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Abstract. This paper proposes a framework to simulate patient spe-
cific structural Magnetic Resonance Images (MRIs) from the available
MRI scans of Alzheimer’s Disease(AD) subjects. We use a biophysical
model of brain deformation due to atrophy that can generate biologically
plausible deformation for any given desired volume changes at the voxel
level of the brain MRI. Large number of brain regions are segmented in
45 AD patients and the atrophy rates per year are estimated in these
regions from the available two extremal time-point scans. Assuming lin-
ear progression of atrophy, the volume changes in scans closest to the
half way time period is computed. These atrophy maps are prescribed
to the baseline images to simulate the middle time-point images by us-
ing the biophysical model of brain deformation. From the baseline scans,
the volume changes in real middle time-point scans are compared to the
ones in simulated middle time-point images. This present framework also
allows to introduce desired atrophy patterns at different time-points to
simulate non-linear progression of atrophy. This opens a way to use a
biophysical model of brain deformation to evaluate methods that study
the temporal progression and spatial relationships of atrophy of different
regions in the brain with AD.
Keywords: Alzheimer’s disease, biophysical modeling, biomechanical
simulation

1 Introduction

Alzheimer’s Disease (AD) is one of the most common types of dementia. It is a
neurodegenerative disease that progresses gradually over several years with the
accumulation of neurofibrillary tangles (NFTs) and amyloid-β (A-β) plaques
[2]. These microscopic neurobiological changes are followed by the progressive
neuronal damage that leads to the atrophy of the brain tissue. The atrophy or the
volume changes of brain tissue is a macroscopic change that structural Magnetic
Resonance Imaging (MRI) can estimate in different brain regions. Many different
methods have been proposed to estimate atrophy in some particular regions of
brain that are known to be affected in AD [9].
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In addition to estimating specific brain structures with atrophy, longitudi-
nal imaging data could also potentially be used to study the temporal inter-
relationship of atrophy in different structures. For instance in [6], authors esti-
mate per-individual rates of atrophy in 34 cortical regions and in hippocampus.
Then they study the groupings of these structures based on the correlation of
the atrophy rates. In [8], authors define AD progression as a series of discrete
events. Atrophy in different parts of the brain are taken as different events along
with clinical events. Without any prior to their ordering, the model finds most
probable order for these events from the data itself. They use Bayesian statis-
tical algorithms for fitting in the event-based disease progression model. The
objective of these kinds of studies is to understand how different regions of brain
interact during the neurodegeneration and find its trajectory. Such studies can
benefit with large number of longitudinal images of AD patients. In this con-
text, a model that can simulate many time-point images from a few available
longitudinal images can be a valuable tool.

Atrophy simulators [11][14][18][5] have been proposed in the literature and
used mostly for the validation of registration or segmentation methods [4][16],
or to estimate uncertainty in the measured atrophy [17]. The simulators in
[11][14][16] use a Jacobian based methods where the desired level of atrophy
is set at each voxel, and the deformation that best approximates the desired
level of atrophy is found. Regularization is used in the optimization to enforce
certain desired conditions such as topology preservation. The advantage of these
methods is the ability to define atrophy maps at the voxel level. However regular-
ization parameters used to enforce topology preservation are generally difficult
to relate to a plausible biophysical process of AD and can create difficulties in
simulating opening of certain structures such as sulci. It is not trivial to consider
different tissue behaviors in such approaches. In [18][5], authors propose a model
of brain deformation based on thermoelasticity. Volume changes are defined in
particular structures/tissues of a meshed brain by assigning different thermal
coefficients. Simulation of the images is done by first solving the thermoelastic
model of tissue deformation with Finite Element Method (FEM), and then by
interpolating the obtained displacement field from the mesh to the image. FEM
involves moving back and forth from voxels to meshes which creates numerical
difficulties and inaccuracies in the model personalization.

In [12] we proposed a new biophysical model of brain deformation due to
atrophy in AD that combines the advantages of the models mentioned in the
previous paragraph. The mechanisms of neuronal deaths and its evolution are not
well known for AD and are likely to be primarily guided by complex physiological
processes. However we believe that the biomechanics of brain tissue might play
an important role in determining the consequence of the neuronal deaths on
brain shape changes. Our biophysical model presented in [12] builds upon the
assumptions that we relate to the biophysical process of tissue shape changes
as the consequence of local volume loss. This model can be used to simulate
time-series MRIs starting from a real input baseline MRI.
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In this work we use our biophysical model developed in [12] to present a
framework that allows to interpolate or extrapolate patient specific unseen time-
point images from at least two available time-point images of the subject and
to assess how closely these simulated trajectories follow real patient trajectories.
We also improve the implementation of the boundary condition of the model by
imposing zero deformation in the skull and all the regions outside of the skull.
In [12] the zero deformation was imposed at the image boundaries and not at
the brain-skull boundary.

The following section briefly explains the assumptions and implementation
of the biophysical model we presented in [12], and in section 3 we present how
we interpolate new images between two acquisition time points.

2 Biophysical Model of Brain Deformation due to
Atrophy

The atrophy rate ã(x, t) at any position x at time t for a representative elemen-
tary volume of V (x, t) is defined as the negative rate of change of volume per
unit volume:

ã =
−1

V

∂V

∂t
.

For any time ∆t that results in sufficiently small displacement, the amount
of atrophy is a = ã∆t. Any deformation field that has atrophy a should satisfy
the following equation:

∇ · u = −a, (1)

where u is the displacement of material particles during the ∆t.

We do not explicitly model the neuronal loss and tissue remodeling at the
microscopic level which requires biochemical and cellular physiological knowledge
in detail. We abstract the phenomenon that evolves over several months or years
in the brain. In Creutzfeldt-Jakob disease, no gross brain shape changes are
reported and the imaging only shows hyperintense signals on T2-weighted images
[10]. However, this is not the case in AD and longitudinal MRIs show a decrease
of brain volume instead [9] without any ”holes”. That means the tissues should
restructure as the neuronal deaths increase with time. This leads us to a basic
assumption in the proposed model that after the death of neurons, remodeling
of the tissue occurs such that the tissue density remains constant while both the
mass and volume decrease. We further assume that the atrophy creates internal
stress which results in the deformation minimizing a strain energy.

Using Saint Venant-Kirchoff model for an elastic material, this can be ex-
pressed as the minimization of which results in the deformation of the tissue
minimizing the strain energy.

R(u, p) =

∫
µtr(E(u)2) +

λ

2
(tr(E(u)))2 −

∫
p (∇ · u + a) (2)
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where p is a Lagrange multiplier, µ and λ are Lamé constants, and E is Lan-
grangian Green strain defined as: E = 1

2

(
∇u +∇uT +∇uT∇u

)
.

By taking a sufficiently small time step ∆t, this deformation could be rea-
sonably modeled as being linear elastic. For example, for a 2% global atrophy
per year, we have ∆t = 1 year, and the atrophy during the year as a = 0.02.

Under linear elastic assumptions, minimizing the energy in equation (2) is
equivalent to solving the following set of equations.

µ∆u−∇p = (µ+ λ)∇a
∇ · u = −a

(3)

where ∆u is a component-wise Laplacian of u. This equation is very similar
to the Stokes flow equation in fluid dynamics. The difference is in the non-zero
divergence term which corresponds the loss of mass and volume in the tissue.
The momentum equation shows that the gradient of the prescribed volume loss
acts as the force term that moves the tissue for the structural remodeling. The
Lagrange multiplier p is some sort of virtual pressure whose algebraic values can
be seen as the sources and sinks of fluid.

2.1 Modeling CSF Region

The timescale of CSF production is hours, which is much smaller compared to
the time scale of tissue remodeling due to atrophy. To allow the CSF to expand
as required when the brain deforms due to the prescribed atrophy, we release
the strict incompressibility constraint in 3. Furthermore, the force term of the
momentum equation in 3 is no longer required. Thus the combined equation for
both the brain parenchyma and the CSF regions is:

µ∆u−∇p = (µ+ λ)∇f
∇ · u + kp = −f

(4)

where we have,

– Brain parenchyma region: k = 0, and f = a
– CSF region: k = 1, and f = 0.

Boundary Conditions: Dirichlet boundary conditions with zero displace-
ment is enforced at the skull.

Material Parameters µ and λ: The deformation model here corresponds
to the structural readjustments due to cell loss, thus the Lamé parameters do not
have the same usual meaning as during an elastic deformation of the material due
to application of an external load/force. The voxel-wise volume change constraint
and the boundary conditions i.e. the shape of the tissue-CSF and brain-skull
interface have much more impact on the deformation of the brain parenchyma
than any specific scalar values of µ and λ. In the present work these coefficients
are set to 1 and 0 respectively.
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2.2 Staggered Grid Discretization and Finite Difference Method

The equation (4) requires a partition of the computational domain into different
regions. These regions are obtained by using skull stripping and segmentation of
the input baseline brain MRI. The solution of the PDE provides us a deformation
field that is applied to the baseline image to generate simulated follow-up image.
We use Finite Difference Method (FDM) with staggered grid discretization to
solve the system of PDEs in (4). Using staggered grid with proper placing of the
pressure and velocity variable ensures stability in the solution. FDM is chosen
instead of FEM to avoid brain meshing and the complexity of transporting com-
puted variables from mesh to image at each iteration. This allows us to solve the
system in a grid that is of the same size as the input image where the grid fits
naturally to the image. This also makes it easier to obtain the partition of the
computational domain into different regions directly by using a skull stripping
and a segmentation algorithm.

For typical brain MRIs of 1mm3 resolution, this computational problem size
becomes so large that direct solvers are impractical due to memory limitations.
The set of equations in 4 is similar to Stokes flow equation which is a saddle point
system. It needs a suitable combination of an iterative solver and a preconditioner
to solve it. We use a Schur factorization to split the equations into the momen-
tum equation and the pressure equation. Each of these equations is solved using
different iterative solvers. Our implementation uses composable solvers for mul-
tiphysics with PETSc library [1] using fieldsplit preconditioner, an approach
detailed in [3] with an example for Stokes flow solver with Schur complement
factorization. The momentum equation is preconditioned with hypre which is
an algebraic multigrid preconditioner and can be called from the PETSc inter-
face. The implemented system is run using distributed computing in a locally
available cluster.

3 Experiments and Results

We use the Miriad dataset [13] that has multiple time-point T1 structural MRIs
of 45 Alzheimer’s patients in the range of 2 weeks to 2 years. Since the dataset
contains several time-point scans, we can compare the simulated intermediate
time-point images to the corresponding real intermediate images. To prescribe
personalized atrophy patterns we need an atrophy estimation for each subject
from the extremal time-points. We perform the whole brain segmentation us-
ing recon-all command in FreeSurfer [7]. For the segmentation, FreeSurfer’s
longitudinal stream [15] is used to create unbiased subject specific templates.
This allows us to compare the volumes of large number of regions in the baseline
and the follow-up images and estimate atrophy in each of these regions. These
estimated atrophy can then be modified and prescribed to each of the baseline
MRIs to predict intermediate time-point images. The setup of the experiment
we performed is described as follows:
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Fig. 1. Top left is the input baseline MRI to which the atrophy shown in bottom left
is prescribed. A follow-up image is simulated using our model. The difference of the
simulated follow-up and the baseline MRI is shown in top right. Bottom right is the
atrophy map associated to the deformation field that was obtained as the solution of
the model when using the atrophy map on the left as input. As expected, in brain
tissue region they are same while in CSF there is expansion to compensate the tissue
loss keeping the skull fixed.

1. Find available extremal time-point scans: baseline Ib and the final follow-up
If . Let tf be the time (in years) between the baseline scan and the final
scan.

2. Find a mid-point scan Im that was scanned tm years after the first scan.
This is found by finding tm that is closest to tf/2.
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3. Use FreeSurfer to estimate an atrophy map af . This is a scalar image such
as the one shown in bottom left of Figure 1. The intensities are the atrophy
estimated from FreeSurfer for all the segmented brain regions.

4. Simulate a follow-up image Îm that corresponds to the mid-point scan Im
by prescribing am where am = af ∗ tm/tf .

5. Run the FreeSurfer whole brain segmentation on this simulated image Îm
and compute volumes of all the segmented regions.

6. Compare FreeSurfer computed volumes of all regions of the images Im and
Îm.

Fig. 2. Boxplot of the atrophy estimates for the real mid-point images in the coritcal
regions and hippocampus. These are the regions that were used in [6]. The data shows
the distribution of FreeSurfer atrophy estimates in the AD population of the MIRIAD
dataset when considering the first and the mid-point scans.

In Figure 3 we see that for most regions the difference in the atrophy esti-
mation of the interpolated mid-point image and that of actual mid-point image
have median close to zero. Higher variability in the difference seems to be mostly
in the regions where there is higher variability in the atrophy estimates of the
real mid-point images. The large inter-subject variation of the difference between
the atrophy estimate in the real mid-point image and the interpolated mid-point
image could be due to several reasons. One obvious issue is that the FreeSurfer
segmentation with the longitudinal stream expects all the images that are to
be segmented to be preprocessed in the same manner. However, in our case the
interpolated mid-point image has undergone an extra resampling step while the
real mid-point image has not. This extra resampling step is required because
the interpolated mid-point image was obtained by warping the real baseline im-
age with a displacement field. Furthermore, the choice of interpolation during
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Fig. 3. Boxplot of the difference in the FreeSurfer atrophy estimate in the real mid-
point image and the interpolated mid-point image for all the 45 AD subjects present
in MIRIAD dataset. The regions shown are the same as the one shown in Figure 2
and are displayed in the same order. The interpolated mid-point image is obtained by
simulation using the pair of extremal time-point images of each subject.

the resampling step can also affect the volume measurements by FreeSurfer. We
used trilinear interpolation for the resampling. The extra resampling step and
the choice of interpolation does have an effect on the estimation of volumes.
This has been shown, for instance in [16] for other segmentation based atro-
phy estimation techniques. Furthermore, the interpolated mid-point image has
a noise (noise inherent in any MRI) that is highly correlated with the real base-
line image. However, the noise in real mid-point image is not correlated to the
baseline image. This also affects the atrophy estimation and hence contributes
to the variability in the atrophy estimation difference. A detailed analysis must
be done to find out the regions that are the most reliable ones in estimating
volume changes for both the real and simulated images. The performance of the
atrophy measurement tools on simulated images should be thoroughly evaluated
to find out the best regions that we can rely upon to test how closely we predict
volume changes in new time-point images.

In this case we have interpolated the intermediate time-point by linearly
scaling the estimated atrophy. For a small time window of a couple of years this
is reasonable but if we want to extrapolate for instance for several years we would
need a non-linear model of atrophy progression. The presented framework allows
one to compare the trajectory of brain shape changes with different models of
atrophy progression. The ability to prescribe any desired atrophy at any time
point allows one to introduce atrophy at different regions of brain at different
times. This can be exploited in evaluating the methods proposed in studies such
as [8] which order the events from time-series data.
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4 Conclusions

We have proposed a framework to generate patient specific multiple time-point
images based on our biophysical model of brain deformation due to atrophy in
AD. The used model is motivated from biomechanical principles and it mod-
els the consequence of tissue loss in brain shape changes. From the available
two scans of MRI of a patient at two different time-points we estimate atrophy
in large number of brain structures using FreeSurfer whole brain segmentation
[7]. The derived atrophy patterns are linearly scaled and prescribed to the bio-
physical model to simulate the another time-point image. Using the MIRIAD
dataset [13] of 45 AD subjects with multiple time-points we compare the simu-
lated time-point images against the actual time-point images. The future works
will include building the most reliable methods to compare the volumes in simu-
lated and real images. We will also explore the possibility of evaluating methods
that study the temporal relationships, ordering and co-evolution of atrophy in
different structures of the brain.
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