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Abstract	
The	 most	 widespread	 measures	 of	 human	 brain	 activity	 are	 the	 blood	 oxygen	 level	 dependent	
(BOLD)	 signal	 and	 surface	 field	potential.	 Prior	 studies	 report	 a	 variety	 of	 relationships	 between	
these	signals.	To	develop	an	understanding	of	how	to	 interpret	 these	signals	and	the	relationship	
between	 them,	 we	 developed	 a	 model	 of	 (a)	 neuronal	 population	 responses,	 and	 (b)	
transformations	 from	 neuronal	 responses	 into	 the	 fMRI	 BOLD	 signal	 and	 electrocorticographic	
(ECoG)	 field	potential.	 Rather	 than	 seeking	 a	 transformation	between	 the	 two	measures	directly,	
this	 approach	 interprets	 each	 measure	 with	 respect	 to	 the	 underlying	 neuronal	 population	
responses.	 This	model	 accounts	 for	 the	 relationship	 between	 BOLD	 and	 ECoG	 data	 from	 human	
visual	cortex	in	V1-V3,	with	the	model	predictions	and	data	matching	in	three	ways:	Across	stimuli,	
the	BOLD	amplitude	and	ECoG	broadband	power	were	positively	correlated,	 the	BOLD	amplitude	
and	alpha	power	(8-13	Hz)	were	negatively	correlated,	and	the	BOLD	amplitude	and	narrowband	
gamma	 power	 (30-80	 Hz)	 were	 uncorrelated.	 The	 two	 measures	 provide	 complementary	
information	 about	 human	 brain	 activity	 and	we	 infer	 that	 features	 of	 the	 field	 potential	 that	 are	
uncorrelated	with	 BOLD	 arise	 largely	 from	 changes	 in	 synchrony,	 rather	 than	 level,	 of	 neuronal	
activity.	
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1.	Introduction	
Most	 measurements	 of	 activity	 in	 the	 living	 human	 brain	 arise	 from	 the	 responses	 of	 large	
populations	 of	 neurons,	 spanning	 the	millimeter	 scale	 of	 functional	magnetic	 resonance	 imaging	
(fMRI)	 and	 electrocorticography	 (ECoG)	 to	 the	 centimeter	 scale	 of	 electro-	 and	 magneto-
encephalography	 (EEG	 and	MEG).	 Integrating	 results	 across	 methods	 is	 challenging	 because	 the	
signals	measured	by	these	instruments	differ	in	spatial	and	temporal	sensitivity,	and	in	the	manner	
by	which	they	combine	the	underlying	neuronal	population	activity	[1-3].	Differences	in	scale	can	
be	partially	bridged	by	bringing	the	measurements	into	register.	For	example,	EEG	and	MEG	sensor	
data	can	be	projected	to	cortical	sources	subject	to	constraints	from	simultaneously	recorded	fMRI	
data	 [4]	 or	 from	 independent	 fMRI	 localizers	 [5],	 and	 ECoG	 electrodes	 can	 be	 aligned	 to	 a	 high	
resolution	anatomical	MRI	image	[6]	and	compared	to	the	local	fMRI	signal.		

Yet	 even	when	electrophysiological	 and	 fMRI	data	 are	 spatially	 registered,	 striking	differences	 in	
the	 sensitivity	 to	 stimulus	 and	 task	 are	 often	 observed,	 indicating	 differences	 in	 how	 neuronal	
responses	contribute	to	the	measured	physiological	signals.	For	example,	the	fMRI	BOLD	signal	and	
EEG	evoked	potentials	differ	 in	which	brain	areas	are	most	 sensitive	 to	 visual	motion	 (area	MT+	
with	 fMRI	 [7]	 versus	 V1	 and	 V3A	with	 EEG	 [8]).	Within	 the	 same	 visual	 area,	 fMRI	 and	 source-
localized	 EEG	 evoked	 potentials	 can	 show	 different	 effects	 of	 task	 in	 similar	 experimental	
paradigms,	such	as	the	effect	of	spatial	attention	on	the	contrast	response	function	(additive	in	fMRI	
[9],	multiplicative	 in	 EEG	 [10]).	 Even	when	 the	 spatial	 scale	 of	 the	 two	 signals	 is	 approximately	
matched	at	acquisition,	such	as	ECoG	electrodes	and	fMRI	voxels	(both	at	~2	mm),	systematically	
different	 patterns	 of	 responses	 can	 be	 obtained,	 such	 as	 compressive	 spatial	 summation	 in	 fMRI	
versus	nearly	linear	summation	in	ECoG	steady	state	potentials	(but	not	ECoG	broadband	signals)	
[11].	Such	fundamental	 functional	differences	cannot	be	explained	by	numerical	measurement-to-
measurement	 transformations.	 Rather,	 these	 differences	 must	 reflect	 the	 fact	 that	 the	
measurements	 are	 based	 on	 different	 aspects	 of	 the	 neural	 population	 response.	 To	 explain	 the	
differences	 in	measurement	modalities	 requires	 a	 computational	 framework	 that	 derives	 each	 of	
these	signals	from	the	neuronal	responses.	

One	 approach	 toward	 developing	 such	 a	 framework	 has	 been	 to	 measure	 the	 BOLD	 signal	 and	
electrophysiological	 signals	 simultaneously,	 or	 separately	 but	 using	 the	 same	 stimulus	 and	 task	
conditions,	 and	 to	 ask	 how	 features	 of	 the	 electrophysiological	 response	 compare	 to	 the	 BOLD	
signal.	This	 approach	has	 revealed	 important	patterns,	 yet	 after	 several	decades	of	 careful	 study,	
some	apparent	discrepancies	remain.	A	number	of	studies	comparing	band-limited	power	 in	 field	
potential	recordings	to	the	BOLD	signal	have	shown	that	 increases	 in	power	between	30	and	100	
Hz	 (gamma	band)	are	more	highly	correlated	with	BOLD	amplitude	 than	power	changes	 in	other	
bands	[12-17].	Yet	power	changes	in	this	band	do	not	fully	account	for	the	BOLD	signal:	very	large	
power	 changes	 can	occur	 in	 the	 gamma	band	without	 a	measurable	BOLD	 signal	 change	 [18,19],	
and	power	changes	in	lower	frequency	bands	can	be	correlated	with	the	BOLD	signal	independently	
of	power	changes	 in	 the	gamma	band	 [20-23].	 It	 therefore	cannot	be	 the	case	 that	 field	potential	
power	 in	 the	 gamma	 band	 is	 a	 general	 predictor	 of	 BOLD,	 even	 if	 the	 two	 measures	 are	 often	
correlated.	Another	source	of	disagreement	is	that	within	the	gamma	band,	some	reports	claim	that	
BOLD	is	best	predicted	by	synchronous	(narrowband)	signals	[13],	and	others	claim	that	BOLD	is	
best	predicted	by	asynchronous	 (broadband)	neural	 signals	 [11].	Moreover,	 in	 some	cases,	 it	has	
been	reported	that	no	feature	of	the	local	field	potential	predicts	the	intrinsic	optical	imaging	signal	
(closely	related	to	BOLD)	as	accurately	as	multiunit	spiking	activity	[24].	Consistent	with	this	claim,	
a	comparison	of	both	motion	and	contrast	response	functions	measured	with	single	units	and	with	
BOLD	 suggested	 a	 tight	 coupling	 between	 BOLD	 and	 single	 unit	 responses	 [25-27].	 To	 our	
knowledge,	 there	 is	 currently	 no	 single	model	 linking	 the	 electrophysiological	 and	 BOLD	 signals	
that	accounts	for	the	wide	range	of	empirical	results.	
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The	 numerous	 studies	 correlating	 features	 of	 electrophysiological	 signals	 with	 BOLD	 provide	
constraints	in	interpreting	the	relationship	between	the	two	types	of	signals,	yet	the	approach	has	
not	led	to	a	general,	computational	solution.	We	argue	that	one	reason	that	correlation	studies	have	
not	 led	 to	 computational	 solutions	 is	 that	 any	 particular	 feature	 of	 the	 field	 potential	 could	 be	
caused	 by	 many	 possible	 neuronal	 population	 responses.	 For	 example,	 a	 flat	 field	 potential	
(minimal	 signal)	 could	 arise	 because	 there	 is	 little	 activity	 in	 the	 local	 neuronal	 population,	 or	 it	
could	 arise	 from	 a	 pair	 of	 neuronal	 sub-populations	 responding	 vigorously	 but	 in	 counterphase,	
resulting	in	cancellation	in	the	field	potential.	The	same	field	potential	in	the	two	situations	would	
be	accompanied	by	different	 levels	of	metabolic	demand	and	presumably	different	 levels	of	BOLD	
signal.	 Similarly,	 any	 particular	 BOLD	 measurement	 could	 be	 due	 to	 many	 different	 patterns	 of	
neural	 activity.	 For	 example,	 stimulation	 of	 a	 neuronal	 population	 that	 inhibits	 local	 spiking	 can	
cause	 an	 elevation	 in	 the	 BOLD	 signal	 [28],	 as	 can	 stimulation	 of	 an	 excitatory	 population	 that	
increases	the	local	spike	rate	[29].	In	short,	there	can	be	no	single	transfer	function	that	predicts	the	
BOLD	 signal	 from	 the	 field	 potential,	 because	 the	 field	 potential	 does	 not	 cause	 the	BOLD	 signal;	
rather,	the	neuronal	activity	gives	rise	to	both	the	field	potential	and	the	BOLD	signal.	

We	 propose	 that	 many	 of	 the	 different	 claims	 pertaining	 to	 the	 relationship	 between	 BOLD	
amplitude	 and	 features	 of	 the	 field	 potential	 can	 be	 accounted	 for	 by	 a	 modeling	 framework	 in	
which	BOLD	and	 field	potential	measurements	are	predicted	 from	simulated	neuronal	population	
activity,	rather	than	by	predicting	the	BOLD	signal	directly	from	the	field	potential.	In	this	paper,	we	
model	 fMRI	 and	 ECoG	 responses	 in	 two	 stages,	 one	 stage	 in	 which	 we	 simulate	 activity	 in	 a	
population	 of	 neurons,	 and	 a	 second	 stage	 in	 which	 we	 model	 the	 transformation	 from	 the	
population	 activity	 to	 the	 instrument	 measures.	 By	 design,	 the	 model	 employs	 a	 minimal	 set	 of	
principles	 governing	 how	 the	 instruments	 pool	 neuronal	 activity,	 rather	 than	 a	 biophysically	
detailed	 description	 of	 neuronal	 and	 hemodynamic	 events.	 This	 approach	 enables	 us	 to	 ask	
whether	 this	 minimal	 set	 of	 principles	 is	 sufficient	 to	 guide	 simulations	 of	 neuronal	 population	
activity,	 such	 that	 the	 parameters	 of	 the	 simulations	 are	 fit	 to	 ECoG	measurements	 from	 human	
visual	cortex,	and	the	output	of	the	simulations	predicts	fMRI	BOLD	responses	in	the	same	regions	
for	the	same	stimuli.		

2.	Results	
Summary.	We	 first	 present	 an	 analytic	 framework	 to	 capture	 basic	 principles	 of	 how	 the	 BOLD	
signal	and	the	field	potential	pool	neuronal	signals	across	a	population	(2.1).	Using	this	framework,	
we	derive	equations	 for	 the	 relationship	between	each	 instrument	measure	 (BOLD	and	LFP)	and	
the	underlying	neuronal	activity,	as	well	as	the	relationship	between	the	instrument	measures.	This	
section	 shows	 that	 synchrony	 is	 expected	 to	have	 a	 large	 effect	 on	 the	LFP	 signal	 but	not	 on	 the	
BOLD	 signal.	 The	 analytic	 framework	 provides	 a	 way	 to	 derive	 the	 instrument	 measures	 from	
neuronal	population	activity,	but	 it	does	not	specify	 the	neuronal	population	activity	 itself.	 In	 the	
next	 section	 (2.2),	 we	 develop	 a	 method	 for	 simulating	 neuronal	 population	 time	 series	 from	 a	
small	number	of	parameterized	 inputs,	 and	we	show	how	 the	 simulated	neuronal	 activity	 can	be	
converted	 to	 (simulated)	 LFP	 and	 BOLD	 by	 applying	 the	 equations	 derived	 in	 2.1.	 Next,	 we	 fit	
parameters	for	simulating	population	neuronal	activity	using	ECoG	data	from	human	V1,	V2	and	V3,	
and	 compare	 the	 BOLD	 responses	 derived	 from	 these	 simulations	 to	measured	 BOLD	 responses	
from	 V1-V3	 (2.3).	 Finally,	 we	 quantify	 the	 relationship	 between	 simulated	 BOLD	 and	 LFP,	 and	
between	measured	BOLD	and	ECoG,	and	show	that	the	same	patterns	hold	for	simulation	and	data	
(2.4).		
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2.1	Relationship	between	LFP	and	BOLD:	analytic	framework	
The	fMRI	BOLD	signal	and	the	local	field	potential	(LFP)	measure	neuronal	population	activity	in	a	
fundamentally	different	manner.	The	goal	of	this	analytic	framework	is	to	capture	these	differences	
in	 simple	mathematical	 expressions,	 and	 from	 these	expressions	derive	 the	 relationship	between	
the	two	instrument	measurements.	We	purposely	omit	a	 large	number	of	biophysical	details	such	
as	cell	types,	neuronal	compartments,	the	dynamics	of	blood	flow,	and	so	forth,	both	for	tractability	
and	 in	 order	 to	 emphasize	 the	 basic	 principles	 of	 how	 different	 measures	 integrate	 neuronal	
activity.	 In	 the	 sections	 that	 follow,	 we	 then	 show	 that,	 when	 coupled	 to	 simulated	 neural	
responses,	 the	model	 can	 account	 for	many	 important	 patterns	 observed	 in	 fMRI	 and	ECoG	data	
from	human	visual	cortex.	

For	this	analytic	framework,	we	consider	how	a	population	of	n	neurons	responds	to	a	stimulus	or	
task	during	a	brief	epoch	(time	0	to	T),	assumed	to	be	on	the	order	of	a	second.	Each	neuron	will	
produce	 a	 time	 varying	 dendritic	 current,	 denoted	 as	 Ii(t)	 for	 the	 ith	 neuron,	 resulting	 from	 the	
trans-membrane	potential.	We	would	like	to	know	how	these	currents,	I(t),	relate	to	the	fMRI	BOLD	
signal	and	to	the	LFP	signal	measured	by	an	ECoG	electrode.		

We	assume	that	the	LFP	arises	primarily	from	dendritic	membrane	currents	[2].	We	ignore	output	
spikes.	 (Although	 spikes	 can	 influence	 the	 LFP	 [30],	 it	 is	 generally	 thought	 that	 the	 influence	 is	
smaller	than	synaptic	and	dendritic	currents	[2],	and	including	spikes	would	not	change	the	logic	of	
our	arguments.)	For	 the	 ith	neuron,	 the	 contribution	 to	 the	LFP	 is	 then	!!  ×!! ! .	The	constant	!! 	
depends	on	the	distance	and	orientation	of	the	neuron	with	respect	to	the	electrode,	as	well	as	the	
electrode’s	 impedance.	 For	 simplicity,	 we	 assume	 that	 each	 neuron	 is	 equidistant	 from	 the	
electrode	 and	 has	 the	 same	 orientation,	 like	 pyramidal	 neurons	 perpendicular	 to	 the	 cortical	
surface,	and	therefore	its	contribution	to	the	electrode	measurement	is	scaled	by	the	same	constant,	
!.	Because	currents	add,	the	LFP	time	series	will	sum	the	contribution	from	each	neuron,	

!"# ! = ! ∙ !! !
!

!
  	 (Equation	1)	

Field	 potential	 recordings	 are	 usefully	 summarized	 as	 the	 power	 (or	 band-limited	 power)	 in	 the	
time	series	[31].	Here	we	summarize	the	LFP	response	within	a	short	time	window	as	the	power	in	
the	signal	summed	over	the	time	window	T:		

!"# !"#$% =  ! ∙ !! !
!

!

!!

!
!"]	 (Equation	2)	

power	of	sum	

Importantly,	Equation	2	is	a	linear/	nonlinear	(L/N)	computation,	since	the	LFP	power	is	computed	
by	first	summing	the	signals	(L),	and	then	computing	the	power	(N).		

The	BOLD	signal	pools	neural	activity	 in	a	 fundamentally	different	manner	because	it	depends	on	
metabolic	demand	[e.g.,	for	reviews,	see	1,32].	The	metabolic	demand	of	each	neuron	will	increase	
if	the	cell	depolarizes	(excitation)	or	hyperpolarizes	(inhibition)	[28].	Hence	the	metabolic	demand	
of	a	neuron	is	a	nonlinear	function	of	its	membrane	potential:	either	a	positive	or	negative	change	in	
voltage	 relative	 to	 resting	 potential	 causes	 a	 current,	 thereby	 resulting	 in	 a	 positive	 metabolic	
demand.	 There	 are	 many	 possible	 nonlinear	 functions	 one	 could	 assume	 to	 summarize	 the	
metabolic	demand	from	the	dendritic	time	series,	such	as	the	rectified	signal	(absolute	value)	or	the	
power	 (squared	 signal).	 For	 tractability,	 we	 assume	 the	 metabolic	 demand	 of	 the	 ith	 neuron	 is	
proportional	 to	 the	 power	 in	 the	 time	 varying	 trans-membrane	 current,	 integrated	 over	 time:	
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!!×(!"#$%(!!(!)),	 or	 !!× !!(!)! !"!
! ,	 with	 !! 	a	 scaling	 constant	 for	 the	 ith	 neuron.	 (Similar	

results	 were	 obtained	 if	 we	 used	 the	 absolute	 value	 rather	 than	 the	 power).	 For	 the	 entire	
population	of	n	neurons,	we	then	assume	the	BOLD	signal	will	sum	the	metabolic	demand	of	each	
neuron.	For	simplicity	we	use	the	same	scaling	constant	for	each	neuron:	

	

!"#$ =  ! ∙ !! ! ! !"
!

!

!

!
	 (Equation	3)	

sum	of	power	

Importantly,	 Equation	 3	 is	 a	 nonlinear	 /	 linear	 (N/L)	 computation,	 since	 the	 power	 is	 computed	
first	 (N)	and	 then	 the	 signals	are	 summed	 (L),	opposite	 to	 the	order	of	operations	 for	 the	LFP	 in	
Equation	3	(Fig	1)	(Personal	communication	from	David	J	Heeger).	In	other	words,	we	approximate	
the	BOLD	signal	as	the	sum	of	the	power,	and	LFP	as	the	power	of	the	sum,	of	the	separate	neuronal	
time	series.	The	difference	in	the	order	of	operations	can	have	a	profound	effect	on	the	predicted	
signals,	 as	 in	 the	 simple	 example	 with	 2	 neurons	 depicted	 in	 Fig	 1C	 and	 1D.	 The	 BOLD	 signal	
pooled	over	the	two	neurons	is	the	same	whether	the	time	series	from	the	two	neurons	are	in	phase	
or	out	of	phase,	whereas	the	LFP	power	is	large	when	the	time	series	are	in	phase	and	small	when	
they	are	out	of	phase.		
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Fig 1. Pooling with different orders of operations can have a large effect on measured brain signals.  
(A) The approach to directly correlate LFP and BOLD data. (B) Current approach to relate the LFP and BOLD from 
the same neuronal population activity. (C) In this illustration the membrane potential of two neurons (x1 and x2) has 
the shape of a sinusoid with noise, and the sinusoid is in phase between the two neurons. In the simulated electrode 
measurement, the signals are summed and the power is calculated (POWER(SUM) = 2.00). In the simulated 
measurement of metabolic demand, the power of each of these neurons is first calculated, and then summed across 
the neurons (SUM(POWER) = 1.01). Here, the LFP and BOLD are both large. (D) In this illustration the membrane 
potential of two neurons (x1 and x2) is the same as in panel (C) except that the two time series are in counterphase. 
Here, unlike (C), the LFP is nearly 0 and the BOLD signal is large.  

These	approximations	allow	us	to	make	predictions	about	the	relation	between	LFP	and	BOLD.	By	
theorem,	we	know	that	the	power	of	the	sum	of	several	time	series	is	exactly	equal	to	the	sum	of	the	
power	 of	 each	 time	 series	 plus	 the	 sum	 of	 the	 cross-power	 between	 the	 different	 time	 series	
(Equation	4):		

!! !
!

!

!!

!
!"  =  !! ! ! !"

!

!

!

!
+  !! ! ∙ !! ! !"

!

!

!

!!!
	

													Power	of	sum																								Sum	of	power																	Sum	of	cross-power	

(Equation	4)	

Applying	this	 theorem	to	Equations	2	and	3	shows	the	relationship	between	our	models	of	BOLD	
and	LFP	power:	
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!"# !"#$% =  ! ! ∙ !"#$ +   ! ∙ !!(!) ∙ !!(!) !"
!

!

!

!!!
 	 (Equation	5)	

We	can	now	see	that	the	LFP	power	depends	on	two	quantities,	one	of	which	is	related	to	the	BOLD	
signal,	and	one	of	which	is	unrelated	to	the	BOLD	signal	(Equation	5).	The	first	quantity	summarizes	
the	total	level	of	neural	activity	(summed	across	neurons),	and	the	second	quantity	summarizes	the	
relationship	between	neural	 time	series	(the	cross-power,	similar	 to	covariance).	 If	and	when	the	
second	term	tends	to	be	large	compared	to	the	first,	then	the	LFP	power	will	not	be	closely	related	
to	the	BOLD	signal.		

One	cannot	deduce	from	first	principles	whether	the	first	term	in	Equation	4	(summed	power)	or	
the	 second	 term	 (summed	 cross-power)	 will	 dominate.	 However,	 the	 number	 of	 elements	
contributing	to	 the	 two	terms	 is	quite	different:	For	n	neurons,	 the	 first	 term	has	n	numbers	(the	
power	 in	 each	 neuron’s	 time	 series),	whereas	 the	 second	 term	 has	n2	 numbers	 (all	 the	 pairwise	
cross-powers).	Hence	if	there	is	any	appreciable	covariance,	then	the	LFP	power	will	be	dominated	
by	the	second	term,	and	the	correlation	with	BOLD	will	be	weak	(except	in	cases	where	the	cross-
power	and	power	are	highly	correlated).	

To	 see	 how	 these	 equations	 translate	 to	 quantitative	measures	 of	 BOLD	 and	 LFP,	we	 consider	 a	
small	neuronal	population	whose	time	series	conform	to	a	multivariate	Gaussian	distribution.	We	
assume	that	each	neuron’s	time	series	has	the	same	mean,	m;	the	same	variance,	σ2;	and	all	of	the	
pairwise	correlations	have	the	same	value,	ρ:	

	

! ~ ! !, Σ 	

! =
!
⋮
!

	

Σ =  
!! ⋯ !!!
⋮ ⋱ ⋮

!!! ⋯ !!
	

(Equation	6)	

X	is	the	population	time	series,	µ	is	the	mean	of	each	time	series,	and	∑	is	the	covariance	matrix.	We	
can	now	re-write	the	simulated	BOLD	signal	(the	sum	of	the	power)	and	the	LFP	(power	of	the	sum)	
in	terms	of	the	parameters	of	the	multivariate	Gaussian	(and	arbitrary	scaling	factors	α,	β),	

	

!"#$ =  ! ∙ ! ∙ !! + !! 	

!"! !"#$% =  ! ∙ ! ∙ !! + !! + !! − ! !! + !!! 	
(Equation	7)	

	

where	n	 is	 the	number	of	neurons.	This	enables	us	 to	visualize	how	the	BOLD	signal	and	the	LFP	
power	depend	on	just	3	values:	the	variance,	correlation,	and	mean	in	the	neural	time	series,	rather	
than	on	all	 the	individual	time	series	(Fig	2).	For	these	neuronal	time	series,	the	LFP,	modeled	as	
the	power	of	the	sum	of	neuronal	time	series	(panel	A),	is	dominated	by	the	neuronal	cross-power	
(panel	C).	The	BOLD	signal,	modeled	as	the	sum	of	the	power	in	the	neuronal	time	series	(panel	B),	
makes	little	contribution	to	the	LFP,	except	when	the	correlation	between	neurons	is	low	(ρ	is	close	
to	0);	in	this	case,	there	is	no	cross-power,	and	BOLD	and	LFP	power	are	correlated.			
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Fig 2. Influence of time series parameters on the power of the sum, the sum of the power and the cross-
power. 
(A) LFP power, computed as the power of the sum of five time series from a multivariate Gaussian distribution 
(Equation 6). The LFP power is shown as a function of the correlation (ρ), variance (σ), and mean (µ) of the time 
series (Equation 7). (B) Same as A, except plotting the sum of the power rather than the power of the sum, in order to 
model the BOLD signal. (C) Same as B but for cross-power. The power of the sum – Panel A – is the sum of the 
terms in Panels B & C.  

2.2	Simulating	the	LFP	and	BOLD	responses	
In	 section	 2.1,	 we	 proposed	 formulae	 to	 derive	 instrument	 measures	 from	 neuronal	 population	
activity.	Here	we	ask	how	we	might	simulate	neuronal	activity	with	a	small	number	of	parameters.	
A	 low	dimensional	 characterization	 of	 the	 population	 activity	 is	 useful	 since	we	normally	 do	 not	
have	 access	 to	 the	 time	 series	 of	 an	 entire	 population	 of	 neurons.	 Moreover,	 a	 low	 dimensional	
representation	 can	 lead	 to	 better	 understanding	 and	 generalization	 even	when	high	 dimensional	
data	 are	 available	 [33,34].	 	 After	 simulating	 the	 population	 activity,	 we	 then	 use	 the	 analytic	
framework	 from	 section	 2.1	 to	 compute	 the	 BOLD	 and	 LFP	 signals.	 The	 parameters	 for	 the	
simulations	 were	 fit	 to	 ECoG	 recordings	 from	 human	 V1,	 V2	 and	 V3	 [35].	 Because	 there	 were	
recordings	 from	multiple	 electrodes	 and	multiple	 stimuli,	 we	 ran	multiple	 simulations	 fit	 to	 the	
different	ECoG	responses.	We	then	used	these	simulations	to	predict	the	BOLD	signal	and	compared	
these	predictions	to	the	measured	BOLD	signal	for	the	same	stimuli	and	same	cortical	locations	(but	
in	different	observers).	The	steps	for	simulating	the	neuronal	population	data	and	the	derived	LFP	
and	BOLD,	and	for	comparing	the	simulations	to	empirical	data,	are	summarized	in	Table	1.		
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Analysis Figure 

1. DATA: LFP spectral components. ECoG responses in visual cortex are 
separated into the sum of 3 spectral components: broadband, narrowband 
gamma, and narrowband alpha, yielding 3 numbers per electrode per stimulus.   

Figure 3 

2. MODEL: Inputs. We propose 3 classes of signals, ‘C1’, ‘C2’, and ‘C3’, as inputs 
to simulated individual neurons. These are like basis functions, as responses to 
each stimulus will be modeled with different mixtures of C1, C2 and C3 inputs 
(Step 5). 

Figure 4A 

3. MODEL: Neural activity. Neural responses to C1, C2, and C3 inputs are 
simulated with a population of neurons with leaky integration.  

Figure 4B,C 

4. MODEL: LFP spectral components. The simulated neuronal activity in the 
population is converted to simulated LFP. The LFP spectra arising from C1, C2, 
and C3 inputs approximate the three LFP components observed in ECoG data 
(step 1 above).  

Figure 5 

5. MODEL: Parameters. The model parameters are the levels of C1, C2 & C3 
inputs. These are fit to the observed ECoG data for each stimulus and each 
electrode. This results in 3 numbers per electrode per stimulus.  

Figure 6 

6. MODEL: Predictions. These model neural inputs are converted to simulated 
neuronal activity and then to simulated BOLD responses.  

Figure 4D;  
Figure 7A,B (x-axis) 

7. MODEL: Accuracy. These simulated BOLD responses are compared with real, 
measured BOLD.  

Figure 7A,B (y-axis); 
Figure 7C 

8. MODEL: LFP-BOLD relationship. The simulated BOLD responses are also fit to 
simulated LFP responses with a regression model.  

Figure 8C,D;  
Figure 9C,D 

9. DATA: LFP-BOLD relationship. Real measured BOLD responses are also fit to 
measured ECoG LFP components using a regression model. 

Figure 8A,B;  
Figure 9A,B 

Table 1. Summary of analysis steps for simulations and comparison to data.   

In	 the	 ECoG	 experiments,	 there	 were	 four	 grating	 stimuli	 of	 different	 spatial	 frequencies,	 three	
noise	patterns	with	different	power	spectra,	and	one	blank	stimulus	(mean	luminance).	For	each	of	
the	8	 stimuli	 and	each	of	22	 electrodes	 in	V1-V3,	we	decomposed	 the	measured	ECoG	 responses	
into	three	spectral	components:	broadband,	narrowband	gamma,	and	alpha	(Fig	3).	An	important	
feature	of	this	data	set	 is	that	the	3	components	of	the	ECoG	responses	showed	different	patterns	
across	stimuli	[35]:	stimuli	comprised	of	noise	patterns	caused	large	broadband	increases	but	little	
to	no	measureable	narrowband	gamma	response,	whereas	grating	stimuli	elicited	both	broadband	
increases	and	narrowband	gamma	increases.	Gratings	and	noise	stimuli	both	resulted	in	decreases	
in	 alpha	 power	 compared	 to	 baseline	 (also	 see	 Fig	 S1).	 Had	 all	 three	 responses	 been	 tightly	
correlated	with	 each	 other,	 it	 would	 not	 be	 possible	 to	 infer	 how	 each	 relates	 separately	 to	 the	
BOLD	signal.		
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Fig 3. Decomposing ECoG data into 3 summary components.  
(A) Schematic to show summary metrics derived from ECoG spectra: broadband power elevation (bb), narrowband 
gamma (ϒ) and alpha (α). Broadband was calculated by the increase in a 1/fn signal, gamma was calculated by fitting 
a Gaussian on top of the 1/fn line, and alpha was calculated as the difference from baseline in the alpha-frequency-
range. (B) Power spectrum for one example electrode during a blank stimulus (black), gratings (red) and noise 
patterns (blue). (C) From the power spectrum, changes in broadband, gamma and alpha were calculated. These 
values were bootstrapped 100 times across trials. Error bars represent 68% confidence intervals. 
	

2.2.1	Simulations	of	BOLD	and	LFP	responses	from	neuronal	population	activity		

Cortical	neurons	receive	a	large	number	of	inputs	from	diverse	cell	types.	For	our	low-dimensional	
parameterization	 of	 the	 population	 activity,	we	 assumed	 that	 each	 neuron	 received	 a	mixture	 of	
three	types	of	inputs	(Fig	4A).	These	3	inputs,	following	summation	and	leaky	integration,	produce	
the	three	spectral	components	observed	in	the	ECoG	data.	Input	1	approximated	Poisson-like	spike	
arrivals	 (C1,	 ‘Broadband’),	 and	 had	 a	 mean	 above	 0	 (excitatory).	 Input	 2	 was	 a	 high	 frequency	
oscillation,	 peaked	 between	 40	 and	 60	 Hz,	 coordinated	 between	 neurons	 (C2,	 ‘Gamma’),	 with	 a	
mean	of	0.	Input	3	was	a	low	frequency	signal	peaked	between	8	and	12	Hz	that	was	inhibitory:	i.e.	
the	mean	was	below	0	(C3,	‘Alpha’).		

	
Fig 4. Simulated LFP and BOLD.  
(A) Three different inputs to each neuron were simulated: a broadband, random input with a small positive offset (C1), 
an oscillatory input with a time-scale of 40-60Hz (C2), and a negative input with a time-scale of 10 Hz (C3). (B) The 
three inputs (C1, C2, C3) were summed in each neuron to produce the total input to the neuron. (C) The total input was 
passed through a leaky integrator to produce the dendritic dipole current (Ii). The LFP was simulated by summing the 
dendritic currents. (D) The BOLD signal was simulated by taking the power of the dendritic current for each neuron 
and then summing across neurons. 
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For	each	simulated	neuron	 i,	 the	 total	 input	C	 on	each	 trial	 is	 the	sum	of	 these	 three	signals	 (Fig	
4B):	

!! ! =  !!! !  +  !!! ! +  !!! !  			 (Equation	8)	

We	then	passed	the	summed	input	in	each	neuron	through	a	leaky	integrator	to	produce	the	time-
varying	dendritic	current	for	that	neuron	(Ii,	Fig	4C):	

! ∙ !"! !" = −!! ! + !! ! 		 (Equation	9)	

The	 membrane	 time	 constant,	!	reflects	 the	 time	 dependence	 of	 the	 trans-membrane	 current	
[36,37].	 In	 total,	we	modeled	a	population	of	200	neurons,	each	of	which	produced	a	one-second	
time	 series	 on	 each	 trial.	 From	 the	 neuronal	 population	 simulations,	 we	 computed	 the	 LFP	 and	
BOLD	 signals	 according	 to	 the	 equations	 above	 (section	 “Relationship	 between	 LFP	 and	 BOLD:	
analytic	 framework”).	 In	 brief,	 the	 LFP	was	 computed	 by	 summing	 the	 trans-membrane	 current	
across	neurons	 (Equation	1,	Fig	 4C),	 and	 the	BOLD	signal	was	computed	by	 summing	 the	power	
across	neurons	(Equation	3,	Fig	4D).	The	LFP	was	used	as	training	data	(to	fit	the	parameters	of	the	
inputs)	and	the	BOLD	was	used	as	test	data	(to	test	the	accuracy	of	the	model).	

2.2.2	Simulation	inputs	produce	three	effects	in	the	LFP	power	spectrum	

Below	we	explain	how	the	time	series	was	generated	for	each	of	the	three	types	of	inputs	and	what	
kind	of	effect	a	change	in	each	input	has	on	the	power	spectrum.		
 
Broadband	input	(C1).	Input	!!	was	Gaussian	white	noise	with	a	 small	positive	bias.	The	Gaussian	
white	 noise	 approximates	 Poisson	 distributed	 spike	 arrivals,	 each	 of	 which	 produces	 a	 small	
positive	 or	 negative	 conductance	 change,	 corresponding	 to	 excitatory	 or	 inhibitory	 post-synaptic	
potentials.	 The	 small	 positive	 bias	 reflects	 the	 assumption	 of	 more	 excitatory	 than	 inhibitory	
synaptic	currents,	causing	a	net	depolarization.	Gaussian	white	noise	was	used	rather	than	Poisson	
distributed	 synaptic	 inputs	 for	 computational	 efficiency,	 but	 the	 pattern	 of	 results	 is	 similar	 for	
Poisson	 or	 Gaussian	 distributions.	 For	 purposes	 of	 simulations,	we	 defined	 a	 high	 value	 of	!!	as	
high	variance	 in	 the	Gaussian	distribution,	 and	 low	values	of	!!	as	 low	variance.	This	mimics	 the	
effect	of	high	versus	low	rates	of	spike	arrivals.	The	time	series	for	the	200	neurons	was	generated	
from	a	distribution	with	0	correlation	for	all	pairs	of	neurons.	Because	the	variance	differed	across	
simulations	and	the	correlations	were	always	0,	 the	possible	C1	values	span	a	vertical	slice	of	 the	
plots	in	Fig	2	(ρ-axis	=	0).	This	white	noise	input,	after	passing	through	leaky	integration,	results	in	
an	 output	 whose	 power	 spectral	 density	 declines	 with	 temporal	 frequency.	 When	 this	 input	
increases	 (higher	 variance),	 the	 result	 is	 a	 broadband	 elevation	 in	 power	 [37]	 (Fig	 5A).	 Such	
broadband	power	elevations	can	be	observed	in	the	local	field	potential	[38]	as	well	as	intracellular	
membrane	potentials	of	single	neurons	in	awake	macaque	[39].		
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Fig 5. Effect of varying simulated neural inputs on output spectra.  
The effect of manipulating one of the three neural inputs used in the simulations produced different effects in the 
spectral power of the LFP of 200 neurons. (A) For C1 (broadband), a high amplitude results in a broadband power 
elevation, with no narrow peaks in the spectrum. (B) For C2 (gamma), a high correlation results in a narrowband 
gamma power elevation, with no broadband elevation or change in alpha power. (C) For C3 (alpha), a high amplitude 
input results in a narrowband power elevation in the alpha band, with no change in broadband power or narrowband 
gamma power. For each spectrum in each plot, 10 simulated trials were run. The plotted spectra are averaged across 
the 10 trials, and are computed from I(t), the time series after leaky integration of the inputs.  

Gamma	input	(!!).	 Input	!!	consisted	 of	 band	pass	 noise	 (40-60	Hz),	with	 fixed	 amplitude	 on	 all	
trials,	and	with	coherence	across	neurons	that	varied	between	trials.	This	 input	approximates	the	
signals	 giving	 rise	 to	 narrowband	 gamma	 oscillations.	 Across	 different	 conditions,	we	 varied	 the	
correlation	 between	 neurons	 of	!!	rather	 than	 the	 amplitude	 for	 individual	 neurons,	 which	 was	
fixed.	This	corresponds	to	a	slice	in	the	plots	in	Fig	2	such	that	the	variance	axis	is	fixed	at	a	non-
zero	 value.	 The	 motivation	 for	 this	 comes	 from	 empirical	 observations	 that	 large	 gamma	
oscillations	 in	 the	 LFP	 tend	 to	 reflect	 increased	 coherence	 between	 neurons	 [40,41].	 This	 is	
opposite	 to	 the	broadband	 input	(!!),	 for	which	we	varied	the	amplitude	(variance)	 in	 individual	
neurons	across	trials,	rather	than	the	synchrony	between	neurons.	Narrowband	gamma	oscillations	
with	a	peak	between	30	and	80	Hz	can	be	observed	in	the	local	field	potential	[42,43],	as	well	as	in	
the	membrane	potential	of	individual	pyramidal	neurons	[44].	When	we	increase	the	correlation	of	
!!	in	our	simulations,	the	result	is	an	increase	in	the	amplitude	of	the	LFP	in	the	gamma	band	(Fig	
5B),	much	like	narrowband	gamma	signals	observed	in	microelectrode	recordings	[45]	and	human	
ECoG	[35].	

Alpha	input	(!!).	The	alpha	input	consisted	of	inhibitory	oscillations	at	approximately	10	Hz,	with	
fixed	correlation	between	neurons,	and	varying	amplitude	across	conditions.	This	corresponds	to	a	
slice	 in	 the	 plots	 in	Fig	 2	 in	which	 the	ρ-axis	 is	 fixed	 at	 a	 non-zero	 value.	 The	 oscillations	were	
inhibitory,	 i.e.	 the	 mean	 was	 below	 0	 (compare	!!	versus	!!	and	!!	in	 Fig	 4).	 Because	!!	was	
inhibitory,	 it	 resulted	 in	 less	depolarization	(or	hyperpolarization	 in	extreme	cases),	opposite	 the	
effect	 of	!!,	 which	 resulted	 in	 depolarization.	 This	 input	 approximates	 the	 signals	 giving	 rise	 to	
alpha	oscillations	(Fig	5C).	Pyramidal	neurons	in	visual	cortex	have	been	hypothesized	to	receive	
periodic	 inhibition,	 with	 pulses	 arriving	 at	 approximately	 10	 Hz	 [46,47].	 Individual	 neurons	 in	
visual	 cortex	 can	 indeed	 show	 subthreshold	membrane	 oscillations	 at	 frequencies	 around	 10	Hz	
[48].		

2.3	Fitting	the	simulation	parameters	to	ECoG	responses	and	predicting	BOLD	data	
The	 simulations	were	 structured	 to	 approximate	 the	 experimental	 design	 and	 the	 results	 of	 our	
ECoG	experiments.	To	match	the	design	of	our	ECoG	experiments,	a	simulated	experiment	consisted	
of	240	 trials	of	1	 sec	 long	 (30	 repeats	of	8	 conditions).	The	LFP	 time	series	were	 transformed	 to	
power	 spectra,	 which	 were	 averaged	 across	 the	 30	 repeated	 trials	 of	 the	 same	 condition.	 The	
simulation	parameters	–	i.e.,	the	level	of	the	three	inputs,	C1,	C2,	and	C3	–	were	fit	to	the	measured	
ECoG	summary	metrics	(broadband,	gamma	and	alpha)	for	each	of	the	8	conditions	for	a	particular	

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/083840doi: bioRxiv preprint first posted online Oct. 28, 2016; 

http://dx.doi.org/10.1101/083840
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 Neural	Synchrony	and	BOLD	
	

	 14	

electrode	(Fig	6).	To	verify	the	validity	of	this	procedure,	we	asked	whether	the	simulations	using	
the	 fitted	 parameters	 produce	 simulated	 spectra	 which,	 when	 analyzed	 like	 the	 ECoG	 spectra,	
reproduce	the	original	values	of	broadband,	gamma,	and	alpha.	In	other	words,	do	we	close	the	loop	
from	measured	spectral	components	(broadband,	gamma	and	alpha)	to	inferred	input	parameters	
(C1,	C2,	C3)	to	simulated	population	activity,	to	simulated	spectral	components	(broadband,	gamma	
and	alpha)?	The	original	values	are	not	reproduced	exactly	because	the	simulation	are	stochastic,	
but	overall	the	original	broadband,	gamma,	and	alpha	values	are	recovered	with	high	accuracy	(Fig		
S9).			

As	 described	 above,	 the	 fitting	 of	 the	 parameters	 for	 C1,	 C2	 and	 C3	 was	 constrained	 by	 the	
assumptions	that	for	C1,	the	correlation	between	neurons	was	zero	(and	the	amplitude	was	varied	
for	fitting);	 for	C2	 the	amplitude	was	fixed	at	a	non-zero	value	(and	the	correlation	was	varied	for	
fitting);	and	for	C3,	the	correlation	was	fixed	at	a	non-zero	value	(and	the	amplitude	was	varied	for	
fitting).	 Results	 from	 alternative	 models	 with	 different	 constraints	 show	 poorer	 fits,	 and	 are	
described	briefly	below	and	more	extensively	in	the	Supplement.		

	
Fig 6. Parameter fits for simulations. 
(A) A function was fit between the C1 input and the simulated broadband output (black line). Inverting this function 
allows us to take the measured ECoG broadband values (green arrows to dots colored by stimulus condition), and 
convert these into estimates of the C1 input levels (orange arrows). Because the simulations contain noise, the 
predicted broadband need not match the measured broadband exactly; however, the agreement is close, as shown in 
Fig S9. The parameters for C2 and C3 were fit similarly. (B) The C1, C2 and C3 parameters for simulation of a 
responses in a V2 electrode for 9 stimuli (8 contrast patterns plus a blank condition). These parameter fits were made 
using the full ECoG data set (for this electrode), so there are no error bars on the inputs parameters. 
  
Importantly,	the	parameter	fits	did	not	take	into	account	the	measured	BOLD	responses.	Hence	the	
simulations	provided	a	test:	if	the	input	parameters	were	chosen	to	produce	outputs	that	match	the	
measured	ECoG	responses	 (training	data),	does	 the	 simulated	BOLD	signal	accurately	predict	 the	
measured	BOLD	signal	(test	data)?	We	measured	BOLD	responses	in	4	healthy	subjects	to	the	same	
visual	 stimuli	 as	 used	 in	ECoG	 (subjects	 are	different	 from	 the	ECoG	 subjects),	 and	 extracted	 the	
signal	from	regions	of	interest	in	visual	cortex	matched	to	the	previously	recorded	ECoG	electrode	
locations	 (Supplemental	 Fig	 S2	 and	 S3).	 For	 an	 example	 V1	 site,	 the	 predicted	 BOLD	 signal	
accurately	matched	the	measured	BOLD,	with	89%	of	the	variance	in	the	measured	BOLD	explained	
by	the	prediction,	as	quantified	by	R2,	the	coefficient	of	determination	(Fig	7A).	Across	V1	sites,	the	
predicted	BOLD	signal	from	the	simulations	accounted	for	a	median	of	80%	of	the	variance	in	the	
measured	 data	 (Fig	 7C).	 For	 an	 example	 V2	 site,	 the	 predicted	 BOLD	 signal	 also	 matched	 the	
measured	BOLD	signal	(R2	=	0.74,	Fig	7B).	Across	V2/V3	sites	the	simulations	explained	a	median	
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of	40%	of	the	variance	in	the	data.	The	explained	variance	in	V2/V3	is	substantial	but	lower	than	in	
V1.	One	likely	reason	for	the	higher	variance	explained	in	V1	is	that	for	the	particular	stimuli	used	
in	these	experiments	(gratings	and	noise	patterns),	the	BOLD	response	reliability	was	higher	in	V1.	
For	example,	the	median	R2	computed	by	using	half	the	BOLD	data	as	a	predictor	for	the	other	half	
(split	half	by	subjects)	was	86%	for	V1	and	63%	for	V2/V3.	Similarly,	 the	stimulus	evoked	BOLD	
responses	 in	V1	were	 larger	than	in	V2	and	V3,	with	more	stimulus-related	variance	to	explain:	a	
mean	of	1.84%	signal	change	in	V1	versus	1.18%	in	V2	and	0.81%	in	V3	(Supplemental	Fig	S4).	It	
is	 possible	 that	 a	 stimulus	 set	 more	 tailored	 to	 extrastriate	 areas,	 such	 as	 textures	 or	 more	
naturalistic	scenes,	would	have	evoked	more	reliable	responses	in	extrastriate	cortex.	

	

	
Fig 7. Accuracy of predicted BOLD signals from simulated neuronal activity. 
(A) Simulated BOLD (x-axis) versus measured BOLD (y-axis) for a V1 site. Each color corresponds to one stimulus 
condition (red dots, grating patterns; blue dots, noise patterns; black dot, uniform stimulus, or blank). Error bars 
indicate 68% confidence intervals, bootstrapped 100 times over 30 trials per stimulus for simulation and over 
repeated scans for BOLD data. (B) Same as A, but for a V2 site. (C) Accuracy of BOLD predictions for all V1 and 
V2/V3 sites. Each site is indicated by a yellow dot. The orange lines show the medians and the red boxes the 0.25 
and 0.75 quantiles. The thin gray solid lines show the BOLD data-to-data reliability, and the gray dashed lines show 
the accuracy when the BOLD data and trial conditions are shuffled in the training data set. Accuracy is quantified as 
the coefficient of determination after subtracting the mean from the data and the predictions, and dividing each 
variable by its vector length. Because the simulations were fit to ECoG data and tested on BOLD data, the predictions 
are cross-validated, and the coefficient of determination spans −�, 1 . A value of -1 is expected when the data and 
predictions are unrelated and have equal variance, as in the case of the shuffled control analysis. 

For	 each	 of	 the	 22	 simulations,	 the	 three	 input	 parameters	 C1,	 C2,	 and	 C3	 defining	 each	 of	 the	 8	
stimulus	 conditions	were	 fit	 to	produce	 the	LFP	data	 from	 the	 corresponding	ECoG	electrode.	By	
design,	 the	 C1	 (broadband)	 and	 C3	 (alpha)	 inputs	were	 fit	 to	 ECoG	 data	 by	 varying	 the	 level	 per	
neuron,	whereas	C2	was	fit	to	data	by	varying	the	correlation	across	neurons.	In	principle,	for	any	of	
the	 three	 inputs,	 the	 ECoG	 data	 could	 have	 been	 fit	 by	 varying	 either	 the	 level	 per	 neuron	 or	
correlation	 across	 neurons.	 For	 completeness,	 we	 tested	 all	 8	 combinations	 of	 models	
(Supplemental	 Fig	 S7).	 The	 most	 accurate	 model,	 quantified	 as	 the	 R2	 between	 the	 measured	
BOLD	and	the	simulated	BOLD	(median	across	the	sites	in	V1	or	in	V2/V3),	was	the	simulation	type	
used	 in	 the	 main	 text,	 in	 which	 C1	 and	 C3	 varied	 in	 the	 level	 per	 neuron	 and	 C2	 varied	 in	 the	
correlation	across	neurons.	Models	in	which	the	broadband	correlation	rather	than	level	was	used	
to	 fit	 the	ECoG	broadband	power	were	much	 less	accurate.	The	models	 in	which	 the	gamma	LFP	
power	 was	 fit	 by	 modulating	 the	 level	 rather	 than	 the	 correlation	 in	 the	 simulated	 population	
caused	a	small	drop	in	R2.	
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2.4	Relation	between	ECoG	and	BOLD	in	simulation	and	data	
The	previous	 analysis	 showed	 that	when	 simulations	were	 fit	 to	 ECoG	data,	 the	 simulated	BOLD	
response	predicted	the	measured	BOLD	response.	Here	we	used	regression	analysis	to	assess	how	
the	 simulated	 LFP	 predicted	 the	 simulated	 BOLD,	 and	 how	 the	 measured	 LFP	 predicted	 the	
measured	BOLD.		

2.4.1	Examples	of	the	relation	between	the	BOLD	amplitude	and	LFP	features	

We	first	consider	an	example	V1	site	(Fig	8A	–	same	site	plotted	in	Fig	7A).	The	BOLD	amplitude	for	
the	different	stimuli	was	accurately	predicted	by	the	broadband	response	(R2	=	0.85),	but	not	by	the	
narrowband	 gamma	 or	 alpha	 power	 (R2	 =	 -0.06,	 R2	 =	 -0.07,	 respectively).	 Hence,	 in	 V1,	 only	
broadband	power	was	a	good	predictor	of	BOLD	amplitude	(indicated	by	the	black	outlines	in	Fig.	
8).	 Because	 there	 were	 only	 8	 data	 points	 to	 fit	 in	 each	 of	 the	 3	 correlations,	 we	 used	 cross-
validation	 to	 avoid	 overfitting:	 Linear	 regression	 was	 used	 to	 fit	 the	 BOLD	 signal	 to	 the	 ECoG	
measure	in	separate	halves	of	the	data,	and	the	R2	was	computed	from	the	left-out	half	of	each	data	
set.		

	

 

Fig 8.  Accuracy of predicted BOLD signals from ECoG components. 
The correlation between ECoG and BOLD was calculated for a V1 site and a V2 site. The locations of one sample 
electrode in V1 and one in V2 are indicated by the enlarged white discs on the cortical surface for subject 1. (A) In a 
foveal V1 site, the broadband ECoG amplitude accurately predicted the BOLD signal (left). Error bars show 68% 
confidence intervals across bootstraps. Narrowband gamma power (center) and alpha power (right) was uncorrelated 
with BOLD. (B) In a V2 site, the broadband ECoG was weakly correlated with BOLD (left). Narrowband gamma did 
not predict BOLD (middle). Alpha was negatively correlated with BOLD (right). Scatter plots for all other V1 and 
V2/V3 sites are shown in Fig S5. (C-D) Same as A,B, but for simulated neuronal population data from fit to the V1 
and V2 ECoG data. For all panels: data points are the bootstrapped median across 30 trials per stimulus (ECoG) and 
across scans (BOLD). The trend lines are least square fits to the 8 data points plotted. The R2 values are the 
coefficient of determination computed by cross-validation, with a regression fit to half the data and evaluated on the 
other half. The black outlines indicate the regressions that show reliable predictors of the BOLD signal – broadband in 
V1; broadband and alpha in V2/V3. 
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A	different	pattern	was	found	in	the	V2/V3	data.		For	an	example	V2	site	(Fig	8B	–	same	site	plotted	
in	Fig	7B),	the	broadband	power	did	not	predict	the	BOLD	signal	as	accurately	as	it	did	for	the	V1	
site	(R2	=	0.31),	whereas	the	alpha	power	predicted	the	BOLD	signal	more	accurately	than	it	did	for	
the	V1	site	(R2	=	0.59).	Gamma	power	did	not	predict	the	BOLD	signal,	similar	to	the	V1	data.		

For	 the	 simulation	 fit	 to	 the	ECoG	data	 from	 the	 example	V1	 electrode,	 the	 relation	between	 the	
BOLD	 signal	 and	 the	 LFP	 (Fig	 8C)	 was	 similar	 to	 the	 measured	 V1	 data:	 The	 LFP	 broadband	
response	 predicted	 the	 BOLD	 signal	 (R2	 =	 0.89),	 whereas	 the	 power	 of	 narrowband	 gamma	
oscillations	and	alpha	oscillations	did	not	(R2	=	0.01).	In	this	simulation,	similar	to	the	data,	the	LFP	
broadband	 response	 was	 the	 only	 good	 predictor	 of	 the	 BOLD	 signal.	 Hence	 the	 data	 and	 the	
simulation	match	in	that	they	both	show	that	some	features	of	the	LFP	are	good	predictors	of	BOLD	
(broadband)	and	some	are	poor	predictors	(alpha	and	gamma).	

For	 the	 simulation	 fit	 to	 the	ECoG	data	 from	 the	 example	V2	 electrode,	 the	 relation	between	 the	
BOLD	signal	and	the	LFP	(Fig	8D)	was	similar	to	the	measured	V2	data.	First,	the	broadband	LFP	
was	 again	 a	 good	predictor	 of	BOLD,	 and	 gamma	power	was	 again	 a	 poor	predictor.	 Second,	 the	
power	of	alpha	oscillations	was	strongly	negatively	correlated	with	BOLD	(R2	=	0.73).		

In	the	simulations,	the	correlation	between	broadband	and	BOLD	is	higher	for	V1	than	for	V2,	and	
the	correlation	between	alpha	and	BOLD	is	higher	 for	V2	than	for	V1.	These	differences	were	not	
due	to	a	difference	in	the	types	of	inputs	(C1,	C2,	C3),	nor	to	the	way	BOLD	or	LFP	was	derived	from	
the	 population	 activity	 –	 the	 simulation	 algorithm	 and	 the	 analysis	 code	 were	 identical	 for	 all	
simulations.	The	difference	arises	only	from	the	different	parameters	–	that	is,	there	were	different	
mixtures	of	C1,	C2,	and	C3	for	the	V1	and	the	V2	simulations.	This	highlights	the	fact	that	the	identical	
mechanism	converting	neural	activity	to	BOLD	(“neurovascular	coupling”),	modeled	here	as	power	
in	 the	 time	 series	 summed	 across	 neurons	 (Equation	 3),	 can	 produce	 very	 different	 correlations	
between	BOLD	and	features	of	the	LFP,	depending	on	the	neural	activity.		

2.4.2	The	relation	between	the	BOLD	amplitude	and	LFP	features	across	sites	

In	 the	example	V1	site	and	 the	 corresponding	 simulation,	 the	BOLD	signal	was	well	predicted	by	
broadband	increases	(Fig	8B,	Fig	8D).	In	the	example	V2	site	and	the	corresponding	simulation,	the	
BOLD	signal	was	predicted	by	both	broadband	increases	and	alpha	decreases	(Fig	8C,	Fig	8E).	By	
explicitly	 modeling	 both	 the	 population	 response	 and	 the	 population-to-instrument	
transformations,	we	see	that	a	difference	in	the	relation	between	instrument	measures	(BOLD	and	
ECoG)	can	arise	from	a	difference	in	the	population	response,	without	a	difference	in	neurovascular	
coupling.	We	now	ask	(1)	whether	these	effects	are	consistent	across	the	measured	V1	and	V2/V3	
sites,	and	(2)	how	a	multiple	regression	model	using	broadband,	gamma	and	alpha	as	predictors	fits	
the	BOLD	response	for	both	data	and	simulation.			

As	we	argued	in	the	Introduction,	we	believe	there	is	no	single,	general	transfer	function	that	can	
predict	 the	BOLD	signal	 from	 the	LFP.	Yet	a	 regression	model	 linking	 the	 two	measures	can	be	a	
useful	 way	 to	 summarize	 the	 results	 of	 a	 particular	 experiment	 or	 simulation,	 and	 to	 compare	
results	 between	 different	 experiments	 or	 simulations.	 Here,	 we	 fit	 several	 regression	models	 to	
each	 simulation	 and	 to	 the	 data	 (Fig	 9).	 The	 regression	 models	 predicted	 the	 simulated	 or	
measured	BOLD	response	from	either	a	single	LFP	component	(broadband	power,	gamma	power,	
or	alpha	power),	or	from	combinations	of	LFP	components	(each	of	the	pairwise	combinations,	and	
the	3	components	together).	These	regression	models	were	fit	separately	for	each	of	the	9	sites	in	
V1	and	each	of	the	13	sites	 in	V2/V3,	and	for	the	22	corresponding	simulations.	Accuracy	of	each	
model	 was	 assessed	 by	 the	 variance	 explained	 in	 the	 cross-validated	 data	 (R2,	 the	 coefficient	 of	
determination).	With	 a	 cross-validation	 procedure,	 there	 is	 no	 advantage	 in	 accuracy	 for	models	
with	more	 free	 parameters,	 and	 accuracy	 is	 reduced	 rather	 than	 increased	 from	 overfitting.	 The	
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cross-validated	 R2	 was	 compared	 to	 the	 R2	 in	 a	 null	 distribution,	 derived	 from	 shuffling	 the	
assignment	between	data	and	stimulus	conditions.	

 

Fig 9. Explained variance in the BOLD fMRI signal in the simulations and in data.  

(A) Variance in the measured BOLD signal explained by broadband, gamma and alpha changes in the ECoG data. 
The colored box plots show the variance explained by each of the 7 model types: black bar = median, upper and 
lower boxes = quartiles, and error bars = data range excluding outliers (outliers plotted as red pluses). The R2 was 
cross-validated (split between subjects for BOLD and stimulus repetitions for ECoG), to ensure that the R2 can be 
compared between models with different numbers of explanatory variables. Gray dashed lines indicate the noise floor 
(R2 when shuffling the BOLD labels in the training data), and the solid gray lines indicate the data-to-data reliability for 
the BOLD signal. Bottom: The regression coefficients show whether the broadband, gamma, and alpha signals were 
positive or negative predictors of the BOLD signal. A red * in the lower plot indicates whether regression coefficients 
differed significantly from zero by a bootstrap test (p<0.05). (B) Same as A, but for the 13 V2/V3 electrodes. (C) 
Same as A, but for the 9 simulations fitted to V1 data. The R2 was cross-validated (split between even and odd 
stimulus repetitions). D) Same as C, except for the 13 simulations fitted to the V2/V3 data.  
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Data.	The	single	parameter	regression	models	across	V1	electrodes	(Fig	9A)	show	the	same	pattern	
as	the	single	electrode	examples	in	Fig	8:	broadband	alone	was	a	good	predictor	of	BOLD	(median	
cross	validated	R2=0.70	across	9	sites)	while	gamma	and	alpha	alone	were	not	(gamma	R2	=	0.04,	
alpha	R2	=	0.04).	Across	all	 regression	models,	 the	observed	BOLD	signal	was	best	predicted	by	a	
combination	of	broadband	and	alpha	changes	with	an	R2	=	0.78,	close	to	the	data-to-data	reliability	
(R2	 =	 0.82).	 Adding	 gamma	 as	 a	 predictor	 to	 either	 the	 broadband	 only	model	 (model	 2	 versus	
model	1)	or	to	the	combined	broadband	and	alpha	model	(model	7	versus	model	5)	did	not	increase	
model	accuracy,	confirming	that	the	gamma	amplitude	was	not	predictive	of	the	BOLD	signal.		

The	 single	 parameter	 regression	 models	 across	 V2/V3	 sites	 (Fig	 9B)	 show	 that	 alpha	 power	
predicted	 the	BOLD	signal	 (R2	=	0.32,	with	a	negative	Beta	value),	whereas	broadband	alone	was	
only	 slightly	 more	 accurate	 than	 a	 control,	 shuffled	 model,	 and	 gamma	 alone	 had	 no	 predictive	
power.	 As	 in	 V1,	 the	 BOLD	 response	 was	 best	 explained	 by	 a	 regression	 model	 combining	
broadband	and	alpha	(R2	=	0.39;	see	also	Fig	S6),	or	a	model	using	all	three	predictors	(R2	=	0.42).	
Overall,	compared	to	V1,	the	BOLD	signal	in	V2/V3	was	less	accurately	predicted	by	the	regression	
models	based	on	the	electrophysiological	measurements.	As	with	the	case	of	predicting	BOLD	from	
simulated	neuronal	activity,	predicting	BOLD	from	ECoG	measures	is	limited	by	the	reliability	of	the	
stimulus-evoked	BOLD	signal,	which	was	lower	for	V2/V3	than	for	V1	(0.59	versus	0.82%	R2).	

Simulations.	For	the	simulations,	we	expect	broadband	power	to	positively	predict	the	BOLD	signal	
and	 alpha	 power	 to	 negatively	 predict	 the	 BOLD	 signal,	 because	 of	 the	 construction	 of	 the	
simulations:	broadband	and	alpha	power	elevations	were	achieved	by	increasing	the	variance	per	
neuron,	rather	than	correlations	between	neurons;	the	converse	was	true	for	gamma.	Nonetheless,	
solving	 the	 regression	models	 can	be	 informative	because,	 as	 seen	 in	Fig	 8,	 simulations	with	 the	
identical	 input	 types	 and	 the	 identical	 analysis	 can	 lead	 to	 different	 patterns,	 depending	 on	 the	
parameters	(weights)	 in	 the	simulations.	Moreover,	 the	regression	analyses	of	 the	simulated	data	
can	be	compared	against	the	regression	analyses	of	the	measured	data.	

The	results	from	the	regression	model	on	simulated	V1	LFP	and	BOLD	(Fig	9C)	were	qualitatively	
similar	 to	 the	 V1	 data:	 broadband	 alone	was	 a	 good	 predictor	 of	 BOLD	 (median	 cross	 validated	
R2=0.70	across	9	simulations)	while	gamma	and	alpha	alone	were	not	(median	R2	=	0.04	 for	both	
predictors).	For	simulations	fit	to	V2/V3	ECoG	data	(Fig	9D),	alpha	alone	predicted	the	BOLD	signal	
with	moderate	accuracy	(median	R2	=	0.32).		

Similar	to	the	data,	the	BOLD	response	in	the	simulations	fit	to	V1	and	V2/V3	was	well	explained	by	
a	 regression	 model	 combining	 broadband	 and	 alpha	 (R2	 =	 0.78,	 R2	 =	 0.39,	 Fig	 9C	 and	 D.	 The	
regression	 coefficients	 for	 these	 models	 were	 positive	 for	 broadband	 and	 negative	 for	 alpha.	 A	
model	that	incorporated	all	three	LFP	measures	–	broadband,	alpha	and	gamma	–	explained	little	to	
no	additional	 variance	 for	 either	 simulation,	 confirming	our	 earlier	observation	 that	narrowband	
gamma	 power	was	 not	 correlated	with	 BOLD	 amplitude	 in	 simulated	 data.	 The	 generally	 higher	
variance	explained	in	V1	than	in	V2/V3	again	matches	the	higher	BOLD	reliability	 in	V1	for	these	
experiments.		

Across	simulations	and	data	sets,	a	general	pattern	emerges.	The	broadband	signal	was	positively	
predictive	of	BOLD,	and	alpha	power	was	negatively	predictive	of	BOLD.	Narrowband	gamma	had	
no	 consistent	 relation	 with	 BOLD.	 While	 the	 relationships	 between	 broadband	 and	 BOLD	 and	
between	alpha	power	 and	BOLD	were	 consistent	 in	 terms	of	 sign	 (the	 former	positive,	 the	 latter	
negative),	the	level	was	not	always	the	same.	As	we	noted	in	the	example	sites	shown	in	Fig	8,	and	
the	summary	across	sites	in	Fig	9,	the	broadband	power	was	more	strongly	predictive	of	BOLD	in	
V1,	and	alpha	power	was	more	strongly	predictive	 in	V2/V3.	An	examination	of	 responses	 to	 the	
different	 stimulus	 types	clarifies	 the	difference	between	V1	and	V2/V3	 in	 these	data.	Specifically,	
the	 BOLD	 response	 in	 V2/V3	 to	 noise	 patterns	was	 under-predicted	 by	 the	 broadband	 response	
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alone	 (Fig	 S5).	 In	 V2/V3	 alpha	 decreased	 more	 for	 the	 noise	 patterns	 and	 this	 alpha	 decrease	
accounted	 for	 the	BOLD	change	unexplained	by	broadband	 (Fig	 S1).	This	helps	 to	 explain	why	a	
model	 that	 includes	 broadband	 and	 alpha	 is	 much	 more	 accurate	 for	 V2/V3	 than	 a	 model	 that	
includes	only	broadband.	In	contrast,	for	V1	the	BOLD	response	was	well	predicted	by	broadband	
power	 in	most	sites,	with	 little	systematic	prediction	failures,	and	little	room	for	 increased	model	
accuracy	when	adding	predictors	such	as	alpha	power.		

2.4.3	Correlation	between	BOLD	and	LFP	across	all	frequencies		

In	the	previous	section,	we	modeled	the	BOLD	responses	as	a	linear	function	of	three	components	
derived	 from	 the	 LFP.	 These	 features	 –	 broadband	 power,	 narrowband	 gamma	 power,	 and	
narrowband	alpha	power	–	are	summary	metrics	of	 the	power	spectrum.	We	also	tested	how	the	
power	 at	 each	 frequency	 in	 the	 ECoG	 data	 and	 in	 the	 simulated	 LFP	 correlated	 with	 the	 BOLD	
response	(measured	and	simulated,	Fig	10).		

	
Fig 10. The correlation between BOLD and LFP as a function of frequency.  
(A) The correlation between ECoG and BOLD for the V1 data shows a positive correlation between ECoG and BOLD 
for a broad range of frequencies, except those including the alpha changes. Gray lines represent the 9 individual V1 
electrodes, the black line is the average, the red line corresponds to the example sites shown also in Fig 7. (B) In the 
V2/V3 data there was a strong negative correlation between ECoG and BOLD in the alpha range around 10 Hz and a 
positive correlation between ECoG and BOLD for a broad range of frequencies. Gray lines represent the 13 individual 
V2/V3 electrodes, the black line is the average, the red line corresponds to the example electrode shown also in Fig 
7. Note that neither the V1 electrodes nor the V2/V3 electrodes show a peak at the gamma frequency. (C) The 
correlation between LFP and BOLD for simulations fit to V1 shows that there is a positive correlation across most 
frequencies, except those including the alpha and gamma changes. (D) The correlation between LFP and BOLD for 
the simulations fit to V2/V3 shows that there is a strong negative correlation around 10 Hz, and a positive correlation 
across a broad range of frequencies.  

Data.	We	 calculated	ECoG	power	 for	 each	 frequency	 from	1	 to	200	Hz	 and	 correlated	 the	power	
changes	 from	 baseline	 with	 BOLD	 changes	 from	 baseline.	 In	 V1,	 ECoG	 responses	 across	 all	
frequencies	 except	 the	 alpha	 band	were	 positively	 correlated	with	 the	 BOLD	 response	 (Fig	 10),	
consistent	 with	 the	 regression	 analyses	 of	 the	 summary	metrics,	 showing	 that	 broadband	 ECoG	
power	was	the	best	predictor	of	the	BOLD	signal.			

The	pattern	of	correlation	between	ECoG	power	and	BOLD	in	V2/V3	was	similar	to	that	found	in	V1,	
although	 the	 overall	 level	 of	 correlation	 was	 lower	 (Fig	 10).	 There	 were	 positive	 correlations	
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between	ECoG	and	BOLD	extending	across	most	frequencies	that	were	weaker	than	in	V1,	and	there	
was	a	negative	correlation	for	most	sites	in	the	alpha	band.		

Simulation.	 The	 correlation	 between	 simulated	 BOLD	 and	 ECoG	 power	 in	 V1	 was	 qualitatively	
similar	to	that	found	in	the	data.	In	simulations	fit	to	V1	ECoG	data,	the	LFP	correlated	well	with	the	
BOLD	signal	across	all	frequencies	except	those	in	the	alpha	band	(8-15	Hz)	and	below,	and	those	in	
the	gamma	band	(40-60Hz).		

In	 simulations	 fit	 to	 V2/V3	 ECoG	 data,	 the	 pattern	 was	 similar,	 except	 that	 the	 correlation	 was	
negative	in	the	alpha	band	rather	than	0,	and	weaker	but	still	positive	in	the	rest	of	the	spectrum.	
These	patterns	match	the	summary	metrics	of	alpha,	gamma,	and	broadband	shown	in	Fig	9.		

Site	to	site	differences.	 There	were	some	differences	between	V1	sites.	For	example,	in	two	sites,	the	
correlation	 across	 frequencies	 dipped	 in	 the	 gamma	 band	 (30-80Hz),	 similar	 to	 simulated	 data.	
These	are	also	the	two	sites	that	showed	the	largest	amplitude	gamma	responses	(sites	8	and	9	in	
Fig	 S5).	 In	 other	 words,	 when	 cortical	 sites	 showed	 large	 gamma	 signals,	 these	 signals	 were	
uncorrelated	with	BOLD.	The	fact	that	in	7	V1	sites	there	was	a	positive	correlation	between	BOLD	
and	 LFP	 power	 spanning	 30-80	 Hz	 might	 seem	 inconsistent	 with	 our	 earlier	 observation	 that	
narrowband	 gamma	power	was	not	 predictive	 of	 the	BOLD	 signal	 in	V1	 sites	 (Fig	 8	 and	 Fig	 9).	
However,	 in	 this	analysis	 the	narrowband	and	broadband	power	are	not	modeled	separately	and	
the	positive	correlation	between	power	at	30-80	Hz	in	Fig	10	thus	likely	suggests	that	broadband	
power	extends	into	this	band,	since	broadband	changes	can	extend	across	all	 frequencies	[11,37].	
Therefore,	 if	 there	 is	 little	 to	 no	 narrowband	 response,	 we	 would	 expect	 a	 positive	 correlation	
between	BOLD	and	ECoG	throughout	all	frequencies.	

There	were	some	site-to-site	differences	in	the	correlation	between	alpha	and	BOLD.	For	example,	
some	 sites	 showed	 a	 positive	 correlation	 with	 BOLD	 in	 the	 alpha	 range,	 and	 others	 showed	 a	
negative	 correlation	 (Fig	 10A	 and	 B).	 These	 site	 to	 site	 differences	 depend	 on	 the	 range	 of	
responses	evoked	by	stimuli.	For	example,	for	electrodes	in	which	stimuli	evoked	a	large	of	power	
changes	in	the	alpha	band,	alpha	was	more	strongly	correlated	with	BOLD.	Similarly,	for	electrodes	
in	 which	 stimuli	 evoked	 a	 large	 range	 of	 broadband	 responses,	 broadband	 was	 more	 highly	
correlated	with	BOLD	(Fig	S8).	This	pattern	did	not	hold	for	narrowband	gamma	power	changes.				

3.	Discussion	
This	study	investigated	the	relationship	between	electrophysiological	and	BOLD	measurements	in	
human	visual	cortex.	Our	modeling	framework	decomposed	the	signals	into	two	stages,	a	first	stage	
in	 which	we	 simulated	 the	 neuronal	 population	 responses	 (dendritic	 time	 series),	 and	 a	 second	
stage	in	which	we	modeled	the	transfer	of	the	neuronal	time	series	to	the	BOLD	signal	and	the	field	
potential.	 This	 approach	 differs	 from	 the	 direct	 comparison	 of	 electrophysiological	 signals	 and	
BOLD.	The	explicit	 separation	 into	 stages	 clarified	both	a	 similarity	and	a	difference	between	 the	
BOLD	 amplitude	 and	 the	 field	 potential	 power:	 the	 two	 can	 be	 approximated	 as	 the	 same	
operations	on	the	neuronal	population	activity,	but	applied	in	a	different	order.	Specifically,	within	
a	 brief	window,	we	modeled	 the	 BOLD	 amplitude	 as	 the	 sum	of	 the	 power	 in	 the	 neuronal	 time	
series,	and	the	field	potential	as	the	power	of	the	sum	of	the	neuronal	time	series.	Because	the	order	
of	 operations	 differs,	 the	 two	 signals	 differ,	 and	 each	 is	 blind	 to	 particular	 distinctions	 in	 the	
neuronal	 activity.	 For	 example,	 the	 BOLD	 signal	 (according	 to	 our	 model)	 does	 not	 distinguish	
between	 synchronous	 and	 asynchronous	 neural	 signals	 with	 the	 same	 total	 level	 of	 activity.	 In	
contrast,	the	field	potential	does	not	distinguish	counterphase	responses	from	no	response.	Even	if	
one	knew	the	exact	mechanism	of	neurovascular	coupling	and	the	precise	antenna	 function	of	an	
electrode,	 one	 still	 could	 not	 predict	 the	 relationship	 between	 the	 BOLD	 signal	 and	 the	 field	
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potential	 without	 specifying	 the	 neuronal	 population	 activity	 that	 caused	 both.	 Hence	 the	
relationship	between	the	 two	types	of	signals	 is	not	 fixed,	but	rather	depends	on	the	structure	of	
the	underlying	responses	of	the	neuronal	population.		

Although	we	do	not	have	access	to	the	complete	set	of	individual	neuronal	responses	in	any	of	our	
experiments	 in	 visual	 cortex,	 we	 approximated	 the	 responses	 by	 specifying	 the	 type	 of	 signals	
common	 to	 visual	 cortex.	 We	 therefore	 limited	 the	 space	 of	 neuronal	 population	 responses	 by	
modeling	the	activity	as	arising	from	three	types	of	signals,	enabling	us	to	compute	the	complete	set	
of	 field	 potentials	 and	 BOLD	 responses	 to	 a	 variety	 of	 conditions.	 Finally,	 we	 compared	 the	
simulated	patterns	of	BOLD	and	 field	potential	 responses	 to	 the	actual	 responses	we	observed	 in	
data	from	human	subjects.	These	patterns	are	discussed	and	interpreted	below.		

3.1	Changes	in	broadband	power	predict	BOLD	
Many	studies	have	 reported	correlations	between	BOLD	and	power	 in	 the	gamma	band	LFP	 (30-
130	Hz)	(review	for	human	studies:	[49]).	Yet	changes	in	gamma	band	power	do	not	reflect	a	single	
biological	 mechanism.	 For	 example,	 several	 recent	 studies	 have	 emphasized	 that	 LFP	 power	
changes	 in	 the	 gamma	 band	 reflect	 multiple	 distinct	 neural	 sources,	 including	 narrowband	
oscillations	 and	 broadband	 power	 shifts,	 with	 very	 different	 stimulus	 selectivity	 and	 biological	
origins	[35,50,51].		

Broadband	 changes	 have	 been	 proposed	 to	 reflect,	 approximately,	 the	 total	 level	 of	 Poisson	
distributed	spiking	(or	spike	arrivals)	 in	a	 local	patch	of	cortex	 [37].	 In	contrast,	 the	narrowband	
gamma	 response	 is	 caused	 by	 neural	 activity	with	 a	 high	 level	 of	 cell-to-cell	 synchrony	 [52]	 and	
likely	depends	on	specialized	circuitry	[53].	While	the	two	responses	are	sometimes	distinguished	
as	‘high	gamma’	(referring	to	broadband	signals),	and	‘low	gamma’	(referring	to	oscillatory	signals),	
this	distinction	 is	not	general.	Broadband	signals	 can	extend	 into	 low	 frequencies	 [11,54]	 so	 that	
the	two	signals	can	overlap	in	frequency	bands.	Hence	separating	gamma	band	field	potentials	into	
an	 oscillatory	 component	 and	 a	 broadband	 (non-oscillatory)	 component	 is	 not	 reliably	
accomplished	by	binning	the	signals	into	two	temporal	frequency	bands,	one	low	and	one	high,	but	
rather	requires	a	model-based	analysis,	such	as	fitting	the	spectrum	as	the	sum	of	a	baseline	power	
law	 (to	 capture	 the	 broadband	 component)	 and	 a	 log-Gaussian	 bump	 (to	 capture	 the	 oscillatory	
component)	[35].		

There	is	strong	experimental	support	for	the	idea	that	increases	in	broadband	LFP	power	primarily	
reflect	 increases	 in	 asynchronous	 neural	 activity	 rather	 than	 increases	 in	 coherence.	 First,	
experiments	 have	 shown	 that	 broadband	 power	 is	 correlated	 with	 multiunit	 spiking	 activity	
[51,55].	 Second,	 unlike	 the	 case	 of	 narrowband	 gamma	 LFP,	 changes	 in	 broadband	 LFP	 are	 not	
accompanied	by	 changes	 in	broadband	 spike-field	 coupling	 ([40],	 their	 Fig	1A-B).	 The	possibility	
that	neuronal	synchrony	sometimes	affects	broadband	signals	cannot	be	ruled	out,	for	example	as	
shown	in	cases	of	pharmacological	manipulations	 in	nonhuman	primate	[56].	 In	such	cases,	 there	
would	not	be	a	simple	relationship	between	broadband	power	and	BOLD.	

The	 prior	 literature	 has	 not	 shown	 definitively	whether	 broadband	 LFP,	 narrowband	 gamma,	 or	
both	predict	the	BOLD	signal.	The	first	study	that	directly	compared	simultaneously	recorded	BOLD	
and	electrophysiology	showed	that	both	LFP	power	in	the	gamma	frequency	range	(40-130	Hz)	and	
multi	unit	 spiking	activity	 (MUA)	predicted	 the	BOLD	signal	 [16],	 and	 further,	 that	when	 the	LFP	
power	diverged	from	MUA,	the	gamma	band	LFP	predicted	the	BOLD	signal	more	accurately	than	
did	 spiking.	 This	 study	however	did	not	 separately	 test	whether	 a	 narrowband	 (oscillatory)	 or	 a	
broadband	(non-oscillatory)	component	of	the	LFP	better	predicted	the	BOLD	response.		

Other	 studies,	 too,	 have	 shown	 a	 variety	 of	 patterns	when	 correlating	 LFP	power	 changes	 in	 the	
gamma	band	with	BOLD.	Some	reported	that	BOLD	amplitude	correlates	with	narrowband	gamma	
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activity	 [13],	while	others	 showed	 that	BOLD	correlates	with	broadband	changes	 [11],	 and	many	
did	 not	 distinguish	 narrowband	 from	 broadband	 power	 in	 the	 gamma	 band	 [57].	 Simultaneous	
recordings	of	hemodynamic	and	neuronal	activity	 in	macaque	V1	showed	that	BOLD	signals	 from	
intrinsic	optical	images	can	occur	in	the	absence	of	gamma	band	LFP	changes	[58],	and	that	in	some	
circumstances,	multiunit	activity	predicts	the	BOLD	signal	more	accurately	than	gamma	band	LFP	
[24,59].		

Here	 we	 separately	 quantified	 the	 broadband	 power	 (spanning	 at	 least	 50-150	 Hz)	 and	
narrowband	 gamma	 power.	 We	 found	 that	 the	 amplitude	 of	 broadband	 changes	 accurately	
predicted	the	BOLD	signal	in	V1.	The	empirical	results	and	the	models	help	resolve	the	question	of	
why	 ‘high	gamma’	has	been	shown	to	correlate	with	BOLD,	and	 ‘low	gamma’	sometimes	does	not	
[24].	 The	 likely	 reason	 is	 unrelated	 to	 the	 difference	 in	 frequency	 range,	 nor	 to	 the	 size	 of	 the	
spectral	perturbation	in	the	local	field	potential.	In	fact,	the	elevation	broadband	power	is	relatively	
small	 (2	 or	 3	 fold)	 compared	 to	 the	 elevation	 in	 power	 often	 observed	 in	 narrowband	 gamma	
oscillations	 (10	 x	 or	more)[35].	 Instead	 “High	 gamma”	 is	 predictive	 of	 the	 BOLD	 signal	 in	many	
cases	 not	 because	 of	 the	 specific	 frequency	 range,	 but	 because	 this	 signal	 captures	 the	 level	 of	
asynchronous	 neuronal	 response;	 this	 signal	 happens	 to	 be	 most	 clearly	 visible	 in	 the	 high	
frequency	range	(>100	Hz)	where	it	is	not	masked	by	rhythmic	lower	frequency	responses.	Hence	
the	distinction	in	predicting	the	BOLD	response	is	not	about	“high”	versus	“low”	gamma,	but	rather	
synchronous	 versus	 asynchronous	 responses,	 and	 the	 broadband	 signal,	 sometimes	 labeled	 high	
gamma,	 maps	 onto	 the	 first	 term	 on	 the	 right	 hand	 side	 of	 Equation	 4,	 the	 portion	 of	 the	 field	
potential	measurement	which	sums	the	energy	demand	of	each	neuron.	

Our	 model	 fits	 and	 data	 support	 this	 view.	 When	 we	 captured	 the	 stimulus-related	 broadband	
response	by	simulating	a	change	 in	broadband	coherence	across	neurons	rather	 than	a	change	 in	
the	level	of	response	in	each	neuron,	our	predicted	BOLD	response	was	highly	inaccurate	(Fig	S7).	

3.2	Changes	in	narrowband	gamma	power	do	not	predict	BOLD	
In	contrast,	we	propose	that	 ‘low	gamma’	often	does	not	predict	the	BOLD	response	because	 ‘low	
gamma’	reflects	narrowband	oscillatory	processes,	which	 largely	arise	 from	a	change	 in	neuronal	
synchrony	 across	 the	 population	 rather	 than	 a	 change	 in	 the	 response	 level	 per	 neuron.	 This	
corresponds	 to	 the	 second	 term	 in	 the	 right	 hand	 side	 of	 Equation	 4,	 the	 portion	 of	 the	 field	
potential	measurement	which	reflects	the	cross-power	arising	from	currents	 in	different	neurons,	
and	which	in	our	model	is	independent	of	the	signals	giving	rise	to	the	BOLD	signal.		

Our	results	and	model	do	not	argue	that	narrowband	gamma	oscillations	will	never	be	predictive	of	
the	BOLD	signal.	If	in	a	particular	experiment	narrowband	gamma	oscillations	were	to	co-vary	with	
broadband	increases,	we	would	expect	both	signals	to	correlate	with	BOLD.	This	might	occur	in	an	
experiment	 with	 gratings	 of	 different	 contrast;	 with	 increasing	 contrast	 narrowband	 gamma	
responses,	 broadband	 responses,	 and	 BOLD	 responses	 all	 increase	 [21,60]	 and	 all	 3	 measures	
would	 correlate	 across	 stimuli.	 In	 such	 an	 experiment,	 if	 narrowband	 gamma	 oscillations	 had	 a	
higher	signal	 to	noise	 ratio	 than	 the	broadband	response,	 then	 the	oscillatory	signal	would	 likely	
show	 a	 higher	 correlation	 with	 BOLD.	 In	 contrast,	 when	 the	 choice	 of	 stimulus	 or	 task	 can	
independently	modulate	broadband	power	and	gamma	oscillations	so	 that	 the	 two	LFP	measures	
are	 not	 correlated,	 as	 in	 the	 experiments	 presented	 here	 and	 previously	 [35],	 then	 gamma	
oscillations	will	not	strongly	correlate	with	BOLD.			

Our	simulation	and	empirical	results	are	consistent	with	studies	which	varied	chromatic	contrast	
and	 spatial	 frequency,	 while	 measuring	 MEG	 and	 BOLD.	 These	 studies	 found	 that	 BOLD	 and	
narrowband	 gamma	 activity	 did	 not	 match	 in	 stimulus	 specificity	 [18,19].	 It	 is	 likely	 that	 these	
stimulus	 manipulations,	 like	 ours,	 independently	 modulated	 narrowband	 gamma	 power	 and	
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broadband	 power,	 although	 the	 studies	 did	 not	 quantify	 broadband	 fields,	 which	 are	 more	
challenging	 to	 measure	 with	 MEG	 than	 with	 ECoG	 [61].	 We	 speculate	 that	 broadband	 fields	
spanning	the	gamma	range	would	have	shown	a	higher	correlation	with	BOLD.		

3.3	Neuronal	synchrony	and	the	BOLD	signal	
In	our	model,	the	LFP	measures	are	highly	sensitive	to	neuronal	synchrony,	whereas	BOLD	is	not.	In	
our	simulations,	increases	in	neuronal	synchrony	drove	narrowband	gamma	oscillations	in	the	field	
potential.	There	are	other	 cases	of	population	activity	with	a	high	degree	of	neuronal	 synchrony.	
One	example	is	the	steady	state	evoked	potential	associated	with	a	periodic	stimulus	[first	reported	
by	62,reviewed	by	63].	Previous	studies	have	described	discrepancies	between	evoked	potentials	
and	 the	BOLD	signal,	 such	as	 in	 the	case	of	spatial	 summation	[11],	directional	motion	selectivity	
[7,8]	 and	 spatial	 attention	 [9,10].	 Our	 modeling	 framework	 suggests	 that	 the	 neural	 sources	
generating	 the	 steady	 state	 potential	 (synchronous	 neural	 activity)	 are	 likely	 to	 be	 only	 weakly	
related	 to	 the	 BOLD	 signal	 (depending	 largely	 on	 asynchronous	 signals),	 as	 these	 sources	 will	
primarily	affect	the	second	term	on	the	right	hand	side	of	Equation	4	(cross-power).	This	does	not	
imply	 that	 the	 two	measures	 are	 always	 or	 even	 usually	 discrepant;	 the	BOLD	 signal	 and	 steady	
state	potentials	 are	 likely	 to	 correlate	 any	 time	 that	 the	 steady	 state	 signals	 correlate	with	other	
measures	of	neural	activity.	When	measures	do	dissociate,	we	do	not	conclude	that	one	measure	is	
more	 accurate;	 instead,	 the	 measures	 offer	 complementary	 views	 of	 the	 population	 activity,	
emphasizing	the	degree	of	synchrony	or	the	average	level	of	the	response.	An	intriguing	question	is	
how	each	of	the	two	signals	contributes	to	perception	and	behavior.	

Neural	synchrony	can	also	emerge	without	being	time-locked	to	the	stimulus,	often	called	‘induced	
synchrony’	or	 ‘induced	oscillations’	 [64].	 In	our	simulation,	we	assumed	that	narrowband	gamma	
LFP	changes	were	induced	by	increases	in	synchrony	between	neurons,	and	not	by	changes	in	the	
level	of	gamma	power	within	the	individual	neurons.	In	contrast,	we	assumed	that	broadband	LFP	
increases	 were	 induced	 by	 increased	 broadband	 activity	 in	 individual	 neurons,	 and	 not	 by	
increased	 broadband	 coherence	 between	neurons.	(In	 Equation	 4,	 a	 change	 in	 the	 left	 hand	 side,	
LFP	power	in	the	gamma	band,	can	be	produced	by	a	change	in	either	the	first	or	second	term	on	
the	 right).	This	explains	why,	 in	our	 simulation,	 the	broadband	power	was	correlated	with	BOLD	
whereas	the	LFP	gamma	power	was	not,	 findings	that	were	also	confirmed	by	the	data.	Were	our	
assumptions	justified?	

In	principle,	an	increase	in	narrowband	gamma	power	in	the	LFP	could	arise	because	the	neurons	
synchronize	 in	 the	 gamma	 band,	 or	 because	 ongoing	 gamma	 oscillations	 within	 each	 neuron	
increase	in	amplitude,	independent	of	coordination	between	neurons.	There	is	strong	experimental	
support	 for	 the	 former.	 Experiments	which	measure	both	 intracellular	membrane	potential	 from	
single	neurons	and	the	extracellular	LFP	show	that	when	there	 is	an	 increase	 in	narrowband	LFP	
gamma	power,	 the	 gamma	power	 from	 individual	neurons	becomes	more	 coherent	with	 the	LFP	
[44].	Moreover,	the	coherence	between	local	spiking	and	the	LFP	also	increases	in	the	gamma	band	
when	LFP	gamma	power	 increases	 [40].	These	 results	 are	 consistent	with	our	assumption	 that	 a	
significant	part	of	the	increase	in	gamma	LFP	power	arises	from	a	change	in	population	coherence.	
To	 our	 knowledge,	 it	 is	 not	 certain	 whether	 there	 is	 also	 some	 increase	 in	 the	 level	 of	 gamma	
signals	 within	 individual	 neurons	 when	 the	 narrowband	 gamma	 band	 LFP	 power	 changes.	
However,	since	we	can	attribute	a	large	part	of	the	change	in	gamma	LFP	to	a	change	in	coherence,	
we	infer	that	we	can	only	attribute,	at	most,	a	small	part	of	the	change	in	gamma	LFP	to	the	level	of	
gamma	power	within	neurons.		

In	our	simulation,	we	made	 two	simple	but	extreme	assumptions.	First,	we	assumed	 that	gamma	
oscillations	 occur	 with	 no	 change	 in	 the	 total	 level	 of	 neural	 activity,	 and	 hence	 no	 change	 in	
metabolic	demand	or	BOLD.	Second,	we	assumed	that	broadband	responses	occur	with	no	change	
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in	 neural	 synchrony.	 While	 these	 assumptions	 are	 likely	 incorrect	 at	 the	 limit,	 the	 simulations	
nonetheless	 captured	 the	 pattern	 of	 ECoG	 and	 fMRI	 results	 obtained	 in	 our	 datasets.	 Alternative	
models	 in	which	 the	 broadband	 response	was	 caused	 by	 a	 change	 in	 synchrony	were	much	 less	
accurate	(Fig	 S7).	Models	in	which	gamma	responses	were	caused	by	a	change	in	level	were	only	
slightly	less	accurate,	and	cannot	be	ruled	out	entirely	(Fig	S7).	However	the	regression	models	fit	
to	our	data	 (Fig	 9)	 show	 that	 the	power	of	narrowband	gamma	oscillations	does	not	predict	 the	
BOLD	response.	Hence	 the	most	parsimonious	explanation	 is	 that	 these	 responses	 in	 the	LFP	are	
caused	in	large	part	by	changes	in	synchrony.	

3.4	DC	offsets	and	the	BOLD	signal	
Both	 our	 measurements	 and	 our	 simulations	 showed	 that	 broadband	 electrophysiological	
responses	 were	 related	 to,	 but	 did	 not	 fully	 account	 for,	 the	 BOLD	 signal.	 This	 was	 especially	
evident	 in	 Simulation	 2	 and	 extrastriate	 data	 (V2/V3).	 In	 these	 cases,	 the	 amplitude	 of	 low	
frequency	 oscillations	 (8-15	Hz)	was	 negatively	 correlated	with	 the	BOLD	 signal,	 independent	 of	
broadband	 signals.	Numerous	previous	 studies	have	 reported	 that	 low	 frequency	oscillations	 are	
anti-correlated	with	BOLD,	including	measurements	in	motor,	visual	and	language	areas	[20-22,65-
67].	This	result	may	appear	to	conflict	with	the	prior	discussion,	since	we	argued	that	oscillations	
(to	 the	 degree	 that	 they	 reflect	 neuronal	 synchrony)	 should	 have	 little	 to	 no	 effect	 on	metabolic	
demand	 or	 the	 BOLD	 signal.	 It	 is	 therefore	 important	 to	 ask	 why	 low	 frequency	 oscillations	
sometimes	correlate	with	the	BOLD	signal,	both	in	data	and	in	simulation.	

One	explanation	 is	 that	alpha	oscillations,	or	a	mechanism	which	generates	the	oscillations,	affect	
the	BOLD	signal	indirectly,	by	inhibiting	cortical	activity.		According	to	this	explanation,	an	increase	
in	alpha	power	results	in	a	decrease	in	local	spiking	activity	in	turn	reducing	metabolic	demand	and	
the	BOLD	signal	[68].	Alpha	oscillations	may	indeed	co-occur	with	reduced	cortical	excitation	[69].	
However,	 if	 this	 coupling	 between	 alpha	 power	 and	 spiking	 were	 the	 only	 explanation	 for	 the	
relationship	between	alpha	power	and	BOLD,	 then	a	more	direct	measure	of	neuronal	excitation,	
such	 as	broadband	or	multiunit	 activity,	would	 adequately	predict	 the	BOLD	 signal;	 alpha	power	
would	negatively	correlate	with	the	BOLD	signal,	but	would	provide	no	additional	predictive	power.	
Our	data	and	model	do	not	support	this	explanation,	as	we	find	that	for	most	cortical	sites,	the	most	
accurate	predictor	of	 the	BOLD	signal	 is	a	combined	model	 including	both	the	amplitude	of	alpha	
oscillations	and	broadband	power.		

We	therefore	propose	that	in	addition	to	the	indirect	effect	of	modulating	cortical	excitability,	alpha	
oscillations	are	also	accompanied	by	a	DC	shift	 in	membrane	potential,	making	it	 less	depolarized	
(i.e.,	closer	to	the	equilibrium	potential),	and	this	shift	reduces	metabolic	demand.	Indirect	evidence	
for	 a	DC	 shift	 comes	 from	MEG	 and	ECoG	 studies	 [46,47,70],	which	 refer	 to	 alpha	 oscillations	 as	
being	asymmetrical	(i.e.,	they	are	not	centered	at	0	–	there	is	a	DC	shift).	This	can	be	explained	by	a	
simple	 process:	 if	 alpha	 oscillations	 reflect	 periodic	 inhibitory	 pulses,	 then	 on	 average	 they	 will	
cause	a	hyperpolarization	(or	less	depolarization).	If	the	neuron	was	slightly	depolarized	before	the	
inhibitory	alpha	pulses,	 then	 the	pulses	would	push	 the	neuron	 toward	equilibrium,	 and	hence	a	
lower	 energy	 state.	 In	 this	 view,	 large	 alpha	oscillations	 reflect	 larger	 inhibitory	pulses,	 reducing	
depolarization.	We	suggest	that	this	reduced	depolarization	affects	metabolic	demand	in	two	ways:	
by	 reducing	 spiking	 (as	 discussed	 above),	 and	 by	maintaining	 a	 less	 depolarized	 state,	 reducing	
metabolic	 demand.	 In	 our	 model,	 the	 contribution	 to	 the	 BOLD	 signal	 from	 each	 neuron	 is	 the	
power	in	the	time	series	(Equation	3),	and	the	mean	contributes	to	power.	The	idea	that	a	DC	shift	
in	 the	 membrane	 potential	 affects	 metabolic	 demand	 (in	 addition	 to	 altering	 excitability)	 is	
consistent	 with	 the	 observation	 that	 slowly	 changing	 currents	 (<0.5	 Hz)	 correlate	 with	 BOLD	
fluctuations	 [12,71].	 Moreover,	 if	 alpha	 oscillations	 are	 associated	 with	 a	 DC	 shift	 in	 membrane	
potential,	 this	would	explain	why	cortical	excitability	depends	on	 the	phase	of	 the	alpha	cycle:	at	
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one	phase	the	membrane	potential	is	more	depolarized,	and	hence	cortex	is	more	excitable,	and	in	
the	opposite	phase	cortex	is	more	hyperpolarized,	and	hence	less	excitable.	This	is	consistent	with	
the	observations	 that	 the	 threshold	 for	eliciting	a	phosphene	with	TMS	changes	with	alpha	phase	
[72,73]	 and	 that	 the	 alpha	 phase	 at	 the	 time	 of	 stimulus	 presentation	 influences	 the	 size	 of	 the	
BOLD	response	in	visual	cortex	[74].	

Inhibition	takes	two	neurons	–	one	to	inhibit	and	one	to	be	inhibited.	In	our	simulations,	the	alpha	
oscillations	 (C3)	 were	 associated	 with	 inhibitory	 fluctuations	 in	 the	 membrane	 potential	 (mean	
below	0),	which	in	turn	was	associated	with	decreases	in	BOLD.	It	 is	 important	to	note	that	these	
fluctuations	 are	meant	 to	 capture	 the	 effect	 of	 local	 inhibition	 on	 the	 post-synaptic	 neurons	 (the	
neurons	 being	 inhibited).	 	The	 inhibitory	 neurons	 themselves	 are	 pre-synaptic,	 and	 the	 action	 of	
inhibiting	 other	 neurons	 is	 presumably	 an	 active	 process	 that	 consumes	 energy.	 Therefore	
inhibition	is	expected	to	increase	energy	demand	in	some	neurons	(the	pre-synaptic	neurons)	and	
decrease	 energy	 demand	 in	 other	 neurons	 (post-synaptic	 neurons).	 We	 did	 not	 model	 the	
inhibitory	neurons	explicitly;	however,	 the	neural	activity	associated	with	active	 inhibition	would	
be	 expected	 to	 contribute	 to	 the	measured	 broadband	 signal	 in	 the	 ECoG	 data,	 and	 is	 implicitly	
included	in	the	broadband	inputs	in	our	simulations	(C1).	More	complex	models	(see	paragraph	3.6)	
in	 which	 the	 circuitry	 of	 excitatory	 and	 inhibitory	 neurons	 is	 explicitly	 represented	 (such	 as	
[60,75,76]),	may	provide	insight	into	how	the	balance	between	excitation	and	inhibition	influences	
the	field	potential	and	the	BOLD	signal.	

3.5	 A	 single	 modeling	 framework	 accounts	 for	 patterns	 of	 LFP/BOLD	 correlations	
across	sites	
We	 found	 that	 the	 relationship	 between	 the	 BOLD	 signal	 and	 features	 of	 the	 ECoG	 data	 differed	
across	cortical	areas.	For	example,	broadband	changes	in	ECoG	responses	explained	more	variance	
in	the	BOLD	data	in	V1	than	in	V2/V3.	Conversely,	low	frequency	power	decreases	(alpha,	8-13Hz)	
explained	more	 variance	 in	 the	BOLD	 signal	 in	V2/V3	 than	 in	V1.	 In	 the	 absence	 of	 a	model,	we	
might	 have	 interpreted	 the	 results	 as	 evidence	 that	 neurovascular	 coupling	 differs	 across	 sites.	
Many	 previous	 studies	 have	 reported	 differences	 in	 the	 relation	 between	 LFP	 and	 BOLD	 as	 a	
function	 of	 site	 or	 condition,	 for	 example	 between	 cortical	 and	 subcortical	 locations	 [77],	 across	
cortical	regions	[78,79],	between	cortical	layers	[80],	and	as	a	function	of	medication	[81].	Here,	we	
showed	 that	 a	 difference	 in	 the	 relationship	between	LFP	 and	BOLD	need	not	 arise	 because	 of	 a	
difference	 in	 neurovascular	 coupling.	 In	 our	 results,	 Simulations	 1	 and	 2,	 like	 V1	 compared	 to	
extrastriate	areas,	showed	differences	in	the	relationship	between	LFP	and	BOLD,	yet	we	used	the	
identical	model	of	neurovascular	coupling	in	all	simulations.	The	systematic	differences	in	the	two	
simulations	 arose	 because	 of	 differences	 in	 the	 neuronal	 population	 activity,	 not	 because	 of	
differences	 in	 neurovascular	 coupling.	 While	 our	 results	 do	 not	 exclude	 the	 possibility	 of	
differences	in	neurovascular	coupling	across	locations	or	states	they	do	caution	against	interpreting	
differences	 in	 the	 relationship	 between	 field	 potentials	 and	BOLD	 as	 evidence	 for	 a	 difference	 in	
neurovascular	coupling,	since	they	show	that	a	single	model	can	account	for	a	variety	of	patterns.	
More	generally,	 the	V1	versus	V2/V3	discrepancies	bolster	 the	argument	 that	one	cannot	predict	
the	 exact	 relationship	 between	 BOLD	 and	 field	 potentials	 without	 also	 specifying	 the	 neuronal	
population	activity.		

3.6	The	role	of	a	simple	model	in	understanding	the	relation	between	BOLD	and	LFP	
A	 complete	 description	 of	 the	 biophysical	 processes	 giving	 rise	 to	 the	 BOLD	 signal	 and	 the	 field	
potential	 is	 far	 beyond	 the	 scope	 of	 this	 paper,	 and	 is	 likely	 premature	 given	 the	 enormous	
complexity	 in	 the	 nervous	 system,	 the	 vascular	 system,	 and	 the	 coupling	 mechanisms	 between	
them.	Instead,	the	purpose	of	our	modeling	framework	was	to	first	begin	with	a	general	principle,	
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namely	 that	 BOLD	 and	 field	 potentials	 sum	 neural	 activity	 according	 to	 a	 different	 sequence	 of	
operations;	 second,	 to	 instantiate	 this	 principle	 in	 simple	 mathematical	 rules;	 third,	 to	 combine	
these	rules	with	a	minimal	model	of	neural	population	activity;	and	 finally,	 to	ask	 to	what	extent	
such	 a	 model	 can	 account	 for	 the	 patterns	 in	 our	 data.	 Our	 model	 omits	 many	 biophysical	
components,	 such	 as	 compartmentalized	 neurons,	 multiple	 cell	 types	 and	 vessel	 types,	
neurotransmitters,	the	dynamics	of	blood	flow,	and	so	on,	and	hence	it	is	not	a	detailed	simulation	
of	the	nervous	system	or	vascular	system.	On	the	other	hand,	the	simplicity	of	the	model	facilitates	
an	 understanding	 derived	 from	 basic	 principles,	 similar	 to	 the	 advantages	 in	 building	
computational,	rather	than	biophysical,	models	of	neural	responses	[82-85].	Both	types	of	models	
and	empirical	studies	are	valuable.	Here	we	emphasize	that	even	with	a	highly	simplified	model	of	
the	 BOLD	 signal,	 the	 field	 potential,	 and	 neuronal	 population	 activity,	we	 are	 able	 to	 reconcile	 a	
wide	range	of	findings	in	a	complicated	and	technical	literature.	The	model	accounts	for	differences	
in	how	broadband	field	potentials	and	gamma	oscillations	relate	to	the	BOLD	signal.	It	can	explain	
differences	 between	 cortical	 areas	 in	 the	 relationship	 between	 field	 potentials	 and	 BOLD.	 The	
model	also	provides	an	explanation	for	why	the	amplitude	of	alpha	rhythms	is	negatively	correlated	
with	BOLD,	 even	after	 accounting	 for	 the	 relationship	between	broadband	 signals	 and	BOLD.	We	
note	that	drastic	simplifications	are	the	norm	in	many	fields	of	neuroscience,	such	as	receptive	field	
modeling	of	visual	neurons;	most	such	models	omit	fixational	eye	movements,	optical	properties	of	
the	eye,	retinal	and	cortical	circuitry,	etc.,	instead	modeling	responses	as	a	few	simple	mathematical	
computations	 of	 the	 stimulus	 (filtering,	 thresholding,	 and	 normalization)	 [86].	 These	 highly	
simplified	 models	 will	 certainly	 fail	 under	 some	 conditions	 [87],	 yet	 they	 have	 proven	 to	 be	 of	
immense	value	to	the	field	[85],	in	part	due	to	their	simplicity,	and	in	part	because	the	alternative,	
in	which	the	responses	of	visual	neurons	are	computed	from	a	complete,	neurobiologically	realistic	
model	of	the	nervous	system	simply	do	not	exist.			

3.7	Reproducible	computations	
To	test	competing	computational	theories	about	the	relation	between	the	visual	input,	the	LFP	and	
the	 BOLD	 response,	 it	 is	 essential	 to	 make	 sample	 data	 and	 code	 available	 for	 others	 [35,50].	
Following	standard	practices	of	reproducible	research	[88-90],	 the	Matlab	code	of	 the	simulation,	
and	 sample	 data	 and	 code	 to	 reproduce	 the	 Figs	 in	 this	 manuscript	 can	 be	 downloaded	 at	
https://github.com/WinawerLab/BOLD_LFP.		

3.8	Conclusions	
To	understand	how	the	electrophysiology	and	BOLD	responses	are	related,	it	is	necessary	to	specify	
both	 the	 manner	 in	 which	 population	 activity	 transfers	 to	 the	 two	 signals,	 and	 the	 neuronal	
population	activity	itself.	The	former	shows	that	the	covariance	between	neuronal	time	series	has	a	
large	 influence	 on	 the	 field	 potential	 and	 not	 the	 BOLD	 signal.	 Based	 on	 our	 simulations	 and	
empirical	results,	we	made	several	inferences	about	the	neuronal	population	responses	mediating	
the	BOLD	signal	and	the	LFP:	that	narrowband	gamma	oscillations	in	visual	cortex	likely	arise	more	
from	synchronization	of	neural	responses	than	a	change	in	level	of	the	neural	response,	and	hence	
have	a	large	influence	on	the	field	potential	and	little	influence	on	the	BOLD	signal;	that	responses	
which	 are	 asynchronous	 across	 neurons	manifest	 in	 broadband	 field	 potentials	 and	 an	 elevated	
BOLD	signal;	and	that	low	frequency	oscillations	observed	in	field	potentials	are	likely	accompanied	
by	a	widespread	hyperpolarization,	which	in	turn	reduces	metabolic	demand	and	the	BOLD	signal.	
Our	model-based	 approach	 brings	 us	 a	 step	 closer	 to	 a	 general	 solution	 to	 the	 question	 of	 how	
neural	activity	relates	to	the	BOLD	signal.				 	
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4.	Materials	and	Methods	

4.1	Simulated	neuronal	time	series	
Simulations	were	 computed	 for	 a	population	of	200	neurons.	Each	 simulation	 trial	was	1	 second	
long	with	millisecond	 sampling.	 The	 time	 series	 for	 each	 neuron	was	 derived	 by	 summing	 three	
inputs,	 each	 1	 second	 long,	 followed	by	 leaky	 integration	with	 a	 time	 scale	 of	 10	ms	 to	 simulate	
temporal	 integration	 in	 the	 dendrite	 (Fig	 4).	 Each	 simulation	 was	 fit	 to	 ECoG	 data	 from	 one	
electrode	 and	 consisted	 of	 240	 trials,	 8	 repeats	 of	 30	 stimulus	 conditions.	 A	 condition	 in	 the	
simulation	 was	 defined	 by	 the	 parameter	 settings	 for	 the	 3	 inputs	 (Fig	 4):	 C1	 (broadband),	 C2	
(gamma)	 and	 C3	 (alpha).	 Variations	 in	 these	 three	 inputs	 resulted	 in	 power	 changes	 in	 the	
broadband,	 gamma,	 and	 alpha	 LFP.	 The	 inputs	 were	 fit	 to	 data	 such	 the	 simulated	 LFP	 power	
changes	matched	the	ECoG	data	power	changes	for	a	particular	electrode	and	stimulus.	

4.1.1	C1	-	Broadband	input	

The	 first	 input	 was	 a	 series	 of	 random	 numbers	 drawn	 from	 a	 normal	 distribution,	 with	 no	
temporal	dependencies	and	no	dependencies	between	neurons.	

Motivation.	This	input	approximates	spike	arrivals	with	a	Poisson	distribution	at	a	fixed	rate	for	a	
given	 1-s	 trial.	 A	 random	 normal	 distribution	 was	 used	 rather	 than	 a	 Poisson	 distribution	 for	
computational	efficiency.	(The	pattern	of	results	is	the	same	for	either	distribution.)	The	input	has	a	
flat	(white)	power	spectrum	up	to	the	sampling	limit	of	500	Hz.	When	coupled	with	leaky	temporal	
integration	 (described	 in	 a	 subsequent	 section),	 this	 input	 results	 in	 a	 power	 spectrum	 that	 is	
approximately	 proportional	 to	 1 !! 	(brown	 noise).	 Several	 groups	 have	 proposed	 that	 the	
approximately	1 !!	power	spectra	observed	in	field	potentials	arises	from	white	noise	(or	Poisson	
noise)	 input	 to	 individual	neurons,	coupled	to	one	or	more	 low-pass	 filters	 [37,91,92].	Previously	
proposed	 sources	 of	 filters	 include	 an	 exponentially	 decaying	 current	 response	 in	 the	 synapse	
following	 each	 spike	 arrival	 [91],	 leaky	 temporal	 integration	 in	 the	 dendrite	 [37],	 and	 frequency	
dependent	propagation	in	the	extracellular	tissue	[93],	the	last	of	which	has	since	been	shown	to	be	
unlikely	 [94].	 Regardless	 of	 the	 source	 of	 the	 low-pass	 filtering,	 the	 general	 proposal	 makes	 an	
interesting	 prediction,	 namely	 that	 a	 spectrally	 broadband	 increase	 in	 field	 potential	 power	 in	
response	 to	a	 stimulus	 is	 likely	 to	 indicate	an	 increase	 in	 the	 rate	of	 spike	arrivals	 following	 that	
stimulus	 [37].	 This	 hypothesis	 has	 empirical	 support,	 based	 on	 correlations	 between	 spike	 rates	
(single	unit	and	multiunit)	and	broadband	field	potentials	[51,55],	and	the	fact	that	a	1 !!	baseline	
spectrum,	 as	 well	 as	 stimulus-dependent	 broadband	 power	 increases,	 can	 be	 observed	 in	
intracellular	 (single	 neuron)	 membrane	 potentials	 in	 awake	 macaque	 visual	 cortex	 [39].	 This	
hypothesis	 is	the	logic	behind	our	choice	to	model	both	the	baseline	1 !!	spectrum	and	stimulus-
dependent	 broadband	 modulations	 as	 arising	 from	 spectrally	 flat	 inputs	 followed	 by	 low-pass	
filtering	within	individual	neurons.	For	computational	tractability,	we	explicitly	modeled	only	one	
of	the	low	pass	filters	–	leaky	integration	in	the	dendrites.	We	assumed	that	spectrally	broadband	
signals	 reflect	 uncorrelated	 activity.	 First,	 we	 have	 shown	 that	 the	 broadband	 ECoG	 signal	 is	
asynchronous	 with	 respect	 to	 a	 visual	 stimulus,	 and	 hence	 uncorrelated	 from	 trial	 to	 trial	 [11].	
Here,	we	extrapolate	that	within	a	trial,	 the	contribution	to	the	broadband	signal	 is	asynchronous	
from	neuron	to	neuron.	One	reason	to	assume	so	is	based	on	a	physiological	model:	the	broadband	
signal	 has	 been	 hypothesized	 to	 arise	 from	 the	 leaky	 integration	 of	 Poisson	 distributed	 spike	
arrivals	[37].	Even	if	the	spike	rate	is	correlated	between	neurons,	the	spike	timing	within	a	trial	is	
likely	have	low	correlations	between	neurons.		
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Parameters.	For	each	simulation	the	Gaussian	distribution	defining	C1	always	had	a	mean,	! = 0.25.	
The	slightly	positive	mean	ensured	that	in	the	baseline	state,	the	membrane	potential	was	slightly	
positive,	such	that	a	suppressive	signal	(described	in	the	section	C3)	could	bring	the	potential	closer	
to	0,	hence	 reducing	 the	metabolic	demand.	For	 the	8	conditions	 in	each	simulation,	 the	baseline	
standard	deviation	of	 the	distribution	was	set	at	! = 0.3.	A	 larger	!	results	 in	a	 larger	broadband	
signal,	 and	 can	 be	 thought	 of	 as	 reflecting	 a	 higher	 Poisson	 rate	 of	 spike	 arrivals.	 The	!	for	 each	
condition	 was	 calibrated	 such	 that	 the	 resulting	 changes	 in	 broadband	 power	 for	 each	 of	 the	 8	
stimulus	conditions	matched	the	changes	in	broadband	power	in	the	ECoG	data	(Fig	6,	see	Fig	S9).	

4.1.2	C2	–	Narrowband	oscillations	in	the	gamma	band	

The	 second	 input	 was	 band-passed	 filtered	 white	 noise.	 The	 white	 noise	 was	 drawn	 from	 a	
distribution	 with	 zero	 mean	 and	 fixed	 standard	 deviation	 on	 all	 trials	 and	 for	 all	 neurons,	 and	
subsequently	band-pass	filtered.	Unlike	C1,	there	were	dependencies	(coherence)	between	neurons.	
The	level	of	coherence	varied	across	the	8	trial	types	in	each	simulation.	

Motivation.	This	input	approximates	a	circuit	producing	narrowband	gamma	oscillations	in	the	field	
potential.	 Parvalbumin	 positive	 interneurons	 project	 to	 pyramidal	 neurons,	 and	 can	 produce	
fluctuations	in	the	membrane	potential	of	the	pyramidal	neurons	in	gamma	frequencies	from	30-80	
Hz	[44].	The	narrowband	rise	in	gamma	power	associated	with	certain	stimuli	or	tasks	appears	to	
reflect	 an	 increase	 in	 synchrony	 between	 neurons	 in	 this	 band	 [95].	 Therefore,	 unlike	 C1,	 which	
varied	in	level	but	not	coherence	as	a	function	of	condition,	C2	varied	in	coherence	but	not	level	as	a	
function	of	condition.	

Parameters.	 For	 all	 trials	 and	 all	 conditions,	 the	white	 noise	 samples	were	drawn	 from	a	normal	
distribution	with	! = 0	and	! = 0.2.	The	covariance	of	the	distributions	could	range	between	0	and	
1	(using	Matlab’s	mvnrnd	function).	The	white	noise	inputs	were	filtered	between	50	Hz	and	60	Hz	
prior	 to	 temporal	 integration	 in	 the	 dendrite:	 inputs	were	 first	 zero-padded,	 then	 filtered	with	 a	
10th	 order	 Butterworth	 filter	 in	 forward	 and	 reverse	 direction.	 (Fig	 4).	 The	 covariance	 for	 each	
simulation	was	calibrated	such	that	the	resulting	changes	in	narrowband	gamma	power	for	each	of	
the	8	stimulus	conditions	matched	the	changes	in	narrowband	gamma	power	in	the	ECoG	data.	

4.1.3	C3	–	Narrowband	oscillations	in	the	alpha	band	

The	 third	 input	 was	 band-passed	 filtered	 white	 noise,	 with	 an	 added	 asymmetry	 such	 that	
increased	power	decreased	the	mean	amplitude.	The	coherence	was	the	same	for	all	trials	and	all	
neurons;	the	amplitude	of	the	pulses	varied	by	condition.	

Motivation.	 Oscillations	 in	 the	 alpha	 band	 (8-15	 Hz)	 are	 widely	 observed	 in	 visual	 cortex,	 with	
higher	amplitudes	associated	with	low	sensory	stimulation	(e.g.,	eyes	closed	or	zero	contrast)	or	a	
low	 level	 attention.	 	 One	 model	 of	 alpha	 oscillations	 is	 that	 pyramidal	 neurons	 in	 visual	 cortex	
receive	 pulses	 of	 inhibition	 (hyperpolarizing	 inputs)	 spaced	 on	 the	 order	 of	 100	 ms,	 generated	
indirectly	by	thalamic-cortical	loops	[46,47].	According	to	this	view,	less	active	states	are	associated	
with	 larger	 inhibitory	 pulses,	 resulting	 in	 a	 time-averaged	 hyperpolarization,	 compared	 to	more	
active	states	with	smaller	inhibitory	pulses.	The	inhibition	is	pulsed	rather	than	continuous,	so	that	
the	 reduced	 cortical	 responsiveness	 is	 dependent	 on	 the	 phase	 of	 the	 alpha	 cycle	 (most	 reduced	
following	 each	 inhibitory	pulse).	 Individual	 neurons	 in	 visual	 cortex	 can	 indeed	 show	membrane	
oscillations	 at	 frequencies	 around	10	Hz	 [48],	 indicating	 that	 it	 is	 reasonable	 to	model	 the	 alpha	
oscillation	measured	 in	 the	 population	 as	 arising	 from	 oscillations	 in	 individual	 neurons,	 rather	
than	arising	only	from	band-limited	coherence		between	neurons.		

Parameters.	 For	 all	 trials	 and	 all	 conditions,	 the	white	 noise	 samples	were	drawn	 from	a	normal	
distribution	 with	! = 0	and	! =	1.	 The	 covariance	 of	 the	 distributions	 was	 fixed	 at	 .75	 (using	
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Matlab’s	mvnrnd	function).	The	white	noise	inputs	were	filtered	between	9	Hz	and	12	Hz	prior	to	
temporal	integration	in	the	dendrite:	inputs	were	first	zero-padded,	then	filtered	with	a	10th	order	
Butterworth	 filter	 in	 forward	 and	 reverse	 direction.	 The	 envelope	 was	 calculated	 by	 a	 Hilbert	
transform,	and	added	to	the	signal,	and	the	signal	was	multiplied	by	-1,	such	that	increases	in	power	
reduced	 the	mean	amplitude.	The	signal	was	 then	multiplied	by	a	 factor	c3,	which	was	calibrated	
such	that	 the	resulting	changes	 in	narrowband	alpha	power	 for	each	of	 the	8	stimulus	conditions	
matched	the	changes	in	narrowband	alpha	power	in	the	ECoG	data.		

4.1.4	Fitting	the	LFP	power	changes	to	the	ECoG	power	changes	

Changing	inputs	in	C1,	C2	and	C3	results	in	a	change	in	LFP	power	in	broadband,	gamma	and	alpha	
respectively.	 In	 order	 to	 fit	 the	 simulated	 LFP	 power	 changes	 to	 the	 ECoG	 power	 changes	 we	
quantified	 the	 input	 to	 LFP	 output	 relation,	 such	 that	 a	 certain	 change	 in	 simulated	 LFP	 power	
could	 be	 predicted	 by	 change	 in	 the	 input	 amplitude.	 Different	 functions	 described	 the	 relation	
between	 the	 input	 and	 LFP.	 The	 relation	 between	 broadband	 input	 and	 LFP	 broadband	 was	
described	as	

!"#!"#$%!$&% =  ! ∙ log!"
! + !!
! 	 (Equation	10)	

Since	gamma	and	alpha	were	dependent	on	broadband	amplitude	(an	increase	in	broadband	noise	
masks	 the	 relative	 contribution	 of	 narrowband	 oscillations)	 the	 following	 function	 described	 the	
relation	between	input	and	gamma	and	alpha	LFP:		

!"#!"##"  =  ! ∙ 10
!!"#!"#$%!$&%

! ∙ log!"
! + !!
! + ! ∙ !"#!"#$%!$&% + !	 (Equation	11)	

	

!"#!"#!!  =  ! ∙ 10
!!"#!"#$%!$&%

! ∙ log!"
! + !!
! + ! ∙ !"#!"#$%!$&% + !	 (Equation	12)	

	Parameters	a,	b,	c,	d	and	m	were	estimated	by	a	separate	calibration	procedure	in	which	C1,	C2	and	
C3	were	systematically	varied	and	LFP	broadband,	gamma	and	alpha	were	calculated.	Fig	S9	shows	
that	using	this	procedure	the	simulated	LFP	power	changes	match	the	ECoG	power	changes	well.	

4.2	Stimuli	and	task	
Stimuli	 for	ECoG	experiments	were	reported	previously	 [35].	 In	brief,	 for	one	subject,	 the	stimuli	
came	from	8	classes	of	patterns	(30	exemplars	per	class,	20x20°),	 including	high	contrast	vertical	
gratings	 (0.16,	 0.33,	0.65,	 or	 1.3	 cycles	 per	 degree	 square	wave)	 noise	 patterns	 (spectral	 power	
distributions	 of	!/!! ,	!/!!,	and	!/!!),	 and	 a	 blank	 screen	 at	 mean	 luminance	 (Supplemental	
methods	and	Fig	 S2).	For	 the	second	ECoG	subject,	 there	were	 the	same	8	classes	as	well	as	 two	
other	 stimulus	 classes	 –	 a	 high	 contrast	 white	 noise	 pattern	 and	 a	 plaid	 at	 0.65	 cpd.	 The	 fMRI	
subjects	had	the	same	10	stimulus	classes	as	the	second	ECoG	subject.	

4.2.1	ECoG	task	

ECoG	data	were	 re-analyzed	 from	a	previous	 report	 [35].	We	briefly	 summarize	 that	 experiment	
here.	Subjects	viewed	static	images	of	gratings	and	noise	patterns	for	500	ms	each,	with	500	ms	of	
zero-contrast	 (mean	 luminance)	 between	 successive	 stimuli.	 Order	 of	 presentation	 was	
randomized	 (Fig	 S2).	 There	 were	 a	 total	 of	 210	 contrast	 stimuli,	 shown	 once	 each	 in	 a	 single,	
continuous	experiment	(and	210	interstimulus	blanks).	Stimuli	were	shown	on	a	15-inch	MacBook	
Pro	 laptop	using	Psychtoolbox	(http://psychtoolbox.org/).	The	 laptop	was	placed	60	cm	from	the	
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subject’s	eyes	at	chest	level.	Screen	resolution	was	1280x800	pixels	(33x21	cm).	Coordinates	of	the	
population	Receptive	Fields	(pRF)	were	obtained	from	a	prior	study	[11].		

4.2.2	fMRI	task	

The	 fMRI	 experiment	 was	 a	 block	 design,	 with	 12-second	 stimulus	 blocks	 alternating	 with	 12-s	
blank	periods	 (mean	 luminance).	During	 the	stimulus	blocks,	 images	were	presented	at	 the	same	
rate	 as	 the	 ECoG	 experiment:	 500	ms	 duration	 alternating	 with	 500	ms	 of	 zero-contrast	 (mean	
luminance)	between	images	(Fig	S2).	All	stimuli	from	each	block	came	from	one	of	the	7	stimulus	
classes.	 The	 exemplars	 within	 the	 block	 were	 all	 different.	 Subjects	 participated	 in	 8	 scans	 of	 9	
blocks	 each,	 and	 block	 order	 was	 randomized	 using	 Latin	 squares.	 Two	 subjects	 (S2	 and	 S3)	
additionally	 participated	 in	 an	 identical	 experiment	 using	 lower	 contrast	 images,	 resulting	 in	
similar	findings.	fMRI	subjects	participated	in	two	pRF	runs	to	identify	retinotopy	maps.	Stimuli	for	
the	 pRF	 experiments	 consisted	 of	 a	 bar	 (width=	 3	 deg)	 that	 swept	 across	 the	 visual	 field	 in	 8	
directions:	 the	 four	 cardinal	 directions	 and	 the	 four	 diagonals.	 The	 bar	 contained	 a	 drifting	
checkerboard	with	 100%	 contrast.	 Images	were	 projected	 on	 a	 screen	 in	 the	 rear	 of	 the	magnet	
bore	using	an	LCD	projector	(LC-XG250,	Eiki)	with	a	resolution	of	1024x768	(60	Hz	refresh	rate)	
and	 subtending	 approximately	 32x24	 visual	 degrees	 (32.4x24.3	 cm).	 Subjects	 viewed	 the	 screen	
with	a	mirror	mounted	to	the	RF	coil.	The	viewing	distance	was	approximately	58	cm.		

4.3	ECoG	procedure	
ECoG	data	were	measured	 from	 two	 subjects	who	were	 implanted	with	 subdural	 electrodes	 (2.3	
mm	 diameter,	 AdTech	 Medical	 Instrument	 Corp)	 for	 clinical	 purposes	 at	 Stanford	 Hospital.	
Informed,	written	 consent	was	 obtained	 from	all	 subjects.	 ECoG	protocols	were	 approved	by	 the	
Stanford	 University	 IRB.	 In	 22	 electrodes	 in	 V1	 V2	 and	 V3,	 broadband	 and	 narrowband	 gamma	
responses	 were	 quantified	 as	 before	 [35],	 and	 alpha	 power	 changes	 were	 calculated	 (see	
Supplementary	Methods).	

4.3.1	ECoG	recording	

ECoG	 data	 were	 recorded	 at	 3052/1528	 Hz	 (ECoG	 subject	 1/ECoG	 subject	 2)	 from	 118/96	
electrodes	 through	 a	 128-channel	 Tucker	 Davis	 Technologies	 recording	 system	
(http://www.tdt.com).	 Electrodes	 were	 localized	 on	 a	 postoperative	 computer	 tomography	 (CT)	
scan	 that	was	co-registered	with	a	pre-operative	MRI,	 and	 locations	were	corrected	 for	 the	brain	
shift	[6].	Electrodes	that	showed	large	artifacts	or	epileptic	activity	(as	determined	by	the	patient’s	
neurologist)	were	excluded	from	analysis	(7/35	electrodes	were	excluded	in	subject	1/subject	2).	
Off-line,	 data	 were	 re-referenced	 to	 the	 common	 average,	 low-pass	 filtered	 and	 resampled	 at	
1000Hz	for	computational	purposes	using	the	Matlab	resample	function.	Line	noise	was	removed	at	
60,	120	and	180	Hz	using	a	3rd	order	Butterworth	filter.		

4.3.2	ECoG	analyses	

Broadband	and	narrowband	gamma	responses	were	quantified	as	before	[35].	We	calculated	power	
spectra	 and	 separated	 ECoG	 responses	 into	 broadband	 and	 narrowband	 gamma	 band	 spectral	
power	 increases.	 To	 control	 for	 the	 influence	 of	 evoked	 activity	 on	 the	 spectrum,	 event	 related	
potentials	(ERPs)	were	calculated	per	condition	and	the	condition	specific	ERP	was	regressed	from	
each	trial.	This	procedure	makes	sure	that	the	broadband	increase	is	not	due	to	a	sharp	edge	in	the	
ERP;	the	same	pattern	of	results	is	obtained	if	this	step	is	omitted.	For	each	condition,	the	average	
power	spectral	density	was	calculated	every	1	Hz	by	Welch’s	method	 [96]	 from	0	–	500	ms	after	
stimulus	onset	(and	0-500	ms	after	stimulus	offset	for	the	baseline)	and	a	250	ms	Hann	window	to	
attenuate	 edge	 effects.	 ECoG	 power	 spectra	 are	 known	 to	 obey	 a	 power	 law	 and	 to	 capture	
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broadband	and	narrowband	gamma	 increases	 separately	 the	 following	 function	was	 fitted	 to	 the	
average	 log	 spectrum	 from	35	 to	 200Hz	 (leaving	 out	 60Hz	 line	 noise	 and	 harmonics)	 from	 each	
condition	(Fig	3):	

!(!) = (!!"#$%!$&% − !x) + !!"##$%&"!'!(x|!,!)			
In	which,	

! = !"#10(!"#$%#&'() 	

!(x|!,!) = !
!(!!!)!
!!! 	

with	10σ	=	1.1	Hz	and	35	Hz	<	10μ	<	80	Hz.	

The	slope	of	the	log-log	spectral	power	function	(n)	was	fixed	for	each	electrode	by	fitting	it	based	
on	the	average	power	spectrum	of	the	baseline.	For	cross-validation,	trials	were	split	into	even	and	
odd	 repeats,	 and	 broadband	 and	 gamma	 changes	 were	 calculated	 for	 each.	 Confidence	 intervals	
were	calculated	by	a	bootstrap	procedure.	For	each	condition	C	with	Nc	trials,	Nc	trials	were	drawn	
randomly	with	replacement	and	power	spectra	were	averaged.	The	parameters	β	were	fitted	on	the	
average	log	power	spectrum	from	these	bootstrapped	trials.	This	was	repeated	100	times,	resulting	
in	two	sets	of	distributions	of	broadband	and	gamma	weights	for	even	and	odd	trials.		

Alpha	response	amplitude	was	calculated	as	follows.	Alpha	changes	are	best	visible	after	the	initial	
onset	transient	and	ERP,	and	we	used	the	power	from	250-500	ms	to	calculate	the	alpha	decreases	
for	each	stimulus.	Alpha	amplitude	was	calculated	by	averaging	 the	 log-power	between	8	and	13	
Hz.		

4.3.3	Electrode	selection	

Electrodes	for	analysis	were	selected	on	the	basis	of	three	criteria.	First,	the	pRF	was	located	within	
V1,	 V2,	 and	 V3.	 Second,	 the	 explained	 variance	 in	 a	 pRF	 experiment	 was	 >15%	 [11].	 Third,	 the	
center	of	 the	pRF	was	within	the	extent	of	 the	stimulus	(<12	deg)	and	on	the	contralateral	visual	
field.	Because	ECoG	subject	2	did	not	have	pRF	data,	only	anatomical	estimates	of	V1,	V2,	and	V3	
were	used	[97].	These	criteria	yielded	22	electrodes	(19	from	ECoG	S1,	3	from	ECoG	S2).	

4.4	fMRI	procedure	
Functional	 MRI	 data	 was	 measured	 from	 four	 subjects	 (3	 female,	 ages	 22-42)	 with	 normal	 or	
corrected-to-normal	vision	at	the	Center	for	Brain	Imaging	at	NYU.	Informed,	written	consent	was	
obtained	 from	 all	 subjects.	 The	 fMRI	 protocols	 were	 approved	 by	 the	 New	 York	 University	 IRB.	
Functional	 MRI	 data	 were	 preprocessed	 and	 analyzed	 using	 custom	 software	
(http://vistalab.stanford.edu/software)	(see	Supplementary	Methods).	Disc	ROIs	(radius	=	2	mm)	
were	 defined	 in	 fMRI	 subjects	 to	 match	 the	 position	 of	 the	 electrodes	 in	 ECoG	 subjects	 using	 a	
combination	 of	 anatomy,	 pRF	 centers,	 and	 visual	 field	 maps.	 The	 similarity	 between	 the	 ROI	
position	and	electrode	position	was	compared	via	visual	inspection	of	anatomical	images	and	pRF	
centers	(Fig	S3).	

4.4.1	fMRI	recording	

Anatomical	 and	 functional	 MRI	 data	 was	 collected	 at	 the	 Center	 for	 Brain	 Imaging	 at	 NYU	 on	 a	
Siemens	Allegra	3T	head-only	 scanner	with	a	Nova	Medical	 transmit/receive	coil	 (NMG11)	and	a	
Nova	Medical	phased	array,	8-channel	receive	surface	coil	(NMSC072).		

Two	 to	 three	 T1-weighted	whole	 brain	 anatomical	 scans	 (MPRAGE	 sequence)	were	 obtained	 for	
each	subject	(voxel	size:	1x1x1	mm,	TR:	2500	ms;	TE:	3.93	ms,	flip	angle:	8	deg).	Functional	images	
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were	collected	using	gradient	echo,	echo-planar	imaging	(voxel	size:	2x2x2	mm,	24	slices,	TR:	1500	
ms,	TE:	30	ms,	flip	angle:	72	deg).	Images	were	corrected	for	B0	field	inhomogeneity	during	off-line	
image	 reconstruction	 using	 a	 separate	 field	map	measurement	made	 half	 way	 through	 the	 scan	
session.	 Slice	 prescription	was	 set	 approximately	 perpendicular	 to	 the	 calcarine	 sulcus,	 covering	
the	occipital	lobe.	In	addition,	a	T1-weighted	inplane	was	collected	with	the	same	slice	prescription	
to	align	functional	images	to	the	high-resolution	anatomical	images.	

4.4.2	fMRI	analysis	

Preprocessing.	Anatomical	images	were	co-registered	and	segmented	into	gray/white	matter	voxels	
using	 FreeSurfer	 autosegmentation	 algorithm	 (surfer.nmr.mgh.harvard.edu).	 A	 3D	 mesh	 of	 the	
cortical	 surface	 was	 inflated	 for	 ease	 of	 visualization.	 Functional	 data	 were	 preprocessed	 and	
analyzed	 using	 custom	 software	 (http://vistalab.stanford.edu/software).	 Data	 were	 slice-time	
corrected	to	adjust	for	differences	in	acquisition	time	among	slices	in	the	1.5-sec	frame.	Data	were	
motion	corrected	 for	both	between-	and	within-scan	motion.	Finally,	data	were	high-pass	 filtered	
for	low	frequency	drift	[98]	by	multiple	moving	average	smoothing	(2	iterations,	40	seconds).	Data	
were	then	converted	to	percent	signal	change	by	dividing	each	voxel’s	signal	by	its	mean	signal.	The	
first	 four	 frames	of	 each	 run	 (6	 sec)	were	discarded	 to	 allow	 longitudinal	magnetization	 and	 the	
hemodynamic	response	to	reach	steady	state.		

Analysis.	Noise	was	removed	from	the	fMRI	data	using	GLMdenoise,	a	variant	of	the	standard	GLM	
commonly	 used	 in	 fMRI	 analysis	 [99].	 In	 brief,	 GLMdenoise	 derives	 noise	 regressors	 for	 each	
subject	by	performing	principle	components	analysis	on	noise	voxels	that	are	unrelated	to	the	task.	
The	optimal	number	of	 noise	 regressors	 is	 selected	based	on	 improvement	 in	 cross-validated	R2.	
The	final	model	is	fitted	to	each	voxel’s	time	series	and	bootstrapped	100	times	over	8	runs.	Here,	
the	predictors	in	the	GLM	were	the	nine	image	categories	(4	gratings,	4	noise	patterns,	1	plaid)	and	
a	blank	period	 (a	 randomly	assigned	blank	block).	Voxel	bootstraps	were	averaged	across	voxels	
within	 a	 region	 of	 interest	 (ROI).	 The	 resulting	 100	 bootstraps	 per	 ROI	 were	 vector-length	
normalized	 and	 averaged	 across	 subjects.	 The	 beta	 estimate	 for	 each	 condition	 is	 taken	 as	 the	
median	averaged	bootstrap	and	the	standard	error	as	one-half	the	68%	confidence	interval.		

Population	receptive	field	(pRF)	model.	The	pRF	runs	were	analyzed	by	fitting	a	2D	Gaussian	to	each	
voxel,	modeling	 its	pRF	[100].	The	pRF	 is	defined	by	center	 location	(x,y	coordinates)	and	spread	
(sigma).	The	resulting	maps	were	used	to	define	retinotopic	areas	V1,	V2,	and	V3	as	in	[101].		

4.5	Predicting	fMRI	signals	directly	from	ECoG	models		
The	relationship	between	fMRI	and	ECoG	signals	was	analyzed	using	a	linear	regression	model.	The	
cross-validated	coefficient	of	determination	(R2)	was	used	as	a	metric	 for	model	accuracy	and	the	
regression	coefficients	were	used	to	test	whether	ECoG	predictors	(broadband,	gamma	and	alpha)	
had	a	positive	or	negative	relation	with	BOLD	(also	see	Supplementary	Methods).		

The	relationship	between	fMRI	and	ECoG	signals	was	analyzed	using	a	linear	regression	model:		

	! = !" + ! +  !	
where	y	is	a	vector	of	fMRI	amplitudes	(beta	estimates),	with	n	entries	for	the	n	different	stimuli;	X	
is	 a	matrix	 of	 ECoG	 responses,	n	by	 1,	 2	 or	 3,	where	 the	 columns	 correspond	 to	 one	 or	more	 of	
broadband,	gamma	and	alpha	estimates;	b	are	the	1,	2	or	3	beta	weights	for	the	broadband,	gamma,	
and	alpha	estimates;	c	 is	 a	 constant	 (the	y-intercept);	 and	!	is	 the	 residual	 error	 term.	The	model	
was	 fitted	separately	 for	each	cortical	site	(electrode/ROI	pair),	and	 for	different	combinations	of	
predictors	–	broadband	alone,	gamma	alone,	alpha	alone,	each	pairwise	combination,	and	all	three	
predictors	together.		
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Models	were	evaluated	by	split-half	cross-validation.	First,	the	regression	model	!!  = !!!! + !!  +  !	
was	 fit	 using	half	 of	 the	 fMRI	 subjects	 (1	 and	2)	 and	half	 of	 the	ECoG	 stimulus	 repetitions	 (even	
repetitions).	To	cross	validate	this	model,	the	beta	values	(!!)	were	then	applied	to	the	left	out	half	
of	 the	 ECoG	 data	 (odd	 stimulus	 repetitions)	 to	 predict	 the	 left	 out	 half	 of	 the	 fMRI	 data	 (fMRI	
subjects	3	and	4).	The	same	procedure	was	applied	by	reversing	the	training	and	testing	data.	This	
resulted	 in	 two	 testing	 data	 sets	 with	 BOLD	 responses	 predicted	 from	 ECoG	 for	 each	 stimulus	
condition	 (!!!! + !!) and	an	actual	measured	BOLD	value.	For	each	cortical	 site,	 the	coefficient	of	
determination	 (see	 below)	was	 calculated	 between	 the	 concatenated	 predictions	 and	 BOLD	 data	
values	of	the	two	test	sets.	All	R2	values	reported	in	the	results	are	cross-validated	in	this	manner.	
The	same	pattern	of	results	was	achieved	if	instead	of	cross-validation,	we	solved	the	models	on	the	
complete	data	sets	and	computed	the	R2	adjusted	for	the	number	of	regressors.	

To	 test	 whether	 different	 ECoG	 predictors	 (broadband,	 narrowband,	 alpha)	 had	 a	 positive	 or	
negative	relation	with	BOLD,	we	tested	whether	the	regression	coefficient	was	significantly	larger	
or	 smaller	 than	 zero.	The	 regression	 coefficient	was	 considered	 to	be	 significantly	different	 from	
zero	 using	 a	 bootstrap	 statistic:	 for	 each	 model	 the	 median	 of	 the	 beta	 values	 across	 sites	 was	
calculated	 after	 resampling	 10000	 times.	 If	 <2.5%	 of	 the	 resampled	 statistics	were	 smaller	 than	
zero,	the	beta	values	were	considered	significantly	positive,	and	similarly,	if	<2.5%	of	the	resampled	
statistics	were	greater	than	zero,	the	beta	values	were	considered	significantly	negative.	

4.6	Model	accuracy	
All	 model	 predictions	 were	 quantified	 using	 the	 coefficient	 of	 determination	 on	 cross-validated	
predictions.	For	predicting	BOLD	data	from	simulations	of	population	neuronal	activity	(Fig	7,	Fig	
S7),	 the	predicted	BOLD	has	arbitrary	units.	 In	these	cases,	 the	observed	BOLD	and	the	predicted	
BOLD	were	both	normalized	by	subtracting	the	mean	and	then	dividing	by	the	vector	length.	When	
predicting	 BOLD	 responses	 from	 features	 of	 the	 LFP	 data	 (broadband,	 gamma,	 and	 alpha)	 by	
regression,	 the	 predicted	 BOLD	 data	 were	 in	 the	 same	 units	 as	 the	 measured	 BOLD,	 and	 no	
normalizing	or	re-scaling	was	done.	

To	 quantify	 the	 accuracy	 of	 the	 models,	 we	 calculated	 the	 cross-validated	 coefficient	 of	
determination,	R2:	

!! = 1 –  !!!"#$%&'(#!!!"#"
	

!!!"#$%&'(# =  !! − !! !

!
	

!!!"#" =  !! − ! !

!
	

where	 y	 are	 the	 data	 values	 and	 f	 are	 the	 prediction	 values.	 Because	 the	 model	 fits	 are	 cross-
validated,	it	is	possible	for	the	model	errors	(residuals)	to	be	larger	than	the	data	values,	hence	R2	
can	be	lower	than	0,	and	spans	 −∞, 1 .	In	the	case	in	which	the	model	predictions	and	the	data	are	
unrelated	and	each	are	normally	distributed	with	equal	variance,	R2	will	tend	to	–1.		
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Supplemental	materials	to:	
Neuronal	synchrony	and	the	relation	between	the	

BOLD	response	and	the	local	field	potential	

	
Figure	S1.	
	

	
	
Figure	S1.	Alpha	changes	explain	additional	variance	in	the	BOLD	response.	
A)	Time/frequency	spectrograms	for	the	pink	noise	pattern	and	the	grating	in	an	
exemplary	V2	electrode	show	that	power	in	the	low	frequencies	decreased	more	for	the	
pink	noise	pattern	(left)	than	for	the	grating	(right).	B)	Top:	the	correlation	between	
broadband	and	BOLD	shows	that	the	broadband	response	under-predicts	the	BOLD	
response	for	the	noise	patterns	(blue	dots).	Red	and	pink	dots	represent	the	gratings.	This	
pattern	is	visible	in	most	V2/V3	electrodes	(Figure	S5)	Bottom:	taking	into	account	the	
alpha	decreases	in	the	regression	model	explains	the	variance	in	the	BOLD	response	that	
was	not	explained	by	the	broadband	changes.	The	R2	represents	the	cross-validated	
coefficient	of	determination.			
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Figure	S2.	
	

	
Figure	S2.	ECoG	and	fMRI	measurements.		
A)	ECoG	and	fMRI	responses	were	measured	to	8	different	stationary	stimuli.	In	all	
experiments,	subjects	were	instructed	to	fixate	on	a	dot	at	the	center	of	the	screen	that	
alternated	between	red	and	green,	changing	colors	at	random	times.	Subjects	pressed	a	
button	when	the	fixation	dot	changed	color.	ECoG	Subject	2	did	not	make	manual	responses	
because	these	responses	were	found	to	interfere	with	visual	fixation.	B)	ECoG	responses	
were	measured	in	an	event	related	design,	where	stimuli	where	presented	every	1000	ms.	
Stimuli	were	presented	for	500	ms	followed	by	a	blank	screen.	C)	Stimuli	were	presented	
in	blocks	of	12	seconds	during	fMRI,	followed	by	12	seconds	of	blank.	D)	Example	ECoG	
power	spectrum	for	one	electrode.	ECoG	data	showed	broadband	increases	(>100Hz)	
compared	to	baseline,	narrowband	gamma	increases	around	40	HZ,	and	a	decrease	in	alpha	
power	around	10	Hz.	E)	The	BOLD	response	increased	in	different	levels	for	the	different	
stimuli	averaged	across	subjects.	When	averaging	the	BOLD	signal	across	subjects,	the	
percent	signal	change	per	subjects	was	vector	length	normalized,	(!"#$ !"#$%&'()*! =
 !"#$ !!!"#$!

!"#$ ,	for	condition	i,	in	which	!"#$ = !"#$ !ℎ!"#$!!! ).	To	then	re-estimate	

the	percent	signal	change	across	subjects,	the	averaged	vector	length	normalized	values	
were	multiplied	by	the	average	norm.	
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Figure	S3.	

	 		
Figure	S3.	ROI	selection.		
A)	Channels	in	ECoG	S1	selected	for	further	analysis.	These	channels	were	located	within	
V1	(red),	V2	(blue),	or	V3	(green),	had	significant	broadband	or	gamma	response	to	any	
stimuli,	and	had	pRF	variance	explained	>0.15.	V1	sites	8	and	9	are	indicated,	since	these	
had	the	largest	gamma	responses.	B)	Electrode	ROIs	in	fMRI	S1.	Disc	ROIs	(radius	=	2	mm)	
were	defined	to	have	similar	anatomical	and	retinotopic	position	as	the	ECoG	Channels.	C)	
The	pRF	centers	for	fMRI	ROIs	(filled	circles)	were	chosen	to	be	close	to	those	for	ECoG	
electrodes	(open	circles).	Because	the	pRF	centers	measured	with	fMRI	do	not	completely	
cover	the	visual	field	map,	the	locations	can	differ	slightly.	
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Figure	S4.	

	
Figure	S4.	Broadband,	gamma	and	alpha	changes	in	V1,	V2	and	V3.	
(A)	For	each	ECoG	electrode,	for	each	stimulus	condition,	the	broadband	change	was	
calculated.	The	average	log10	power	from	the	inter	stimulus	baseline	period	was	
subtracted.	The	mean	change	from	the	baseline	was	then	averaged	across	the	8-10	stimuli.	
(B	and	C)	The	same	as	A)	shown	for	gamma	and	alpha.	(D)	For	each	ECoG	electrode,	for	
each	stimulus	condition,	the	BOLD	percent	signal	change	was	calculated.	The	mean	change	
from	the	baseline	was	then	averaged	across	the	stimuli.	
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Figure	S5	

	
Figure	S5.	Correlation	between	BOLD	and	ECoG	broadband,	gamma	and	alpha	for	all	
electrodes.	Correlation	between	BOLD	and	ECoG	in	V1	and	V2/V3.	The	R2	is	cross-
validated:	beta	values	are	calculated	from	half	the	ECoG	trials	and	half	the	fMRI	subjects,	
and	the	regression	model	is	tested	on	the	other	half	of	the	trials	and	subjects.		
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Figure	S6	

	
Figure	S6.	BOLD	predicted	by	ECoG	broadband	and	alpha	for	all	electrodes.	
This	plots	shows	the	predicted	BOLD	(x-axis)	versus	measured	BOLD	(y-axis)	for	the	9	V1	
sites	(top)	and	13	V2/V3	sites	(bottom),	based	on	a	linear	regression	of	the	broadband	and	
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alpha	components	of	the	ECoG	signals.		The	coefficient	of	determination,	R2,	was	cross-
validated.		 	
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Figure	S7	

	
Figure	S7:	Accuracy	of	BOLD	predictions	from	simulated	neuronal	activity.		
This	plots	shows	the	predicted	BOLD	(x-axis)	versus	measured	BOLD	(y-axis)	for	the	9	V1	
sites	(top)	and	13	V2/V3	sites	(bottom).	Each	color	corresponds	to	one	site.	The	cross-
validated	coefficient	of	determination	(R2)	was	computed	separately	for	each	of	the	9	sites,	
and	then	averaged.	The	different	subplots	are	models	solved	with	different	constraints.	In	
the	main	text	of	the	paper,	model	parameters	were	fit	with	three	constraints:	(1)	the	C1	
(broadband)	time	series	had	a	fixed,	non-zero	level	(but	could	vary	in	correlation	between	
neurons),	(2)	the	C2	(gamma)	time	series	had	a	fixed,	non-zero	level	(but	could	vary	in	
correlation),	and	(3)	the	C3	time	series	had	a	fixed,	non-zero	correlation	(but	could	vary	in	
level).	The	model	predictions	based	on	these	constrains	are	plotted	in	the	upper	left	of	both	
the	upper	panel	(V1)	and	the	lower	panel	(V2/V3).	Seven	alternative	models	were	run,	and	
their	predictions	are	shown	in	the	remaining	panels.	For	these	models,	the	three	input	
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types,	C1,	C2,	and	C3,	were	constrained	to	have	time	series	varying	in	either	the	level	or	
correlations	across	neurons,	but	not	both.		 	
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Figure	S8	

	
Figure	S8.	Variance	in	the	BOLD	response	explained	by	ECoG	(R2,	the	coefficient	of	
determination)	as	a	function	of	the	size	of	the	ECoG	response.	Each	dot	represents	one	
electrode.	X-axis:	for	each	electrode,	ECoG	broadband,	gamma	and	alpha	responses	were	
averaged	across	(non-baseline)	stimuli.	Y-axis:	the	cross-validated	R2	when	BOLD	is	
explained	by	broadband	(left),	gamma	(middle)	and	alpha	(right).	
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Figure	S9.	Relation	between	the	simulated	and	measured	LFP	values.	Every	dot	
represents	the	broadband	(black),	gamma	(magenta)	or	alpha	(green)	power	change	for	
one	electrode,	one	stimulus	condition.	The	power	changes	in	the	LFP	are	driven	by	changes	
in	parameters	C1,	C2	and	C3.	We	fitted	these	parameters	such	that	the	simulated	LFP	values	
for	broadband,	gamma	and	alpha	nicely	match	the	measured	values.		
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