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TIGHT ANALYTIC IMMERSIONS
OF HIGHLY CONNECTED MANIFOLDS

ROSS NIEBERGALL

(Communicated by Christopher Croke)

Abstract. An immersion of a manifold which minimizes total absolute curva-

ture is called tight. In this paper we determine which {k - l)-connected (but

not fc-connected) manifolds of dimension 2k , with trivial fcth Stiefel-Whitney
class, admit codimension 2 tight analytic immersions.

0. Introduction

A smooth immersion of a compact manifold f: M —>RN is said to be tight
if it minimizes the total absolute curvature among all immersions of M. For

the case where M is a surface, this is equivalent to saying that / satisfies the

two-piece property; i.e., the preimage of a hyperplane in RN decomposes M
into at most two components.

One of the simplest cases that can be considered is that of tight immersions of

2k-dimensional (k - l)-connected manifolds in R2k+l. Kuiper [5] was the first

to study these and showed that they must satisfy rather stringent conditions. He

later conjectured [6] that any highly connected smooth compact 2/c-dimensional

manifold with k > 2 and trivial kth. Stiefel-Whitney class, admitting a tight im-
mersion into Euclidean space, is homeomorphic to Sk x Sk . Counterexamples

to this conjecture were constructed by Hebda [4], who showed that connected
sums of arbitrarily many copies of Sk x Sk admit smooth tight codimension

1 embeddings. Thorbergsson [9] used the ideas of Hebda to construct codi-

mension 2 substantial embeddings of this connected sum. He showed that, if
the A:th Stiefel-Whitney class is trivial, a>k(M) = 0, then M2k has the same
cohomology ring as the connected sum (Sk xSk)#--- #(Sk xSk), and, if k > 4,

then M2k is diffeomorphic to (Sk x Sk)# ■■ ■ #(Sk x Sk)#2Z, where X is a sphere

with some differentiable structure. In general, one can show that cok(M) = 0

for a highly connected 2/c-dimensionai manifold with k ^ 1, 2, 4, or 8 . The

geometric interpretation of this condition for highly connected manifolds is that
no homology class has self-intersection number 1 mod 2.

In this paper we make the extra assumption that the immersions be analytic

and prove that under this restriction Kuiper's conjecture is true.
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908 ROSS NIEBERGALL

We prove the following theorem.

Theorem. Let f: M2k -* R2k+1 be a tight, analytic, substantial immersion of a

compact (k - l)-connected manifold, with cok(M) = 0 if k < 2. If M is not

k-connected, then M is homeomorphic to Sk x Sk .

Thorbergsson [9] showed that for substantial tight immersions of compact

highly connected manifolds, if cok(M2k) vanishes, then the codimension must

be 1 or 2. This corollary then follows.

Corollary. Let / : M2k -> R2k+l, I > I, be a tight, analytic, substantial immer-

sion of a compact (k - l)-connected manifold with cok(M) = 0. If M is not
k-connected, then M is homeomorphic to Sk x Sk .

This is a generalization of a result of Thorbergsson [10], who proved this

when M is an orientable surface.

1. Preliminaries

This section will cover the basic definitions and some technical results that

will be used in later proofs. For more information about tight immersions see

[3] or [6].
Given an immersion / : M -* RN of a compact manifold into Euclidean

space, one can examine whether the total absolute curvature of the manifold

with respect to the immersion / attains the minimum possible value. If this is
the case, then the immersion is called tight. Examining the work of Chern and

Lashof [2] results in the following equivalent definition: An immersion is tight

if and only if every height function which is a Morse function has the minimal
number of critical points required by the Morse inequalities for some field.
Notice that almost every height function is a Morse function. The proof of the
Morse inequalities leads to the following equivalent definition: An immersion

f : M -^RN of a compact manifold into Euclidean space is said to be tight, if

for almost every closed half space 5? in RN, the induced homomorphism of

singular homology with respect to some field F

H.(f-l(&);¥)->H.(M;V)

is injective for every * .

By replacing singular homology theory with Cech theory, the above definition

is true for every half space, but, since Cech homology is not a standard theory,

we use the following equivalent definition.

1.1. Definition. A continuous map / : M —» R^ of a compact connected
topological space into Euclidean space is called tight if there is a field F such

that the induced homomorphism in Cech cohomology

H*(M;F)^Hm(f-x(5f);F)

is surjective for every *, and every half space J?.

Although Cech homology is not a standard theory, we will use it occasionally

in this paper for convenience, and in general we will try to use Cech cohomology.

It should be noted that, for surfaces, this definition is equivalent to the two-piece

property. In any case, for any tight immersion, the two-piece property holds.
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TIGHT ANALYTIC IMMERSIONS OF HIGHLY CONNECTED MANIFOLDS 909

For a given unit vector £, let h$(x) = x • £. Then, for an immersion / :

Mn -» R*, the half space Sf, defined by Sf = {x e RN | h^(x) > c}, and
the hyperplane bounding Sf, given by £ = {x e R" \ h$(x) = c}, are said
to support f(M) if the boundary but not the interior of Sf has nonempty
intersection with f(M). If f(M) is not contained in any hyperplane £ , then

/ is said to be a substantial immersion. The set *¥(£) = f~x(Sf) = f~x(£) is

then called a top-set if Sf supports f(M), and if *F(c;) # M, which is always

true if / is substantial. Notice that the function h^o f takes its maximum

value on the top-set *¥(£), and we call the map /|y({) a top-map of /. For

a pair of orthogonal vectors £1 and £2, a top-set ¥(£1, &) of a top-map is

called a top2-set. A top*-set can then be defined inductively to be a top-set of
a top*-'-set. In [6], Kuiper proved the fundamental result that top*-maps of
tight maps are tight. In general we will also call the image of a top-set Q = fifV)
a top-set as well. Any point contained in a top-set is called a top-point.

Let / : Mn —> RN be an immersion with normal bundle NM. We define

the convex envelope of / to be the boundary of the convex hull of f(M), and

we define a convex m-cycle to be the convex envelope of a compact subset that
spans an (m + 1 )-dimensional affine space and is therefore homeomorphic to
a sphere. Say that p is a nondegenerate convex point of the immersion / if

there is some height function h^ with a nondegenerate maximum at f(p). If
this is the case, then for all X, Y e Tp M,

H((X,Y) = (Z,a(X,Y)),

where H^ is the Hessian of n{ and a is the second fundamental form. Since

p is nondegenerate, then a(X, X) # 0 for every I/O, and the set sf =

{a(X, X) I X e TPM} is contained in a half space of NPM. Denote the
convex hull of sf by Xp . It is easy to see that 3£p spans NPM if / is a tight
substantial immersion and p is a nondegenerate convex point.

If p is a nondegenerate convex point of /, then there is a hyperplane through

f(p) that supports f(M), and this hyperplane contains TPM. The set of hy-

perplanes in R"+k that contain TPM forma (k - l)-dimensional space B in

the dual projective space P* of RP"+k 3 Rn+k . Then the supporting hyper-

planes at p form a compact subset W of B , which can degenerate to a point.
Call the points in d%? the extremal supporting hyperplanes at p . In fact, the

extremal supporting hyperplanes at p are precisely those hyperplanes in Rn+k

which contain both TPM and the hyperplanes in NPM which support 5?p .

The following lemmas proven in [9] will be important in proofs to follow.

1.2. Lemma. Let f : M -* RN be a tight immersion. If a height function h^
has a nondegenerate critical point at p of index I, then

Hl(f-x(Sf(0)),¥)^0,

where Sf(t) = {x eRN \ h^x - f(p)) < -t}.

1.3. Remark. Notice that it is only necessary for / to be a continuous map of

a compact space M into R^ and that, in a neighborhood of p, / is smooth.
This is true since in the proof of the lemma the fact that

H*(f-x(Sf(0)),f-x(5f(e)))?0,    fore>0,

is dependent upon the fact that a Morse chart can be constructed around p .
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1.4. Remark. Since H*(M) -* H*(f~x(Sf)) must be surjective, then if Mlk

is highly connected, it is only possible for there to be critical points of index 0,
k , or 2k .

1.5. Lemma. Let p be a nondegenerate convex point of the tight immersion

f : M —► R^. Let h c NPM be a hyperplane of support of J^p, and let
\ e NPM be orthogonal to h with h^(a(X, X)) > 0 for all X e TPM.

(a) Then %h = {X e TPM | a(X, X) e h} is a linear subspace, and
a(gh , TPM) C ft .

(b) Let i(t) be a curve in NPM such that £(0) = £ and hi{t)(a(X, X)) < 0

for every nonzero X e %b and t > 0. Then there is an e > 0 such that for all

0 < t < e the function ft^j of has a nondegenerate critical point at p of index

equal to the dimension of %b .

We will review some properties of analytic subsets. For more information

see, for example, [1].

1.6. Definition. Let / : M —> RN be an analytic immersion. A set Q C f(M)

is called an analytic subset of f(M) if for each point p e f(M) there is
a neighborhood U containing p and analytic functions fx, ... , fn in this

neighborhood such that

cinU = {xeU \fi(x) = --- = fn(x) = 0}.

1.7. Remark. If any open set flcR' is an analytic subset in R' then Q = R1.
A point p e Q is called regular if there is a neighborhood U containing p

such that Qn U is an open submanifold of f(M). The dimension of the set Q

at the regular point p is the dimension of this submanifold and is denoted by

dimpfi. The set of all regular points is denoted by reg Q, and every point in
the complement Q\reg£2 is called a singular point. The set of singular points is

denoted by sngQ. An important fact about analytic subsets that we will make

use of is that the set of regular points of an arbitrary analytic subset Q is dense

in Q; i.e., regQ = Q. We also define

dimrQ =   lim   dim^Q,        dimQ = min{dim Q}.
jc—p P€il

xeregO

Notice that an analytic subset of an analytic immersion / cannot contain

any straight line segments if M is compact. We know that, if f(N) is an

analytic immersion of a manifold and an analytic subset B of f(N) contains

a nonempty open subset in f(N), then by the uniqueness of analytic functions

B = f(N). Now suppose that £ is a straight line in R*. Then £ n f(M) is
an analytic subset of £ , and, if £ n f(M) contains an open subset of £ , then

it must be all of £ , contradicting the compactness of M.
Now let / : M2k -» RN be an tight analytic immersion of a compact mani-

fold. Let *P c M be a top-set with respect to some height function ft,*, where

/ = 0 is the minimum of ft,* o /. Then Q = f(*¥) is a connected, closed,

analytic subset of f(M). If Q is not one point, then it is the union of a fi-
nite number of regular open m-dimensional sets, (m- 1)-dimensional sets,... ,

arcs, and points, and this union is such that the set D. is closed.
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tight analytic immersions of highly connected manifolds 911

2. Top-sets of tight analytic immersions

The following proposition guarantees that on every open set there is a non-

degenerate height function with a critical point in that open set.

2.1. Lemma. For every open neighborhood W of a smooth immersion f: M" —>

R^, there is a height function with a nondegenerate critical point on W, or f(W)
contains a straight line segment.

Proof. Let A$(p) be the shape operator at p e W corresponding to the normal

direction £. We will show that, if rank A^(p) < n - 1 for all p e W and for

all £, e NPW, then f(W) contains a straight line segment. This is sufficient
to prove the proposition, since rank A^(p) < n - 1 if and only if every height

function h$(f(p)) is degenerate at p .

First consider hypersurfaces in R^ . If X is a principal curvature of constant

multiplicity v > 1, then the leaves of the principal foliation corresponding to

X axe umbilic submanifolds in R^. See, for example, [3, Theorem 4.5]. If

we assume that X is constant on the hypersurface, then the assumption on the

multiplicity can be weakened to v > 1, since the condition v > 1 is only

necessary to show that X is constant on each of the leaves. It also follows that
if we assume that X = 0 then, in fact, the leaves of the principal foliation are
totally geodesic.

Next, let / : M" —> R^ be an immersion with unit normal bundle Nx,

projection n : Nx -* M, and define f:Nx-+RN by /(£) = f(n£) +1£, where

t e R is chosen such that / is an embedding on some open set W c Nx.

Suppose that rank A$ < n - I on W = %W. Let A, be the shape operator

of /. Then by [3, Theorem 3.2], rank At = rank A^ + k - I <n + k-2. Let

W0 be an open subset of W on which rank At is maximal. Then there is a

principal curvature X = 0 of multiplicity F = nullity At > 0 on W0, so the

leaves of Tq = {X e T^Wq \ AtX = 0} axe totally geodesic.
Let y(s) be an integral curve of 7b that embeds as a straight line segment

in W. Then y(s) = ny(s) is a curve on W. Let £ = y(so) and p = ill,.

Then there is a coordinate neighborhood ^ of £ on W0 and a map Tp : % —*

U x V c R" x Rk = Rn+k , and also a neighborhood If = irff of p = nt;,
together with a map <p : % —* U c R" , and this structure is defined such
that q> o n = %i o lp where 7ti : U x V —* U is the projection on the first

component. We also define these maps in such a way that a>(p) = 0 e U and

p(Z) = 0eUxV.
Let v(y(s)) = (<p(s), B(s)), so that q>(s) C U and B(s) cV_ and y(y(s)) =

q>(s). We identify an open neighborhood of the origin in T^Wo with U x V,

by which we mean that we will write j-s(f(y(s)))\s=So = (f'(so), P'(s0)). By [3,

Theorem 3.2], for vectors (X, Y) e U x V such that AsX = pX, then

At(X,Y) = T^(X,0)-l1(0,Y).

We chose y(s) in such a way that y'(so) e ker A,. By the above description of

A,, we see that this forces B'(sq) = 0 and (p'(so) e ker A^ . But <p'(so) = y'(so).
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Therefore,

£-s(f(y(s))-f(y(s)))\s=So = 0.

Since so was arbitrary, f(y(s)) - f(y(s)) = tt,, where f is a constant vector.

Hence, if f(y(s)) is a straight line segment, then so is f(y(s)).   □

2.2. Remark. If Af is compact, there must be a height function with a non-

degenerate critical point on every open neighborhood of f(M), since f(M)
cannot contain a straight line segment if it is analytic. Since the above argu-

ment is local, the result is true not only for a neighborhood of an analytically

immersed compact manifold but also for a neighborhood of every regular point

of an analytic subset of f(M); i.e., top-sets of f(M).

From now on, let / : M2k -^RN be a tight analytic substantial immersion

of a (k - l)-connected manifold, and let ft c f(M) be a top-set.

2.3. Lemma. If ft is not a single point, then dim ft > k.

Proof. We know that by tightness the map H*(M) — H*(f-X(Q.)) induced by
inclusion must be surjective. Now suppose there is some regular point p e ft

such that dim,,£2 = m and m < k. Since p is regular, there is neighborhood

of p in Q which is a submanifold of R^ . By Lemma 2.1 we can pick p such

that there is some vector £ e NPQ normal to ft at p such that h^\a has a
critical point at p of positive index /, with 0 < I < m (if the index is zero,

replace t, by -{).

Now let Sf = {x e RN I hs(x - f(p)) < 0}. By Lemma 1.1, Hl(f~x(Sf)) ±
0. Since top *-sets are tight, the map Hm(f~x(Sf)) -» #*(/-'(ft)) induced by

inclusion is also surjective; hence, the map

H*(M)^H*(f~x(Sf))^0

must be surjective. Since we are assuming that M is highly connected, H*(M)

■£ 0 only in dimensions * = 0, k,2k. Therefore dimft > k.   D

2.4. Lemma. If dim ft = k then ft spans a (k + l)-dimensional affine subspace
and dimpft = k at every p e ft.

Proof. Suppose that there is a point q e ft with dim g ft = k. Then there is

some point p e Q with a k-dimensional smooth open neighborhood K, such
that there is a height function ft{ with p as a nondegenerate critical point.

Then p must be a nondegenerate convex point, since suppose ft,* was a height
function with p as a critical point, but p was neither a minimum or maximum.

Then p must be of index less than k, and, since M is (k - 1 )-connected, this
would contradict the fact that Sl is tight.

Suppose that ft is substantial in some (k + /)-dimensional affine space E.
It will be shown that then / = 1. Suppose not, and that / > 1. Since p is a

nondegenerate convex point, then a(X, X) ^ 0 for every nonzero X e TPK,

and the set sf = {a(X, X) | X e TPK} is contained in a half space of the
/-dimensional space NPK. Denote the convex hull of sf by Jtfp . It is clear
that, since ft is tight, ^ spans NPK. It follows that extremal supporting

hyperplanes to ft at p are those hyperplanes £ in E containing TPK, such
that h = £ n NPK is an extremal supporting hyperplane of Jfp in NPK.
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Now let ft' be a hyperplane in NPK which does not support 3tfp and inter-

sects 3?p in a cone, or, in the case when / = 2, the intersection is a line in

the interior of 3?p. Then the hyperplane £' in E spanned by TPK and ft'
does not support ft at p. Let <* e NPK be chosen such that c; 1 £'. Since

£ J. TPK, p is a critical point of ft{, of index / where 0 < I < k. Then by
Remark 1.3, we know that

ff'(f~\£i)) ? 0,    where £$ = {xeE\ h^x-p) < 0}.

Since M and, hence, ft are (k - l)-connected, the map induced by inclusion

Hl(f~x(Q)) -» /7'(/-1(^)) cannot be surjective. Hence it is not possible to

select a hyperplane ft' in NPK which does not support 3£p , and so 3£p must

be one-dimensional. Since f%p spans JVpAT, dim NPK = 1, / = 1, and ft is
contained in a (k + 1 )-dimensional affine space.

Lastly, by Remark 1.7, if ft had a point with a (k + 1 )-dimensional neigh-
borhood, then ft would have to be the entire affine space E, which would
contradict compactness.   D

Much can be said about top-sets of tight immersions of highly connected
manifolds even if we do not assume the immersion is analytic, as shown in the

following lemma [3, p. 84].

2.5. Lemma. Let f : M2k —> R^ be a topological immersion of a compact

manifold. Assume that, for almost all unit vectors <?, the set Mr(£,) = {x e

f(M)\h^(x) < r} is (k - l)-connected for all r eR, and let ft be a top'-set.

(a) //" ft spans a j-dimensional affine space, with j <k, then ft is a j-disk.

(b) If ft spans a (k + l)-dimensional affine space, then d^Q c ft.

2.6. Proposition. Let f : M2k —> R2k+l be a tight, analytic immersion of a

(k — 1 fconnected compact manifold. If ft is a top-set such that dim ft < k,
then ft is either a point, or ft is a convex k-cycle.

Proof. We know that, if ft contains any points p such that dim ft < k, then

ft must be a single point, and, if dim F ft = k at one point p, then dim p ft = k

at every point p e ft.
So dim ft = k and ft spans a (k + i)-dimensional affine space which we

will call E, and by Lemma 2.5(b), dfifQ. c ft. We also know that no point
p e ft has a neighborhood that is (k + 1)-dimensional. The only possibility
that must then be ruled out is that (J"ft)° n ft ^ 0, where (^"ft)° represents

the interior of ^ft.
Let p e (%f£Xf n ft. Furthermore, assume that p is a regular point with a

k-dimensional open neighborhood. We will show that this violates the two-piece

property. Let I; be a unit normal vector in E, which is normal to ft at a point

p , selected such that p is a nondegenerate critical point of the height function

ft{. Assume that h^(p) = 0. The hyperplane ft^'(O) is tangent to ft at p.

By Lemma 2.3, we know that p must be of index 0 or k. Then some near

parallel hyperplane ft^(e) for e > 0 small (depending on the choice of ±c;, we
may need to choose e < 0), will meet ft near p, and it will divide ft into at

least three parts: since p is in the interior of %f£\, ft^(e) will divide d^Q
into two pieces, but it will also separate from these two, the piece containing

p . This violates the two-piece property.   □
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2.7. Proposition. Let f : M2k —* R2k+2 be a tight, analytic immersion of a

(k - l)-connected manifold. Then every extremal supporting hyperplane to M

through a nondegenerate critical point intersects M in a convex k-cycle.

Proof. We first want to show that, if £ is an extremal supporting hyperplane to

f(M) at a nondegenerate critical point p , then £ n f(M) must contain more
then just the point p .

Following the notation used previously, since p is a nondegenerate critical
point, the set sf = {a(X, X) \ X e TPM} is a sector lying in an open half

space of the normal plane NPM, and the extremal supporting hyperplanes at

p axe spanned by TPM and rays on the boundary of sf .
Now let £ be an extremai supporting hyperplane at p . Let us assume that

the top-set corresponding to £ consists of p only. Let (£„) be a sequence of

hyperplanes containing TPM that are not supporting and converge to £ . We

assume that the sequence (£„) is strictly monotone on the pencil of hyperplanes
containing TPM. Let (Sf„) be the sequence of closed half spaces such that Sf„

has £„ as boundary and such that

f~\Sfi) D ■ • O f-\Sfn) D---Df~x(£) = {p}.

Notice that
{p} = f]f~x(X).

Let n be so big that an e-neighborhood B((f~x(Sfn)) of f~x(Sfn) does not

contain any /-cycle that is nontrivial in M. Now let v„ e NPM be orthogonal
to £n . Then p is a nondegenerate critical point of of hVn of index /, and, by
Lemma 1.5, in fact I = k. There is close to hVn a height function ft,* which

is a Morse function such that close to p is a critical point q of index k and
U C B((f~x(Sfn)), where U = f~x((-oo, h((q)]). Now U contains a A:-cycle

that is nontrivial in M. This is a contradiction, and hence f~x(l) cannot

consist of one point only. Let ft = £ D f(M).
Now let ft = £ n sf , and Wh = {X e TPM \ a(X, X) eh}. It is an

immediate consequence of Lemmas 1.2 and 1.5 that dim^ = k. We also
know that dim ft > k . Then, if p e regft, then dim ft = k , 7pft = ^ > and,
by Proposition 2.6, we know that ft is a convex /c-cycle. Even if p e sngft,

it is still clear that dimpft = k, and, by Proposition 2.6, ft must be a convex

A;-cycle, and <9ft = 0 .   D

3. Proof of Theorem

Proof. We know that in general cok(M2k) = 0 for (k - l)-connected manifolds

with k ^ 1,2,4, or 8. Thorbergsson [9] showed that for k = 4 or 8,
the codimension must be k + 1 or k + 2. Since we are assuming that the
codimension is 2, it is only necessary to make the restriction cok(M2k) = 0 in
the case when k = 1 or 2, since it is automatically true in all other cases.

Following the notation used in the proof of Proposition 2.7, since the normal
space NPM is two dimensional, the set sf is a sector, which cannot degenerate

to a line. The sector is bounded by two vectors, hx and ft2, and these vectors,
along with TPM, span extremal supporting hyperplanes, £x and £2. These

hyperplanes intersect f(M) in strictly convex /c-cycles, call them S"x and S*2 .
It was shown in the proof of Proposition 2.7 that these cycles have well-defined

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TIGHT ANALYTIC IMMERSIONS OF HIGHLY CONNECTED MANIFOLDS 915

tangent spaces, and these tangent spaces map under a to the rays hx and ft2 .

It then follows that S*\ and Sf2 meet transversally at p and nowhere else.
Let U be a neighborhood of p such that every point in U is a nondegenerate

convex point. Then, there are two families of top cycles through every point of

U. Denote these families by S^ and &,J , and for each point q e U denote

the top cycle of the respective family by S^(q) and S"2(q). It follows from
previous arguments that Sf\(q) and S\(q) depend continuously on q , and any
two cycles from the same family are homologous.

Next we prove that two different cycles in the same family must be disjoint.

Suppose that Sf and S" are two different cycles in the same family ^ such

that q e Sf n Sf. Let £ _and I be the extremal supporting hyperplanes that

meet f(M) in Sf and Sf. Then £ and J intersect in TqM, and hence

the intersection Sf \~\Sf is a top-set and, by Proposition 2.7, must be a single
point, call it p. Let K(p) = Span{y'(0)|y : (-€, e) -* M, y e C°°, y(0) =
P, y([0, e)) C Sf} c TPM. We can similarly define K(p) with respect to

Sf. If p is a regular point, then K(p) = TpSf. Since we are assuming that

cok(M2k) = 0, then Span(K(p),K(p)) C TPM, and so B_ = K(p)r\K(p) is

some affme subspace with k > dim(5) > 0 and B c £ f)£. Therefore, £ n£
meets M in more than just one point, which is a contradiction.

We now know that the families ^j cover ribbons of the manifold M simply.

These cylinders are homeomorphic to cylinders Sk x Ai, where At = U/^j.

Denote these ribbons by 32j, and notice that they consist completely of top
points.

Denote the set of nondegenerate convex points of 3$i by V\. We now prove

that Vi is dense in 3?i. Assume that 32[ - V,■ ̂  0. Then there is some
connected open set Wt c ^, such that the open sets Wi n Vi and Wx■ - V,

axe nonempty. Suppose that (xi, x2, ... , x2k) is a coordinate system on W.
Then define

et■■ = — fox i =1,2,... ,2k,

e» = £ki     «*J-'-1'2--'*-

At a nondegenerate convex point p e W,'■■, the set of vectors {e,(p), ^/(p)}2*  /=1

span R2k+2 . This is equivalent to the observation in the proof to Proposition

2.7, that the sector sf does not degenerate to a ray. Select 2k+ 2 linearly inde-

pendent vectors from this set and relabel them e^,... , ?,2t+2. Now define an

analytic function <P on Wt such that <P is the determinant of (?/,.^»+a) •

Then <t> vanishes identically on the nonempty open set Wi - K, of top points

which are not nondegenerate convex points. But since it is analytic, it must

vanish identically, which is a contradiction since <P(p) # 0. Hence, the nonde-

generate convex points are dense in 31 i.

Notice that through every nondegenerate convex point in the ribbon 3i2 pass
two convex A;-cycles, and one of them belongs to the family ^. Suppose
that a point q e 322 is not a nondegenerate convex point. Then, since the

nondegenerate convex points are dense in 3i2 , we know that there is a sequence
of nondegenerate convex points q„ —► q. Then a subsequence of the convex
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/c-cycles (Sx(qn)) converges to a fc-cycle S* that cannot degenerate to anything

other than a /c-sphere, since it must carry a nontrivial k-cycle. The convex cycle
Sf lies in a top-set, and as a result of Lemma 2.5 and Proposition 2.7, it is in
fact the whole top-set.

This convex cycle does not depend on the particular choice of sequence (q„),
since otherwise there would be at least three top cycles through q, and we have

shown that there can only be two. We are now able to extend the family 9^

to a continuous family y' of top cycles that cover M simply. We do this by
defining yx to be all cycles through points in 3Z2 which are not also top cycles

in the family y^2 .

As shown previously, two cycles in the family y1 cannot have a point in

common, and clearly yx covers an open and closed subset of M, and so must
be all of M. The family y^2 can be extended to y2 in the same way. It

is also clear that every top cycle of y1 meets every cycle of y2 since their
intersection number depends only on their homology class, and they only meet
once by the previous argument.

To complete the proof, we define a homeomorphism between M and Sk x
Sk . This is accomplished by associating to q e M a point in Sfx(p) xSf2(j>)

given by (S*x(p) r\S^(q), S\(q) <~\S^(p)). This completes the proof since the
cycles Sfx and Sf2 are homeomorphic to fc-spheres.   □
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