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Abstract. Commuting conversions of Linear Logic induce a notion of
dependency between rules inside a proof derivation: a rule depends on
a previous rule when they cannot be permuted using the conversions.
We propose a new interpretation of proofs of Linear Logic as causal
invariants which captures exactly this dependency. We represent causal
invariants using game semantics based on general event structures, carv-
ing out, inside the model of [6], a submodel of causal invariants. This
submodel supports an interpretation of unit-free Multiplicative Additive
Linear Logic with MIX (MALL−) which is (1) fully complete: every ele-
ment of the model is the denotation of a proof and (2) injective: equality
in the model characterises exactly commuting conversions of MALL−.
This improves over the standard fully complete game semantics model
of MALL−.

Keywords: Event structures · Linear Logic · Proof nets ·
Game semantics

1 Introduction

Proofs up to commuting conversions. In the sequent calculus of Linear Logic, the
order between rules need not always matter: allowed reorderings are expressed
by commuting conversions. These conversions are necessary for confluence of
cut-elimination by mitigating the sequentiality of the sequent calculus. The real
proof object is often seen as an equivalence class of proofs modulo commuting
conversions. The problem of providing a canonical representation of proofs up to
those commuting conversions is as old as Linear Logic itself, and proves to be a
challenging problem. The traditional solution interprets a proof by a graphical
representation called proof net and dates back to Girard [17]. Girard’s solution
is only satisfactory in the multiplicative-exponential fragment of Linear Logic.
For additives, a well-known solution is due to Hughes and van Glabbeck [22],
where proofs are reduced to their set of axiom linkings. However, the correctness
criterion relies on the difficult toggling condition.

Proof nets tend to be based on specific representations such as graphs or
sets of linkings. Denotational semantics has not managed to provide a seman-
tic counterpart to proof nets, which would be a model where every element is
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Fig. 1. Examples of causal invariants

the interpretation of a proof (full completeness) and whose equational theory
coincides with commuting conversions (injectivity). We believe this is because
denotational semantics views conversions as extensional principles, hence models
proofs with extensional objects (relations, functions) too far from the syntax.

Conversions essentially state that the order between rules applied to different
premises does not matter, as evidenced in the two equivalent proofs of the sequent
� X⊥⊕X⊥,X⊕X depicted on the right. These two proofs are equal in exten-
sional models of Linear Logic because they have the same extensional behaviour.
Unfortunately, characterising the
image of the interpretation proved
to be a difficult task in extensional
models. The first fully complete
models used game semantics, and
are due to Abramsky and Melliès (MALL) [1] and Melliès (Full LL) [24]. How-
ever, their models use an extensional quotient on strategies to satisfy the con-
versions, blurring the concrete nature of strategies.

The true concurrency of conversions. Recent work [5] highlights an interpreta-
tion of Linear Logic as communicating processes. Rules become actions whose
polarity (input or output) is tied to the polarity of the connective (negative or
positive), and cut-elimination becomes communication. In this interpretation,
each assumption in the context is assigned a channel on which the proof com-
municates. Interestingly, commuting conversions can be read as asynchronous
permutations. For instance, the conversion mentioned above becomes the equa-
tion in the syntax of Wadler [27]:

(1) u[inl]. v[inl]. [u ↔ v] ≡ v[inl]. u[inl]. [u ↔ v] � u : X⊥ ⊕ X⊥, v : X ⊕ X,

where u[inl] corresponds to a ⊕1-introduction rule on (the assumption cor-
responding to) u, and [u ↔ v] is the counterpart to an axiom between the
hypothesis corresponding to u and v. It becomes then natural to consider that
the canonical object representing these two proofs should be a concurrent pro-
cess issuing the two outputs in parallel. A notion of causality emerges from
this interpretation, where a rule depends on a previous rule below in the tree
when these two rules cannot be permuted using the commuting conversions. This
leads us to causal models to make this dependency explicit. For instance, the two
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processes in (1) can be represented as the partial order depicted in Fig. 1a, where
dependency between rules is marked with �.

In presence of &, a derivation stands for several execution (slices), given by
different premises of a &-rule (whose process equivalent is u.case (P,Q) and
represents pattern matching on an incoming message). The identity on X ⊕ Y ,
corresponding to the proof

u.case (v[inl]. [u ↔ v], v[inr]. [u ↔ v]) � u : X⊥ & Y ⊥, v : X ⊕ Y,

is interpreted by the event structure depicted in Fig. 1b. Event structures [28]
combine a partial order, representing causality, with a conflict relation repre-
senting when two events cannot belong to the same execution (here, same slice).
Conflict here is indicating with and separates the slices. The &-introduction
becomes two conflicting events.

Fig. 2. Representations of or

Conjunctive and disjunctive causalities. Consider the process on the context
u : (X ⊕ X)⊥, v : (Y ⊕ Y )⊥, w : (X ⊗ Y ) ⊕ (X ⊗ Y ) implementing disjunction:

or = u.case

(
v.case (w[inl]. P, w[inl]. P ),

v.case (w[inl]. P, w[inr]. P )

)
where P = w[x]. ([u ↔ w] | [v ↔ x]).

Cuts of or against a proof starting with u[inl] or v[inl] answer on w after
reduction:

(νu)(or | u[inl]) →∗ w[inl].v.case (P, P ) (νv)(or | v[inl]) →∗ w[inl].u.case (P, P )

where (νu)(P | Q) is the process counterpart to logical cuts. This operational
behaviour is related to parallel or, evaluating its arguments in parallel and
returning true as soon as one returns true. Due to this intentional behaviour, the
interpretation of or in prime event structures is nondeterministic (Fig. 2a), as
causality in event structures is conjunctive (an event may only occur after all its
predecessors have occurred). By moving to general event structures, however, we
can make the disjunctive causality explicit and recover determinism (Fig. 2b).

Contributions and outline. Drawing inspiration from the interpretation of proofs
in terms of processes, we build a fully complete and injective model of unit-free
Multiplicative Additive Linear Logic with MIX (MALL−), interpreting proofs
as general event structures living in a submodel of the model introduced by
[6]. Moreover, our model captures the dependency between rules, which makes
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sequentialisation a local operation, unlike in proof nets, and has a more uniform
acyclicity condition than [22].

We first recall the syntax of MALL− and its reading in terms of processes in
Sect. 2. Then, in Sect. 3, we present a slight variation on the model of [6], where
we call the (pre)strategies causal structures, by analogy with proof structures.
Each proof tree can be seen as a (sequential) causal structure. However, the space
of causal structures is too broad and there are many causal structures which
do not correspond to any proofs. A major obstacle to sequentialisation is the
presence of deadlocks. In Sect. 4, we introduce a condition on causal structures,
ensuring deadlock-free composition, inspired by the interaction between ` and
⊗ in Linear Logic. Acyclic causal structures are still allowed to only explore
partially the game, contrary to proofs which must explore it exhaustively, hence
in Sect. 5, we introduce further conditions on causal structures, ensuring a strong
sequentialisation theorem (Theorem 2): we call them causal nets. In Sect. 6, we
define causal invariants as maximal causal nets. Every causal net embeds in a
unique causal invariant; and a particular proof P embeds inside a unique causal
invariant which forms its denotation �P �. Moreover, two proofs embed in the
same causal invariant if and only if they are convertible (Theorem 4). Finally,
we show how to equip causal invariants with the structure of ∗-autonomous
category with products and deduce that they form a fully complete model of
MALL− (Theorem 6) for which the interpretation is injective.

The proofs are available in the technical report [7].

2 MALL− and Its Commuting Conversions

In this section, we introduce MALL− formulas and proofs as well as the standard
commuting conversions and cut elimination for this logic. As mentioned in the
introduction, we use a process-like presentation of proofs following [27]. This
highlights the communicating aspect of proofs which is an essential intuition for
the model; and it offers a concise visualisation of proofs and conversions.

Formulas. We define the formulas of MALL−: T, S ::= X | X⊥ | T ⊗ S | T ` S |
T ⊕S | T &S, where X and X⊥ are atomic formulas (or ltterals) belonging to a
set A. Formulas come with the standard notion of duality (·)⊥ given by the De
Morgan rules: ⊗ is dual to `, and ⊕ to &. An environment is a partial mapping
of names to formulas, instead of a multiset of formulas – names disambiguate
which assumption a rule acts on.
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Proofs as processes. We see proofs of MALL− (with MIX) as typing derivations
for a variant of the π-calculus [27]. The (untyped) syntax for the processes is as
follows:

P,Q ::= u(v). P | u[v]. (P | Q) (multiplicatives)
| u.case (P,Q) | u[inl]. P | u[inr]. P (additives)
| [u ↔ v] | (νu)(P | Q) | (P | Q) (logical and mix)

u(v).P denotes an input of v on channel u (used in `-introduction) while
u[v].(P | Q) denotes output of a fresh channel v along channel u (used in ⊗-
introduction); The term [u ↔ v] is a link, forwarding messages received on u to v,
corresponds to axioms, and conversely; and (νu)(P | Q) represents a restriction
of u in P and Q and corresponds to cuts; u.case (P,Q) is an input branching
representing &-introductions, which interacts with selection, either u[inl]. R or
u[inr]. R; in (νu)(P | Q), u is bound in both P and Q, in u(v). P , v is bound in
P , and in u[v]. (P | Q), v is only bound in Q.

We now define MALL− proofs as typing derivations for processes. The infer-
ence rules, recalled in Fig. 3, are from [27]. The links (axioms) are restricted to
literals – for composite types, one can use the usual η-expansion laws. There is a
straightforward bijection between standard (η-expanded) proofs of MALL− and
typing derivations.

Fig. 3. Typing rules for MALL− (above) and contexts (below)

Commutation rules and cut elimination. We now explain the valid commuta-
tions rules in our calculus. We consider contexts C [[]1, . . . , []n] with several holes
to accomodate & which has two branches. Contexts are defined in Fig. 3, and



Causality in Linear Logic 155

are assigned a type . It intuitively means that if we plug proofs
of Γi in the holes, we get back a proof of . We use the notation C[Pi]i for
C[P1, . . . , Pn] when (Pi) is a family of processes. Commuting conversion is the
smallest congruence ≡ satisfying all well-typed instances of the rule C[D[Pi,j ]j ]i ≡
D[C[Pi,j ]i]j for C and D two contexts. For instance a[inl]. b.case (P,Q) ≡
b.case (a[inl]. P, a[inl]. Q). Figure 4 gives reduction rules P → Q. The first four
rules are the principal cut rules and describe the interaction of two dual terms,
while the last one allows cuts to move inside contexts.

3 Concurrent Games Based on General Event Structures

This section introduces a slight variation on the model of [6]. In Sect. 3.1, we
define games as prime event structures with polarities, which are used to inter-
pret formulas. We then introduce general event structures in Sect. 3.2, which are
used to define causal structures.

Fig. 4. Cut elimination in MALL−

3.1 Games as Prime Event Structures with Polarities

Definition of games. Prime event structures [28] (simply event structures in
the rest of the paper) are a causal model of nondeterministic and concurrent
computation. We use here prime event structures with binary conflict. An event
structure is a triple (E,≤E ,#E) where (E,≤E) is a partial order and #E is
an irreflexive symmetric relation (representing conflict) satisfying: (1) if e ∈ E,
then [e] := {e′ ∈ E | e′ ≤E e} is finite; and (2) if e#E e′ and e ≤E e′′ then
e′′ #E e′. We often omit the E subscripts when clear from the context.

A configuration of E is a downclosed subset of E which does not contain
two conflicting events. We write C (E) for the set of finite configurations of E.
For any e ∈ E, [e] is a configuration, and so is [e) := [e] \ {e}. We write e � e′

for the immediate causal relation of E defined as e < e′ with no event between.
Similarly, a conflict e#e′ is minimal, denoted , when the [e] ∪ [e′) and
[e) ∪ [e′] are configurations. When drawing event structures, only � and are
represented. We write max(E) for the set of maximal events of E for ≤E . An
event e is maximal in x when it has no successor for ≤E in x. We write maxE x
for the maximal events of a configuration x ∈ C (E).

An event structure E is confusion-free when (1) for all then [e) =
[e′) and (2) if and then e = e′′ or . As a result, the
relation is an equivalence relation whose equivalent classes a
are called cells.
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Definition 1. A game is a confusion-free event structure A along with an
assignment pol : A → {−,+} such that cells contain events of the same polarity,
and a function atom:max(A) → A mapping every maximal event of A to an
atom. Events with polarity − (resp. +) are negative (resp. positive).

Events of a game are usually called moves. The restriction imposes branching to
be polarised (i.e. belonging to a player). A game is rooted when two minimal
events are in conflict. Single types are interpreted by rooted games, while con-
texts are interpreted by arbitrary games. When introducing moves of a game, we
will indicate their polarity in exponent, e.g. “let a+ ∈ A” stands for assuming a
positive move of A.

Interpretation of formulas. To interpret formulas, we make use of standard con-
structions on prime event structures. The event structure a ·E is E prefixed with
a, i.e. E ∪ {a} where all events of E depends on a. The parallel composition of
E and E′ represents parallel executions of E and E′ without interference:

Definition 2. The parallel composition of event structures A0 and A1 is the
event structure A0 ‖ A1 = ({0} × A0 ∪ {1} × A1,≤A0‖A1 ,#A0‖A1) with
(i, a) ≤A0‖A1 (j, a′) iff i = j and a ≤Ai

a′; and (i, a)#A0‖A1 (j, a′) when i = j
and a#Aj

a′.

The sum of event structure E + F is the nondeterministic analogue of parallel
composition.

Definition 3. The sum A0 + A1 of the two event structures A0 and A1 has the
same partial order as A0 ‖ A1, and conflict relation (i, a)#A0+A1 (j, a′) iff i 
= j
or i = j and a#Aj

a′.

Prefixing, parallel composition and sum of event structures extend to games. The
dual of a game A, obtained by reversing the polarity labelling, is written A⊥.
Given x ∈ C (A), we define A/x (“A after x”) as the subgame of A comprising
the events a ∈ A \ x not in conflict with events in x.

Interpretation of formulas. The interpretation of the atom X is the game with
a single positive event simply written X with atom(X) = X, and the interpre-
tation of X⊥ is �X�

⊥, written simply X⊥ in diagrams. For composite formulas,
we let (where send, inl and inr are simply labels):

�S ⊗ T � = send+ · (�S� ‖ �T �) �S ` T � = send− · (�S� ‖ �T �)
�S ⊕ T � = (inl+ · �S�) + (inr+ · �T �) �S & T � = (inl− · �S�) + (inr− · �T �)

Parallel composition is used to interpret contexts: �u1 : T1, . . . , un : Tn� = �T1� ‖
. . . ‖ �Tn�. The interpretation commutes with duality: �T �

⊥ = �T⊥
�.

In diagrams, we write moves of a context following the syntactic convention:
for instance u[inl] denotes the minimal inl move of the u component. For
tensors and pars, we use the notation u[v] and u(v) to make explicit the variables
we use in the rest of the diagram, instead of send+ and send− respectively. For
atoms, we use u : X and u : X⊥.
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3.2 Causal Structures as Deterministic General Event Structures

As we discussed in Sect. 1, prime event structures cannot express disjunctive
causalities deterministically, hence fail to account for the determinism of LL.
Our notion of causal structure is based on general event structures, which allow
more complex causal patterns. We use a slight variation on the definition of
deterministic general event structures given by [6], to ensure that composition
is well-defined without further assumptions.

Instead of using the more concrete representation of general event struc-
tures in terms of a set of events and an enabling relation, we use the following
formulation in terms of set of configurations, more adequate for mathematical
reasoning. Being only sets of configurations, they can be reasoned on with very
simple set-theoretic arguments.

Definition 4. A causal structure (abbreviated as causal struct) on a game A
is a subset σ ⊆ C (A) containing ∅ and satisfying the following conditions:

Coincidence-freeness If e, e′ ∈ x ∈ σ then there exists y ∈ σ with y ⊆ x and
y ∩ {e, e′} is a singleton.

Determinism for x, y ∈ σ such that x ∪ y does not contain any minimal negative
conflict, then x ∪ y ∈ σ.

Configurations of prime event structures satisfy a further axiom, stability, which
ensures the absence of disjunctive causalities. When σ is a causal struct on A, we
write σ : A. We draw as regular event structures, using � and . To indicate
disjunctive causalities, we annotate joins with or. This convention is not powerful
enough to draw all causal structs, but enough for the examples in this paper.
As an example, on A = a ‖ b ‖ c the diagram on the right denotes the following
causal struct σ = {x ∈ C (A) | c ∈ x ⇒ x ∩ {a, b} 
= ∅}.

A minimal event of σ : A is an event a ∈ A with {a} ∈ σ.
An event a ∈ x ∈ σ is maximal in x when x\{a} ∈ σ. A prime
configuration of a ∈ A is a configuration x ∈ σ such that a
is its unique maximal event. Because of disjunctive causalities,
an event a ∈ A can have several distinct prime configurations in
σ (unlike in event structures). In the previous example, since c can be caused
by either a or b, it has two prime configurations: {a, c} and {b, c}. We write
max σ for the set of maximal configurations of σ, ie. those configurations
that cannot be further extended.

Even though causality is less clear in general event structures than in prime
event structures, we give here a notion of immediate causal dependence that
will be central to define acyclic causal structs. Given a causal struct σ : A and
x ∈ σ, we define a relation �x,σ on x as follows: a �x,σ a′ when there exists
a prime configuration y of a′ such that x ∪ y ∈ σ, and that a is maximal in
y \ {a′}. This notion is compatible with the drawing above: we have a �∅ c
and b �∅ c as c has two prime configurations: {a, c} and {b, c}. Causality needs
to be contextual, since different slices can implement different causal patterns.
Parallel composition and prefixing structures extend to causal structs:

σ ‖ τ = {x ‖ y ∈ C (A ‖ B) | (x, y) ∈ σ × τ} a · σ = {x ∈ C (a · A) | x ∩ A ∈ σ}.
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Categorical setting. Causal structs can be composed using the definitions of [6].
Consider σ : A⊥ ‖ B and τ : B⊥ ‖ C. A synchronised configuration is a
configuration x ∈ C (A ‖ B ‖ C) such that x ∩ (A ‖ B) ∈ σ and x ∩ (B ‖ C) ∈
τ . A synchronised configuration x is reachable when there exists a sequence
(covering chain) of synchronised configurations x0 = ∅ ⊆ x1 ⊆ . . . ⊆ xn = x
such that xi+1 \xi is a singleton. The reachable configurations are used to define
the interaction τ � σ, and then after hiding, the composition τ � σ:

τ �σ = {x is a reachable synchronised configuration} τ �σ = {x ∩ (A ‖ C) | x ∈ τ � σ}.

Unlike in [6], our determinism is strong enough for τ �σ to be a causal struct.

Lemma 1. If σ : A⊥ ‖ B and τ : B⊥ ‖ C are causal structs then τ � σ is a
causal struct.

Composition of causal structs will be used to interpret cuts between proofs of
Linear Logic. In concurrent game semantics, composition has a natural identity,
asynchronous copycat [25], playing on the game A⊥ ‖ A, forwarding negative
moves on one side to the positive occurrence on the other side. Following [6], we
define cc A = {x ‖ y ∈ C (A⊥ ‖ A) | y ⊇−

A x ∩ y ⊆+
A x} where x ⊆p y means x ⊆ y

and pol(y \ x) ⊆ {p}.
However, in general copycat is not an identity on all causal structs, only

σ ⊆ cc A � σ holds. Indeed, copycat represents an asynchronous buffer, and
causal structs which expects messages to be transmitted synchronously may be
affected by composition with copycat. We call causal structs that satisfy the
equality asynchronous. From [6], we know that asynchronous causal structs
form a compact-closed category.

The syntactic tree. The syntactic tree of a derivation can be read as a causal
struct Tr(P ) on , which will be the basis for our interpretation. It is defined by
induction:

We use the convention in the diagram, for instance u[v] means the initial send
move of the u component. An example of this construction is given in Fig. 5a.
Note that it is not asynchronous.

4 Acyclicity of Causal Structures

The space of causal structs is unfortunately too broad to provide a notion of
causal nets, due in particular to the presence of deadlocks during composition.
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As a first step towards defining causal nets, we introduce in this section a con-
dition on causal structs inspired by the tensor rule in Linear Logic. In Sect. 4.1,
we propose a notion of communication between actions, based on causality. In
Sect. 4.2, we introduce a notion of acyclicity which is shown to be stable under
composition and ensure deadlock-free composition.

4.1 Communication in Causal Structures

The tensor rule of Linear Logic says that after a tensor u[v], the proof splits
into two independent subproofs, one handling u and the other v. This syntactic
condition is there to ensure that there are no communications between u and v.
More precisely, we want to prevent any dependence between subsequent actions
on u and an action v. Indeed such a causal dependence could create a dead-
lock when facing a par rule u(v), which is allowed to put arbitrary dependence
between such subsequent actions.

Communication in MLL. Let us start by the case of MLL, which corresponds to
the case where games do not have conflicts. Consider the following three causal
structs:

The causal structs σ1 and σ2 play on the game �u : X⊥ ⊗ Y ⊥, v : X ` Y �, while
σ3 plays on the game �u : X⊥ ⊗ Y ⊥, v : X ⊗ Y �. The causal structs σ2 and σ3 are
very close to proof nets, and it is easy to see that σ2 represents a correct proof net
while σ3 does not. In particular, there exists a proof P such that Tr(P ) ⊆ σ2 but
there are no such proof Q for σ3. Clearly, σ3 should not be acyclic. But should
σ2? After all it is sequentialisable. But, in all sequentialisations of σ2, the par
rule v(z) is applied before the tensor u[w], and this dependency is not reflected
by σ2. Since our goal is exactly to compute these implicit dependencies, we will
only consider σ1 to be acyclic, by using a stronger sequentialisation criterion:

Definition 5. A causal struct σ : �Γ � is strongly sequentialisable when for
all x ∈ σ, there exists with x ∈ Tr(P ) and Tr(P ) ⊆ σ.

To understand the difference between σ1 and σ2, we need to look at causal
chains. In both σ1 and σ2, we can go from u : X⊥ to w : Y ⊥ by following
immediate causal links � in any direction, but observe that in σ1 they must all
cross an event below u[w] (namely v(z) or u[w]). This prompts us to define a
notion of communication outside a configuration x:

Definition 6. Given σ : A and x ∈ σ we say that a, a′ ∈ A \ x communicate
outside x (written a ↭x,σ a′) when there exists a chain a �x,σ a0 �σ · · · �x,σ

an �σ a′ where all the ai ∈ A \ x, and �x,σ denotes the symmetric closure of
�x,σ.
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Communication in MALL. In presence of additives, immediate causality is not
the only vector of communication. Consider the following causal struct σ4, play-
ing on the context u : (A & A) ⊗ (A & A), v : (A ⊕ A) & (A ⊕ A) where A is
irrelevant:

This pattern is not strongly sequentialisable: the tensor u[w] must always go after
the &-introduction on v, since we need this information to know how whether
v should go with u or w when splitting the context. Yet, it is not possible to
find a communication path from one side to the other by following purely causal
links without crossing u[w]. There is however a path that uses both immediate
causality and minimal conflict. This means that we should identify events in
minimal conflict, since they represent the same (&-introduction rule). Concretely,
this means lifting the previous definition at the level of cells. Given an causal
struct σ : A and x ∈ σ, along with two cells a, a′ of A/x, we define the relation
a �x,σ a′ when there exists a ∈ a and a′ ∈ a′ such that a �x,σ a′; and a ↭x,σ a′

when there exists a �x,σ a0 �x,σ · · · �σ an �σ a′ where all the ai do not
intersect x. For instance, the two cells which are successors of the tensor u[w]
in σ4 communicate outside the configuration {u[w]} by going through the cell
{v(inl), v(inr)}.

4.2 Definition of Acyclicity on Casual Structures

Since games are trees, two events a, a′ are either incomparable or have a meet
a ∧ a′. If a ∧ a′ is defined and positive, we say that a and a′ have positive
meet, and means that they are on two distinct branches of a tensor. If a ∧ a′

is undefined, or defined and negative, we say that a ∧ a′ has a negative meet.
When the meet is undefined, it means that a and a′ are events of different
components of the context. We consider the meet to be negative in this case,
since components of a context are related by an implicit par.

These definitions are easily extended to cells. The meet a ∧ a′ of two cells
a and a′ of A is the meet a ∧ a′ for a ∈ a and a′ ∈ a′: by confusion-freeness,
it does not matter which ones are chosen. Similarly, we say that a and a′ have
positive meet if a∧ a′ is defined and positive; and have negative meet otherwise.
These definitions formalise the idea of “the two sides of a tensor”, and allow us
to define acyclicity.

Definition 7. A causal struct σ : A is acyclic when for all x ∈ σ, for any cells
a, a′ not intersecting x and with positive meet, if a ↭x,σ a′ then a ∧ a′ 
∈ x.

This captures the desired intuition: if a and a′ are on two sides of a tensor a (ie.
have positive meet), and there is a communication path outside x relating them,
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then a must also be outside x (and implicitly, the communication path must be
going through a).

Reasoning on the interaction of acyclic strategies proved to be challenging.
We prove that acyclic strategies compose, and their interaction are deadlock-
free, when composition is on a rooted game B. This crucial assumption arises
from the fact that in linear logic, cuts are on formulas. It entails that for any
b, b′ ∈ B, b ∧ b′ is defined, hence must be positive either from the point of view
of σ or of τ .

Theorem 1. For acyclic causal structs σ : A⊥ ‖ B and τ : B⊥ ‖ C, (1) their
interaction is deadlock-free: τ �σ = (σ ‖ C)∩ (A ‖ τ); and (2) the causal struct
τ � σ is acyclic.

As a result, acyclic and asynchronous causal structs form a category. We
believe this intermediate category is interesting in its own right since it gener-
alises the deadlock-freeness argument of Linear Logic without having to assume
other constraints coming from Linear Logic, such as linearity. In the next section,
we study further restriction on acyclic causal structs which guarantee strong
sequentialisability.

5 Causal Nets and Sequentialisation

We now ready to introduce causal nets. In Sect. 5.1, we give their definition by
restricting acyclic causal structs and in Sect. 5.2 we prove that causal nets are
strongly sequentialisable.

5.1 Causal Nets: Totality and Well-Linking Casual Structs

To ensure that our causal structs are strongly sequentialisable, acyclicity is not
enough. First, we need to require causal structs to respect the linearity discipline
of Linear Logic:

Definition 8. A causal struct σ : A is total when (1) for x ∈ σ, if x is maximal
in σ, then it is maximal in C (A); and (2) for x ∈ σ and a− ∈ A \ x such that
x ∪ {a} ∈ σ, then whenever , we also have x ∪ {a′} ∈ σ as well.

The first condition forces a causal struct to play until there are no moves to play,
and the second forces an causal struct to be receptive to all Opponent choices,
not a subset.

Our last condition constrains axiom links. A linking of a game A is a pair
(x, 	) of a x ∈ maxC (A), and a bijection 	 : (maxA x)− � (maxA x)+ preserving
the atom labelling.

Definition 9. A total causal struct σ : A is well-linking when for each x ∈
max(σ), there exists a linking 	x of x, such that if y is a prime configuration of
	x(e) in x, then max(y \ {	x(e)}) = {e}.
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This ensures that every positive atom has a unique predecessor which is a neg-
ative atom.

Definition 10. A causal net is an acyclic, total and well-linking causal struct.

A causal net σ : A induces a set of linkings A, link(σ) := {	x | x ∈ max σ}. The
mapping link(·) maps causal nets to the proof nets of [22].

5.2 Strong Sequentialisation of Causal Nets

Our proof of sequentialisation relies on an induction on causal nets. To this
end, we provide an inductive deconstruction of parallel proofs. Consider σ : A
a causal net and a minimal event a ∈ σ not an atom. We write A/a for A/{a}.
Observe that if , it is easy to see that there exists a context such
that . Given a causal struct σ : A, we define the causal struct σ/a =
{x ∈ C (A/a) | x ∪ {a} ∈ σ} : A/a.

Lemma 2. σ/a is a causal net on A/a.

When a is positive, we can further decompose σ/a in disjoint parts thanks to
acyclicity. Write a1, . . . , an for the minimal cells of A/a and consider for n ≥ k >
0, Ak = {a′ ∈ A/a | cell(a′) ↭{a},σ ak}. Ak contains the events of A/a which σ
connects to the k-th successor of a. We also define the set A0 = A/a\⋃

1≤k≤n Ak,
of events not connected to any successor of a (this can happen with MIX). It
inherits a game structure from A.

Each subset inherits a game structure from A/a. By acyclicity of σ, the
Ak are pairwise disjoint, so A/a ∼= A0 ‖ . . . ‖ An. For 0 ≤ k ≤ n, define
σk = C (Ak) ∩ σ/a.

Lemma 3. σk is a causal net on Ak and we have σ/a = σ0 ‖ . . . ‖ σn.

This formalises the intuition that after a tensor, an acyclic causal net must be
a parallel composition of proofs (following the syntactic shape of the tensor rule
of Linear Logic). From this result, we show by induction that any causal net is
strongly sequentialisable.

Theorem 2. If σ : A is a causal net, then σ is strongly sequentialisable.

We believe sequentialisation without MIX requires causal nets to be connected :
two cells with negative meets always communicate outside any configuration
they are absent from. We leave this lead for future work.

6 Causal Invariants and Completeness

Causal nets are naturally ordered by inclusion. When σ ⊆ τ , we can regard τ as
a less sequential implementation of σ. Two causal nets which are upper bounded
by a causal net should represent the same proof, but with varying degrees of
sequentiality. Causal nets which are maximal for inclusion (among causal nets)
are hence most parallel implementations of a certain behaviour and capture our
intuition of causal invariants.

Definition 11. A causal invariant is a causal net σ : A maximal for
inclusion.
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6.1 Causal Invariants as Maximal Causal Nets

We start by characterising when two causal nets are upper-bounded for inclusion:

Proposition 1. Given two causal nets σ, τ : A, the following are equivalent:

1. there exists a causal net υ : A such that σ ⊆ υ and τ ⊆ υ,
2. the set σ ∨ τ = {x ∪ y | x ∈ σ, y ∈ τ, x ∪ y ∈ C (A)} is a causal net on A,
3. link(σ) = link(τ).

In this case we write σ ↑ τ and σ ∨ τ is the least upper bound of σ and τ for ⊆.

It is a direct consequence of Proposition 1 that any causal net σ is included
in a unique causal invariant σ↑ : A, defined as: σ↑ =

∨
σ⊆τ τ , where τ ranges

over causal nets.

Lemma 4. For σ, τ : A causal nets, σ ↑ τ iff σ↑ = τ↑. Moreover, if σ and τ are
causal invariants, σ ↑ τ if and only if σ = τ .

Fig. 5. Interpreting P = u(u′). v(v′). w[w′]. ([u ↔ w] | ([w′ ↔ v′] | [u′ ↔ v])) in the
context u : X ` Z⊥, v : Z ` Y, w : X⊥ ⊗ Y ⊥

The interpretation of a proof is simply defined as �P � = Tr(P )↑. Figure 5c
illustrates the construction on a proof of MLL+mix. The interpretation features
a disjunctive causality, as the tensor can be introduced as soon as one of the
two pars has been.

Defining link(P ) = link(Tr(P )), we have from Lemma 4: link(P ) = link(Q)
if and only if �P � = �Q�. This implies that our model has the same equational
theory than the proof nets of [22]. Such proof nets are already complete:

Theorem 3 ([22]). For P,Q two proofs of Γ , we have P ≡ Q iff link(P ) =
link(Q).

As a corollary, we get:

Theorem 4. For cut-free proofs P,Q we have P ≡ Q iff �P � = �Q�.
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The technical report [7] also provides an inductive proof not using the result
of [22]. A consequence of this result, along with strong sequentialisation is: �P � =⋃

Q≡P Tr(Q). This equality justifies our terminology of “causal completeness”,
as for instance it implies that the minimal events of �P � correspond exactly
the possible rules in P that can be pushed to the front using the commuting
conversions.

6.2 The Category of Causal Invariants

So far we have focused on the static. Can we integrate the dynamic aspect of
proofs as well? In this section, we show that causal invariants organise themselves
in a category. First, we show that causal nets are stable under composition:

Lemma 5. If σ : A⊥ ‖ B and τ : B⊥ ‖ C are causal nets, then so is τ � σ.

Note that totality requires acyclicity (and deadlock-freedom) to be stable
under composition. However, causal invariants are not stable under composition:
τ �σ might not be maximal, even if τ and σ are. Indeed, during the interaction,
some branches of τ will not be explored by σ and vice-versa which can lead to
new allowed reorderings. However, we can always embed τ � σ into (τ � σ)↑:

Lemma 6. Rooted games and causal invariants form a category CInv, where
the composition of σ : A⊥ ‖ B and τ : B⊥ ‖ C is (τ � σ)↑ and the identity on A

is cc ↑
A.

Note that the empty game is an object of CInv, as we need a monoidal unit.

Monoidal-closed structure. Given two games A and B we define A⊗B as send+ ·
(A ‖ B), and 1 as the empty game. There is an obvious isomorphism A ⊗ 1 ∼= A
and A⊗ (B ⊗C) ∼= (A⊗B)⊗C in CInv. We now show how to compute directly
the functorial action of ⊗, without resorting to ↑. Consider σ ∈ CInv(A,B)
and τ ∈ CInv(C,D). Given x ∈ C ((A ⊗ C)⊥ ‖ (B ⊗ D)), we define x〈σ〉 =
x ∩ (A⊥ ‖ B) and x〈τ〉 = x ∩ (C⊥ ‖ D). If x〈σ〉 ∈ σ and x〈τ〉 ∈ τ , we say that
x is connected when there exists cells a, b, c and d of A,B,C and D respectively
such that a ↭x〈σ〉,σ c and b ↭x〈τ〉,τ d. We define:

σ ⊗ τ =

⎧
⎪⎨

⎪⎩

x ∈ C ((A ⊗ C)⊥ ‖ (B ⊗ D)) such that :
(1) x〈σ〉 ∈ σ and x〈τ〉 ∈ τ

(2) if x is connected and contains send+, then send− ∈ x

⎫
⎪⎬

⎪⎭

In (2), send− refers to the minimal move of (A ⊗ C)⊥ and send+ to the one of
B ⊗ D. (2) ensures that σ ⊗ τ is acyclic.

Lemma 7. The tensor product defines a symmetric monoidal structure on
CInv.

Define A ` B = (A⊥ ⊗ B⊥)⊥, ⊥ = 1 = ∅ and A � B = A⊥ ` B.



Causality in Linear Logic 165

Lemma 8. We have a bijection `B,C between causal invariants on A ‖ B ‖ C
and on A ‖ (B ` C). As a result, there is an adjunction A ⊗ � A � .

Lemma 8 implies that CInv((A � ⊥) � ⊥) � CInv(A), and CInv is
∗-autonomous.

Cartesian products. Given two games A,B in CInv, we define their product
A & B = inl− · A + inr− · B. We show how to construct the pairing of two
causal invariants concretely. Given σ ∈ CInv(A,B) and τ ∈ CInv(A,C), we
define the common behaviour of σ and τ on A to be those x ∈ C (A⊥) ∩ σ ∩ τ
such that for all a, a′ outside of x with positive meet, a ↭x,σ a′ iff a ↭x,τ a′.
We write σ ∩A τ for the set of common behaviours of σ and τ and define:
〈σ, τ〉 = (L− · σ) ∪ (R− · τ) ∪ σ ∩A τ . The projections are defined using copycat:
π1 = {x ∈ C ((A & B)⊥ ‖ A) | x ∩ (A⊥ ‖ A) ∈ cc ↑

A} (and similarly for π2).

Theorem 5. CInv has products. As it is also ∗-autonomous, it is a model of
MALL.

It is easy to see that the interpretation of MALL− in CInv following the
structure is the same as �·�, however it is computed compositionally without
resorting to the ↑ operator. We deduce that our interpretation is invariant by
cut-elimination: if P → Q, then �P � = �Q�. Putting the pieces together, we get
the final result.

Theorem 6. CInv is an injective and fully complete model of MALL−.

7 Extensions and Related Work

The model provides a representation of proofs which retains only the necessary
sequentiality. We study the phenomenon in Linear Logic, but commuting con-
versions of additives arise in other languages, eg. in functional languages with
sums and products, where proof nets do not necessarily exist. Having an abstract
representation of which reorderings are allowed could prove useful (reasoning on
the possible commuting conversions in a language with sum types is notoriously
difficult).

Extensions. Exponentials are difficult to add, as their conversions are not as
canonical as those of MALL. Cyclic proofs [2] could be accomodated via recursive
event structures.

Adding multiplicative units while keep determinism is difficult, as their com-
muting conversion is subtle (e.g. conversion for MLL is PSPACE-complete [18]),
and exhibit apparent nondeterminism. For instance the following proofs are con-
vertible in MLL:

a(). b[] | c[] ≡ a(). (b[] | c[]) ≡ b[] | a(). c[] � a : ⊥, b : 1, c : 1

where a(). P is the process counterpart to introduction of ⊥ and a[] of 1. Intu-
itively, b[] and c[] can be performed at the start, but as soon as one is performed,



166 S. Castellan and N. Yoshida

the other has to wait for the input on a. This cannot be modelled inside determin-
istic general event structures, as it is only deterministic against an environment
that will emit on b. In contrast, proofs of MALL− remain deterministic even if
their environment is not total.

We would also be interested in recast multifocusing [9] in our setting by defin-
ing a class of focussed causal nets, where there are no concurrency between pos-
itive and negative events, and show that sequentialisation always give a focused
proof.

Related work. The first fully complete model of MALL− is based on closure
operators [1], later extended to full Linear Logic [24]. True concurrency is used
to define innocence, on which the full completeness result rests. However their
model does not take advantage of concurrency to account for permutations, as
strategies are sequential. This investigation has been extended to concurrent
strategies by Mimram and Melliès [25,26]. De Carvalho showed that the rela-
tional model is injective for MELL [11]. In another direction, [4] provides a fully
complete model for MALL without game semantics, by using a glueing construc-
tion on the model of hypercoherences. [21] explores proof nets a weaker theory
of commuting conversions for MALL.

The idea of having intermediate representations between proof nets and
proofs has been studied by Faggian and coauthors using l-nets [10,13–16], lead-
ing to a similar analysis to ours: they define a space of causal nets as partial
orders and compare different versions of proofs with varying degree of paral-
lelism. Our work recasts this idea using event structures and adds the notion of
causal completeness: keeping jumps that cannot be undone by a permutation,
which leads naturally to step outside partial orders, as well as full completeness:
which causal nets can be strongly sequentialised?

The notion of dependency between logical rules has also been studied in [3]
in the case of MLL. From a proof net R, they build a partial order D`,⊗(R)
which we believe is very related to �P � where P is a sequentialisation of R.
Indeed, in the case of MLL without MIX a partial order is enough to capture the
dependency between rules. The work [12] shows that permutation rules of Linear
Logic, understood as asynchronous optimisations on processes, are included in
the observational equivalence. [19] studies mutual embedding between polarised
proof nets [23] and the control π-calculus [20]. In another direction, we have
recently built a fully-abstract, concurrent game semantics model of the syn-
chronous session π-calculus [8]. The difficulty there was to understand name
passing and the synchrony of the π-calculus, which is the dual of our objective
here: trying to understand the asynchrony behind the conversions of MALL−.
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