class in this layer (i.e., E or I), t is the
simulation time step, y t( )i

C is the potential energy of neuron i
of class C at time t, C is the rate parameter governing the
decay rate for neurons of class C , L is the connection type to
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neuron i of class C , CL represents the pre-synaptic neuron
connecting to neuron i of class C , L is the impact sign of
connection L (+1 for excitatory connections and −1 for in-
hibitory connections), u t( )i

CL is the spike output (either 0 for
no spike, or 1 for spike) of pre-synaptic neuron i at time t.
The spike output of each neuron is computed by comparing
the potential energy y t( )i

C with its corresponding spike

threshold i
C through eq. (2). If the neural potential energy

crosses the corresponding spike threshold, the neuron spikes
and then the potential energy is reset to zero.

u t y t( ) = 1,                        ( ) ,
0,                        otherwise.
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In separate populations of excitatory and inhibitory neurons,
the neuron state can be represented respectively as follows:
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where Xi represents the value of the input image patch at
pixel i. Following the precedent set by previous sparse
coding studies (e.g., [21,30]), we used whitened input images
to remove pairwise correlations in the input stimuli, which is

similar to the process of visual signal passing through the
retina to the visual cortex
The connection weights and spike thresholds can be ob-

tained by training this dynamic spiking layer. The learning
rules, similar to those in [20,22], are introduced to update the
trainable parameters. Based on the spiking activities of the
presynaptic and postsynaptic neurons, updates to the con-
nection weights are computed locally. The weights from the
input image patch to the excitatory neurons (i.e., Q in E) and
three connection weights from neurons of class C1 to neurons
of classC2 (i.e.,Q

E I,Q I E, andQ I I) are updated according
to

( )Q n X n Q , (5)ij i j i ij
in E E E in E

( )Q n n p p Q1 + , (6)ij
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where n u t= ( )i
C

t
i
C represents the number of the spikes

emitted by neuron i of class C over time, and pC is the mean
spike rate of neurons of class C. The spike thresholds of
neurons are also adjusted during the learning process, ac-
cording to the adaptation rule n pi

C
i
C C. Excitatory

neurons become tuned to specific image features after ex-
posure to thousands of input image patches. Their spiking
activities come to resemble the Gabor-like response prop-
erties observed in simple cells of V1. At the end, the number
of spikes generated by each excitatory neuron represents the
sparse feature of input stimuli. This layer’s representation of
the image patch is the average spike rate of each neuron
during the simulation time.

2.2 Distribution coding layer

The second layer, distribution coding layer, is to generate the
high-order structure in input images on the basis of the high-
lever neuron properties. With those sparsely distributed
spiking outputs computed at the first layer, the distribution
coding layer describes these spiking outputs ni with multi-
variate Gaussian probability distributions as follows:

P Nn v( ) = (0, ), (7)

where the covariance f v= ( ) is a non-linear function of
neural activities vk. The transformation from the input image
patch to the higher-order structure describes patterns in the
variances of spiking outputs at the first layer, hence funda-
mentally non-linear. The logarithm of covariance is com-
puted by neural activities weighted throughWik:

W vlog = . (8)i
k

ik k

The covariance is a latent scale parameter in this layer. We
set this parameter to connect the spiking outputs to neural
activities and account for the high-order statistical distribu-

Figure 1 (Color online) Our proposed hierarchical statistical distribution
model.

Figure 2 (Color online) Connection diagram at the dynamic spiking
layer.
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tions of the input image patches. The form of this connection
in eq. (8) implies that absence of those neural activities
(v = 0k ) corresponds to a canonical distribution ( = 1i ).
Figure 3 shows the schematic of the distribution coding
layer. Nonzero activities of neurons in this layer describe
changes in shaping the distributions of spiking outputs ni at
the first layer (dashed rectangle in Figure 3) using connecting
weights Wik. Each neuron at the second layer has a different
set of weights (i.e., the J-dimensional vector Wk in Figure 3),
corresponding to the role in modifying the encoded dis-
tribution.
The values of those neural activities v and connecting

weights W for a given spiking outputs n are computed by
evaluating the likelihood at the maximum a posteriori (MAP)
estimate:

pv v n W= argmax ( , ), (9)v

p pW v n W W= argmax ( , ) ( ). (10)
W

The log posterior distribution can be expressed as
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The neural activities and weights are derived by gradient
ascent:
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The gradients used for estimation are

v W n v( / 1) + ( ), (14)T

W n v W( / 1) + ( ), (15)T

where pv v v( ) = dlog ( ) / d and pW W W( ) = dlog ( ) / d are
the sparse prior term placed on neural activities and weights,
respectively. In this paper, we place a Laplacian prior on
these parameters and infer their values for each input data.
Neural activities are modeled with the Laplacian distribution

such as p p vv( ) = ( ) ek
vk . Then the sparse prior

term of eq. (14) can be expressed as v v( ) 2 sign( ),
where sign is the symbolic function. We set the same prior on
the weights and estimate their values. Using this para-
meterization, patterns of high-order statistical regularities are
captured among the variances.

3 Parameter estimation and learning

Given the image patch x, two sets of parameters (i.e., neural
connecting weights Q and distribution coding weights W)
are adapted to the input data. Neural connecting weights Q
will convert the input information into the spike activities of
those excitatory cells, which constitute the sparse re-
presentation of the input image patch. Then distribution
coding weights W describe the role of each neuron at the
second layer in shaping the encoded image distribution. Two
sets of neural activities (i.e., spiking outputs n at the first
layer and high-level neural activities v) are computed asso-
ciated with the stimulus. For a given data sample (e.g., input
image patch x, which is expressed as the N × 1 vector, see
Figure 3), n is the J × 1 vector of spiking outputs at the first
layer while v is the K × 1 vector of spiking outputs at the
second layer. Q is the J N× matrix of neural connecting
weights while W is the J K× matrix of distribution coding
weights. Each row of matrix Q is fixed to unit-norm and
regarded as one receptive field of excitatory neuron. The
process of generating the spiking outputs can be viewed as a
measure of the match between the input image patch and the
receptive field of the neuron. The properties of components
in distribution coding weights W are analogous to the neu-
robiological interpretation of complex cells, which pool
squared output over specific first-order feature dimensions
[2]. Thus, these parameters generate a hierarchical re-
presentation, in which the first layer encodes data precisely
and the second layer describes more abstract properties as-
sociated with the shape of the distribution.
For computational efficiency, neural connections of two

layers are assumed to be independent. Hence, neural con-
necting weights Q and distribution coding weights W are

Figure 3 (Color online) Schematic of the distribution coding layer.
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estimated separately in two layers in this paper. We first
calculate the parameters at the first layer and adapt neural
connecting weights Q to the input data using the learning
rules discussed above. Then distribution coding weights W
are optimized on the spiking outputs of the fixed neural
connecting weights of excitatory neurons.

4 Experimental results

4.1 Image reconstruction

In order to validate the performance of the proposed method,
experiments are performed on a standard set of natural
images [5]. Image patches with 10 pixels×10 pixels (i.e., the
dimension N is 100) are randomly extracted from standard
grayscale images of natural scenes. 400 excitatory neurons
(i.e., J = 400) and 49 inhibitory neurons are set to the dy-
namic spiking layer. Based on the input image patches and
learning rules, parameters are estimated and a subset of the
neural connecting weights (Gabor-like receptive fields) is
learned by those neurons.
As shown in Figure 4, each square is an oriented and lo-

calized feature, which represents the Gabor-like receptive
field of a single neuron. The gray value in each square re-
presents zero. The lighter pixels correspond to positive sti-
muli and the darker ones correspond to negative stimuli.
These Gabor-like receptive fields are consistent with those
properties of simple cells in the primate visual cortex [20].
Instead of the convolution operator in previous models
[28,31], the final neural spiking outputs at the first layer are
calculated with the neural interaction of two separate neuron
population. The connection weight between neurons is pro-
portional to the degree of correlation between their tuning
similarities.
To verify the coding performance of our dynamic spiking

layer, reconstruction experiment is conducted and the result
is shown in Figure 5. The input image in Figure 5(a) is
whitened using the same preprocess as the training set. 5000
patches are randomly extracted from the input image. Thus,
the spiking outputs are recorded from each excitatory neuron
in response to each patch. Through multiplying each ex-
citatory neuron’s spiking output by the corresponding Gabor-
like receptive field in Figure 4 and summing over all neu-
rons, all decoded patches are tiled together at the previous
positions. The reconstruction image is shown in Figure 5(b).
The result indicates the dynamic spiking layer can success-
fully encode the input data precisely with remaining most
features of the input scene. Owing to the sparse spiking rate,
the reconstruction image is not identical to the original one.
Some details are missing as these stimuli cannot produce
enough spiking energy of those Gabor-like receptive fields.
Better results can be obtained from more excitatory neurons
with more completed orientation tuning.

4.2 Region classification and detection

At the distribution coding layer, the number of high-lever
neurons is set to 150 (i.e., K = 150). Sparse spiking outputs
of training patches are utilized to derive weights by gradient
ascent. The distribution coding layer captures the statistical
regularities in the input data. To verify the validity of feature
classification, patches in three regions of the test image in
Figure 6 are used. Three regions contain distinct objects such
as the tree (Region 1), shrub (Region 2) and wood plank
(Region 3). The high-order features of different regions are
calculated using the two-dimensional projection based on
linear discriminant analysis (LDA) [32]. For comparison, the
joint outputs of a pair of oriented Gabor filters are described
with the scatter plot. The comparison results of capturing
statistical regularities in the input data are given in Figures 6
and 7. Well-separated clusters reveals in Figure 6(b), while
the joint output in Figure 6(c) are highly overlapping. Results
in Figures 6 and 7 indicate that features of simple cells
provide no means to distinguish between the regions. Being
different from previous hierarchical models [24] that com-
pute the similarity between primary features, image dis-
tributions are encoded in our presented method by analyzing
the statistical regularities of outputs from primary Gabor
receptive fields.
To predict the object region, the reconstruction process is

utilized based on neural activities of those high-lever neu-
rons. Then the difference map is computed by comparing the

Figure 4 Neural connection weights learned by excitatory neurons.

Figure 5 Image reconstruction with the neural activities at the dynamic
spiking layer. (a) The original image; (b) the reconstruction image.
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original input image and reconstruction image. The row-wise
cumulative sum and column-wise cumulative sum of the
difference map are calculated, respectively. Thus, the region
containing (20, 80) percentiles of row-wise and column-wise
total sum is selected as the object region. Experimental re-
sults are shown in Figure 8. The input image from Caltech-
101 database [33] is sampled and non-overlapping patches
are imported to our model.
From the reconstruction image and object region, it is

obvious that the object (i.e., car) remain shows a greater
difference. Note that our model is trained only on the nature
images (background images), so that it can represent the
patches from background more accurately than those from
the object region. Compared to the results in Figure 8(d)
using spectral residual approach [34], our method is superior
to segment out the object region from the background.

5 Conclusion

In this paper, a novel hierarchical statistical distribution
model is presented to generalize the higher-level neuron
properties and encode the distribution regularity, which is
consistent with the input image. Two layers (i.e., dynamic
spiking layer and distribution coding layer) are introduced to
our hierarchical model to form distributed representations.
The dynamic spiking layer learns a sparse code with Gabor-

like receptive fields of excitatory neurons decorrelated by
those inhibitory neurons. Then the distribution coding layer
encodes the statistical distribution of the spiking outputs of
those excitatory neurons. With those general set of re-
presentations, which are determined by the statistical struc-
ture, our model can classify the abstract properties of input
data. To demonstrate the feasibility and effectiveness of our
method, several experiments on natural scenes are con-
ducted.
Adapted to patches sampled from natural images, para-

meters including connecting weights and distribution coding
weights are estimated, respectively. The experimental results
show that our hierarchical model is able to learn nonlinear

Figure 6 (Color online) Comparison results of capturing statistical regularities in the input data. (a) The original image and three regions (Region 1: tree,
Region 2: shrub, Region 3: wood plank); (b) properties of patches using our distribution coding layer; (c) properties of patches using Gabor-like features.

Figure 7 (Color online) Comparison distribution regularities of three regions in Figure 6 with histogram and Gaussian fitting analysis. (a) Region 1; (b)
Region 2; (c) Region 3.

Figure 8 Results of object region detection. (a) The original image; (b)
the reconstruction image; (c) our model; (d) spectral residual approach.
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statistical regularities and recognize similar images with
their similar high-order intrinsic representations. Rather than
coding the pixel intensities of a patch, our model yields a
distributed representation, which includes higher-order spa-
tial relationships for image data. Classification results in-
dicate that our proposed model is able to extract effective
representations of patches from different regions, which can
be utilized as a reliable feature for the following recognition
process.
Although the proposed hierarchical statistical distribution

model is able to capture some nonlinear statistical re-
presentations, the encoded image structure is still quite low
level. We would like to further improve our model and ex-
tend it to solve more specific problems such as perceptual
invariance or scene segmentation.

This work was supported by the National Natural Science Foundation of
China (Grant Nos. 91648205 & 61333004).
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