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ABSTRACT

We present an algorithm for perspective-correct, real-time specular illumination 
for surfaces of varying glossiness in dynamic environments. Our algorithm 
leverages properties from earlier techniques (e.g., radiance probes and screen-
space reflections) while reducing the amount of visual errors by adding ray tracing 
to the rendering pipeline. Our algorithm extends previous work by allowing 
accurate reflections for all surfaces regardless of the material, and it has global 
coherence (i.e., there are no visible discontinuities). With radiance caching, multiple 
samples can be efficiently computed as the radiance computation is decoupled 
from the final shading. The radiance cache is also used to approximate the 
specular term for the roughest surfaces without any ray tracing.

32.1	 �INTRODUCTION

Real-time rendering engines approximate lighting computations due to the 
computational cost of accurate simulations. Lighting can be quickly evaluated 
only for idealized or nearly idealized light sources such as point lights. However, 
illumination is a global phenomena and it can be affected significantly by light 
reflected from surfaces and light emitted from complex sources. Simulation of 
these components is usually expensive, but both have to be taken into account for 
realistic lighting. The aggregated contribution of such terms is known as global 
illumination. In real-time graphics, most terms of global illumination are usually 
precomputed.

Rendering engines commonly split the surface into two separate layers that 
contribute to the illumination: diffuse and specular. Each layer is composed of 
microscopic, flat area elements called microfacets which are described by a 
distribution rather than geometrical modeling. The mean slope (or in some cases 
the standard deviation of the slope) is described by a surface parameter called 
roughness.
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Diffuse layers describe weak correlation between the scattering distribution 
and the incoming light direction. A diffuse microfacet scatters luminous energy 
proportionally to the cosine of the angle between the incoming light direction 
and the microfacet normal direction. A diffuse material that exhibits flat micro-
structure is called Lambertian. In the case of diffuse illumination, the response 
mostly depends on the total irradiance on the surface. Therefore, the actual 
distribution of the incoming light does not have to be known in order to compute 
the radiance scattered in some direction. This observation is the key idea behind 
precomputed irradiance caches such as light maps or irradiance probes. Due to the 
low-frequency nature of the input data, the irradiance component can be packed 
aggressively and stored efficiently to cover the entire scene. Furthermore, minor 
changes in the scene’s direct diffuse illumination do not significantly affect the 
indirect diffuse term.

The second term, specular illumination, describes strong correlation between the 
scattering distribution and the light’s incoming direction. Every specular microfacet 
reflects light according to Snell’s law, and the reflected energy of the light is 
determined by Fresnel equations. A surface that exhibits flat micro-structure with 
specular microfacets is an idealized mirror. However, materials are rarely perfect 
mirrors and they scatter light into some preferred set of directions instead of just 
one: such surfaces are classified as glossy specular. By Helmholtz reciprocity, 
the measured radiance depends on a set of incoming radiances, taking a wider 
distribution into account when materials are rougher. The specular term is also 
referred to as reflection later in this chapter.

These observations make it impractical to store many radiance samples 
regardless of the data structure. Therefore, current rendering engines usually 
just capture radiance from a few points in the scene, or use already computed 
main camera radiance for the specular environment term. These approximations 
have their own shortcomings, which are analyzed briefly in Section 32.2. The only 
practical way to compute an accurate specular term during runtime is to actually 
sample radiance from the scene for each shaded point.

In this chapter, we present an algorithm for efficient computation of the indirect 
specular term for surfaces of varying glossiness regardless of the scene. We 
use the new Microsoft DirectX Raytracing (DXR) pipeline, as introduced into 
DirectX 12, to query global surface visibility in the scene for a set of rays defined 
by the specular BRDF. Radiance for these rays can be efficiently computed 
with our cached approach. Our algorithm also enables efficient specular term 
approximation for rough surfaces for which the view-dependent variance is low. 
The end result after post-filtering provides accurate and real-time specular 
illumination estimates for each pixel on the screen. See Figure 32-1.
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32.2	 �PREVIOUS WORK

Traditional and widely used techniques for reflections include planar reflections, 
screen-space reflections, and various image-based lighting approaches.

32.2.1	 �PLANAR REFLECTIONS

Planar reflections are simple to produce but require rendering the scene geometry 
multiple times—once for each planar reflector. Depending on the scene and the 
engine in question, this can be a costly operation on CPU, GPU, or both. Planar 
reflections only work well for planar or near-planar reflectors. Reflections of 
rough surfaces are problematic because planar reflectors cannot capture radiance 
except in the direction of the virtual camera.

32.2.2	 �SCREEN-SPACE REFLECTIONS

Screen-space reflections (SSR) is a reflection technique that only uses screen-
space data to approximate the specular term for the visible surfaces. The main 
idea is to cast one or more rays in screen space according to the specular BRDF 
of the surface and approximate radiance for those rays from the main camera 
illumination buffers. For each ray, a hit position is computed from the depth buffer 
data using ray marching. This makes SSR an incredibly cheap technique because 
no complex input data are required, which makes it viable even on lower-end 
hardware. Dynamic scenes are naturally supported without any extra cost. See the 
work of McGuire and Mara [12] and Stachowiak [16] for more information.

Figure 32-1.  A glossy car body, reflective floor, and mirror ball in the rear pick up local reflections at 
interactive rates.
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Unfortunately, SSR has multiple downsides. First, as it only operates on the 
screen-space data, occlusion can be incorrectly interpreted based on the depth 
buffer. In such cases, a ray can either terminate too early or pass through objects 
that it should actually hit. Second, main camera radiance naturally has only a 
single layer, and thus objects occluded in the view of main camera or outside of the 
camera frustum are not seen in reflections.

32.2.3	 �IMAGE-BASED LIGHTING

Image-based lighting (IBL) techniques approximate illumination from some 
captured imagery, stored usually in radiance probes that encode a spherical 
radiance map (also known as radiance cubes, reflection cubes, or reflection 
probes). Each probe can be associated with a proxy geometry object, such as a 
sphere or a box, that gives an approximated hit point in the scene [11]. Probes are 
also usually prefiltered to allow fast approximation of glossy materials and can 
be either precomputed or updated in real time depending on the frame budget. 
Readers can refer to Debevec’s work [3] for more information on IBL in general.

32.2.4	 �HYBRID APPROACHES

Multiple reflection techniques are usually combined to produce the final image.  
For example, screen-space reflections can be used in conjunction with the  
offline-generated radiance probes to create an approximate real-time specular 
illumination [5]. However, mixing various techniques can lead to visible 
discontinuities in the final illumination at the places where the reflection technique 
switches.

32.2.5	 �MISCELLANEOUS

More recent approaches have higher quality, but they come with an added 
computational cost. Voxel cone tracing can produce realistic specular terms even in 
dynamic scenes as presented by Crassin et al. [1], but it operates on the voxel scale. 
The approach presented by McGuire et al. [13] allows computation of accurate 
indirect diffuse and specular illumination from a set of precomputed light probes. 
These probes are augmented with a depth buffer for computing the intersection 
with a similar ray marching routine as in screen-space reflections. However, the 
technique is not fully dynamic. Neither of these techniques are yet widely used in 
rendering engines.
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32.3	 �ALGORITHM

Based on the previous work and general observations of modern rendering 
engines, the design of our algorithm stems from the following observations:

>> Screen-space reflections effectively approximate the local specular term 
and produce realistic results when there are no discontinuities in the final 
illumination, i.e., when the neighboring texels successfully sample from the 
screen space. However, discontinuities can immediately appear when the 
radiance is computed by other means (such as by sampling from a radiance 
cube). The rest of the reflection pipeline must match with the screen-space 
data to remove these discontinuities. Reusing the screen-space data also 
reduces the amount of costly radiance recomputations.

>> Only smooth, mirror-like surfaces need a high-resolution render.  
Lower-resolution approximations are fine for reflections of rougher surfaces 
as results are averaged over a set of directions.

>> Rays that are traced over a set of surfaces may hit approximately the same 
points in the scene. This becomes more likely as the number of radiance 
samples per pixel is increased.

>> It is common for game environments to have a small number of dynamic 
objects.

In practice, our algorithm enhances previous screen-space reflection and radiance 
probe techniques with ray tracing. Our novel contributions include the way we 
combine these techniques, the heuristics we define for sampling the probes, and 
modifications to motion vectors for temporal reflection filtering.

Figure 32-2 shows the various stages of our algorithm integrated into a traditional 
deferred rendering pipeline. The green parts show the steps of a simple traditional 
deferred rendering pipeline, and the purple parts are the additions for our 
implementation of ray traced reflections. The added parts comprise creation of the 
radiance cache for static geometry, lighting of the radiance cache, radiance sample 
generation, and reflection filtering. Our radiance cache is created as a preprocessing 
step for the static geometry. Lighting of the radiance cache can be seen as decoupled 
shading for the reflection ray tracing and sampling passes, and rays not found from 
the cache are simply shaded using material and light information as in a normal ray 
tracer. After a radiance value has been computed for all rays traced from the visible 
texels, a spatiotemporal filter is applied, and the filtered result is combined with the 
diffuse and direct specular surface illumination. Effects such as volumetric lighting 
are only applied to the final illumination after the reflections have been fully resolved. 
This is necessary to reduce illumination discontinuities as the sampled screen-space 
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illumination must match with the radiance cache and fully shaded rays. The world-
space clustering pass plays an important role; as rays can hit any point in the scene, 
a world-space data structure can be used to accelerate lighting without evaluating all 
lights in a scene.

Figure 32-2.  Stages and data flows of the overall rendering pipeline and their dependencies.

Figure 32-3 shows how the screen-space illumination texture and radiance probes 
can be used to sample radiance from intersection points computed by the ray 
tracing pipeline using our technique. The intersection of ray R2 is visible on screen. 
Radiance probe 1 sees the intersections of rays R1, R2, and R3, and radiance probe 2 
sees the intersection of ray R1. For all these rays the radiance can be sampled from 
caches. In contrast, the intersection of ray R4 is unavailable in the two probes or 
screen-space data, and therefore it has to be explicitly shaded. While the radiance 
probes themselves must be shaded, multiple rays may use the same precomputed 
value, which gives a great benefit when the shading is complex and there are 
glossy surfaces that do not require a large resolution for the sampled radiance 
probes. Furthermore, the shading of the radiance probes has the benefit of locality; 
neighboring pixels are likely to compute the same lights, and the materials are 
coherently sampled from the probe’s G-buffer. These factors make the cache 
illumination efficient to compute on a modern GPU.
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32.3.1	 �RADIANCE CACHE

Our cache entries, i.e., the radiance probes, are stored as cube maps. As cube 
maps are native entities in the common graphics APIs, they are easy to render 
and sample. We aim to study other mappings, such as octahedral projection used 
by McGuire et al. [13], as future work. Contrary to previous approaches, we do not 
prefilter the probes at all. All filtering runs in screen space.

Similarly to earlier techniques, radiance probes must be placed in the scene either 
automatically or manually in a way that they cover most of the scene surfaces. In 
our case, probes were placed manually by artists to locations where visibility is 
maximized and overlaps are minimized. Automatic placement is another avenue for 
future work.

32.3.1.1	�RENDERING

We render only static geometry into our radiance cache. This allows us to separate 
the rasterization of the geometry into a precomputed pass, thus removing all 
runtime geometry processing load from both CPU and GPU. Runtime GPU 
workload is reduced to a deferred illumination pass. Each radiance probe in our 
system is composed of a full G-buffer texture set: albedo, normal, roughness, 
metalness, and luminance. All these textures are required for lighting the cache 
samples.
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Figure 32-3.  Visualization of the cache sampling strategy for multiple reflection rays from a glossy 
reflective surface.
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32.3.1.2	�LIGHTING

The lighting pass evaluates all direct lights for the cache samples. We use the 
same compute pass for radiance cache illumination as for the main camera 
illumination. Each full probe in the current system is reilluminated each frame. 
This can be optimized further by illuminating only those areas in the cache that 
were hit by rays; see Section 32.7 for more information. Our world-space light 
clustering algorithm effectively culls lights for the compute pass regardless of 
probe position. We use the same light clustering scheme for the main camera 
illumination as well.

One important thing to note about cache lighting is that the view during lighting is 
fixed to that of the main camera. Albeit wrong, this makes the lighting match with 
the main camera illumination, thus removing any seams that might arise when 
combining the screen-space hits with the cache hits or fully shaded rays. The view 
mostly affects the specular term of direct lighting.

32.3.2	 �RAY TRACING

The main ray tracing pass in our algorithm is responsible for generating the 
sample directions according to our specular BRDF, tracing the rays, and storing 
the hit information for the later passes that actually compute the radiance for the 
set of rays.

32.3.2.1	�SAMPLING THE SPECULAR BRDF

The incoming light caused by specular reflection toward the view direction ωo at 
point X with geometric normal ωg is given by the rendering equation:
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where Ωi is the positive hemisphere on the point X, ωi are the directions taken 
from that hemisphere, and for the BRDF fs, we use the Cook-Torrance model with 
GGX distribution of microfacet normals. This may be computed using Monte Carlo 
integration with importance sampling as
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where 
i o

fW W∣  is the sampling probability density function. To sample fs, we utilize the 
GGX distribution of visible normals using the exact sampling routine introduced by 
Heitz [7] and precomputed Halton sequences [6] of bases 2 and 3 as input for the 
sampling routine. However, instead of directly using the approximation in Equation 2, 
we follow the same variance reduction scheme as proposed by Stachowiak [16, 17] 
by dividing and multiplying by the same factor ( )( )
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×  is a function of ωo ⋅ ωg, the roughness, and  

the reflectance at the incident angle (base reflectance). When Schlick’s 
approximation [15] is used instead of the full Fresnel term, the base reflectance  
can be factored out of the integral, and the BRDF integral over the hemisphere can 
be approximated by a rational function. We derived such an approximation using 
numerical error minimization in Mathematica and arrived at
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where α is the square of the linear roughness in the GGX model and R0 is the 
reflectance from a direction parallel to the normal. This technique has the further 
advantage of preserving details related to some surface properties since the  
pre-integrated term is noise free and does not need to be filtered at all. Equation 4  
provides a fast way of evaluating this integral. Another way is to tabulate the 
function and perform a lookup in that table [10].

32.3.2.2	�RAY GENERATION AND HIT STORAGE

In our algorithm the actual ray tracing part is simple because the computation of 
radiance is separated from the tracing of rays. The ray tracing pipeline is only used 
to find the correct scene intersection point. Pseudocode for both ray generation 
and hit shaders are given in Listing 32-1.

A ray is generated using the importance sampled direction, and the surface 
position reconstructed from G-buffer depth is used as the origin. Rays are 
not generated for materials with a roughness value of over RT_ROUGHNESS_
THRESHOLD; for such materials the radiance is sampled from the cache with just 
a direction vector. For traced rays the ray length, barycentric coordinates, instance 
index, and primitive index of the resulting hit are written to a texture, but no further 
work is required in this pass. Geometry data is stored because the term Li(x, ωi) is 
not always found in the screen-space radiance or the radiance cache, and it has to 
be computed using the correct material. Note that our implementation supports a 
single material per instance, hence the instance index uniquely identifies the used 
material. Implementations with multiple materials per instance will need to write 
out more data.

Listing 32-1.  Ray generation and hit shaders.

 1 void rayHit(inout Result result)

 2 {

 3   result.RayLength = RayTCurrent();

 4   result.InstanceId = InstanceId();

 5   result.PrimitiveId = PrimitiveIndex();

 6   result.Barycentrics = barycentrics;

 7 }

 8

 9 void rayGen()

10 {

11   float roughness = LoadRoughness(GBufferRoughness);

12   uint sampleCount = SamplesRequired(roughness);

RAY TRACING GEMS
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13   if (roughness < RT_ROUGHNESS_THRESHOLD) {

14     float3 ray_o = ConstructRayOrigin(GBufferDepth);

15     for (uint sampleIndex = 0;

16           sampleIndex < sampleCount; sampleIndex++) {

17       float3 ray_d = ImportanceSampleGGX(roughness);

18

19       TraceRay(ray_o, ray_d, results);

20       StoreRayIntersectionAttributes(results, index.xy, sampleIndex);

21       RayLengthTarget[uint3(index.xy, sampleIndex)] = rayLength;

22     }

23   }

24 }

32.3.3	 �RADIANCE COMPUTATION FOR RAYS

As mentioned in Section 32.3.2.1, we use a variance reduction scheme in which the 
stochastic sampling result is divided by the sum of the weights of each radiance 
sample and the result is later multiplied by the approximation of the BRDF integral 
over the hemisphere. Applying a shorthand notation to Equation 3, so that Ltotal 
is the sum of the weighted radiance samples and wtotal is the sum of the sample 
weights for a single pixel, the total radiance from specular reflection can be  
written as
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Similar to Stachowiak’s work [16], all of the terms are combined only after 
spatiotemporal filtering because denoising a ratio estimator directly would not 
make the approximation converge toward the correct result [9]. Therefore, the 
per-pixel sums Ltotal and wtotal are written to separate textures by the radiance 
cache sampling pass and the ray shading pass: first, the cache sampling pass 
writes the terms for all rays that were present in the cache, then the ray shading 
pass accumulates Ltotal and wtotal for rays that did not have a radiance sample in 
the cache. The implementation of the cache sampling and ray shading passes is 
discussed in the subsequent sections.

32.3.3.1	�SAMPLING THE RADIANCE CACHE AND SCREEN-SPACE ILLUMINATION

Since the radiance computed into the cache and screen-space illumination match, 
they can both be used to approximate the radiance Li(x, ωi). The importance 
sampled direction ωi can be regenerated to obtain the same direction as in the 
ray tracing pass, and the intersection point can be computed from the direction 
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vector, G-buffer, and ray length written by the ray tracing pass. To sample the main 
camera illumination texture, the intersection point is projected to screen space 
and sampling continues with the obtained texel coordinates. The validity of the 
radiance sample is checked by comparing the screen-space G-buffer depth against 
the computed depth. If sampling fails, then any of the radiance probes can be 
sampled using a world-space direction vector from the cube map toward this ray 
intersection, but certain thresholds, described later in this section, are needed to 
ensure the correctness of the sample.

An outline of the sampling pass is shown in Listing 32-2. Note that for materials 
with roughness above a certain threshold (RT_ROUGHNESS_THRESHOLD), we use a 
proxy geometry intersection to generate the hit position and sample the radiance 
probes using that direction.

Listing 32-2.  Routine for sampling precomputed radiance.

 1 void SamplePrecomputedRadiance()

 2 {

 3   float roughness = LoadRoughness(GBufferRoughness);

 4   float3 rayOrigin = ConstructRayOrigin(GBufferDepth);

 5   float3 L_total = float3(0, 0, 0); // Stochastic reflection

 6   float3 w_total = float3(0, 0, 0); // Sum of weights

 7   float primaryRayLengthApprox;

 8   float minNdotH = 2.0;

 9   uint cacheMissMask = 0;

10

11   for (uint sampleId = 0;

12         sampleId < RequiredSampleCount(roughness); sampleId++) {

13     float3 sampleWeight;

14     float NdotH;

15     float3 rayDir =

16           ImportanceSampleGGX(roughness, sampleWeight, NdotH);

17     w_total += sampleWeight;

18     float rayLength = RayLengthTexture[uint3(threadId, sampleId)];

19     if (NdotH < minNdotH)

20     {

21       minNdotH = NdotH;

22       primaryRayLengthApprox = rayLength;

23     }

24     float3 radiance = 0; // For cache misses, this will remain 0.

25     if (rayLength < 0)

26       radiance = SampleSkybox(rayDir);

27     else if (roughness < RT_ROUGHNESS_THRESHOLD) {

28       float3 hitPos = rayOrigin + rayLength * rayDir;
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29       if (!SampleScreen(hitPos, radiance)) {

30         uint c;

31         for (c = 0; c < CubeMapCount; c++)

32           if (SampleRadianceProbe(c, hitPos, radiance)) break;

33         if (c == CubeMapCount)

34           cacheMissMask |= (1 << sampleId); // Sample was not found.

35       }

36     }

37     else

38       radiance = SampleCubeMapsWithProxyIntersection(rayDir);

39     L_total += sampleWeight * radiance;

40   }

41

42   // Generate work separately for misses

43   // to avoid branching in ray shading.

44   uint missCount = bitcount(cacheMissMask);

45   AppendToRayShadeInput(missCount, threadId, cacheMissMask);

46   L_totalTexture[threadId] = L_total;

47   w_totalTexture[threadId] = w_total;

48   // Use ray length of the most likely ray to approximate the

49   // primary ray intersection for motion.

50   ReflectionMotionTexture[threadId] =

51         CalculateMotion(primaryReflectionDir, primaryRayLengthApprox);

52 }

Pseudocode for sampling a single probe is given in Listing 32-3.

Listing 32-3.  Routine for sampling a single probe.

 1 bool SampleRadianceProbe(uint probeIndex,

 2                          float3 hitPos,

 3                          out float3 radiance)

 4 {

 5   CubeMap cube = LoadCube(probeIndex);

 6   float3 fromCube = hitPos - cube.Position;

 7   float distSqr = dot(fromCube, fromCube);

 8   if (distSqr <= cube.RadiusSqr) {

 9     float3 cubeFace = MaxDir(fromCube); // (1,0,0), (0,1,0) or (0,0,1)

10     float hitZInCube = dot(cubeFace, fromCube);

11     float p = ProbabilityToSampleSameTexel(cube, hitZInCube, hitPos);

12     if (p < ResolutionThreshold) {

13       float distanceFromCube = sqrt(distSqr);

14       float3 sampleDir = fromCube / distanceFromCube;

15       float zSeenByCube =

16             ZInCube(cube.Depth.SampleLevel (Sampler, sampleDir, 0));

17       // 1/cos(view angle), used to get the distance along the view ray

18       float cosCubeViewAngleRcp = distanceFromCube / hitZInCube;

19       float dist = abs(hitZInCube - zSeenByCube) * cosCubeViewAngleRcp;
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20       if (dist <

21             OcclusionThresholdFactor * hitZInCube / cube.Resolution) {

22         radiance = cube.Radiance.SampleLevel(Sampler, sampleDir, 0);

23         return true;

24       }

25     }

26   }

27   return false;

28 }

The radius check is done to accelerate the computation, and it should be adjusted 
so that samples outside this radius are unlikely to exist or have enough detail. As a 
further optimization, clustering could be used to avoid the radius check the same 
way that it is used for point lights. The occlusion check is done to ensure that the 
sampled position corresponds to the actual hit position, since there could be an 
occluding geometry in front of the radiance probe, or the intersection could be in a 
dynamic object that is not present in the radiance probes. Since we have a separate 
check for the resolution, we define the distance threshold to allow variations in 

depth likely caused by the low resolution. We use the function b
z

x
c

c

, where zc is the 

depth of the intersection in the cube, xc is the cube resolution, and β is a constant 
that should be adjusted to be large enough to allow sampling from surfaces that 
are not perpendicular to the view ray of the reflection cube. Figure 32-4 shows an 
example of a reflection ray intersection that is not found from a cube map due to 
occlusion by another geometry.

Figure 32-4.  Thresholds used for radiance probe sampling: distance between the actual intersection 
and the position found from a reflection cube.
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For defining the threshold for radiance probe resolution, we use a heuristic on 
how much error the finite resolution of the radiance probe may cause for the 
reflection direction, taking into account the distribution from which the direction 
is importance-sampled. To quantize this error, we analyze the probability of 
sampling points that are aliased to the same texel in the radiance probe (function 
ProbabilityToSampleSameTexel in Listing 32-3). Figure 32-5 shows a situation 
in which two of three rays from the same surface are aliased to a single sample in 
a radiance probe.

Figure 32-5.  Thresholds used for radiance probe sampling: visualization of the resolution threshold 

heuristic. The value 
c

n
x

 is half a pixel in width in world space at the cube map’s near plane at distance 

n. This value is then proportional to the radius of the circle sampled at zc.

The probability may be obtained by integrating the microfacet distribution function
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over a region on the hemisphere that is centered at the exact microfacet normal 
and bounded by a region with a size that is derived from the spacing between pixels 
in the radiance probe. The sampled point (center of the circle in Figure 32-5) can be 
bound by a sphere that covers a single texel in the radiance probe. Assuming that 
the center of the sphere is located on the axis of the cube, then its radius is given by
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where zc is the linear depth of the sample point and xc is the resolution of the 
radiance probe’s cube map. For cubes, the distance to the near plane, n, cancels 
out, thus not affecting the calculation. It is possible to generalize the calculation 
for off-axis sample points, but we are going to neglect it because in cube maps the 
error is only up to a finite constant from the approximation.

Now we need to evaluate the probability of a reflected ray hitting that sphere.  
While accurate approximations exist for integrating BRDFs over areas such as 
the sphere [8], in our case we need only a crude approximation that is efficient to 
compute. The reflection direction density over the reflected solid angle is given by
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With the assumption that the projected sphere’s solid angle is small, we can 
approximate the probability of sampling the texel in the cube map:
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where l is the length of the reflected ray as in Figure 32-5. The first approximation 
is obtained by doing a single-sample Monte Carlo integration (some value in the 
domain multiplied by the integration volume, which is the solid angle subtended 
by a sphere), and the second approximation is obtained by taking the Taylor 
expansion of the square root term. The threshold can then be defined to anything 
between 0 and 1. For example, a threshold of 0.1 would mean that if the probability 
of sampling the texel is 10% or higher, then the cube is rejected, because a single 
texel does not contain the high-frequency information needed to reconstruct the 
reflection. However, if the probability is low enough, then the texel is sufficient to 
reconstruct reflection information. The latter is generally the case for highly rough 
surfaces, or when the sampled direction is on the tail end of the DGGX distribution. 
Note that for perfect and near-perfect mirrors this threshold is almost never 
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satisfied, but due to the finite resolution of the view, the samples may still be 
acceptable. Therefore, when computing the threshold, we clamp the surface’s 
roughness α to an adjustable minimum value to allow sampling from cubes that 
have a relatively high resolution. As future work the curvature of the surface and 
view resolution itself could also be taken directly into account.

32.3.3.2	�SHADING CACHE-MISSED RAYS

Covering the whole scene with radiance probes so that every point is visible in 
some probe would require an extremely high amount of probes in a practical 
scene, and each one adds overhead to the sampling and relighting passes. Further, 
we do not include dynamic geometry in the probes, and the resolution of the probes 
may be too low for some rays, especially for highly smooth surfaces. Therefore, we 
still need a robust way to reconstruct the radiance for those ray intersections that 
are not visible in any probe nor in the screen-space illumination texture.

As a fallback we compute the radiance for each of the unshaded samples using a 
separate compute pass. As the ray tracing pass writes out the geometry instance 
index, primitive index, and barycentric coordinates, these can be directly used to 
construct the accurate hit point and query all required data for the illumination 
pass. Although now it would be possible to use the accurate ray direction for 
specular highlights, we use the camera direction here to match the specular 
illumination computed for the radiance cache and screen-space illumination.

To avoid branching within warps/wavefronts based on how many samples require 
shading, we compact the indices of rays that were cache misses into a separate 
buffer in the sampling pass. Another compute pass then applies the radiance 
computation for each of the required rays read from the buffer, so that each thread 
within a warp/wavefront has the same amount of work to execute. This is essential 
because for glossy reflections the directions between pixels have high variance, 
so the cache misses are scattered randomly within large areas and some warps/
wavefronts would execute the radiance computation only because one or a few 
lanes had cache misses.

32.4	 �SPATIOTEMPORAL FILTERING

The described algorithm provides a crude approximation of the specular 
environment illumination term. However, due to the low sample counts—one 
sample per pixel in the extreme case—the resulting approximation is noisy. 
Therefore, the resulting radiance estimates must be aggressively filtered both 
spatially and temporally to get rid of the high-frequency noise that results from 
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undersampling the rendering integral. The amount of observed noise depends on 
the surface attributes and the distribution of light in the scene.

In this section, we describe a filtering scheme that we used to generate the results 
seen in Section 32.5. As filtering is not the main topic of this chapter, only a short 
description with references is provided. In practice the noise from the reflection 
pass is similar to that in path tracers, and any algorithm suited for cleaning up 
path traced images will work here as well. Note that, similar to Heitz et al. [9], the 
filtering process is applied separately for both terms of the ratio estimator that we 
use, and the combination of the terms is done only after filtering, as mentioned in 
Section 32.3.3.1.

32.4.1	 �SPATIAL FILTERING

With spatial filtering, we aim to compensate for the low sample count by sharing 
samples over the pixel neighborhood. Samples are shared only if the neighboring 
pixels match in surface attributes. Our spatial filter is based on the edge-
avoiding Á-Trous wavelet transform [2] that we enhanced with specific reflection-
related weight functions. We perform multiple iterations of the Á-Trous wavelet 
transformation, where each iteration generates a set of scaling coefficients. These 
coefficients provide a low-pass representation of the kernel footprint without the 
undesired high-frequency noise. The transformation uses previous coefficients 
as an input for the following iteration step. This allows us to accumulate filtered 
samples efficiently over a large screen-space area while the weight functions 
suppress invalid samples. See Figure 32-6.

Figure 32-6.  Three iterations of one-dimensional stationary wavelet transform while the kernel 
footprint increases exponentially. Arrows show the nonzero pixels of previous result contributing to the 
current result, while the gray dots are pixels with zero value. Figure after Dammertz et al. [2].
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Our implementation follows the previous work by Dammertz et al. [2] and Schied 
et al. [14]. Each wavelet iteration is performed as a 5 × 5 cross-bilateral filter. The 
contributing samples are weighted by a function w(P, Q), where P is the current 
pixel and Q the contributing sample pixel from the sample neighborhood. We 
calculate the scaling coefficient Si + 1 as
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 is the filter kernel. The weight function w(P, Q) controls 

the contribution of the sample Q based on the G-buffer attributes of that sample. 
The components contributing to this weight function can be categorized into four 
groups: edge-stopping, roughness, reflection-direction, and ray-length. These four 
groups are discussed in following sections.

To simplify the weight functions, we define a function fw as a smooth interpolation 
function between limits a and b as

			   ( ) ( )1 smoothstep ,wf a, b, x a, b, x= -
		  (11)

where smoothstep is the standard cubic Hermite interpolator as provided by 
shading languages.

32.4.1.1	�EDGE-STOPPING WEIGHT

Edge-stopping weights prevent the distribution of samples over geometrical 
boundaries and take into account the differences between depth and normal values 
at P and Q. These functions are based on the previous work of Schied et al. [14] with 
the depth weight wz being
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where ∇ z(P) is the depth gradient, σz = 1 is a constant value defined by 
experimentation, and ε = 0.0001 is a small constant value to prevent division by 
zero. In addition, the weight wn is based on the difference between normals at P 
and Q and is defined as

			 
( ) ( )( )max 0 ,n

nw , P Q
s

= ×n n
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where σn = 32 is again a constant value based on experimentation.

32.4.1.2	�ROUGHNESS WEIGHT

Roughness weights simulate the effect of roughness on the reflection lobe. First, we 
only allow samples that have similar roughness values, and thus a similar shape of 
reflection lobe, compared to the current pixel:

			 
( ) ( )( ),r w near farw f r , r , r P r Q= -

			 
(14)

where rnear = 0.01 and rfar = 0.1 are constants chosen based on experimentation. 
Second, we control the filtering radius for the contributing samples based on 
roughness with weight

			 
( )near far ,d ww f d ,d ,= d

			   (15)

where dnear = 10 r(P), dfar = 70 r(P), and d = P − Q is the vector from the current pixel 
position to the sample pixel position.

32.4.1.3	�REFLECTION-DIRECTION WEIGHT

A reflection-direction weight makes the filtering kernel anisotropic by scaling it into 
the direction of the reflection:

			   ( )ˆsatu ,ˆrate
s bs c cw s s= × +d r

			 
(16)

where r is the reflection direction in screen space, 0.5
scs =  is a scaling factor, and 

0.5
bcs =  is a scaling bias.
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32.4.1.4	�RAY-LENGTH WEIGHT

The ray-length weight is designed to control the gathering radius as a function of the 
ray length: the closer the hit point is, the less we want the neighboring samples to 
contribute. Therefore, the weight wl becomes

				  
( )near far ,l ww f l , l ,= d

			   (17)

where lnear = 0 and lfar = 10.0 r(P).

Finally, we can combine all the weights into a single function:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ).z n r d s lw P,Q w P, Q w P,Q w P,Q w P,Q w P,Q w P,Q=
	 (18)

32.4.2	 �TEMPORAL FILTERING

Unfortunately, the spatial filter is often not sufficient to reach the desired quality. 
Therefore, in addition to accumulating samples in the pixel neighborhood, we also 
accumulate them temporally over multiple frames. This is done by interpolating 
between the current frame samples and the previous temporal results using an 
exponential moving average:

				    ( ) 11 ,i i iC S Cg g -= - +
		  (19)

where Ci is the current frame output, Ci − 1 is the previous frame output projected 
using a velocity vector, and Si is the current frame input (i.e., the reflection buffer). 
Acquiring these velocity vectors for reflections is discussed in further detail in 
Section 32.4.3. The weight γ denotes the ratio of interpolation between the history 
data and the current frame and is based on multiple heuristics.

Glossy reflection can have significant color variance between temporal samples. 
This prevents us from relying on methods based on color values, such as variance 
clipping, to remove ghosting. Instead, we use a subset of the geometry-based 
weight functions from Section 32.4.1 to define γ. This is done by first projecting 
P to generate the sampling location of the contributing sample using a velocity 
vector and next using that to sample the surface attributes of the previous frame. 
Thus, we must also save the depth and normal attributes from the G-buffer of the 
previous frame.

In addition, we include a weight 
maxrw  that is based on the roughness of the 

current sample. This is done so that extremely smooth surfaces, such as mirrors, 

 Accurate Real-Time Specular Reflections with Radiance Caching



592

disregard unnecessary temporal samples to remove any possible ghosting. This 
weight is calculated as follows:

			 
( )( )

max maxsmoothstep 0 ,rw ,r , r P=
		

(20)

where rmax = 0.1 is a constant threshold. Therefore,

		  ( ) ( ) ( )
max

0.95 z n r rw P,Q w P,Q w P,Q wg =
		

(21)

is the total weight used to weight the current and the previous frames.

Nevertheless, ghosting can still appear on planar surfaces with a constant 
roughness that is large enough not to be clamped by 

maxrw  but smooth enough for 
ghosting to be clearly visible. These artifacts are most noticeable with reflections 
of bright light sources or quickly moving brightly colored objects. Unfortunately, 
this cannot be solved by geometry weight functions because we cannot account 
for differences between the objects visible in reflection by comparing the reflector 
surfaces. Thus, we choose to implement a 5 × 5 filtering kernel for the current 
reflection result to calculate variance for both incoming light L and the filtered 
BRDF while using edge-stopping functions to prevent sampling over geometrical 
boundaries. These are then used for color-space variance clipping of the temporal 
filtering result Ci, and thus they prevent blending of the temporal results with 
completely different color values compared to the current frame. This is similar to 
variance clipping commonly done with temporal antialiasing, only with nonuniform 
sample weights to prevent sampling over geometrical boundaries.

32.4.3	 �REFLECTION MOTION VECTORS

Motion vectors need to be adjusted for objects seen through a reflection as the 
velocity is not just a projection of the object’s velocity onto the screen.

32.4.3.1	�UNDERSTANDING THE PROBLEM

To tackle this problem we will start with a fully static system: a camera, a reflector, 
and an object that is seen in the reflection. In Figure 32-7, light emanates from the 
object at Po in multiple directions; one of the photons perfectly reflects from the 
reflector at Ps, 0 and reaches the eye. The object is detected as if it were somewhere 
along the ray that hit the eye.
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Note that if the eye moved to another location, to which the light from the object 
reaches as well, then that object would appear at the same place. Moving the eye 
around to new points, we get multiple rays that intersect somewhere beneath 
the surface. That intersection point is Pi, and it is called the image of the object. In 
this particular case, the rays intersect in their past, so the image is virtual, while 
for other configurations rays can intersect in their future and we get a real image. 
Furthermore, in real configurations, rays often do not intersect perfectly, and 
instead a circle of confusion is obtained. However, for the purposes of solving this 
problem we are going to ignore this scenario and assume that the rays always 
converge.

The general strategy should now become clear. We want to replace explicit 
treatment of the object and trying to collect its velocity by treatment of the object’s 
image and using its velocity as is. It is also more natural to treat the image rather 
than the object, because what we see on the screen is the image, so we should be 
analyzing it and not the object itself.

Figure 32-7.  Mirror reflections in a plane.
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32.4.3.2	�DIRECT SOLUTION

A straightforward way of finding Pi, in the sense of least squares, is the solution to 
the intersection of lines as given by
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Here, Ps, j are the points on the surface in a local footprint, and us, j are the reflection 
directions from these points, as shown in Figure 32-7.

The solution for velocity can be obtained after differentiating with respect to time. 
However, this is cumbersome and requires a significant amount of information.

32.4.3.3	�GEOMETRICAL OPTICS APPROACH

If we assume that the reflector point is umbilical, we can simplify the problem 
significantly. An umbilical point is locally sphere-like, and the problem of finding the 
image of an object reflected from a spherical surface can be solved by the thin lens 
equations, which are given by
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where r is the radius of curvature.

32.4.3.4	�OBTAINING OPTICAL PARAMETERS

Initial part of this section assumes that the reader is familiar with topics from 
differential geometry of surfaces. For a thorough discussion on differential 
geometry we refer the reader to do Carmo’s book [4].
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In Figure 32-8, Ps depicts a reflector’s point in world-space coordinates, which is 
projected onto a pixel (seen on screen), and Ps, j is the surface point of a neighbor 
pixel. The reflection interaction occurs in the normal plane, the plane that is 
orthogonal to the tangent plane at the point of reflection and contains the view 
vector. In that plane, the radius of the circular reflector is the inverse of the normal 
curvature κn in the view direction projected onto the tangent plane at Ps, the point 
of reflection. However, κn is dependent on the view and changes when the camera 
is moving. Hence, instead of using the normal curvature in the view direction, we 
use the principal curvature κs that produces the closest image to the viewer. This 
value can be found by calculating both principal curvatures and choosing the one 
that produces the nearest image in front of the viewer (negative curvatures can 
produces images behind the viewer). This decision effectively forces the reflector 
point to be umbilical (since the same normal curvature is always used, regardless 
of the view). Since r is the inverse of κs, it can be infinite (for a plane), but it cannot 
be zero. The same applies for the focus. Hence, we will work with inverse quantities 
of the radius and focus.

Figure 32-8.  Reflection from a spherical mirror.

 Accurate Real-Time Specular Reflections with Radiance Caching



596

For an orthonormal basis {x, y, ns}, the reflected object coordinates are

		  ( ) ( ) ( ), , ,o o s o o s o s o sx P P y P P z P P= × - = × - = × -x y n
	 (24)

where Po and Ps are the world-space positions of the reflected object and the 
reflector, respectively. The image coordinates (xi  yi  zi)T, which are obtained from 
the thin lens equations, specify the image position in world space as

			   i s i i i sP P x y z .= + + +x y n 	 (25)

Note that when this is used as input for the temporal filtering pass of glossy 
reflections, we want to extend the sample count temporally, i.e., find a sample from 
the history that was likely sampled from a similar distribution instead of a sample 
that likely intersected the same position. Therefore, we use an estimate of the 
intersection of a most likely ray by using the length of the highest-probability ray of 
the pixel multiplied by the primary reflection direction.

Motion vectors computed with our approach provide better estimates for 
reprojecting hit positions in curved surfaces than primary hit surface motion 
vectors, or than approaches that do not take the curvature of the reflecting surface 
into account. This is shown in Figure 32-9.
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Figure 32-9.  Comparison between view-dependent velocity vectors with the assumed planar reflector 
and the thin lens approximation. The camera is zoomed out approximately 1 meter during 10 frames 
while sampling only the previous frame’s data from the screen, using coordinates offset with the 
motion vectors. Reflections are calculated only for the first frame.

32.4.3.5	�VELOCITY TRANSFORMATION FOR DYNAMIC OBJECTS

If the basis vectors x and y were selected without dependency on the view, then they 
don’t have time dependency with respect to the camera position. They do have time 
dependency with respect to the surface normal, which changes when the reflector 
rotates. However, we will neglect this change and assume 0=x� , 0=y� , and 0=n� . 
The temporal derivatives of Equation 24 and Equation 25 are then
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From Equation 23, we obtain
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The velocity of the image point can be readily calculated from Equations 26 and 27, 
then projected to the screen to obtain the screen-space motion vectors as follows. 
Given the matrix M that transforms from world coordinates to screen coordinates 
and the screen coordinates (xss, yss) of the reflector,

		
( ),0

,3
,3 ,1

1 ,i ss
i

ssi i

P x
v P

yp P

æ öæ ö× æ ö
ç ÷= - × ×ç ÷ ç ÷ç ÷ç ÷× × è øè øè ø

m
m

m m

�
�

�
		

(28)

where m,i denotes the ith row of M. This accounts only for the velocity of the 
image; the additional velocity component caused by camera movement needs 
to be added separately. However, since velocity is relative, the camera’s velocity 
can be subtracted from both the object’s and reflector’s velocities in Equation 26. 
This makes the matrix M independent of time for this calculation. Another method 
to calculate the screen-space motion vector is by advancing the image position 
backward in time with an Euler iteration, projecting it to the screen, and taking the 
difference in screen space.

32.5	 �RESULTS

We measured the results of our algorithm in the standard Sponza scene in five 
different scenarios. We compare against a fully shaded reference, i.e., specular 
computations without the cache. The scene was fitted with 11 cache sampling 
points. We used a roughness threshold (RT_MAX_ROUGHNESS) of 0.8. All numbers 
were captured on an NVIDIA RTX 2080 GPU at a resolution of 2560 × 1440.

In addition to the final illumination and the reflection term images shown in  
Figure 32-10, we also include images of our reflection mask. The mask is a color-
coded visualization of the type of reflection path per pixel. Purple color in the mask 
denotes the cheapest path: sampling with just a direction vector. Green and orange 
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areas are ray traced: radiance is sampled from the screen space for dark green 
pixels, from the cache for the light green pixels, and fully computed for the orange 
pixels, denoting the most expensive computation path.

Figure 32-10.  Test cases from top to bottom: Main, Spot, Wood, Tile, and Curtain.Left: the final 
illumination. Center: the environment reflection term. Right: the reflection mask (color map as 
described in Section 32.5). These images were captured from a static camera for a static scene.
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32.5.1	 �PERFORMANCE

We measured the performance with sample counts of one and one to four, 
scaled with surface roughness. The results are shown in Tables 32-1 and 32-2, 
respectively. Performance is given for each pass separately. Rays are traced only 
in the ray tracing pass, which writes out all necessary data for the possible ray 
shading pass. Cache relighting time was (naturally) constant for all the test cases. 
The performance of the other parts depends mostly on the number of samples 
taken and the utilization rate of the radiance cache. If the cache cannot be used at 
all, our technique reverts to full shading of the rays. In this case the overhead from 
cache illumination and sampling (all samples rejected) is paid in full in addition 
to the cost of full ray shading. The Tile scenario covers such a case in which our 
algorithm performs similarly as full shading.

Table 32-1.  Performance of various passes on an NVIDIA RTX 2080 for different cameras in frame 
time (ms) when a single sample is taken per pixel. Our technique is denoted with “(o)” and the fully 
shaded comparison with “(f).” The numbers were captured in the Sponza scene. In all cases filtering 
took approximately 10 ms. Images matching these test cases can be seen in Figure 32-10.
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Our algorithm has highest performance when the ray tracing part can be skipped 
completely. This can be seen in the Curtain scenario with a rough material. In 
this case the performance difference is almost 7× with one sample and 15× with 
multiple samples.

Scenarios Spot and Wood sample from either screen space or the radiance cache. 
These scenarios require ray tracing but still take the fast path during shading. In 
these cases our algorithm is approximately 2× faster than full shading. Reflections 
in these cases are glossy, which helps our cache use.

A balanced example can be seen in the Main scenario. This shot contains all types 
of surfaces from rough rocks to polished tile floors. Again, we measure 2.5× 
performance improvement compared to full shading.

32.5.2	 �QUALITY

Figure 32-11 shows a smooth surface with reflections computed using our 
technique compared to a per-ray shaded reference. The quality of our technique is 
comparable even though some of the samples are fetched from the low-resolution 

Table 32-2.  Same as in Table 32-1 but with one to four samples. Sample counts were dynamically 
selected for each pixel based on roughness (increase sample count as the surface gets rougher).
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cache. In general, the quality of reflections does not greatly depend on the cache 
sizes due to our sampling heuristics. Smaller caches will result in more misses, 
but the overall quality stays close to the reference. This is shown in Figure 32-12 
where a cache resolution of 256 × 256 is compared against 32 × 32.

Figure 32-11.  Reference compared to our technique when α = 0, i.e., the material is mirror-like, 
including the reflection mask. Some parts of the surface still sample from the cache due to our 
sampling heuristics.

Figure 32-12.  Reference compared to our technique when α = 0.1 with two different cache sizes. Note 
how cache hits are greatly increased by our sampling heuristics compared to Figure 32-11. Even cache 
size 32 × 32 produces lots of cache hits for rougher surfaces but naturally less than size 256 × 256. The 
last image shows reflection sampling from the cache with heuristics disabled.
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As the roughness of the surface increases, the noise naturally increases as well, 
notably when a single sample per pixel is used. However, the spatiotemporal 
filtering can greatly reduce this noise, and multiple samples may be taken to 
balance the cost of the filtering. With rougher surfaces, the limited-resolution 
radiance caches are more effective, as shown in Figure 32-13, which makes the 
multiple samples approach more affordable with our technique. Having multiple 
samples is also cheaper using our technique because reuse of the radiance cache 
increases and only the cache misses will have to be shaded redundantly.

Figure 32-13.  Varying the material roughness (α) of the floor, with reflections maps at the bottom. As 
the material gets rougher, more samples are fetched from the cache or fully shaded as they deviate 
from screen space: this can be seen at the bottom of the mask as the color turns from dark green to 
light green and orange. Mirror-like surfaces sample effectively from screen space when possible.

The noise reduction of the spatiotemporal filtering is shown in more detail in 
Figure 32-14. While variance clipping cannot remove all ghosting caused by moving 
silhouettes in reflections and thus leaves small artifacts, these are harder to notice 
when the camera is moving. Also, the roughness of the curtain on the right is above 
the RT_ROUGHNESS_THRESHOLD and radiance is inaccurately sampled from the 
other side, but this issue, although often difficult to notice in the final result, could 
be alleviated by more careful probe placement. Apart from the mentioned artifacts, 
the overall result is close to the reference image, which is computed with multiple 
samples until convergence.
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Figure 32-14.  Effects of filtering on the raw specular illumination term. The camera is moving rightward 
approximately 5 m/s, the car is moving rightward approximately 0.8 m/s, and the frame rate is 30 Hz.

32.6	 �CONCLUSION

In this chapter, we have presented a technique for producing realistic real-time 
specular illumination for dynamic scenes. Our approach combines old and new 
techniques: we use the new DXR API for querying scene visibility, but do most of the 
shading in either screen space or cache space. In both of these cases, the efficiency 
of modern GPUs is well utilized due to coherency between neighboring threads. 
Only some rays go through the more costly, divergent full-shading path. Immense 
performance improvements can be measured especially for rougher surfaces that 
go over the roughness threshold: for these surfaces the ray cast can be completely 
skipped, thus eliminating many rays. However, even without ray tracing, these 
surfaces get a real-time specular term from our constantly updated sparse-
lighting cache.
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32.7	 �FUTURE WORK

There are avenues for improvement in various parts of the algorithm:

>> Indirect diffuse: A similar approach can be used to compute indirect  
diffuse lighting. Rays that miss the cache can get the information from a  
low-frequency source, such as a hole-filling algorithm.

>> Improved cache illumination: Our cache is at the moment illuminated each 
frame. However, an improved system could be built that only illuminates those 
cubes, faces, or even samples that are actually used. For example, only the 
most important cubes could be lit per frame.

>> Radiance cache geometry: The implementation described here uses cube maps, 
i.e., spherical captures, for cache storage. However, this wastes space as the 
same surfaces can be seen by different cache points. Therefore, we plan to 
investigate other cache data structures for an improved cache utilization.

>> Hole filling: A reflection mask can be very noisy for some surfaces, meaning 
that some neighboring pixels either sample from cubes or shade the full ray. 
As shading the full ray is more costly, some of the small holes could be filled 
based on the neighboring pixel data, especially for rougher surfaces.

>> Filtering: The filter presented in this chapter is somewhat expensive for 
real-time use. In the future we aim to look for lighter filtering solutions that 
make different trade-offs between quality and performance.
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Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.
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