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This paper solves the problem of projective lag-synchronization based on output-feedback control for chaotic drive-response
systems with input dead-zone and sector nonlinearities.This class of the drive-response systems is assumed in Brunovsky form but
with unavailable states and unknown dynamics. To effectively deal with both dead-zone and sector nonlinearities, the proposed
controller is designed in a variable-structure framework. To online learn the uncertain dynamics, adaptive fuzzy systems are used.
And to estimate the unavailable states, a simple synchronization error is constructed. To prove the stability of the overall closed-
loop system (controller, observer, and drive-response system) and to design the adaptation laws, a Lyapunov theory and strictly
positive real (SPR) approach are exploited. Finally, three academic examples are given to show the effectiveness of this proposed
lag-synchronization scheme.

1. Introduction

The chaos synchronization has attracted great attention and
has been extensively studied [1–14], since it was suggested
originally by Pecora and Carroll in [15]. The basic configura-
tion of chaos synchronization consists of two chaotic systems:
a drive (master) system and a response (slave) system. These
systems can be identical but with different initial conditions
(IC) or quite different. The response system is driven via
some transmitted (drive) signals so that the trajectories of the
response system synchronize with that of the drive system.

In the literature, there are many types of the chaos
synchronization such as complete synchronization (CS) [1, 2],
generalized synchronization (GS) [3, 4], projective synchro-
nization (PS) [5, 6], and lag-synchronization (LS) [7]. In PS,
the state vectors of two synchronized systems evolve in a

proportional scale. In LS, due to signal propagation delays
in the environment, it is reasonable to require the response
system at time (𝑡) to synchronize the drive one at time (𝑡 − 𝜏),
where 𝜏 is the propagation delay (lag) [16]. In recent years,
lag-synchronization has attracted a great deal of attention.
Some results have been reported about LS [8–14, 16–18].
Besides, over the past 25 years, a variety of methods have
been proposed for chaos synchronization, such as sliding
mode control [19, 20], active control [21, 22], adaptive control
[23, 24], and fuzzy control [25–27] which are designed via the
universal approximation theorem [28].

In real applications of chaos synchronization, the state
vectors of drive-response systems are not available for mea-
surement, except the outputs of drive-response systems.Thus,
designing a synchronization scheme based on an output-
feedback controller (i.e., an observer-based controller) is
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required. Based on state observer, some adaptive control
systems were designed in [29–32]. These systems involve
strictly positive real (SPR) concept on the observation-error
dynamics.The dynamics of the observation errors, which are
originally not SPR, are augmented by an appropriate low-pass
filter designed to meet the SPR concept.

On the other hand, most of the above works are only
valid for chaotic systemswithout dynamical disturbances and
input nonlinearity. However, in practice, the chaotic systems
are inevitably affected by uncertain dynamical disturbances.
The existence of these disturbances can generally lead to the
synchronization failure and cause undesirable results. How
to enhance the disturbance compensation or attenuation is
of great significance [33, 34]. Besides, owing to the physical
limitations, the practical implementations of the control sys-
tems are frequently exposed to input nonlinearities (backlash,
dead-zone, and saturation). It has been shown that these
input nonlinearities can cause a serious degradation of the
system performances and in a worst-case system failure. So,
the design of a controller for chaos synchronization by con-
sidering of the external disturbances and input nonlinearities
is of significant importance [31–39]. To effectively deal with
these problems, the control schemes have been generally
designed in a variable-structure control framework.

Motivated by the above discussions, in this paper, we aim
at addressing the problem of projective lag-synchronization
for a class of uncertain chaotic systems subject to uncertain
external dynamical disturbances and input nonlinearities
(sector nonlinearities with dead-zone). This synchroniza-
tion can be realized through an appropriate fuzzy adaptive
variable-structure controller based on a state observer. Com-
pared with the previous works on the chaos synchronization
and control [8–14, 16–20, 31–39], the main contributions of
this paper are the following:

(i) A novel projective lag-synchronization system based
on fuzzy adaptive variable- structure output-feedback
control is designed for unknown perturbed chaotic
systems containing dead-zone nonlinearity.

(ii) The model of the chaotic drive-response system is
assumed to be completely different, unknown (except
its relative degree), subject to dynamical disturbances,
with input dead-zone and sector nonlinearities, and
immeasurable states. Besides, its dynamics should not
satisfy the SPR property. To authors’ best knowledge,
such a class of chaotic (drive-response) systems with
all these properties has not been previously consid-
ered in the open synchronization literature.

(iii) Unlike in [40–46], by using the SPR property together
with Lyapunov theory, the stability of the resultant
closed-loop system is carefully established. Recall that
many previous works requiring the SPR property, for
example, [40–46], have not been derived rigorously in
mathematics, as stated in [47].

(iv) By designing a linear observer to estimate the
lag-synchronization errors, only the outputs of the
response-drive system are assumed to be measurable
in this synchronization scheme.

(v) The designed fuzzy adaptive control is very simple
and has only two adaptive parameters. So, this con-
troller is of practical significant importance.

2. System Description and
Problem Formulation

Consider the following class of drive-response chaotic sys-
tems:

𝑦(𝑛)𝑥 = 𝐹𝑑 (𝑥) + 𝐷𝑑 (𝑡, 𝑥)
𝑦(𝑛)𝑧 = 𝐹𝑟 (𝑧) + 𝑢 + 𝐷𝑟 (𝑡, 𝑧)

(1)

or equivalently of the form

𝑥̇ = 𝐴𝑥 + 𝐵 [𝐹𝑑 (𝑥) + 𝐷𝑑 (𝑡, 𝑥)]
𝑧̇ = 𝐴𝑧 + 𝐵 [𝐹𝑟 (𝑧) + 𝑢 + 𝐷𝑟 (𝑡, 𝑧)] (2)

with 𝐴 = [
[
0 1 0 ⋅⋅⋅ 0
0 0 1 ⋅⋅⋅ 0
...
...
... ⋅⋅⋅
...

0 0 0 ⋅⋅⋅ 1
0 0 0 ⋅⋅⋅ 0

]
]
, 𝐵 = [ 0...

0
1

], where 𝑥 = [𝑥1, . . . , 𝑥𝑛]𝑇 ∈
𝑅𝑛 and 𝑧 = [𝑧1, . . . , 𝑧𝑛]𝑇 ∈ 𝑅𝑛 are the state vectors of
the drive and response systems, respectively. 𝐹𝑑(𝑥) and 𝐹𝑟(𝑧)
are unknown nonlinear smooth functions and 𝑢 = 𝜑(V) is
the input nonlinearity, with V being the control input which
will be designed later. 𝐷𝑑(𝑡, 𝑥) and 𝐷𝑟(𝑡, 𝑧) are the external
disturbances of the drive and response systems, respectively.

The input nonlinearity 𝑢 = 𝜑(V) under consideration is
given by [48–50]

𝜑 (V) =
{{{{{{{{{

𝜑+ (V) (V − V+) , V > V+

0, −V− ≤ V ≤ V+

𝜑− (V) (V + V−) , V < −V−
(3)

with 𝜑+(V) > 0 and 𝜑−(V) > 0 being nonlinear smooth
functions of V, V+ > 0 and V− > 0. Note that this
model contains both sector nonlinearity and dead-zone. The
nonlinearity 𝜑(V) also has the following features:

(V − V+) 𝜑 (V) ≥ 𝑚∗+ (V − V+)2 , V > V+

(V + V−) 𝜑 (V) ≥ 𝑚∗− (V + V−)2 , V < −V−,
(4)

with 𝑚∗+ and 𝑚∗− being so-called “the gain reduction toler-
ances” [48–50].

Design Objective. Determine an output-feedback control law
V to achieve a projective lag-synchronization between the
drive system and the response one, while ensuring that all
involved signals in the closed-loop system remain bounded.

To facilitate the control system design, the following
usual assumptions are considered and will be used in the
subsequent developments.

Assumption 1. The state vectors of the drive and response
systems are not measurable, except the system outputs (i.e.,
except 𝑥1 and 𝑧1).
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Assumption 2.
(i) The nonlinear functions 𝜑+(V) and 𝜑−(V) are

unknown.
(ii) But, the constants V+, V−, 𝑚∗+, and 𝑚∗− are assumed to

be known.

Assumption 3. The external disturbances, 𝐷𝑑(𝑡, 𝑥) and𝐷𝑟(𝑡, 𝑧), are bounded, respectively, by󵄨󵄨󵄨󵄨𝐷𝑑 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑐𝑑󵄨󵄨󵄨󵄨𝐷𝑟 (𝑡, 𝑧)󵄨󵄨󵄨󵄨 ≤ 𝑐𝑟, (5)

where 𝑐𝑑 and 𝑐𝑟 are some unknown positive constants.

Definition 4. Thedrive and response systems (2) are projective
lag-synchronized if there exists a scaling factor 𝜆 such that 𝑒 =𝑧 − 𝜆𝑥(𝑡 − 𝜏) → 0 as 𝑡 → ∞, where 𝜏 > 0 is a constant
propagation delay or transmission delay. This means that the
transmitted signal is received 𝜏 time late after it was sent. The
value of 𝜏 depends on the channel or the distance between
drive and response system.

Remark 5. From Definition 4, it is easy to see that, for 𝜏 =0, the complete synchronization, antisynchronization, and
projective synchronization are the special cases when the
scaling factor takes the values 𝜆 = +1, 𝜆 = −1, and 𝜆 ̸= 1
and −1, respectively. And when 𝜆 = 1, one obtains the lag-
synchronization.

From (2) and Definition 4, one can write the dynamics of
the lag-synchronization error as

̇𝑒 = 𝑧̇ − 𝜆𝑥̇ (𝑡 − 𝜏) = 𝐴𝑒 + 𝐵 [−𝜆𝐹𝑑 (𝑥𝜏) − 𝜆𝐷𝑑 (𝑡, 𝑥𝜏)
+ 𝐹𝑟 (𝑧) + 𝑢 + 𝐷𝑟 (𝑡, 𝑧)] = 𝐴𝑒 + 𝐵 [𝐹𝑟 (𝑧) + 𝑢 + 𝑃1] , (6)

where 𝑥𝜏 = 𝑥(𝑡 − 𝜏) and
𝑃1 = 𝐷𝑟 (𝑡, 𝑧) − 𝜆𝐹𝑑 (𝑥𝜏) − 𝜆𝐷𝑑 (𝑡, 𝑥𝜏) . (7)

Note that one can easily show the existence of a constant𝑐1 > 0 such as |𝑃1| ≤ 𝑐1, for the following reasons: 𝑥 evolves in
a compact set (an intrinsic property of the (noncontrolled)
chaotic systems), also the delayed state 𝑥𝜏 is bounded and
the external disturbances, 𝐷𝑑(𝑡, 𝑥) and 𝐷𝑟(𝑡, 𝑧), are already
assumed to be bounded, and finally the function 𝐹𝑑(𝑥𝜏) is
smooth and with a bounded argument.

Since 𝐹𝑟(𝑧) is unknown and the vector 𝑒 is immeasurable,
in this paper, one will use

(1) a fuzzy adaptive system to approximate the uncertain
functions,

(2) an observer to estimate the projective lag-
synchronization error 𝑒.

3. Controller Design for
Projective Lag-Synchronization

This section proposes a fuzzy adaptive output-feedback
controller for lag-projective synchronization of the drive-
response system (2) using Lyapunov stability theory. The
proposed synchronization scheme is shown in Figure 1.
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Figure 1: Projective lag-synchronization scheme.

One can rewrite the dynamics of the lag-synchronization
errors as follows:

̇𝑒 = 𝐴𝑒 + 𝐵 [𝐹𝑟 (𝑒 + 𝜆𝑥 (𝑡 − 𝜏)) + 𝑢 + 𝑃1]
𝑒1 = 𝐶𝑒, (8)

where 𝐶 = [1 0 ⋅ ⋅ ⋅ 0]. Note that the pair (𝐶, 𝐴) is
observable.

Remark 6.

(1) The controllability property of the pair (𝐴, 𝐵) guaran-
tees the existence of a feedback gain vector,𝐾𝑐, so that
the characteristic polynomial of 𝐴 − 𝐵𝐾𝑇𝑐 is strictly
Hurwitz.

(2) The observability property of the pair (𝐶, 𝐴) ensures
the existence of an observer gain vector, 𝐾𝑜, so that
the characteristic polynomial of 𝐴 − 𝐾𝑜𝐶 is strictly
Hurwitz.

According to fuzzy approximation theorem [28], the
unknown function 𝐹𝑟(𝑒 + 𝜆𝑥(𝑡 − 𝜏)) can be optimally
approximated by a linearly parameterized fuzzy system, as
follows [47]:

𝐹𝑟 (𝑒 + 𝜆𝑥 (𝑡 − 𝜏)) = 𝜃∗𝑇𝜓 (𝑒) + 𝜀 (𝑒, 𝑥 (𝑡 − 𝜏)) (9)

with 𝜓(𝑒) being the vector of FBFs (which are assumed to be
designed a priori), 𝜀(𝑒, 𝑥(𝑡−𝜏)) being the fuzzy approximation
error, and 𝜃∗ being the optimal value of the adjustable
parameter vector of the fuzzy system (9) which is defined as

𝜃∗ = argmin
𝜃

[sup
𝑒∈Ω𝑒

󵄨󵄨󵄨󵄨󵄨𝐹𝑟 (𝑒 + 𝜆𝑥 (𝑡 − 𝜏)) − 𝜃𝑇𝜓 (𝑒)󵄨󵄨󵄨󵄨󵄨] . (10)

According to [28], the fuzzy approximation error 𝜀(𝑒, 𝑥(𝑡−𝜏))
is bounded.

Then, (8) becomes

̇𝑒 = 𝐴𝑒 + 𝐵 [𝜃∗𝑇𝜓 (𝑒) + 𝑢 + 𝑃2]
𝑒1 = 𝐶𝑒, (11)

where 𝑃2 = 𝑃1 + 𝜀(𝑒, 𝑥(𝑡 − 𝜏)).
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Since the lag-synchronization-error vector 𝑒 is not avail-
able for measurement, one designs the following linear
observer to estimate it:

̇̂𝑒 = 𝐴𝑐𝑒 + 𝐾𝑜𝑒1
𝑒1 = 𝐶𝑒, (12)

where 𝑒 is the estimate of 𝑒, 𝐾𝑜 = [𝑘𝑜1, . . . , 𝑘𝑜𝑛]𝑇 ∈ 𝑅𝑛 is
the gains vector of observer, 𝐴𝑐 = 𝐴 − 𝐵𝐾𝑇𝑐 , and 𝐾𝑐 =[𝑘𝑐1, . . . , 𝑘𝑐𝑛]𝑇 ∈ 𝑅𝑛 is the feedback gain vector.

Now, one defines the observation-error vector as 𝑒 =[𝑒1, . . . , 𝑒𝑛]𝑇 = 𝑒 − 𝑒. From (12) and (11), the dynamics of this
observation error can be obtained as follows:

̇̃𝑒 = 𝐴𝑜𝑒 + 𝐵 [𝜃∗𝑇𝜓 (𝑒) + 𝜑 (V) + 𝑃3]
𝑒1 = 𝐶𝑒 (13)

with 𝐴𝑜 = 𝐴 − 𝐾𝑜𝐶 and

𝑃3 = 𝑃2 + 𝐾𝑇𝑐 𝑒. (14)

Then, we can rewrite (13) using the time-frequency (mixed)
notation as follows [51, 52]:

𝑒1 = 𝐻 (𝑠) [𝜃∗𝑇𝜓 (𝑒) + 𝜑 (V) + 𝑃3] , (15)

where 𝑠 is the Laplace variable and 𝐻(𝑠) = 𝐶(𝑆𝐼 − 𝐴𝑜)−1𝐵
is the stable transfer function of (13). It is worth noting that
this mixed notation is very valuable in the adaptive control
literature [51–56]. It also refers to the convolution between
the inverse Laplace transform 𝐻(𝑠) and the term 𝜃∗𝑇𝜓(𝑒) +𝜑(V) + 𝑃3.

Since 𝐻(𝑠) is not SPR, one introduces a low-pass filter𝑇(𝑠) such that𝐻(𝑠) = 𝐻(𝑠)𝑇−1(𝑠) becomes SPR:

𝑒1
= 𝐻 (𝑠) [𝜃∗𝑇𝑇 (𝑠) [𝜓 (𝑒)] + 𝑇 (𝑠) [𝜑 (V)] + 𝑇 (𝑠) [𝑃3]]
= 𝐻 (𝑠) [𝜃∗𝑇𝜓 (𝑒) + 𝜑 (V) + 𝑃4]

(16)

with

𝑃4 = 𝜃∗𝑇𝑇 (𝑠) [𝜓 (𝑒)] + 𝑇 (𝑠) [𝜑 (V)] + 𝑇 (𝑠) [𝑃3]
− 𝜃∗𝑇𝜓 (𝑒) − 𝜑 (V) . (17)

Remark 7. 𝐻(𝑠) is SPR, with 𝑠 = 𝜎 + 𝑗𝜔 if the following
conditions are satisfied [57]:

(a) When 𝑠 is real,𝐻(𝑠) is real.
(b) The poles of𝐻(𝑠) are not in the right half-plane.
(c) For any real 𝜔, the real part of𝐻(𝑗𝜔) is positive; that

is, Re[𝐻(𝑗𝜔)] ≥ 0.
Assumption 8. One assumes that |𝑃4| ≤ 𝑘∗𝑝0 + 𝑘∗𝑝1|V| +𝑘∗𝑝2|𝑇(𝑠)[V]| + 𝑘∗𝑝3|𝑇(𝑠)[𝐾𝑇𝑐 𝑒]| = 𝐾∗𝑇𝑝 𝑊, with 𝐾∗𝑇𝑝 =[𝑘∗𝑝0, 𝑘∗𝑝1, 𝑘∗𝑝2, 𝑘∗𝑝3] being an unknown positive vector, and
𝑊𝑇 = [1, |V|, |𝑇(𝑠)[V]|, |𝑇(𝑠)[𝐾𝑇𝑐 𝑒]|].

Let us define a novel error 𝑒𝑚1, called the modified error,
as follows:

𝑒𝑚1 = 𝑒1 + 𝑒𝑎1 (18)

with 𝑒𝑎1 being the auxiliary error. Its dynamics are given by

𝑒𝑎1 = 𝐻 (𝑠) [−𝐾𝑇𝑝𝑊 tanh(𝐾𝑇𝑝𝑊𝑒𝑚1𝜀 )] , (19)

where 𝐾𝑝 is the estimate of the unknown vector 𝐾∗𝑝 and𝜀 > 0 is a small design constant. tanh(⋅) designates the usual
hyperbolic tangent function.

From (16), (18), and (19), one can obtain

𝑒𝑚1 = 𝐻 (𝑠) [𝜃∗𝑇𝜓 (𝑒) + 𝜑 (V) + 𝑃4

− 𝐾𝑇𝑝𝑊 tanh(𝐾𝑇𝑝𝑊𝑒𝑚1𝜀 )] .
(20)

The state-space presentation of (20) can be given by

̇𝑒𝑚 = 𝐴𝑜𝑒𝑚 + 𝐵[𝜃∗𝑇𝜓 (𝑒) + 𝜑 (V) + 𝑃4

− 𝐾𝑇𝑝𝑊 tanh(𝐾𝑇𝑝𝑊𝑒𝑚1𝜀 )]
𝑒𝑚1 = 𝐶𝑒𝑚,

(21)

where 𝑒𝑚 = [𝑒𝑚1, . . . , 𝑒𝑚𝑛]𝑇 and (𝐴𝑜 ∈ 𝑅𝑛×𝑛, 𝐵 ∈ 𝑅𝑛×1, 𝐶 ∈𝑅1×𝑛) is a minimal state realization of 𝐻(𝑠) = 𝐻(𝑠)𝑇−1(𝑠) =𝐶𝑇(𝑆𝐼 − 𝐴𝑜)−1𝐵 and 𝐶 = [1, 0, . . . , 0].
Since𝐻(𝑠) is SPR, the following relation holds:

𝐴𝑜𝑃 + 𝑃𝐴𝑜 = −𝑄 < 0
𝑃𝐵 = 𝐶𝑇, (22)

where 𝑃 = 𝑃𝑇 > 0 and 𝑄 = 𝑄𝑇 > 0. Later, expressions (21)
and (22) will be exploited in the stability analysis.

To achieve our objective, the control input can be deter-
mined as

V =
{{{{{{{{{

−𝜉𝜌 sign (𝑒𝑚1) − V−, 𝑒𝑚1 > 0
0, 𝑒𝑚1 = 0
−𝜉𝜌 sign (𝑒𝑚1) + V+, 𝑒𝑚1 < 0

(23)

with 𝜉 > 1/𝜂, and 𝜂 = min{𝑚∗−, 𝑚∗+}, where
𝜌 = 𝑤2 󵄩󵄩󵄩󵄩𝜓 (𝑒)󵄩󵄩󵄩󵄩 + 𝑤1, (24)

where 𝑤1 is a design positive constant and 𝑤2 is an adaptive
parameter estimating the upper bound of ‖𝜃∗‖; that is, 𝑤∗2 ≥‖𝜃∗‖.
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The adaptive laws for the control law (23) are defined as

𝑤̇2 = −𝛾𝑤𝜎𝑤𝑤2 + 𝛾𝑤 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜓 (𝑒)󵄩󵄩󵄩󵄩 , with𝑤2 (0) > 0
𝐾̇𝑝 = −𝛾𝐾𝜎𝐾𝐾𝑝 + 𝛾𝐾 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨𝑊, with𝐾𝑝 (0) > 0, (25)

where 𝛾𝐾, 𝜎𝐾, 𝛾𝑤, and 𝜎𝑤 are strictly positive design parame-
ters.

Theorem 9. Consider the drive and response systems given by
(2) (or (1)) under Assumptions 1–3 and 8. Then, the projective
lag-synchronization is realized by using the fuzzy adaptive
output-feedback controller (23)–(25) and observer (12).

Proof of Theorem 9. Consider the following Lyapunov func-
tion:

𝑉 = 12𝑒𝑇𝑚𝑃𝑒𝑚 + 12𝛾𝐾 𝐾̃𝑇𝑝 𝐾̃𝑝 +
12𝛾𝑤𝑤22 , (26)

where 𝐾̃𝑝 = 𝐾𝑝 − 𝐾∗𝑝 and 𝑤2 = 𝑤2 − 𝑤∗2 .
The time derivative of 𝑉 is given as follows:

𝑉̇ = 12𝑒𝑇𝑚𝑃 ̇𝑒𝑚 + 12 ̇𝑒𝑇𝑚𝑃𝑒𝑚 + 1𝛾𝐾 𝐾̃𝑇𝑝 𝐾̇𝑝 +
1𝛾𝑤𝑤2𝑤̇2. (27)

Evaluating (27) along (21) and (25) and using Assumption 8,
one gets

𝑉̇ ≤ −12𝑒𝑇𝑚𝑄𝑒𝑚 + 𝑒𝑚1𝜑 (V) + 𝑤∗2 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩𝜓 (𝑒)󵄩󵄩󵄩󵄩
+ 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨 𝐾∗𝑇𝑝 𝑊−𝐾𝑇𝑝𝑊𝑒𝑚1 tanh(𝐾

𝑇
𝑝𝑊𝑒𝑚1𝜀 )

+ 1𝛾𝐾 𝐾̃𝑇𝑝 𝐾̇𝑝 +
1𝛾𝑤𝑤2𝑤̇2

= −12𝑒𝑇𝑚𝑄𝑒𝑚 + 𝑒𝑚1𝜑 (V) + 𝜌 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨 − 𝑤1 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨 𝐾𝑇𝑝𝑊−𝐾𝑇𝑝𝑊 tanh(𝐾𝑇𝑝𝑊𝑒𝑚1𝜀 )
− 𝜎𝐾𝐾̃𝑇𝑝𝐾𝑝 − 𝜎𝑤𝑤2𝑤2.

(28)

From (4) and (23), one can easily get the following expres-
sions:

V < −V− for 𝑒𝑚1 > 0 󳨐⇒
(V + V−) 𝜑 (V) ≥ 𝑚∗− (V + V−)2 ≥ 𝜂 (V + V−)2

V > V+ for 𝑒𝑚1 < 0 󳨐⇒
(V − V+) 𝜑 (V) ≥ 𝑚∗+ (V − V+)2 ≥ 𝜂 (V − V+)2 .

(29)

Considering (23) again, one can establish

𝑒𝑚1 > 0 󳨐⇒
(V + V−) 𝜑 (V) = −𝜉𝜌 sign (𝑒𝑚1) 𝜑 (V)

≥ 𝜂𝜉2𝜌2 [sign (𝑒𝑚1)]2
𝑒𝑚1 < 0 󳨐⇒

(V − V+) 𝜑 (V) = −𝜉𝜌 sign (𝑒𝑚1) 𝜑 (V)
≥ 𝜂𝜉2𝜌2 [sign (𝑒𝑚1)]2 .

(30)

Using the fact that 𝑒𝑚1sign(𝑒𝑚1) = |𝑒𝑚1| and while 𝜌 > 0, one
gets for all 𝑒𝑚1

𝑒𝑚1𝜑 (V) ≤ −𝜉𝜂𝜌 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨 . (31)

Substituting (31) into (28), one can obtain

𝑉̇ ≤ −12𝑒𝑇𝑚𝑄𝑒𝑚 − (𝜉𝜂 − 1) 𝜌 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨 −𝑤1 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨
+ 󵄨󵄨󵄨󵄨𝑒𝑚1󵄨󵄨󵄨󵄨 𝐾𝑇𝑝𝑊−𝐾𝑇𝑝𝑊𝑒𝑚1 tanh(𝐾

𝑇
𝑝𝑊𝑒𝑚1𝜀 )

− 𝜎𝐾𝐾̃𝑇𝑝𝐾𝑝 − 𝜎𝑤𝑤2𝑤2.
(32)

On the other hand, one can establish that

− 𝜎𝐾𝐾̃𝑇𝑝𝐾𝑝 ≤ −𝜎𝐾2 󵄩󵄩󵄩󵄩󵄩𝐾̃𝑝󵄩󵄩󵄩󵄩󵄩2 + 𝜎𝐾2 󵄩󵄩󵄩󵄩󵄩𝐾∗𝑝󵄩󵄩󵄩󵄩󵄩2
− 𝜎𝑤𝑤2𝑤2 ≤ −𝜎𝑤2 𝑤2 + 𝜎𝑤2 𝑤∗22
󵄨󵄨󵄨󵄨󵄨𝐾𝑇𝑝𝑊𝑒𝑚1󵄨󵄨󵄨󵄨󵄨 − 𝐾𝑇𝑝𝑊𝑒𝑚1 tanh(𝐾

𝑇
𝑝𝑊𝑒𝑚1𝜀 ) ≤ 𝜀

= 0.2783𝜀.

(33)

By exploiting (33), (32) becomes

𝑉̇ ≤ −12𝑒𝑇𝑚𝑄𝑒𝑚 − 𝜎𝐾2 󵄩󵄩󵄩󵄩󵄩𝐾̃𝑝󵄩󵄩󵄩󵄩󵄩2 − 𝜎𝑤2 𝑤22 + 𝜋, (34)

where 𝜋 = 𝜀 + (𝜎𝐾/2)‖𝐾∗𝑝‖2 + (𝜎𝑤/2)𝑤∗22 .
Let 𝜇 = min{𝜆min(𝑄)/𝜆max(𝑃), 𝛾𝑤𝜎𝑤, 𝛾𝐾𝜎𝐾}; hence one

can rewrite (34) as follows:

𝑉̇ ≤ −𝜇𝑉 + 𝜋, (35)

where 𝜆min(𝑋) and 𝜆max(𝑋) are the smallest and largest
eigenvalues of the matrix𝑋, respectively.

(35) can be expressed as follows:

𝑑 (𝑉𝑒𝜇𝑡)
𝑑𝑡 ≤ 𝜋𝑒𝜇𝑡. (36)



6 Mathematical Problems in Engineering

And integrating (36) over [0, 𝑡] yields
0 ≤ 𝑉 (𝑡) ≤ 𝜋𝜇 + (𝑉 (0) − 𝜋𝜇) 𝑒−𝜇𝑡. (37)

Therefore all signals of the closed-loop system are bounded.
From (26) and (37), one has

󵄩󵄩󵄩󵄩𝑒𝑚󵄩󵄩󵄩󵄩 ≤ ( 2𝜆min (𝑃) (
𝜋𝜇 + (𝑉 (0) − 𝜋𝜇) 𝑒−𝜇𝑡))

1/2 , (38)

where 𝑉(0) = (1/2)𝑒𝑇𝑚(0)𝑃𝑒𝑚(0) + (1/2𝛾𝐾)𝐾̃𝑇𝑝 (0)𝐾̃𝑝(0) +(1/2𝛾𝑤)𝑤22(0).
From (38), one can conclude on the asymptotic conver-

gence of the solution 𝑒𝑚 to the following bounded region:

Ω𝑒𝑚 = {𝑒𝑚 | 󵄩󵄩󵄩󵄩𝑒𝑚󵄩󵄩󵄩󵄩 ≤ ( 2𝜆min (𝑃)
𝜋𝜇)
1/2} . (39)

From (18), (19), and (39), one can establish easily the conver-
gence and the boundedness of 𝑒𝑎1 and 𝑒1.

The proof of this theorem is now completed.

Remark 10. If V+ = V− = V0, expression (23) can be simply
rewritten as

V = − (𝜉𝑤2 󵄩󵄩󵄩󵄩𝜓 (𝑒)󵄩󵄩󵄩󵄩 + 𝜉𝑤1 + V0) sign (𝑒𝑚1) . (40)

In (40), the sign function, that is, sign(𝑒𝑚1), can cause the
undesirable chattering phenomenon. In practice, the latter
is generally replaced by an equivalent and smooth function
(e.g., tanh(𝑘𝑠1𝑒𝑚1)):

V = − (𝜉𝑤2 󵄩󵄩󵄩󵄩𝜓 (𝑒)󵄩󵄩󵄩󵄩 + 𝜉𝑤1 + V0) tanh (𝑘𝑠1𝑒𝑚1) (41)

with 𝑘𝑠1 > 0 being a high constant value.

Remark 11. More importantly, the design of a lag-synchroni-
zation system based on output-feedback controller for a class
of uncertain drive-response systemswith input nonlinearities
has a major interest in both theory and practice.

(a) Theoretical Interests. Compared to previous works [8–14,
16–18], our theoretical contributions are the following:

(1) Design of a projective lag-synchronization system by
considering the ubiquitous input nonlinearities (i.e.,
sector nonlinearities and dead-zone), the uncertain
dynamics of both models, and the immeasurability
of the states of drive-response system is theoretically
challenge. To the best of authors’ knowledge, the
projective lag-synchronization for this class of drive-
response systems with all these features has rarely
been studied in the literature.

(2) The proposed fuzzy adaptive output-feedback control
requires the so-called SPR condition on the lag-
synchronization errors. It should be noted that the
design of an output-feedback controller dealing with
input nonlinearities (particularly, sector nonlinearity
and dead-zone) and by using a SPR approach is not

theoretically simple.This is why in the literature there
are few fundamental results dealing with this control
problem.

(b) Practical Interests. The proposed synchronization ap-
proach has the following practical interests:

(1) The proposed projective lag-synchronization ap-
proach is characterized by one scalar transmitted sig-
nal.This feature is of practical significant importance.

(2) The effect of ubiquitous input nonlinearities (sector
nonlinearities and dead-zone) has been taken into
account in the stability analysis and the design of the
control system. In practice, it is well known that the
nonconsideration of the latter may lead to a serious
degradation of the system’s performances and even
cause system instability.

(3) In particular, this projective lag-synchronization ap-
proach has also a prospective application in secure
communication due to its safety against attack and
unmasking.

4. Illustrative Simulation Examples

Three academic examples are provided in this section to
validate the effectiveness of this proposed synchronization
approach.

Example 1. Consider the projective lag-synchronization
between chaotic Gyros system and Duffing oscillator.

The Drive System (Chaotic Gyros System) [58]

𝑥̇1 = 𝑥2
𝑥̇2 = −𝛼2 (1 − cos (𝑥1))

2

sin3 (𝑥1) − 𝑐1𝑥2 − 𝑐2𝑥22
+ (𝛽 + 𝑓 sin (𝜔𝑥𝑡)) sin (𝑥1) + 𝐷𝑑 (𝑡, 𝑥) ,

(42)

where = [𝑥1 𝑥2]𝑇, 𝛼2 = 100, 𝑐1 = 0.5, 𝑐2 = 0.05, 𝛽 = 1,𝜔𝑥 = 2, and 𝑓 = 35.5. 𝐷𝑑(𝑡, 𝑥) is assumed to be a normally
(Gaussian) distributed random signal with a variance = 0.5
and a mean = 0.5.

The Response System (Duffing Oscillator) [59]

𝑧̇1 = 𝑧2
𝑧̇2 = −𝑝1𝑧2 − 𝑝2𝑧1 − 𝑝3𝑧31 + 𝑞 sin (𝜔𝑧𝑡) + 𝑢

+ 𝐷𝑟 (𝑡, 𝑧) ,
(43)

where 𝑧 = [𝑧1 𝑧2]𝑇 , 𝑝1 = 0.4, 𝑝2 = −1.1, 𝑝3 = 1, 𝑞 = 2.1,𝜔𝑧 = 1.8, and𝐷𝑟(𝑡, 𝑧) = sin(6𝑡).
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Then, this chaotic drive-response system can be rewritten
as follows:

𝑥̇ = 𝐴𝑥 + 𝐵 (𝐹𝑑 (𝑥) + 𝐷𝑑 (𝑡, 𝑥))
𝑦𝑥 = 𝑥1 = 𝐶𝑥
𝑧̇ = 𝐴𝑧 + 𝐵 (𝐹𝑟 (𝑧) + 𝑢 + 𝐷𝑟 (𝑡, 𝑧)) ,
𝑦𝑧 = 𝑧1 = 𝐶𝑧,

(44)

where𝐴 = [ 0 10 0 ],𝐵 = [ 01 ], and𝐶𝑇 = [ 10 ].𝑢 = 𝜑(V) is the input
nonlinearity which is defined below, and V is the control input
to be designed.

The input nonlinearities 𝜑(V) are assumed to be described
by [34, 48]

𝑢 = 𝜑 (V)

=
{{{{{{{{{

(V − 0.5) (1.5 − 0.3𝑒0.3|sin(V)|) V > 0.5
0 −0.5 ≤ V ≤ 0.5
(V + 0.5) (1.5 − 0.3𝑒0.3|sin(V)|) V < −0.5.

(45)

To estimate the synchronization error, the following linear
observer is designed:

̇̂𝑒 = 𝐴𝑐𝑒 + 𝐾𝑜 (𝑦𝑥 (𝑡 − 𝜏) − 𝑦𝑧 − 𝑒1)
𝑒1 = 𝐶𝑒 (46)

with 𝑒 = [𝑒1, 𝑒2]𝑇 being the estimate of 𝑒 = [𝑒1, 𝑒2]𝑇, 𝐾𝑜 =[2𝛼, 𝛼2]𝑇 being the observer gain vector with 𝛼 = 80, 𝐴𝑐 =𝐴 − 𝐵𝐾𝑇𝑐 , and𝐾𝑐 = [90, 60]𝑇.
Based on Theorem 9 and Remark 10, the control for

system (44) can be designed as (40) or (41) with adaptive laws
(25). Its associated design parameters are chosen as follows:𝜏 = 0.5 sec, 𝜆 = 1, 𝑤1 = 100, 𝜀 = 0.2, 𝛾𝑤 = 100, 𝜎𝑤 = 0.001,𝛾𝑘 = 100, and 𝜎𝑘 = 0.001. For each variable of the entries of
the designed fuzzy system, as in [47, 60], one defines three
membership functions (one triangular and two trapezoidal)
uniformly distributed on the following intervals: [−2 2] for𝑒1 and [−2 2] for 𝑒2.

One selects the SPR filter 𝑇(𝑠) so that 𝐻(𝑠) =𝐻(𝑠)𝑇−1(𝑠) = (1/(𝑠2 + 160𝑠 + 6400))𝑇−1(𝑠) is SPR, as follows:
𝑇 (𝑠) = 10.3906𝑠 + 11.7721 . (47)

From the expression of 𝐻(𝑠), one can find that 𝐴 = [ −2𝛼 1
−𝛼2 0

],
𝐵𝑇 = [0.3906 11.7721], and 𝐶𝑇 = [1 0].

By choosing 𝑄1 = [ 30 33 0.5 ] and solving (22), one gets

𝑃1 = [10.0937 −0.2500−0.2500 0.0083 ] . (48)

The initial conditions are chosen as 𝑥(0) = [𝑥1(0), 𝑥2(0)]𝑇 =[−1, 1]𝑇, 𝑧(0) = [𝑧1(0), 𝑧2(0)]𝑇= [0.5, 2]𝑇, 𝑤2(0) = 10, and𝐾𝑝(0) = [0.01, 0.01, 0.01, 0.01]𝑇.

Note that, because V+ = V− = V0 = 0.5, the variable-
structure controller (23) can be directly replaced by (40). Two
cases are considered to show the validity of the proposed
controller.

(a) Simulation by Using the Discontinuous Controller (40).
Figure 2 shows that the proposed controller performs well.
In fact, one can see from Figures 2(a) and 2(b) that the
states of response system (𝑧1, 𝑧2) effectively track that of the
drive system (𝜆𝑥1(𝑡 − 𝜏), 𝜆𝑥2(𝑡 − 𝜏)), despite the presence of
the immeasurable states, uncertain dynamics, dead-zone at
the input, and external disturbances. From Figure 2(c), it is
clear also that the estimates of the synchronization errors are
bounded and asymptotically converge towards small values.
The corresponding control signal is bounded and not smooth
in Figure 2(d).

(b) Simulation by Using the Smooth Controller (41). Fig-
ure 3 provides the simulation results. From Figures 3(a)
and 3(b), one can observe that the states of the response
system (𝑧1, 𝑧2) effectively follow the corresponding desired
trajectories (𝜆𝑥1(𝑡−𝜏), 𝜆𝑥2(𝑡−𝜏)). From Figure 3(c), one can
see that the estimates of the synchronization errors are well-
bounded and converge to a small value. In Figure 3(d), the
control signal is smooth, bounded, and admissible.

Example 2. Now, we will consider the projective lag-
synchronization between two uncertain similar chaotic sys-
tems of the third order.

The Drive System (Genesio Chaotic System) [61]

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑥3
𝑥̇3 = −6𝑥1 − 2.92𝑥2 − 1.2𝑥3 + 𝑥21 + 𝐷𝑑 (𝑡, 𝑥) ,

(49)

where 𝑥 = [𝑥1, 𝑥2, 𝑥3]𝑇 and 𝐷𝑑(𝑡, 𝑥) is assumed to be
a normally (Gaussian) distributed random signal with a
variance = 0.5 and a mean = 0.5.

The Response System (Genesio Chaotic System) [61]

𝑧̇1 = 𝑧2
𝑧̇2 = 𝑧3
𝑧̇3 = −6𝑧1 − 2.92𝑧2 − 1.2𝑧3 + 𝑧21 + 𝑢 + 𝐷𝑟 (𝑡, 𝑧) ,

(50)

where 𝐷𝑟(𝑡, 𝑧) = sin(6𝑡) and 𝑧 = [𝑧1, 𝑧2, 𝑧3]𝑇 is the state
vector of the response system.

Then, this chaotic drive-response system can be rewritten
as follows:

𝑥̇ = 𝐴𝑥 + 𝐵 (𝐹𝑑 (𝑥) + 𝐷𝑑 (𝑡, 𝑥)) ,
𝑦𝑥 = 𝑥1 = 𝐶𝑥
𝑧̇ = 𝐴𝑧 + 𝐵 (𝐹𝑟 (𝑧) + 𝑢 + 𝐷𝑟 (𝑡, 𝑧)) ,
𝑦𝑧 = 𝑧1 = 𝐶𝑧,

(51)
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Figure 2: Simulation results (for Example 1, in case 1): (a) states: 𝜆𝑥1(𝑡 − 𝜏) (solid line) and 𝑧1 (dash-dot line). (b) States: 𝜆𝑥2(𝑡 − 𝜏) (solid
line) and 𝑧2 (dash-dot line). (c) Estimates of the synchronization errors 𝑒1 (solid line) and 𝑒2 (dash-dot line). (d) Control signal V.
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Figure 3: Simulation results (for Example 1, in case 2): (a) states: 𝜆𝑥1(𝑡 − 𝜏) (solid line) and 𝑧1 (dash-dot line). (b) States: 𝜆𝑥2(𝑡 − 𝜏) (solid
line) and 𝑧2 (dash-dot line). (c) Estimates of the synchronization errors 𝑒1 (solid line) and 𝑒2 (dash-dot line). (d) Control signal V.
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Figure 4: Simulation results (for Example 2): (a) states: 𝜆𝑥1(𝑡 − 𝜏) (solid line) and 𝑧1 (dash-dot line). (b) States: 𝜆𝑥2(𝑡 − 𝜏) (solid line) and 𝑧2
(dash-dot line). (c) States: 𝜆𝑥3(𝑡 − 𝜏) (solid line) and 𝑧3 (dash-dot line). (d) Control signal V.

where 𝐴 = [ 0 1 00 0 1
0 0 0

], 𝐵 = [ 00
1
], and 𝐶 = [1 0 0]. 𝑢 = 𝜑(V)

is the input nonlinearity which is defined below, and V is the
control input to be designed.

The input nonlinearities 𝜑(V) are assumed to be described
by [34, 48]

𝑢 = 𝜑 (V)

=
{{{{{{{{{

(V − 1) (1.5 − 0.3𝑒0.3|sin(V)|) V > 1
0 −1 ≤ V ≤ 1
(V + 1) (1.5 − 0.3𝑒0.3|sin(V)|) V < −1.

(52)

To estimate the synchronization error, the following linear
observer is designed:

̇̂𝑒 = 𝐴𝑐𝑒 + 𝐾𝑜 (𝑦𝑥 (𝑡 − 𝜏) − 𝑦𝑧 − 𝑒1)
𝑒1 = 𝐶𝑒 (53)

with 𝑒 = [𝑒1, 𝑒2, 𝑒3]𝑇 being the estimate of 𝑒 = [𝑒1, 𝑒2, 𝑒3]𝑇,𝐾𝑜 = [3𝛼, 3𝛼2, 𝛼3]𝑇 being the observer gain vector with 𝛼 =60, 𝐴𝑐 = 𝐴 − 𝐵𝐾𝑇𝑐 , and 𝐾𝑐 = [64, 48, 12]𝑇.
Based on Theorem 9 and Remark 10, the controller for

system (51) can be designed as (40) with adaptive laws (25).
Its associated design parameters are chosen as follows: 𝜏 =0.5 sec, 𝜆 = 0.75, 𝑤1 = 1, 𝜀 = 0.2, 𝛾𝑤 = 1000, 𝜎𝑤 = 0.01,𝛾𝑘 = 100, and 𝜎𝑘 = 2. For each input of the fuzzy system, as in

[47, 60], one designs threemembership functions (the central
membership function is triangular and, however, the two
others are trapezoidal) uniformly distributed on the following
intervals: [−5 5] for 𝑒1, [−5 5] for 𝑒2, and [−10 10] for 𝑒3.

We select the SPR filter 𝑇(𝑠) so that𝐻(𝑠) = 𝐻(𝑠)𝑇−1(𝑠) =(1/(𝑠3 + 180𝑠2 + 10800𝑆 + 216000))𝑇−1(𝑠) is SPR, as follows:𝑇(𝑠) = 1/(0.0003𝑠2 + 0.0120𝑆 + 0.2726).
From the expression of 𝐻(𝑠), one can find that 𝐴 =

[ −3𝛼 1 0−3𝛼2 0 1
−𝛼3 0 0

], 𝐵𝑇 = [0.0003 0.0120 0.2726], and 𝐶𝑇 =
[1 0 0].

By choosing 𝑄 = [ 30 3 33 3 1
3 1 1

] and solving (22), one gets

𝑃 = [[
[
14985 −2 −12
−2 11 −1
−12 −1 0.0001

]]
]
. (54)

The initial conditions are chosen as 𝑥(0) = [𝑥1(0), 𝑥2(0),𝑥3(0)]𝑇 = [3, −4, 2]𝑇, 𝑧(0) = [𝑧1(0), 𝑧2(0), 𝑧3(0)]𝑇= [0.1,0.0, 0.1]𝑇, 𝑤2(0) = 40, and𝐾𝑝(0) = [0, 0, 0, 0]𝑇.
The projective lag-synchronization response of system

(51) is presented in Figure 4. It is obvious from the latter that
the trajectories of response system (𝑧1, 𝑧2, 𝑧3) effectively track
that of the drive system (𝜆𝑥1(𝑡 − 𝜏), 𝜆𝑥2(𝑡 − 𝜏), 𝜆𝑥3(𝑡 − 𝜏)),
despite the presence of the immeasurable states of chaotic
systems, uncertain dynamics, dead-zone at the input, and
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Figure 5: Simulation results (for Example 3): (a) states: 𝜆𝑥1(𝑡 − 𝜏) (solid line) and 𝑧1 (dash-dot line). (b) States: 𝜆𝑥2(𝑡 − 𝜏) (solid line) and 𝑧2
(dash-dot line). (c) States: 𝜆𝑥3(𝑡 − 𝜏) (solid line) and 𝑧3 (dash-dot line). (d) Control signal V.

external disturbances. The corresponding control signal is
bounded.

Example 3. We consider now the projective lag-synchroniza-
tion between two different chaotic systems of the third order.

The Drive System (Genesio Chaotic System)

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑥3
𝑥̇3 = −6𝑥1 − 2.92𝑥2 − 1.2𝑥3 + 𝑥21 + 𝐷𝑑 (𝑡, 𝑥) ,

(55)

where 𝑥 = [𝑥1, 𝑥2, 𝑥3]𝑇 and 𝐷𝑑(𝑡, 𝑥) is taken as a normally
(Gaussian) distributed random signal with a variance = 0.5
and a mean = 0.5.

The Response System (Arneodo Chaotic System) [62]

𝑧̇1 = 𝑧2
𝑧̇2 = 𝑧3
𝑧̇3 = 5.5𝑧1 − 3.5𝑧2 − 𝑧3 − 𝑧31 + 𝑢 + 𝐷𝑟 (𝑡, 𝑧) ,

(56)

where𝐷𝑟(𝑡, 𝑧) = sin(6𝑡) and 𝑧 = [𝑧1, 𝑧2, 𝑧3]𝑇.
Note that this synchronization scheme is designed as that

of the second example, except that the response system is
selected as an Arneodo chaotic system and 𝜆 = −0.25.

Therefore, the fuzzy system and the synchronization-error
observer are designed as in Example 2, and the initial
conditions and the design parameters are also selected as in
Example 2.

Figure 5 provides the simulation results of this example,
from which it can be clearly seen that the trajectories of
response system (𝑧1, 𝑧2, 𝑧3) effectively track the trajectories of
the drive system (𝜆𝑥1(𝑡−𝜏), 𝜆𝑥2(𝑡−𝜏), 𝜆𝑥3(𝑡−𝜏)), despite the
presence of immeasurable states of chaotic systems, uncertain
dynamics, input nonlinearities, and external disturbances.

5. Conclusion

The problem of adaptive fuzzy output-feedback control-
based projective lag-synchronization for unknown drive-
response (or master-slave) chaotic systems has been investi-
gated in this paper. In the design process, the input nonlin-
earities (dead-zone together with sector nonlinearities) have
been considered. To effectively handle the unknown func-
tions in the drive-response system, fuzzy adaptive systems
have been incorporated in the control system. To deal with
the input nonlinearities, the proposed controller has been
designed in a variable-structure framework. And to estimate
the synchronization-error states, a simple linear observer has
been constructed. Finally, three academic examples have been
given to demonstrate the effectiveness of the proposed lag-
synchronization approach. In our future work, the investi-
gation for chaotic fractional-order drive-response systems
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subject to unavailable states and more nonsmooth input
nonlinearities deserves further research.
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