
Efficient Exponentiation for a Class of Finite
Fields GF(2n) Determined by Gauss Periods

Soonhak Kwon1, Chang Hoon Kim2, and Chun Pyo Hong2

1 Inst. of Basic Science and Dept. of Mathematics, Sungkyunkwan University,
Suwon 440-746, Korea

shkwon@math.skku.ac.kr
2 Dept. of Computer and Information Engineering, Daegu University,

Kyungsan 712-714, Korea
chkim@dsp.taegu.ac.kr,cphong@daegu.ac.kr

Abstract. We present a fast and compact hardware architecture of
exponentiation in a finite field GF (2n) determined by a Gauss period of
type (n, k) with k ≥ 2. Our construction is based on the ideas of Gao
et al. and on the computational evidence that a Gauss period of type
(n, k) over GF (2) is very often primitive when k ≥ 2. Also in the case
of a Gauss period of type (n, 1), i.e. a type I optimal normal element,
we find a primitive element in GF (2n) which is a sparse polynomial of
a type I optimal normal element and we propose a fast exponentiation
algorithm which is applicable for both software and hardware purposes.
We give an explicit hardware design using the algorithm.

Keywords: Finite field, Gauss period, primitive element, exponentia-
tion, optimal normal basis

1 Introduction

Arithmetic of finite fields finds various applications in many cryptographic areas
these days. Especially, fast exponentiation is very important in such applications
as Diffie-Hellman key exchange and pseudo random bit generators. Though ex-
ponentiation is the most time consuming and complex arithmetic operation, in
some situations such as Diffie-Hellman key exchange, one can devise an efficient
exponentiation algorithm since a fixed (primitive) element is raised to many dif-
ferent powers. Let GF (qn) be a finite field with qn element where q is a power of
a prime and let g ∈ GF (qn) be a primitive element (or an element of high mul-
tiplicative order). Roughly speaking, the computation of gs for arbitrary values
of s is studied from two different directions. One is the use of precomputation
with vector addition chains such as BGMW method [1] and its improvements
by Lim and Lee [6] and also by Rooij [7]. The other approach is suggested by
Gao et al. [4,5] and it uses a special primitive element called a Gauss period
which generates a normal basis for GF (qn) over GF (q). The BGMW method
and its improvements are applicable to arbitrary finite field GF (qn) and very
flexible. On the other hand, an ideal version of BGMW method requires a mem-
ory of order O(n log q/ log(n log q)) values in GF (qn) and multiplications of order

C.D. Walter et al. (Eds.): CHES 2003, LNCS 2779, pp. 228–242, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Efficient Exponentiation for a Class of Finite Fields GF(2n) 229

O(log(n log q)) which amounts to an order of O(n2 log2 q log(n log q)) bit addi-
tions. An algorithm proposed by Gao et al. is not applicable to all finite fields.
However, it does not need a precomputation and the complexity of the algo-
rithm is O(kqn2) additions. Therefore if q is small and if there is a Gauss period
of high order of type (n, k) for a small value of k, then the method of Gao et
al. outperforms the precomputation methods. In this paper, we will discuss an
improved algorithm of Gao et al. for a hardware arrangement. We will present a
compact and fast hardware architecture for exponentiation using Gauss periods
of type (n, k) in GF (2n) where k ≥ 2, and detailed explanations will be given for
k = 2, 3. Also we will give an algorithm for efficient exponentiation in the field
determined by an irreducible all one polynomial (AOP). This is possible since
we may successfully find a primitive element which is a trinomial of a root of an
AOP for most of the cases. Since none of the papers in [1,4,5,6,7] mentions an ex-
plicit hardware architecture for exponentiation and since our construction of the
circuit has the features of regularity and modularity for VLSI implementation,
our result may have possible applications such as smart card purposes.

2 Gauss Periods of Type (n, k) in GF (qn)

We will briefly review the theory of Gauss periods and the method of Gao et al..
Let n, k be positive integers such that p = nk + 1 is a prime not dividing q. Let
K = 〈τ〉 be a unique subgroup of order k in GF (p)×. Let ordpq be the order of
q modulo p and assume gcd(nk/ordpq, n) = 1. Let β be a primitive pth root of
unity in GF (qnk). Then the the following element

α =
k−1∑

j=0

βτj

(1)

is called a Gauss period of type (n, k) over GF (q). It is well known that α is
a normal element in GF (qn). That is, letting αi = αqi

for 0 ≤ i ≤ n − 1,
{α0, α1, α2, · · · , αn−1} is a basis for GF (qn) over GF (q). Since K = 〈τ〉 is a
subgroup of order k in GF (p)×, a cyclic group of order p− 1 = nk, the quotient
group GF (p)×/K is also a cyclic group of order n and the generator of the group
is qK. Therefore we have a coset decomposition of GF (p)× as a disjoint union,

GF (p)× = K0 ∪K1 ∪K2 · · · ∪Kn−1, (2)

where Ki = qiK, 0 ≤ i ≤ n − 1. Note that any element in GF (p)× is uniquely
written as τ sqt for some 0 ≤ s ≤ k − 1 and 0 ≤ t ≤ n − 1. Now for each
0 ≤ i ≤ n− 1, we have

ααi =
k−1∑

s=0

βτs
k−1∑

t=0

βτtqi

=
k−1∑

s=0

k−1∑

t=0

βτs(1+τt−sqi) =
k−1∑

s=0

k−1∑

t=0

βτs(1+τtqi).

(3)

230 S. Kwon, C.H. Kim, and C.P. Hong

Notice that there is unique 0 ≤ u ≤ k − 1 and 0 ≤ v ≤ n − 1 such that
1+ τuqv = 0 ∈ GF (p). If t �= u or i �= v, then we have 1+ τ tqi ∈ Kσ(t,i) for some
0 ≤ σ(t, i) ≤ n− 1 depending on t and i. Thus we may write 1+ τ tqi = τ t′

qσ(t,i)

for some t′. Now when i �= v,

ααi =
k−1∑

s=0

k−1∑

t=0

βτs(1+τtqi) =
k−1∑

s=0

k−1∑

t=0

βτs(τt′
qσ(t,i))

=
k−1∑

t=0

k−1∑

s=0

βτs+t′
qσ(t,i)

=
k−1∑

t=0

αqσ(t,i)
=

k−1∑

t=0

ασ(t,i).

(4)

Also when i = v,

ααv =
k−1∑

s=0

k−1∑

t=0

βτs(1+τtqv) =
∑

t�=u

k−1∑

s=0

βτs(τt′
qσ(t,v)) +

k−1∑

s=0

βτs(1+τuqv)

=
∑

t�=u

k−1∑

s=0

βτs+t′
qσ(t,v)

+
k−1∑

s=0

1 =
∑

t�=u

αqσ(t,v)
+ k =

∑

t�=u

ασ(t,v) + k.

(5)

Therefore ααi is computed by the sum of at most k basis elements in {α0, α1, · · · ,
αn−1} for i �= v and ααv is computed by the sum of at most k−1 basis elements
and the constant term k ∈ GF (q). Using these ideas, Gao et al. [4] showed the
following.

Theorem 1. Let α be a Gauss period of type (n, k) over GF (q), with k and q
bounded. For any 0 ≤ r < qn, αr can be computed in O(n2) additions in GF (q).

Sketch of Proof. Write r =
∑n−1

j=0 rjq
j with 0 ≤ rj < q. Then the following

algorithm gives an output αr.

Table 1. An exponentiation algorithm in [4]

—————————————————————————————–
Input: r =

∑n−1
j=0 rjq

j

Output: αr =
∏

0≤i≤n−1 αri
i

A← 1
for (i = 0 to n− 1 ; i + +)

if ri �= 0
for (j = 1 to ri ; j + +)

A← Aαi

end for
end if

end for
—————————————————————————————–

Assuming that qth Frobenius map α → αq is almost free, Aαi is computed
by O(nk) additions in GF (q) in a redundant basis {α0, α1, · · · , αn−1, 1}. For

Efficient Exponentiation for a Class of Finite Fields GF(2n) 231

each i, the inner loop A ← Aαi runs ri times. Therefore the total number of
multiplications A← Aαi is

∑n−1
i=0 ri ≤ (q−1)n. Since Aαi is computed by O(nk)

additions, one can compute αr by O(kqn2) additions in GF (q).
�
If above theorem should have any application, it must be guaranteed that the
Gauss period α is a primitive element in GF (qn), or at least is of high order.
This is not always satisfied. For example, a Gauss period α of type (n, 1) is
never a primitive element since αn+1 = 1 and n + 1 << qn. However, various
computational results imply that the Gauss period α of type (n, k), k ≥ 2, over
GF (2) is very often primitive, and even in the cases that α is not primitive, it
usually has a very high multiplicative order. For example, it is known [4] that,
among the 177 values of n ≤ 1000 for which a Gauss period α of type (n, 2) over
GF (2) exists, α is a primitive element for 146 values of n. Moreover, when α is
not primitive, it is usually of very high order. The same table in [4] implies that
a Gauss period of type (n, k) over GF (2) is also very often primitive for k ≥ 3. In
the table, it is shown that for approximately 1050 values of 2 ≤ n ≤ 1200, there
is a primitive Gauss period of type (n, k) for some k, and in many cases, one
can choose k < 20. A theorem supporting this experimental evidence is obtained
by Gathen and Shparlinski [17], where it is shown that a Gauss period of type
(n, 2) in GF (qn) has order at least 2

√
2n−2 for infinitely many n.

3 Hardware Arrangements for Exponentiation Using
Gauss Periods of Type (n, k) in GF (2n) for k ≥ 2

Throughout this section, let us assume that q = 2. The algorithm in section 2 is
not suitable for a hardware arrangement since one has to multiply different αj

for each step and since the exact number of additions in the coefficients of the
expression Aαj is unclear. From now on, instead of using a redundant basis as
in section 2, we will always use a normal basis {α0, α1, · · · , αn−1} because our
approach is more suitable for a unified and simple hardware architecture. Let
A =

∑n−1
i=0 aiαi with ai ∈ GF (2). Notice that there exist unique 0 ≤ u ≤ k − 1

and 0 ≤ v ≤ n − 1 such that 1 + τu2v ≡ 0 (mod p). In this case there is no
0 ≤ σ(u, v) ≤ n − 1 satisfying 0 = 1 + τu2v ∈ Kσ(u,v). Therefore from the
equations (4) and (5),

Aα =
n−1∑

i=0

aiαiα = avk +
n−1∑

i=0

k−1∑

t=0
(t,i) �=(u,v)

aiασ(t,i). (6)

For each 0 ≤ i ≤ n− 1, letting tij = |{0 ≤ t ≤ k− 1|1 + τ tqi ∈ Kj}| = |{0 ≤ t ≤
k − 1|σ(t, i) = j}|, we have

Aα = avk +
n−1∑

i=0

ai

n−1∑

j=0

tijαj = avk +
n−1∑

j=0

(
n−1∑

i=0

aitij

)
αj . (7)

232 S. Kwon, C.H. Kim, and C.P. Hong

Lemma 1. If k is even, each coefficient of Aα is computed by the sum of at
most k ais, 0 ≤ i ≤ n− 1, and if k is odd, it is computed by the sum of at most
k + 1 ais.

Proof. For each j, it is almost clear that the number of 0 ≤ i ≤ n− 1 such that
tij �= 0 is at most k. If not, there are k + 1 different is with s = 1, 2, · · · , k + 1
such that 1 + τ ts2is ∈ Kj for some ts, s = 1, 2, · · · , k + 1. Since the coset
Kj = 2jK is a set with k elements, there exist 1 ≤ s �= l ≤ k + 1 such that
1 + τ ts2is = 1 + τ tl2il , which implies is = il. Therefore

∑n−1
i=0 aitij is the sum of

at most k ais. Because we have the field GF (2n) of characteristic two, avk = 0 if
k is even and avk = av if k is odd. Since the coefficient of αj in Aα is

∑n−1
i=0 aitij

if k is even and av +
∑n−1

i=0 aitij if k is odd, our assertion is verified.
�

Now we are ready to give a modified algorithm which is easily applicable to a
hardware arrangement.

Table 2. A modified exponentiation algorithm for a hardware purpose

—————————————————————————————–
Input: r =

∑n−1
j=0 rj2j

Output: αr

A← 1
for (i = n− 1 to 0 ; i−−)

A← A2αri

end for
—————————————————————————————–

Above algorithm is just a simple form of binary window method which computes

αr = α
∑n−1

i=0 ri2i

= (· · · (((αrn−1)2αrn−2)2αrn−3)2 · · ·)2αr0 . (8)

Notice that by lemma 1, the operation A← A2α in our algorithm needs at most
k − 1 or k additions under the normal basis expression. One may realize above
exponentiation in a linear array circuit consisting of n flip-flops, n 2-1 MUXs
and at most n(k−1) or nk (depending on the parity of k) XOR gates. The initial
value A = 1 is loaded in n flip-flops, i.e. we have a0 = a1 = · · · = an−1 = 1
initially. The signal of r =

∑n−1
j=0 rj2j is loaded serially in descending order. That

is, r0, · · · , rn−2, rn−1 −→. Since A← A2 is free in a hardware arrangement (just
a rewiring), A ← A2αri is computed at most k − 1 or k additions for each
coefficient. This operation can be done in one clock cycle. Namely, at ith clock
cycle, all the coefficients of A2 and A2α are loaded as input values of the MUXs
where the control signal is rn−i. Therefore if rn−i = 0, then A2 is selected, and
if rn−i = 1, then A2α is selected. Let us remind that XOR is a 2-input XOR
gate and MUX is a 2-1 multiplexer. Also DX is the delay time of a XOR and
DM is the delay time of a MUX.

Efficient Exponentiation for a Class of Finite Fields GF(2n) 233

Proposition 1. Let α be a Gauss period of type (n, k), k ≥ 2, in GF (2n). Let
r =

∑n−1
i=0 ri2i with ri = 0, 1. Then,

(a) we can construct a linear array which computes αr using n flip-flops, n 2-1
MUXs, and at most n(k − 1) XOR gates if k is even, at most nk XOR gates if
k is odd.
(b) Each coefficient of αj consists of an XOR tree with at most k− 1 or k XOR
gates. Thus the depth of each XOR tree is at most log2 k� and the critical path
delay of our architecture is log2 k�DX + DM .

We present the design of the circuit in Fig. 1. Note that we get the result αr

after n clock cycles and at each ith clock cycle, A2 and A2α are simultaneously
computed and pass through MUX to get the correct value A← A2αn−i.

Fig. 1. A circuit for exponentiation αr using a type (n, k) Gauss period in GF (2n)

To show the power of our architecture, which is a linear array but involves many
parallel computations, let us think of a finite field GF (21188). It is known [4] that
the lowest complexity primitive Gauss period in GF (21188) is of type (1188, 19),
i.e. k = 19. In this case, our architecture needs 1188 flip-flops and MUXs, and at
most 21384 XOR gates. But the critical path delay is only log2 k�DX + DM =
5DX +DM . When n = 1194, we have a primitive Gauss period of type (1194, 2)
in GF (21194). Thus we need only 1194 XOR gates and the critical path delay
is DX + DM . It should be mentioned that a linear array for exponentiation is
proposed by Wu and Hasan [15] using a polynomial basis. Though their method
is quite efficient, the complexity and the structure of the design heavily depends
on the choice of primitive irreducible polynomial. However our array provides
high flexibility and modularity with respect to field size n. In the following
subsections, we will discuss the circuits of Gauss periods of type (n, 2) and (n, 3)
which have low computational complexity. In these cases, the exact number of
necessary gates will be determined rather easily.

3.1 Optimal Normal Basis of Type II over GF (2)

Let α = β + β−1 be a Gauss period of type (n, 2) in GF (2n), where 2n + 1 = p
is a prime and β is a primitive pth root of unity in GF (22n). It is also called an
optimal normal element of type II and {α0, α1, · · · , αn−1} is called an optimal
normal basis of type II over GF (2). It has the lowest complexity in the sense that

234 S. Kwon, C.H. Kim, and C.P. Hong

the sum of the number of nonzero terms in the expression of ααi for 0 ≤ i ≤ n−1
is minimal, which is 2n − 1. Since {1, 2, · · · , 2n} and {±1,±2, · · · ,±n} are the
same reduced residue system (mod p), we easily find {α0, α1, · · · , αn−1} and
{β + β−1, β2 + β−2, · · · , βn + β−n} are same sets. Letting α′

s = βs + β−s, 1 ≤
s ≤ n, it is clear that αα′

i = (β +β−1)(βi +β−i) = α′
i−1 +α′

i+1. A multiplication
table can be constructed easily using above property. Or we may use the self
dual property of a Gauss period of type (n, k) for even k. We say that two
bases {β1, β2, · · · , βn} and {γ1, γ2, · · · , γn} of GF (2n) are dual if the trace map,
Tr : GF (2n)→ GF (2), with Tr(β) = β+β2+· · ·+β2n−1

, satisfies Tr(βiγj) = δij

for all 1 ≤ i, j ≤ n, where δij = 1 if i = j, zero if i �= j. A basis {β1, β2, · · · ,
βn} is said to be self dual if Tr(βiβj) = δij . One can directly prove that the
Gauss period of type (n, 2) in GF (2n) generates a self dual normal basis or more
generally, one may refer the result in [3] which says that a normal basis of Gauss
period of type (n, k) in GF (2n) is self dual if and only if k is even. Using this
self duality, or by a straightforward computation, one can show [20] that

Lemma 2. Let β is a primitive pth root of unity in GF (22n) where p = 2n+1 is
a prime, and let α = β+β−1 be an optimal normal element of type II in GF (2n).
Let α′

i = βi + β−i for all 1 ≤ i ≤ n. Let A =
∑n

i=1 aiα
′
i and B =

∑n
i=1 biα

′
i

be elements in GF (2n). Then we have AB =
∑n

j=1(AB)jα
′
j, where the jth

coefficient (AB)j satisfies

(AB)j =
n∑

i=1

bi(aj−i + aj+i),

where it is defined that a0 = 0, as = a−s if s is negative, and as = a2n+1−s if
s > n.

For our purpose, we only need to know the formula of Aα with respect to the
basis {α′

1, α
′
2, · · · , α′

n}. Letting B = α = α′
1 in above lemma, we get b1 = 1 and

bi is zero if i �= 1. Thus (Aα)j = aj−1 + aj+1 for all 1 ≤ j ≤ n. That is,

Aα=a2α
′
1+(a1 + a3)α′

2 +(a2 + a4)α′
3 + · · ·+(an−2+ an)α′

n−1+(an−1+an)α′
n.
(9)

Using this formula and since {α0, α1, · · · , αn−1} and {α′
1, α

′
2, · · · , α′

n} are same
sets where αi = α2i−1

and α′
i = βi + β−i, we find that the circuit for exponenti-

ation needs exactly n flip-flops, n 2-1 MUXs, and n− 1 XOR gates.

Proposition 2. Let α be a type II optimal normal element in GF (2n). Then
we can construct a linear array which computes αr for any r =

∑n−1
i=0 ri2i with

ri = 0, 1 using n flip-flops, n 2-1 MUXs and n− 1 XOR gates. The critical path
delay of our architecture is DX + DM and the latency is n.

Example 1. Let p = 11 and n = 5 where the existence of a type II optimal normal
element α = β + β−1 is well known. Notice that α is a primitive element. Also
note the following correspondence,

α0 = α′
1, α1 = α′

2, α2 = α′
4, α3 = β8 + β−8 = α′

3, α4 = β16 + β−16 = α′
5, (10)

Efficient Exponentiation for a Class of Finite Fields GF(2n) 235

where β11 = 1 is used. Now let A = a0α0 + a1α1 + a2α2 + a3α3 + a4α4. Then
A2 = a4α0 + a0α1 + a1α2 + a2α3 + a3α4. From the correspondence (10), we get
A2 = a4α

′
1 + a0α

′
2 + a2α

′
3 + a1α

′
4 + a3α

′
5. Thus from the formula (9),

A2α = A2α′
1

= a0α
′
1 + (a2 + a4)α′

2 + (a0 + a1)α′
3 + (a2 + a3)α′

4 + (a1 + a3)α′
5

= a0α0 + (a2 + a4)α1 + (a2 + a3)α2 + (a0 + a1)α3 + (a1 + a3)α4.

(11)

The basis of our circuit is {α0, α1, · · · , αn−1}, and at each ith clock cycle, the
serial input rn−i selects via MUX one of the two values, A2 or A2α. This is
realized in the following circuit shown in Fig. 2.

Fig. 2. A circuit for exponentiation αr using a type II optimal normal element in
GF (2n) for n = 5

3.2 Gauss Period of Type (n, 3) over GF (2)

Let 3n + 1 = p is a prime and β is a primitive pth root of unity in GF (23n).
Let α = β + βτ + βτ2 ∈ GF (2n) be a Gauss period of type (n, 3) where τ is
a generator of the unique cyclic subgroup K of order 3 in GF (p)×. Note that
there is unique u and v such that

1 + τu2v = 0 ∈ GF (p). (12)

Also notice v �= 0 because −1 /∈ K = 〈τ〉. We claim that v is a unique integer
satisfying

1 + τ, 1 + τ2 ∈ Kv = 2vK. (13)

Since τ is an element of order 3 in GF (p)×, we get

τ2 + τ + 1 = 0. (14)

Thus by (12) and (14),

τ + τ2 = −1 = τu2v, (15)

which implies

1 + τ = τu−12v, and 1 + τ2 = τ2(1 + τ) = τu+12v. (16)

Therefore the equation (13) is verified. Now from the equation (5),

236 S. Kwon, C.H. Kim, and C.P. Hong

ααv =
∑

t�=u

α2σ(t,v)
+ 3 = ασ(t1,v) + ασ(t2,v) + 1, (17)

where t1, t2 �= u. We claim that σ(t1, v) �= σ(t2, v). In fact, more generally we
have

Lemma 3. If i �= 0, v, then σ(0, i), σ(1, i), σ(2, i) are all different. If i = 0, then
σ(1, 0) = σ(2, 0) = v and σ(0, 0) = 1. If i = v, then σ(t1, v) �= σ(t2, v).

Proof. The second statement is already proved in view of the equation (13). Now
suppose i �= 0, v. To prove the first statement, we have to show that 1 + 2i, 1 +
τ2i, 1 + τ22i are in all different cosets of K in GF (p)×. Suppose on the contrary
that there exist s �= t such that 1 + τ s2i and 1 + τ t2i belong to the same coset.
Then we have

1 + τ t2i

1 + τ s2i
∈ K = {1, τ, τ2}. (18)

Since s �= t, 1+τt2i

1+τs2i = 1 is impossible. Suppose 1+τt2i

1+τs2i = τ . Then 1 + τ t2i =
τ + τ s+12i. If t ≡ s + 1 (mod 3), we get τ = 1 which is absurd. Therefore
t ≡ s + 2 (mod 3) and we get 1 + τ s+22i = τ + τ s+12i. Thus we get 2i =

τ−1
τs+2−τs+1 = τ−s−1 ∈ K, which is a contradiction since 0 < i ≤ n − 1 and n

is the least positive integer satisfying 2n ∈ K. Now suppose 1+τt2i

1+τs2i = τ2. Then
1+τs2i

1+τt2i = τ−2 = τ and the same technique can be applied. The proof of the last
statement is also same.
�
From lemma 3, the multiplication structure of ααi is completely determined.
That is, when i = 0, αα0 = α1 consists of one basis element. For i = v, we have
ααv = ασ(t1,v) + ασ(t2,v) + 1 with σ(t1, v) �= σ(t2, v). And for i �= 0, v, we get
ααi = ασ(0,i) +ασ(1,i) +ασ(2,i) where all the summands are different. Therefore,
except for the constant term 1 in the expression ααv, the number of elements
which are in the summands of ααi, 0 ≤ i ≤ n − 1 is exactly 3(n − 1). On the
other hand, αv appears only once as a summand of ααi for some i since two αv

in the expression of αα0 are cancelled each other. Moreover α0 appears twice as
a summand of ααi for two different values of i. This is because we have only two
different pairs of (t, i) satisfying 1 + τ t2i ∈ K, i.e. 1 + τ t2i = 1 is never satisfied.
Since the proof of lemma 1 says that αj appears at most 3 times as a summand
of ααi, 0 ≤ i ≤ n− 1, we conclude that αj (j �= 0, v) appears exactly 3 times as
a summand of ααi. Letting A =

∑n−1
i=0 aiαi, the multiplication structure of Aα

in the equation (7) says,

Aα =
n−1∑

j=0

(
av +

n−1∑

i=0

aitij

)
αj . (19)

From the observations on the number of basis element as a summand of ααi,
we conclude that av +

∑n−1
i=0 aitij needs 2 additions if j = 0, one addition if

j = v, σ(t1, v), σ(t2, v) and 3 additions if j �= 0, v, σ(t1, v), σ(t2, v).

Efficient Exponentiation for a Class of Finite Fields GF(2n) 237

Proposition 3. Let α be a Gauss period of type (n, 3) in GF (2n). Then we can
construct a linear array which computes αr for any r =

∑n−1
i=0 ri2i with ri = 0, 1

using n flip-flops, n 2-1 MUXs and 3n − 7 XOR gates. Each coefficient of αj

(j �= 0, v, σ(t1, v), σ(t2, v)) consists of 3 XOR gates, For j = v, σ(t1, v), σ(t2, v),
each coefficient consists of one XOR gate, and the coefficient of α0 needs 2 XOR
gates. Thus the critical path delay of our architecture is 2DX + DM and the
latency is n.

Example 2. Let p = 19 and n = 6 where a Gauss period α of type (6, 3) in GF (26)
exists and is primitive. In this case, the unique cyclic subgroup of order 3 in
GF (19)× is K = {1, 7, 11}. Let β be a primitive 19th root of unity in GF (218).
Thus letting τ = 7, α is written as α = β + β7 + β11. The computations of
ααi, 0 ≤ i ≤ 5 is easily done from the following table. For each block regarding
K and K ′, (s, t) entry with 0 ≤ s ≤ 2 and 0 ≤ t ≤ 5 denotes τ s2t and 1 + τ s2t

respectively.

Table 3. Computation of Ki and K′
i

K0 K1 K2 K3 K4 K5 K′
0 K′

1 K′
2 K′

3 K′
4 K′

5

1 2 4 8 16 13 2 3 5 9 17 14
7 14 9 18 17 15 8 15 10 0 18 16

11 3 6 12 5 10 12 4 7 13 6 11

From above table, we easily deduce

αα = α1, αα1= α1 + α2 + α5, αα2 = α0 + α4 + α5, (20)
αα3 = α2 + α5 + 1, αα4= α2 + α3 + α4, αα5 = α0 + α1 + α4. (21)

For example, see the block K ′
2 for the expression of αα2. The entries of K ′

2 are
5, 10, 7. Now see the blocks of Kis and find 5 ∈ K4, 10 ∈ K5, 7 ∈ K0. Thus we
get αα2 = α4 + α5 + α0. Note that v = 3 and σ(t1, v), σ(t2, v) = 2, 5 in our
example. Let A =

∑5
i=0 aiαi be an element in GF (26). Then A2 =

∑5
i=0 aiαi+1

where α6 is understood as α0. Thus

A2α =
5∑

i=0

aiαi+1α

= a0(α1 + α2 + α5) + a1(α0 + α4 + α5) + a2(α2 + α5 + 1)
+ a3(α2 + α3 + α4) + a4(α0 + α1 + α4) + a5α1

= a2 + (a1 + a4)α0 + (a0 + a4 + a5)α1 + (a0 + a2 + a3)α2

+ a3α3 + (a1 + a3 + a4)α4 + (a0 + a1 + a2)α5

= (a1 + a2 + a4)α0 + (a0 + a2 + a4 + a5)α1 + (a0 + a3)α2

+ (a2 + a3)α3 + (a1 + a2 + a3 + a4)α4 + (a0 + a1)α5.

(22)

Thus the exponentiation algorithm is realized in the following circuit.

238 S. Kwon, C.H. Kim, and C.P. Hong

Fig. 3. A circuit for exponentiation αr using Gauss period of type (n, 3) in GF (2n)
for n = 6

4 Primitive Elements Spanned by an Optimal Normal
Basis of Type I over GF (2)

Let α be a Gauss period of type (n, 1) over GF (2), where n + 1 = p is a prime.
α is also called a type I optimal normal element and the corresponding normal
basis is called a type I optimal normal basis. Note that α is never primitive and
has a very low order, i.e. αn+1 = 1 where n+1 << 2n−1. Therefore one cannot
use the algorithms in Table 1, 2 for exponentiation for a practical purpose. On
the other hand, it should be noticed that there are not so few primitive elements
in arbitrary finite field GF (2n). That is, the number of primitive elements in
GF (2n) is φ(2n − 1), where φ(x) is Euler’s phi-function. Thus, the probability
for a randomly chosen element α ∈ GF (2n)× to be a primitive element is

φ(2n − 1)/(2n − 1) =
∏

q|2n−1

(
1− 1

q

)
, (23)

where the product runs through all primes q dividing 2n − 1. As long as 2n − 1
is not a product of many small prime factors, which is a necessary condition to
avoid the Pohlig-Hellman attack for discrete logarithm problem, the probability
is not so small. In fact, the following formula for average value of the probability
is well known [25],

N∑

n=1

φ(n)/n =
6
π2 N + O(log N). (24)

Of course, our choice of α is not a randomly chosen element. Though α is not a
primitive element, we may ask a natural question whether there exists a primitive
element which is a sparse polynomial of α, for example, a binomial of the form
αs + αt. However it turns out that they are never primitive if n > 4. To show
this, note that αs + αt = αs(1 + αt−s) = αs(1 + α)2

j

for some j. Also from
the observation, (1 + α)2

n/2
= 1 + α2n/2

= 1 + α−1 = (1 + α)/α, we get α =
(1 + α)−2n/2+1. Therefore, neither 1 + α nor αs + αt is a primitive element if

Efficient Exponentiation for a Class of Finite Fields GF(2n) 239

n + 1 < 2n/2 + 1, i.e. if n > 4. The next possible choice is the elements of the
form αs + αt + αl, or more simply, 1 + αs + αt because the multiplication by
α contributes a negligible order n + 1. For this type of elements, we could not
use the same technique as proving 1 + α is of low order. In fact we found, by
a computation, that a trinomial 1 + α + αs of a type I optimal normal element
α in GF (2n) is always a primitive element for some s with only one exception
among all n ≤ 550.

Table 4. List of n ≤ 550 for which a type I optimal normal element α exists and its
corresponding primitive element

n primitive n primitive n primitive
element element element

4 1+α+α3 138 1+α+α4 372 1+α+α6

10 1+α+α3 148 1+α+α5 378 1+α+α3

12 1+α+α3 162 1+α+α3 388 1+α+α7

18 1+α+α4 172 1+α+α3 418 1+α+α5

28 1+α+α2+α6 178 1+α+α3 420 1+α+α8

36 1+α+α6 180 1+α+α5 442 1+α+α3

52 1+α+α4 196 1+α+α9 460 1+α+α7

58 1+α+α3 210 1+α+α3 466 1+α+α3

60 1+α+α3 226 1+α+α3 490 1+α+α7

66 1+α+α7 268 1+α+α8 508 1+α+α3

82 1+α+α3 292 1+α+α3 522 1+α+α3

100 1+α+α7 316 1+α+α7 540 1+α+α7

106 1+α+α3 346 1+α+α7 546 1+α+α3

130 1+α+α3 348 1+α+α6

We used MAPLE for above computation. In the case of n = 28, there was
no primitive element which is a trinomial of α, so we chose the next simple
expression. Let γ = 1 + αs + αt be a fixed primitive element in GF (2n) where
α is a type I optimal normal element. Let {1, α, α2, · · · , αn} be an extended
AOP (all one polynomial) basis. Then we have the following algorithm which
computes γr using the basis {1, α, α2, · · · , αn}.

Table 5. Exponentiation using γ = 1 + αs + αt under the extended AOP basis
—————————————————————————————–
Input: r =

∑n−1
j=0 rj2j

Output: γr

A← 1
for (i = n− 1 to 0 ; i−−)

A← A2γri

end for
—————————————————————————————–

Note that above algorithm is applicable for both software and hardware purposes.
Though the case q = 2 is dealt in above algorithm, one may also use other small

240 S. Kwon, C.H. Kim, and C.P. Hong

primes q = 3, 5, · · · for efficient exponentiation. The operation A ← A2 is free
in our basis because {1, α, α2, · · · , αn} = {1, α, α2, α22

, · · · , α2n−1}. Now letting
A =

∑n
i=0 aiα

i, we get

Aγ = A(1 + αs + αt) = A + Aαs + Aαt

=
n∑

i=0

aiα
i +

n∑

i=0

ai−sα
i +

n∑

i=0

ai−tα
i =

n∑

i=0

(ai + ai−s + ai−t)αi,
(25)

where the coefficients ai, aj are understood as ai = aj if i ≡ j (mod n + 1)
since αn+1 = 1. Therefore the computation A← Aγ needs 2 additions for each
coefficient of αi (0 ≤ i ≤ n) and the total number of bit additions needed to
compute γr is 2n(n+1) which is of O(n2). By following the same ideas of previous
section, we find that

Proposition 4. Let α be a type I optimal normal element in GF (2n) and as-
sume that γ = 1+αs +αt is a primitive element for some s and t. Then we can
construct a linear array which computes γr for any r =

∑n−1
i=0 ri2i with ri = 0, 1

using n + 1 flip-flops, n + 1 2-1 MUXs and 2n + 2 XOR gates. The critical path
delay of our architecture is 2DX + DM and the latency is n.

Example 3. Let n = 4 and let α be a type one optimal normal element, i.e. α
is a 5th root of unity over GF (2). It is trivial to show that γ = 1 + α + α3 is
a primitive element in GF (24). Let A = a0 + a1α + a2α

2 + a3α
3 + a4α

4 be an
element in GF (24) with respect to the extended AOP basis. From

A2 = a0 + a3α + a1α
2 + a4α

3 + a2α
4,

A2α = a2 + a0α + a3α
2 + a1α

3 + a4α
4,

A2α3 = a1 + a4α + a2α
2 + a0α

3 + a3α
4,

(26)

we find

A2γ = A2(1 + α + α3)
= (a0 + a1 + a2) + (a0 + a3 + a4)α

+ (a1 + a2 + a3)α2 + (a0 + a1 + a4)α3 + (a2 + a3 + a4)α4.

(27)

From this information, the computation γr, r =
∑n−1

i=0 ri2i is easily realized in
the following circuit.

Fig. 4. A circuit for exponentiation γr in GF (2n) for n = 4, where γ is a trinomial of
a type I optimal normal element α

Efficient Exponentiation for a Class of Finite Fields GF(2n) 241

Table 6. Comparison with previously proposed exponentiation architectures

[10] [12] [13] Fig. 1
latency 2n2 + 2n n(n − 1) + � n

2 � + 1 n(n − 1) n

critical
path delay 2DAND + 2DXOR DAND + 2DXOR 2DAND + 2DXOR �log2 k	DXOR + DMUX

complexity
AND 4n2(n − 1) 3n2(n − 1) 3n(n − 1) 0
XOR 4n2(n − 1) 3n2(n − 1) 3n(n − 1) kn

MUX 0 0 0 n

flip-flop 14n2(n − 1) 9
2 n2(n − 1) 4n(n − 1) n

5 Conclusions

We proposed a compact and fast exponentiation architecture using a Gauss pe-
riod of type (n, k) in GF (2n) for all k. Using the computational evidence that a
Gauss period of type (n, k), k ≥ 2, is very often primitive and by modifying the
multiplication algorithm given by Gao et al., we successfully constructed low
complexity arithmetic circuits which have possible applications such as smart
cards. Also for the case of a type I optimal normal element, i.e. a Gauss period
of type (n, 1), we found primitive elements which yield low complexity multi-
plication structure and we gave an exponentiation algorithm which is applica-
ble for both software and hardware purposes. We presented explicit designs of
the circuits for Gauss periods of type (n, k) when k = 1, 2, 3. Table 6 implies
that our linear array has many superior properties in terms of latency and gate
complexity compared with other existing exponentiation architectures, though
our circuit works only for a fixed primitive element. The critical path delay
log2 k�DXOR + DMUX in our architecture is not so long since in most of the
cases of n ≤ 1200, we could choose a Gauss period of type (n, k) where k ≤ 32.
That is log2 k� ≤ 5.

Acknowledgements. This work was supported by grant No. R05-2003-000-
11325-0 from the Basic Research Program of the Korea Science & Engineering
Foundation.

References

1. E.F. Brickell, D.M. Gordon, K.S. McCurley, and D.B. Wilson, “Fast exponentiation
with precomputation,” Eurocrypt 92, Lecture Notes in Computer Science, vol. 658,
pp. 200–207, 1992.

2. T. Beth, B.M. Cook, and D. Gollman, “Architectures for exponentiation in
GF (2n),” Crypto 86, Lecture Notes in Computer Science, vol. 263, pp. 302–310,
1986.

3. S. Gao, J. von zur Gathen, and D. Panario, “Gauss periods and fast exponentiation
in finite fields,” Latin 95, Lecture Notes in Computer Science, vol. 911, pp. 311–322,
1995.

242 S. Kwon, C.H. Kim, and C.P. Hong

4. S. Gao, J. von zur Gathen, and D. Panario, “Orders and cryptographical applica-
tions,” Math. Comp., vol. 67, pp. 343–352, 1998.

5. S. Gao and S. Vanstone, “On orders of optimal normal basis generators,” Math.
Comp., vol. 64, pp. 1227–1233, 1995.

6. C.H. Lim and P.J. Lee, “More flexible exponentiation with precomputation,”
Crypto 94, Lecture Notes in Computer Science, vol. 839, pp. 95–107, 1994.

7. P. de Rooij, “Efficient exponentiation using precomputation and vector addition
chains,” Eurocrypt 94, Lecture Notes in Computer Science, vol. 950, pp. 389–399,
1994.

8. B. Sunar and Ç.K. Koç, “An efficient optimal normal basis type II multiplier,”
IEEE Trans. Computers, vol 50, pp. 83–87, 2001.

9. A.J. Menezes, I.F. Blake, S. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian,
Applications of finite fields, Kluwer Academic Publisher, 1993.

10. C.L. Wang, “Bit level systolic array for fast exponenetiation in GF (2m),” IEEE
Trans. Computers, vol. 43, pp. 838–841, 1994.

11. P.A. Scott, S.J. Simmons, S.E. Tavares, and L.E. Peppard, “Architectures for ex-
ponentiation in GF (2m),” IEEE J. on Selected Areas in Communications, vol. 6,
pp. 578–586, 1988.

12. S.K. Jain, L. Song, and K.K. Parhi, “Efficient semisystolic architectures for finite
field arithmetic,” IEEE Trans. VLSI Syst., vol. 6, pp. 101–113, 1998.

13. S.W. Wei, “VLSI architectures for computing exponentiations, multiplicative in-
verses, and divisions in GF (2m),” IEEE Trans. Circuits Syst. II, vol. 44, pp. 847–
855, 1997.

14. H. Wu, M.A. Hasan, I.F. Blake, and S. Gao, “Finite field multiplier using redundant
representation,” IEEE Trans. Computers, vol. 51, pp. 1306–1316, 2002.

15. H. Wu and M.A. Hasan, “Efficient exponentiation of a primitive root in GF (2m),”
IEEE Trans. Computers, vol. 46, pp. 162–172, 1997.

16. J. von zur Gathen and M.J. Nöcker, “Exponentiation in finite fields: Theory and
Practice,” AAECC 97, Lecture Notes in Computer Science, vol. 1255, pp. 88–133,
1997.

17. J. von zur Gathen and I. Shparlinski, “Orders of Gauss periods in finite fields,”
ISAAC 95, Lecture Notes in Computer Science, vol. 1004, pp. 208–215, 1995.

18. G.B. Agnew, R.C. Mullin, I. Onyszchuk, and S.A. Vanstone, “An implementation
for a fast public key cryptosystem,” J. Cryptology, vol. 3, pp. 63–79, 1991.

19. G.B. Agnew, R.C. Mullin, and S.A. Vanstone, “Fast exponentiation in GF (2n),”
Eurocrypt 88, Lecture Notes in Computer Science, vol. 330, pp. 251–255, 1988.

20. S. Kwon and H. Ryu, “Efficient bit serial multiplication using optimal normal bases
of type II in GF (2m),” ISC 02, Lecture Notes in Computer Science, vol. 2433, pp.
300–308, 2002.

21. D.M. Gordon, “A survey of fast exponentiation methods,” J. of Algorithms, vol.
27, pp. 129–146, 1998.

22. W. Geiselmann and D. Gollmann, “VLSI design for exponentiation in GF (2n),”
Auscrypt 90, Lecture Notes in Computer Science, vol. 453, pp. 398–405, 1990.

23. Ç.K. Koç and B. Sunar, “Low complexity bit parallel canonical and normal basis
multipliers for a class of finite fields,” IEEE Trans. Computers, vol. 47, pp. 353–356,
1998.

24. C. Paar, P. Fleischmann, and P. Roelse, “Efficient multiplier archtectures for Galois
fields GF (24n),” IEEE Trans. Computers, vol. 47, pp. 162–170, 1998.

25. G. Tenenbaum, “Introduction to analytic and probabilistic number theory,” Cam-
bridge Univ. Press, 1995.

	Introduction
	Gauss Periods of Type (n,k) in $GF(q^n)$
	Hardware Arrangements for Exponentiation Using Gauss Periods of Type (n,k) in $GF(2^n)$ for $kgeq 2$
	Optimal Normal Basis of Type II over $GF(2)$
	Gauss Period of Type $(n,3)$ over $GF(2)$

	Primitive Elements Spanned by an Optimal Normal Basis of Type I over $GF(2)$
	Conclusions

