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ABSTRACT. This paper analyzes the interrelationships between the (Turing) 
of r.e. bases and of r.e. splittings of r.e. vector spaces together with the re-
lationship of the degrees of bases and the degrees of the vector spaces they 
generate. For an r.e. subspace V of Voo , we show that O! is the degree of an 
r.e. basis of V iff O! is the degree of an r.e. summand of V iff O! is the degree 
and dependence degree of an r.e. summand of V. This result naturally leads 
to explore several questions regarding the degree theoretic properties of pairs 
of summands and the ways in which bases may arise. 

1. Introduction. One of the most fundamental and pervasive questions arising 
from recursive model theory is that of the relationship between the degree of an r.e. 
structure and the degrees of its r.e. sets of generators. For r.e. sets this question is, 
of course, quite trivial. However, for the structures we shall consider (namely r.e. 
subspaces), this question turns out to be quite complex. The goal of this paper is 
to analyze the following question: 

(1.1) For V E L(Voo), what can be said about the relationships between B(V), 
the collection of degrees of r.e. bases of V, S(V), the degrees of halves of splittings 
of V by direct sum, and d(V), the Turing degree of Vasa set? 

(Henceforth, we assume the reader to be familiar with L(Voo ) and only give a 
brief review of notations and terminology in §2.) 

Now already some partial results concerning (1.1) are known. We shall review 
and extend some of these in §3. These tend to fall into three categories: the first 
category consists of those splitting results which show that analogues of results 
from r.e. sets hold in L(Voo). For example, Retzlaff [Rt] shows the analogue of 
Friedberg's splitting theorem holds in L(Voo). The second category consists of 
those results which show that L(Voo) has certain splitting features not to be found 
in L(w). For example, Ash and Downey [AD] show that given any V E L(Voo) 
we may find decidable subspaces Vb V2 E L(Voo) with Vl E9 V2 = V and hence, in 
particular, we can have d(Vl ) V d(V2) =/; d(V), although the Vi split V. 

The final category of results consists of some observations due to Remmel, con-
necting B(V) and S(V). The archetype of such known results is showing that 
S(V) ~ B(V). It is shown in Remmel [Re!] that a very easy way to manufacture 
bases is as follows: Let V E L(V 00) and Vl E9 V2 = V be an r.e. splitting of V. Then 
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Remmel [ReI] showed that Vl has an r.e. basis R =T V1 and by Dekker [De], V2 
has a recursive basis R2. Consequently Rl UR2 is an r.e. basis of V of degree d(Vd. 

Our main result of §4 is to show that the reverse inclusion also holds. In fact, we 
show that Q is the degree of an r.e. basis of V iff Q is the degree of an r.e. summand 
of V iff Q is the dependence degree and degree of an r.e. summand of V. This result 
has several interesting consequences, one of which is a complete analogue of Sacks' 
splitting theorem simultaneously for degrees and dependence degrees (extending 
Shore [Sh]). 

Because of these results, we may treat B(V) and S(V) as the same, and hence-
forth we shall concentrate mainly on splittings rather than bases. It follows there-
fore, that bases come essentially from the Remmel process. This leads to a number 
of questions concerning what types of splittings bases come from. 

One reasonable conjecture (noted by several authors) supported by §4, is that 
for fully extendible subspaces V, we can reduce questions about B(V) to questions 
about splittings of a fixed r.e. basis of V. Thus let V = (R)* where R is an r.e. 
subset of a recursive basis of Voo. Formally, we shall say that V has (the) basis 
reflection property (BRP) if, given any r.e. basis B of V there is an r.e. splitting 
Rl U R2 of R, such that Rl =T B. 

For fully extendible r.e. subspaces, life would be very easy, if every such subspace 
had BRP; for then questions about B(V) and S(V) would reduce to ones about 
the lattice of r.e. sets. 

However, in §5 our main results are that if 8 is any nonzero r.e. degree, then 8 
contains r.e. subspaces both with and without BRP. 

Our remaining hope is that every r.e. basis comes from a splitting of some basis 
of the same degree as V. This is one of the basic properties of r.e. sets, namely that 
if Al uA2 = A is an r.e. splitting of A, then d(Ad V d(A2) = d(A). Already we have 
seen that the direct analogue fails for L(Voo ). In §7 we show that any reasonable 
extension will fail by constructing an r.e. basis B of an r.e. subspace V such that 
whenever QED R = V is an r.e. splitting of V with Q =T B, it is always the case 
that d(Q) V d(R) =I- d(V). This means, in particular, we cannot reduce questions 
about splittings of V E L(Voo) to even degree theoretic ones about the structure of 
the r.e. degrees. 

The proof of this result uses a class of r.e. subspaces, the strongly atomic ones, 
whose r.e. set analogues have proved very useful in studying splitting properties of 
r.e. sets and degree embeddings (cf. [DW, AS2]). V E L(Voo) is called strongly 
atomic if, whenever QEDW = V is an r.e. splitting of V, then inf{d(Q),d(Wn = o. 

In §6 we give a construction of a strongly atomic r.e. subspace. Indeed, we 
construct a high r.e. subset R of recursive basis B of Voo such that if WE L(Voo) 
and WED (B - R)* = Voo , then W is strongly atomic. Combining this result with 
several from the literature, will yield many lattice theoretic existence theorems for 
strongly atomic r.e. subspaces, and some "antisplitting" results. 

To get the result of §7, we then modify the §6 construction with some properties 
of weak truth table degrees (W -degrees). Specifically, we construct an r .e. subset 
R of a recursive basis B of Voo and an r.e. nonrecursive basis Q of (R)*, such that 

(i) (R)* has contiguous degree (that is, contains only one r.e. W-degree), 
(ii) (R)* is strongly atomic, 
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(iii) Q is a W-anticupping witness for R. 
As we show in §7, these properties will suffice. 

Finally, in §8 we study the m-degrees of r.e. bases. Apart from their intrinsic 
interest, we feel that these are important because of Guichard's classification [Gul] 
of the automorphisms of L(Voo ) as those induced by recursive invertible semilinear 
transformations of V 00. One interesting problem for L(V 00) is to find any reasonable 
orbits. Because of Guichard's work, any such orbit must preserve the m-degrees of 
bases. Hence in the "L(Voo)" setting, reducibilities such as 1- or m-reducibilities, 
will be much more important when studying automorphisms, than they are in the 
lattice of r.e. sets. 

The authors wish to thank Michael Stob and K. Ambos-Spies for many useful 
conversations concerning the subject of this paper. 

2. Notation and terminology. Let {¢>i: i E w} be an effective list of all the 
partial recursive functions, and {q> e: e E w} an effective list of all oracle machines. 
We shall write q>e,s(A; z) for the result, if any, of performing s steps in the com-
putation of the oracle machine q>e with oracle A and input z. If this halts in s 
or fewer steps we write q>e,s(A; z) ! and q>e,s(A; z) i otherwise. Thus q>e(A) = B 
means for all z, q>e(A; z) ! and equals B(z). Here we are confusing sets with their 
characteristic functions. We shall use the standard use function defined as 

{ 
J.ly&(y :?: x and the computations of <I>k(A; x) ! 

u(q>k(A; x)) = and q>k(A[y]; x) are identical) if y exists, 
undefined otherwise, 

where A[y] = {x E A I x ~ y}. By convention, we presuppose that all computations 
involving r.e. sets are bounded by s at stage s. 

In this paper, we shall use three reducibilities: ~T (Turing), ~m (many-one), 
and ~w (weak truth table). The first two are well known and we remind the reader 
that A ~w B means that there is an i and a j with ¢>i total such that 

for all x, 
Intuitively, this means that there is a recursive bound on the information used in 
the q>i-computation from B to A. An excellent reference for W-degrees is Stob [St]. 
We shall draw from Stob [St] and Ladner and Sasso [LS]. In the obvious way, we 
shall specify ~-deg(A) for the ~-degree of A where ~ is T-, m- or W-. A couple of 
degree theoretic concepts we shall need are as follows. An r.e. T-degree 8 is called 
contiguous if whenever A and Bare r.e. of degree 8 then B =T A implies B =w A. 
In particular if A is contiguous (i.e. A is an r.e. set of contiguous degree) then for 
all B ~T A, B ~w A. If A is an r.e. nonrecursive set then there exists an r.e. set 
B with 0 <T B <w A such that B has contiguous degree. This result is due to 
Ladner and Sasso [LS]. Certainly not every r.e. set has contiguous degree. If 8 is 
an r.e. contiguous degree, then 8 is low2 in the high/low hierarchy, moreover every 
nonzero r.e. degree has a noncontiguous r.e. predecessor (cf. [LS]). 

An r.e. ~-degree 8 is said to ~-cup to an r.e. ~-degree Q' if 8 <Ll Q' and there 
exists an r.e. ~-degree (3 such that (3 ~Ll Q' and ~-sup(8, (3) = Q'. An r.e. ~-degree 
8 is said to have the ~-anticupping property if it has a ~-predecessor which does 
not ~-cup to 8. Ladner and Sasso have shown every r.e. W-degree has the W-
anticupping property and so each contiguous r.e. T-degree has the T-anticupping 
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property (cf. [LS]). Harrington [Ha] has shown that each high r.e. T-degree has 
the anticupping property via a high anticupping witness (with the appropriate 
meaning). Finally an r.e. degree a is called branching if there exist r.e. degrees (3, I 
such that (31~1 and ~-inf{(3'I} = a. The existence of minimal pairs shows that 0 
is a branching degree. 

For any unexplained notation and terminology concerning r.e. degrees we refer 
the reader to Odifreddi rOd], Soare [S01,2] and Stob [St]. 

We now give a brief review of some effective linear algebra. The universal object 
Voo may be considered as the formal space generated by ei = (0, ... ,0,1,0, ... ) 
over a recursive field. Its distinguishing characteristics are that +,', and = are 
all recursive and we can decide in a finite number of steps whether or not x E 
{all"" an }*, where for A c Voo , (A)* denotes the subspace generated by A. If 
V E L(Voo), then D(V) = {x I x is a k-tuple (some k E w) and x is dependent over 
V} is called the dependence set of V. We refer to the TUring degree of D(V) as the 
dependence degree of V. If D(V) =T 0 we say V is decidable. From Metakides and 
Nerode [MN2], V is decidable iff there exists V' E L(Voo) such that (VUV')* = Voo 
and V n V' = {O}. In such a case we write V E9 V' = Voo' A subspace V of Voo 
is called fully co-r.e. if there exists a recursive basis B of Voo and a co-r.e. subset 
o of B with (0)* = V. Alternatively "fully co-r.e. " means that it is co-r.e. and 
has a fully extendible basis, i.e. a basis contained in an r.e. basis of Voo' Fully co-
r.e. subspaces are "natural" complements of r.e. subspaces, and each r.e. subspace 
has one [Dol, 2]; however, fully co-r.e. subspaces may have many different r.e. 
complements (see Downey [D02] and Downey-Remmel [DRl]). 

We let {We: e E w}, {We: e E W} and {Ie: e E w} be effective listings of r.e. sub-
spaces, r.e. sets and r.e. independent sets respectively, where We = (Je)*. Define 
We,s = {x E (Je,s)* I x $ s}. By convention x E Ie,s implies x $ s. We denote 
the dimension of V by dim(V) and dim(V /W) denotes the dimension of (V U W)* 
modulo W. If I is an independent set, and x E (J)* then SUPPI(X) denotes the 
support of x relative to I, namely the unique smallest finite subset F of I with 
x E (F)*. We similarly define the support of x relative to lover V, if I is indepen-
dent over V. If V is a subspace of V 00 we say V is immune if dim(V) = 00 and V 
has no infinite dimensional r.e. subspaces. 

Let V E L(Voo) and suppose dim(Voo/V) = 00. We say V is (i) simple if 
W E L(Voo) and W n V = {O} implies dim(W) < 00, (ii) maximal if, for all 
W E L(Voo) if W :J V then either dim(W IV) < 00 or dim(Voo/W) < 00, (iii) 
k-thin if there exists Q E L(Voo) with dim(Voo/Q) = k and Q :J V and for all 
W E L(Voo) if W :J V then either dim(W IV) < 00 or W :J Q, (iv) supermaximal 
if V is O-thin, that is if W :J V and dim(W IV) = 00 then W = Voo , (v) super-
r-maximal if, for Q,R E L(Voo) , Q + R = Voo implies either Q + V = Voo or 
R+ V = Voo , (vi) nowhere simple iffor all Q E L(Voo) if dim(Q/V) = 00 then there 
exists Q' E L(Voo), with Q' c Q, Q'nv = {O} and dim(Q') = 00, and finally (vii) 
effectively nowhere simple if in (vi) we can compute an index for Q' from one for 
Q. (References for the above: for (i) and (ii) see [MN2], (iii) and (iv) see [KR], 
(v) see [Gul] and (vi) and (vii) see [NRl].) 

An independent set I is called nonextendible if dim(Voo/I*) = 00 and for all 
r.e. independent sets J :J I, card (J - I) < 00. For example, any r.e. basis of a 
supermaximal subspace is nonextendible. If I is not r.e. but is extendible, we say I 
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is an a-repere (cf. [De]) or sound (cf. [Do2]). A pretty observation from [LRl,2] is 
that if B is an r.e. basis of V then B :::;w V. Any further effective algebra may be 
found in a survey paper of Nerode and Remmel [NR3], which is a good reference 
for all of this material. 

We have attempted to keep notation and terminology more-or-Iess standard. 
We suggest the reader unfamiliar with V 00 identify the underlying field with the 
rationals (if infinite) or G F(2), the Galois two element field (if finite). 

3. Review and extensions. The purpose of this section is to give a brief 
review (and some extensions of) some results scattered throughout the literature. 

Much of the original impetus for studying L(Voo) was to see if analogues of 
results from r.e. sets held in L(Voo). The first such splitting theorem was due to 
Retzlaff [Rt] who showed, in particular, that Friedberg's splitting theorem held in 
L(Voo). He showed that 

THEOREM 3. 1 (RETZLAFF [Rt]). Let V E L(V 00) be nondecidable. Then 
there exist nondecidable Vl , V2 E L(V 00) such that Vl EEl V2 = V. Moreover, if V is 
nonrecursive, the Vi may also be chosen to be nonrecursive. 

The proof technique is by direct analogue of Friedberg's method, along the lines 
of Metakides and N erode's analogue of an e-state construction to produce a maximal 
subspace in [MN2]. Already in [MNl], it was realized that if the underlying field 
is infinite, recursive but not decidable spaces were possible. Indeed, they showed 

THEOREM 3.2 (METAKIDES AND NERODE [MNl,2]). Suppose F is infinite. 
Let V E L(Voo); then there exists a recursive V' c V with dim(V/V') :::; l. 

We remark that since V and V' have the same dependence degrees, choosing V 
to be nondecidable and considering V 00 mod V' gives an example of a recursively 
presented vector space (namely Voo mod V') with no recursive basis. From our 
point of view, it also follows that if V were nonrecursivp, then V = V' EEl ({x})* for 
some x E V - V' and d(V') V d(({x})*) = 0 =P d(V). We extend Theorem 3.2 for 
nonrecursive subspaces by showing 

THEOREM 3.3. Suppose the field of scalars is infinite. Let V E L(Voo ) be 
nonrecursive. Then there exists an infinite collection {Wi: i E w} of r.e. subspaces 
such that for all i, 

(a) Wi C V, 
(b) dim(V/Wi) = 1, 
(c) for all i =P j, Wi IT Wj. 

PROOF. We shall prove a somewhat simpler statement (and leave a dovetail 
construction to the reader). We show that if V is as above and 0 <T C :::;T V is 
r.e. then there exists W E L(Voo), such that 

(i) W c V and dim(V /W) = 1, 
(ii) W T '! C, 
(iii) W "¢T 0. 
We build W = Us Ws in stages, so as to satisfy 
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(Recall here that We denotes the eth r.e. set.) It is important to define for an r.e. set 
A, As = {y E (As)*: y ~ s}. To meet the Ne, we measure the length of agreement 

l(e, s) = max {Y I "Ix < Y(~e(Ws; x) = C(x)) }. 

Corresponding to this is a Sacks' restraint on the use function of the computation 
above through length l(e, s), that is to the first disagreement. Call this r(e, s) and as 
usual R(e, s) = maxi~e{r(i, s)}. As usual with algebraic degree arguments, our con-
struction is sensitive to stray linear combinations of elements entering Ws+1 - Ws. 
We therefore say x is e-good at stage s+l if (WsU{x})* [R(e, s)] = (Ws)* [R(e, s)]. By 
the use principle and exchange, e-good elements protect convergent computations, 
associated with N j for j ~ e. 

Via Remmel's [ReI] technique, there is an enumeration of V via an r.e. basis 
B = UsBs with Bs+l = {z,bo,···,bs}, B =T V and VsH = Bs+1 ' We build 
W = Us Ws in stages so that {z} EB W = V, and so dim(V /W) = 1. We say 
Pe is satisfied at stage s + 1 if we,s n Ws =f. 0. We say Pe requires attention at 
stage s + 1 if there exists a least Xe such that Xe is e-good, Pe is not satisfied, and 
Xe EWe,s n ((vs+d* - (Vs)*). 

Construction. 
Stage O. Set r(e, 0) = 0 all e E wand Wo = {o}. 
Stage s + 1. We suppose 
(i) BsH = {z,bo, ... ,bs}, 
(ii) z i. tv;, and 
(iii) (BsHt = (WsU{z})*. 
Now if, for all e ~ S, Pe does not require attention, find As in F with 

As = J.lA (z + Abs is s-good at stage s + 1). 

Notice such a As must exist as F is infinite. Now define Ws+1 = (WsU{z+Asbs})*, 
and go to stage s + 2. Otherwise, let e be least such that Pe requires attention via 
Xe' Set Ws+1 = (Ws U {xe})*. To complete the construction set W = Ua(Wa), 

End of construction. 
It is easy to prove by induction that dim(V"jW) = 1 and z i. W. We must verify 

the remaining lemmata. 

LEMMA 3.4. lima R(e, s) = R(e) exists and ~e(W) =f. C. 

PROOF. Assume C = ~e(W), and so limal(e, s) = 00. We say Ne is injured 
at stage s + 1, if x E (Wa+d* - (Wa)*, and x is not e-good. Notice that there 
exists a stage s', such that "Is > s' (Ne is not injured at stage s) since injuries can 
only occur after stage e due to the action of some Pe for j < e. Now we follow the 
reasoning of Soare [Sol] to note that if C = ~e(W) then C is recursive. Similarly 
lima R(e, s) = R(e) exists and is finite. 0 

LEMMA 3.5. All the Pe are met. 

PROOF. Let e be least such that Pe is not met. Then We = W, and W =T 

We =T 0. Let t be a stage such that "Is > t (R(e, s) = R(e) = R(e, t)). As 
V ¢T 0, dim(V) = 00. Consequently there exists a stage t' > t, such that 

"Is> t' Vy (y E (Va)* - (Vt)* ~ y is e-good), 
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namely when V fixes itself on R(e). We claim 

3S1,S2 > t' (S1 ~ S2 and x E We,S2 and (x E Vs*,+1 - Vs*,)). 

If so, the result would now follow, since at stage s 1, Pe would require attention as 
x would be e-good. Suppose, therefore, that the claim fails. Then 

'Vs > t' (x EWe,s - We,t' -+ (x E Vs* or x ~ V)). 

Given yEw = Voo , find a stage ty such that ty > t' and we[yJ = We,ty[Y]. (Here 
we are assuming We is recursive.) It follows that y E We n V iff y E We,t y n (Vty )*. 
We show that this implies V =T 0 contrary to hypothesis. As We is recursive and 
W = V - We is recursive, it follows that V =T V n We. But now x E V n We iff 
X E We and x E (Vtz )*. This is recursive and so V =T 0. Therefore all the Pe are 
met. 0 

In the above examples, it is always the case that ifWEB{x}* = V, then d(D(W))V 
d({x}*) = d(D(V)). This then leads to the hope that perhaps for dependence 
degrees, ifVEBW = Q, then d(D(V))Vd(D(W)) = d(D(Q)). Retzlaff [Rt] however, 
showed that there were a pair of independent decidable r.e. subspaces D1, D2 with 
D1 EB D2 not decidable. Ash and Downey [AD] extended this to show (over any 
F): 

THEOREM 3.4. Let V E L(Voo ) and suppose Q EB W = V with Q, WE L(Voo). 
Then if dim(W) = 00 there exists a decidable Q' E L(V 00) with Q' EB W = V. 
Consequently every r. e. subspace can be decomposed into the direct sum of a pair of 
decidable r. e. subspaces. 

In a sense, this result shows that for some theorems on L(Voo), new techniques 
must be developed. Thus, for example, an analogue of Sacks' splitting theorem due 
to Shore ISh] required both Sacks' strategy of preserving agreements and a strategy 
of creating disagreements. This theorem is 

THEOREM 3.5 (SHORE [Sh]). If V E L(Voo) is not decidable, then there 
exists V1, V2 E L(Voo) such that V1 EB V2 = V and D(Vt} IT D(V2). 

There have been some other more technical results in [AD, Do2, Rt, ReI, 
NRI,2], particularly concerning lattice-theoretic combinations with these splitting 
theorems, but really no stronger degree-theoretic ones. Later we shall indicate some 
of the more recent degree-theoretic results asserting that r.e. subspaces with certain 
types of splittings occur in L(Voo). 

Before doing so, we tum to r.e. bases. Really, the first result here is due to 
Dekker [De], namely 

THEOREM 3.6 (DEKKER [De]). If V E L(Voo) then V has a recursive basis 
R. 

PROOF (SKETCH). Certainly, it has an r.e. basis B = {bo, b1 , ... }. Construct 
R = Us Rs· At stage s + 1, if bs E (Rs)* set Rs+1 = Rs. If bs ft (Rs)* find the 
least bj ~ (Rs)* such that {bs + bj , bj } U Rs is independent and both bs + bj , bj > s. 
Set Rs+l = Rs U {bs + bj, bj}. It is easy to see that y E Riff y E Ry+l, hence R is 
recursive. 0 
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On the other hand, Remmel's process from [ReI] shows that 
THEOREM 3.7 (REMMEL [ReI]). Let V E L(Voo). Then V has an r.e. basis 

R =T V (in fact, R =w V). 
PROOF (SKETCH). Let B = {bo,bl, ... } be an r.e. basis ofV. Define Ro = {bo} 

and R S+1 = Rs U {xs} where Xs = J.ly (y E {bo, .. ·, bS+l}* - {bo, ... , bs }*). It is 
easy to see that (R)* = (B)* by exchange. As R is an r.e. basis R ::;T V. To see 
V ::;T R given x find the least stage s where R[x + 1] = Rs[x + 1]. It is not too 
difficult to see that x E V iff x E (Rs)*. 0 

These two results have several interesting consequences. Immediately, we get 
COROLLARY 3.8 (REMMEL [ReI]). Let V be any r.e. nonrecursive subspace. 

Then V has infinitely many r. e. bases of incomparable T -degrees. 

PROOF. Apply (3.7) to get R, an r.e. basis of V with R =T V. Take any Sacks' 
splitting of R = Rl U R2 with Ri IT Rj. Apply (3.6) to get a recursive basis D2 
for (R2)*' and a recursive basis Dl for (Rd*. Then Rl U D2 and R2 U Dl are r.e. 
bases with Rl U D2 IT R2 U D1 • Now use iterated Sacks' splitting. 0 

These results lead to a very fundamental question: how does B(V) lie in 
[O,d(V)]? (Recall that B(V) denotes the collection of degrees of r.e. bases of V.) 
In particular, for example, does B(V) = {8: 8 E [0, d(V)]}? 

Ultimately, the solution to this particular question leads to the USP /non-USP 
results of Lerman and Remmel [LRI,2] on r.e. sets and their later extensions by 
various authors [003, AS2, AF, OW]. Choosing the strongest (negative) results, 
we have via [OW], 

THEOREM 3.9. (i) If X and Yare r.e. sets with X <T Y, there exists 
V E L(Voo) such that B(V) is not dense in [O,T-deg(V)] and X <T V <T Y. 

(ii) There exists V E L(Voo) such that B(V) is not dense and V =T 0'. 
(iii) There exists an r.e. degree 8 such that if V E L(Voo ) and V has degree 8, 

then B(V) is not dense in [0, T -deg(V)]. 
PROOF (i) (FOR EXAMPLE). Downey and Welch [OW] showed that there exists 

an r.e. set A with X <T A <T Y such that there exist r.e. sets 0 <T C <T B <T A, 
with C <w B for which if E is r.e. and E ::;w A, then either C f=w E or E f=w B. 
Let V = (A)*, where we consider A as an r.e. subset of a recursive basis of Voo. 
Then A =w V and if Q is an r.e. basis of V then Q ::;w V and so Q ::;w A. 

(ii) and (iii) are similar. 0 
We remark that these results work equally well on splittings, since they only use 

the fact that if B is an r.e. basis of V then B ::;w V. (They also therefore apply to 
other effective algebra settings: boolean algebras [Re], theories, etc.) 

Another recent result in this vein, is due to Downey and Stob [OS], and gives 
extensions of (3.9). We say V E L(Voo) has the antibasis property, if there is an 
r.e. set B with 0 <T B <T V, such that whenever R is an r.e. basis of V with 
R ::;T B, R =T 0. (Similarly: antisplitting property.) We have 

THEOREM 3.10 (DOWNEY AND STOB [OS]). (i) There exists V E L(Voo) 
with the antibasis and antisplitting properties. 

(ii) In fact, there exists a nonzero r.e. degree 8 such that if A is r.e. and d(A) = 8, 
then there exists an r.e. B with 0 <T B ::;T A, such that for all r.e. sets C, if 
C ::;T Band C ::;w A then C =T 0. 
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(iii) Consequently there is a completely antibasis degree: a nonzero r. e. degree 8 
such that for all V E L(V 00) with d(V) = 8, V has the antibasis property. 

We remark that (ii)~(iii) by the techniques of (3.9). We close this section 
by giving a related result concerning complementation in Voo (which by [DRl] 
is also connected with splittings and bases), and which also uses W -degrees. In 
[Do4], Downey showed that there were very few lattice-theoretic restrictions on 
the complement of a fully co-r.e. (immune) subspace. However in [DRl], Downey 
and Remmel showed that this is not the case for degrees. As we shall now show, 
these results may be deduced from [LRl,2] and some W-degree-theoretic results. 

THEOREM 3.11. Suppose V EL(Voo) andR isfullyco-r.e. withVEBR=Voo . 
Then V ::;w D(V) ::;w R. 

PROOF. Let R = (B - A)* where B is a recursive basis of Voo and A is an 
r.e. subset of B. Let B = {b1 ,b2 , ... }. Let X1, ... ,Xn be given. To decide if 
{Xl, .•• , Xn}* n V = {O} or not, compute P = Ui SUPPB(Xi) where sUPPB(x) 
denotes the support of X over B. Then P = {bio' bi}, ... , bim} with ij < ij+1. Now 
compute the least stage s where As[bim + 1] = A[bim + 1]. Then from this we may 
compute R[bim ) = {bjo, ... ,bjk }. Now, find the least stage Sl where 

Pc ((Vs})* EB ({bjo,···,bjk })*) [bim ]· 

We claim {a'} = {Xi, ... ,Xn }* n V iff {Xl, ... ,xn }* n (VsJ* = {a} If not, some 
linear combination of X!, • .. , Xn and so of bill . .. , bim must enter V after stage 
Sl. But this will force {bjo , ... , bjk} to be no longer independent over V, giving a 
contradiction. 0 

Finally, we would like to mention one result due to Downey and Remmel, which 
will appear elsewhere. Downey [Do4) has shown that any nonzero r.e. degree 
contains an r.e. set without the universal splitting property. For vector spaces 
however, Downey and Remmel have (cf. [DR3)) shown that every r.e. degree with 
the universal weak truth table reduction property (cf. [LRl)) is completely UBP. 
That is, every subspace of such degree has the universal basis property. These 
results will appear elsewhere. 

4. Splitting theorems. The results from the latter half of §3 seem to indicate 
that the degrees of splittings, bases and particularly dependence degrees of split-
tings, seem to be fairly unrelated, so that perhaps the results of Theorems 3.6 and 
3.7 may be the best possible. The following result is therefore quite surprising. 

THEOREM 4.1. Let V E L(Voo). Then for any T-degree 8 
(i) 8 is the degree of an r.e. basis of V iff 
(ii) 8 is the degree of an r. e. direct summand of V iff 
(iii) there exist W, Q E L(Voo) with W EB Q = V and W =T D(W) =T 8. 

PROOF. Evidently (iii) ~ (ii). To see that (ii) ~ (i), let V = W EB Q with 
W,Q E L(Voo) and W =T 8. Then Q has a recursive basis B1 by (3.6) and by (3.7), 
W has an r.e. basis B2 with B2 =T 8. Then Bl U B2 is an r.e. basis of V of degree 
8. 

Finally we show (i) ~ (iii). We many assume 8 i:- 0, since otherwise the result 
follows immediately (taking dim(W) = 1). Let B be an r.e. basis of V of degree 
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8. Let R be an infinite recursive subset of B. Set C = B - R so that C is an r.e. 
independent set of degree 8. 

Our construction is performed in two stages. First we construct a sequence of 
pairwise disjoint finite sets {Fx}xEW contained in R such that UxEw{x+r IrE Fx} 
is an independent set, and for each x, card (Fx) = x + 1. We construct the Fx's in 
stages. First, fix some enumeration of all finite subsets of Voo , {Dx}xEw, so that 
dim((UY$;x Dy)*) ~ x. Let R = {ro < rl < ... } and suppose 0 has G6del number 
O. 

Stage O. Let Fo = {ro}. 
Stage s + 1. Assume we have defined Fo, ... , Fs such that for each i, Fi ~ R 

and card (Fi) = i + 1 and As = U;=o{y + r IrE Fy} is independent. Since 
(As U {s + 1})* is finite dimensional, and (R)* is not, we can effectively find the 
least t such that 

(a) {rt, ... , rt+s+d n (U;=o Fy) = 0, and 
(b) {rt, .. . , rt+s+d is independent over (As U {s + 1})*. 

We now set FS+l = {rt, ... , rt+s+l}' Note that because of (b), {rt + (s + 1), ... , 
rt+s+l +(s+ln is independent over As so that U;!~{y+r IrE Fy} is independent. 

Next, let f be a 1-1 recursive function whose range is C. We construct the 
desired r.e. subspace W in stages as follows: 

Stage O. Wo = ({ro + f(On)* where ro = J-tr (r E Ff(o))· 
Stage s + 1. Having defined Ws = ({ri + f(i) Ii = 0, ... , sand ri E Ff(i)})*, for 

some ro, ... , rs we let rs+l be the least r such that 
(a) r E Ff(s+l), 
(b) (Ws U {r + f(s + In)* n (UY<f(S+l) Dy)* = (Ws)* n (UY<f(S+l) Dy)*. 

The point here is that such an r must exist since otherwise if Ff(s+l) = {Xl, ... , 
Xf(S+l)+d then for all i, qi + Xi E (UY<!(S+l) Dy)* for some qi E (Ws)*. By our 
construction of the Fy's, it is easy to see that ql + X!, ... ,qf(s+l)+l + X f(s+l)+l 
are independent, which would imply that dim(Uy9 (s+1) Dy)* > f(s + 1); a con-
tradiction since dim((UY$;x Dy)*) ~ X for all x. 

Now set Ws+l = (Ws U {rs+l + f(s + In)* and W = US WS' 
It is easy to see that W ffi (R)* = V since f(s) E W ffi (R)* for all s: 
First f(s) E W + (R)* for all s since r + f(s) E W for some r E R (name~y 

r = rs+l)' Also Wn(R)* = {OJ because f(s) exchanges with rs+ f(s) over (R)* and 
so {ri+ f(i): i E w} is independent over (R)* since C = {f(i): i E w} is independent 
over (R)*. Thus we let Q = (R)* and verify that d(W) = d(D(W)) = 8. First note 
that X E C iff r + X E W some r E Fx so that C ~T W. Thus it suffices to show 
that D(W) ~T C since W ~T D(W) (cf. for example [MN2]). 

Given an index r of some k-tuple (rl,"" rk), find the first x such that Dx = 
(rl,' .. , rk) and then recursively in C find a stage Sx such that f(t) > x for all t 2: SX' 

We claim r E D(W) iff (rl, ... , rk) is dependent over W iff (Dx)* n W i- (0)* iff 
(Dx)* n (Ws.)* i- {OJ. That is, if (Dx)* n (Ws)* = {OJ but (Dx)* n (WS+l)* i-
{OJ; then clearly f(s + 1) < x since by construction (Ws)* n (UY$;f(S+l) Dy)* = 
(Ws+d* n (UY<f(s+l) Dy)* and hence s + 1 ~ SX' Thus D(W) ~T C and so 
C ~T W ~T DrW) ~T C and result. 0 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DEGREES OF SPLITTING 693 

COROLLARY 4.2. Let V E L(V 00). Then for any W -degree 8, 8 is the degree 
of an r.e. basis of V iff there exist W, Q E L(Voo) with WEB Q = V and Q =w 
D(Q) =w 8. 

PROOF. All the reductions of the previous theorem are W-reductions. 0 
The construction of Theorem 4.1 allows us to prove the following result, which 

says that pairs of T- or W-degrees arising from r.e. splittings of r.e. bases of V 
coincide exactly with degrees of strong r.e. splittings of V itself. 

THEOREM 4.3. For any degrees (T- or W-) , and 8 and V E L(Voo) , there 
exists an r.e. splitting BI U B2 = B of an r.e. basis B of V with d(Bd = , and 
d(B2) = b iff there exists an r.e. splitting WI EB W2 = V of V with 

(a) d(WI ) = d(D(Wd) = " and 
(b) d(W2) = d(D(W2)) = b. 

PROOF. We may assume dim(V) = 00 lest the theorem is trivially satisfied. 
First assume we are given disjoint r.e. sets BI U B2 = B an r.e. basis of V and 
with no loss of generality both BI and B2 are infinite. Observe that in the proof of 
Theorem 4.1, although R is recursive, the only properties used in the construction of 
Ware that Rand e are infinite r.e. sets, Rne = 0 and Rue is a basis ofV. Thus 
apply the construction of Theorem 4.1 with BI replacing e and B2 replacing R to 
construct WI so that WI EB (B2)* = V and d(Wd = d(D(Wd) = ry = d(Bd. Next 
apply the construction of Theorem 4.1 with B2 replacing e and R replaced by any 
r.e. basis of WI to construct W2 with W2EBWI = V and d(W2) = d(D(W2)) = d(B2). 

For the reverse direction, apply Remmel's construction from [ReI] to produce 
BI =w WI and B2 =w W2. 0 

Theorem 4.3 has a number of interesting corollaries. For example if we start 
with any V E L(Voo ) and any recursive basis B of V and BI U B2 = B any r.e. 
splitting of B we get Corollary 4.4. 

COROLLARY 4.4 (ASH AND DOWNEY). For any V E L(Voo), there exist 
decidable subspaces DI and D2 such that DI EB D2 = V. 

Another example is the following extension of [AD]. 

COROLLARY 4.5. Let V E L(Voo) and suppose W, Q E L(Voo) with W EBQ = V 
and dim(W) = 00. Let H be any r.e. basis of Q. There exists R E L(Voo) with 
d(R) = d(D(R)) = d(H) such that W EB R = V. 

As a final example, we prove the following classification theorem, solving a ques-
tion of Ash and Downey [AD]. Following [AD] we say V E L(Voo) is everywhere 
mitotic if for all r.e. degrees b ~T d(V) there exist V!, V2 E L(Voo) such that 
d(vd = d(V2) = b and VI EB V2 = V and say V is strongly everywhere mitotic if the 
conclusion also holds with d(D(vd) = d(D(V2)) = b. We have 

COROLLARY 4.6. Let b be an r. e. degree. Then 
(i) b contains an r. e. set with the universal splitting property, iff 
(ii) b contains an r. e. subspace with the universal basis propery, iff 
(iii) b contains an r. e. subspace that is everywhere mitotic, iff 
(iv) b contains an r. e. subspace that is strongly everywhere mitotic, iff 
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(v) 8 contains an r.e. subspace V such that if a and /3 are r.e. degrees with 
a, /3 :5T V, there exists VI, V2 E L (V 00) such that VI EB V2 = V and d(vd = 
d(D(Vl)) = a and d(V2) = d(D(V2)) = /3. 

PROOF. Clearly (iv) -+ (iii) -+ (ii) -+ (i). To show (i) -+ (iv) let AI, A2 be 
r.e. subsets of a recursive basis with AI, A2 both having USP (universal splitting 
property), and Al =T A2 =T 8. Let I :5T 8. As the Ai have U.S.P. there exist r.e. 
sets Bb B 2, Cl and C2 such that Bl =T B2 =T I and Bi U Ci = Ai for i = 1,2. 
Now (Bd* EB (Cd* EB (B2)* EB (C2)* = V. Let Fi be a recursive basis of Ci and 
observe that BiUFi is an r.e. basis of (Bi)*EB(Ci )* for i = 1,2. Now apply Corollary 
4.5 twice to get (iv). 

Finally it is clear (v) -+ (i). To get (i) -+ (v) use the proof that (i) -+ (iv) taking 
Bl =T a and B2 =T /3. 0 

Another interesting result which may be derived from Theorem 4.3 is a complete 
analogue of Sack's splitting theorem (e.g. [Sol]) for both degrees and dependence 
degrees. Recall that Shore ISh] proved an analogue of the Sacks' splitting theorem 
for dependence degrees, that is, Shore proved that if V E L(Voo) and D(V) 1:-T 0, 
then there exist Vb V2 E L(Voo) such that VI EB V2 = V and D(vd IT D(V2), 
although no claim about the degrees of VI and V2 is made (3.5). In the case where 
the space V is recursive but not decidable, Shore's result is the best possible since 
in that case VI =T V2 =T O. (Recursive, but not decidable, r.e. subspaces may 
exist only if F is infinite.) However if d(V) is nonzero, we can obtain the following 
strengthening of Shore's result. 

THEOREM 4.7. (a) Suppose V is an r.e. nonrecursive subspace of Voo. Then 
there exist WI and W2 E L(Voo) such that 

(i) WI EB W2 = V, 
(ii) d(Wd = d(D(Wd) and d(W2) = d(D(W2)) and 
(iii) d(Wd IT d(W2) and d(D(W2)) IT d(D(W2)). 
(b) Moreover, given any pair Wb W2 as above there exists an infinite collection 

Qi such that WI EB Qi = V and (ii) and (iii) hold in the above with Qi in place of 
W2 such that for all i =j:. y", Qi IT Qj. 

PROOF. For (a) let B be a recursive basis of V such that B =T V. Sacks'split 
B = Bl U B 2, that is assume B l , B2 are r.e. disjoint sets with Bl IT B 2. Now 
apply Theorem 4.3. For (b) Sacks' split B2 into infinitely many pairwise Turing 
incomparable pieces B2 = Ui Ci, each of which is Turing incomparable with Bl 
(cf. [Sol,2,3]). By Theorem 4.1, each Ci has the same degree as a basis of (B2)*. 
Now apply Corollary 4.5. 0 

In the next section we shall show that these results are in a sense the best 
possible. Before doing this, however, we would like to prove one related result for 
non-r.e. bases. 

THEOREM 4.8. (i) Suppose V E L(Voo) is infinite dimensional, any 8 is any 
degree. Then V has a basis of degree 8. 

(ii) Consequently, if al and a2 are any degrees, there exist VI, V2 subspaces of 
V, with VI EB V2 = V and D(~) =T Vi =T ai for i = 1,2. 
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PROOF. (i) Let A be a set of degree 8 and B a recursive basis of V with 
B = {bo < bl < ... }. Define Q = {xo < Xl < ... } via 

if i 1. A or i = 0, 
if i E A. 

It is easy to see that Q =T A (in fact Q =w A). 
(ii) Split V into a pair of r.e. subspaces WI Ef) W2 = V. 
Applying (i) we get basis QI,Q2 of WI, W2 respectively with d(Qi) = ai. Now 

apply an oracle version of the reasoning of 4.3 to give the desired result. We leave 
the details to the reader. 0 

5. The basis reflection property. The results of the last section show that 
the degrees of bases correspond to the degrees of decompositions in a very strong 
way. This leads us to hope for even stronger results. One of the most natural 
hopes/conjectures (which would considerably simplify many existence results) is 
the following: 

(5.1) Let A be an r.e. subset of a recursive basis of Voo , and let Q be an r.e. basis 
of (A)*. Then there is an r.e. splitting Al U A2 = A of A with Al =T Q. 

In view of the results of §3, (5.1) would also assert that if W is an r.e. summand 
of (A)*, then there exists Al with W =T Al as above. (5.1) would immediately 
reduce many questions concerning B(V) and S(V) to questions about r.e. sets and 
their splittings. Thus, for example, a non-USP r.e. subset of a recursive basis of 
V 00 would also be non-UBP. 

In view of these many nice consequences, it is unfortunate that (as we shall now 
prove), (5.1) fails. Define (A)* to have basis reflection property (BRP) if it satisfies 
(5.1). 

THEOREM 5.2. Let 8 be any nonzero r.e. degree. Then 8 contains an r.e. 
subspace without BRP. 

PROOF. Fix B = {aD < al < ... } as a recursive basis of Voo. We build A ~ B 
with A = Us As and d(A) = 8; and an r.e. basis Q = Us Qs of (A)* stages. At 
each stage s, B - As = {bo,s < bl,s < ... }. Let f be a 1-1 recursive function with 
d(f(w)) = 8. We ensure that f(w) =T A, by permitting and coding (on the bi,s). 
We satisfy 

Re: One of the following fails. 
(i) Me uNe = A, 
(ii) fe(Q) = Me, 
(iii) ~e(Me) = Q, 

where (Me, Ne, f e, ~e) denotes a standard enumeration of quadruples consisting of 
pairs of disjoint r.e. subsets of B and pairs of reductions. Some of the ideas are 
from Downey [Do4], although the construction is much more delicate than [Do4]. 

Define l(e, s) by 

l{e,s) = max{x: Vy < X ({Me,s UNe,s)[y] = As[Y] & 
f e,s(Qs; y) = Me,s(Y) & ~e,s(Me,s; y) = Qs(Y))}· 

Associated with Re will be a restraint r{e, s) restraining Q. We shall say that Re 
is satisfied at stage s + 1 if for some Y, we have either 

(i) fe,s(Qs;y) 1 and fe,s{Qs;y) =I Me,s{Y) and u(fe,s{Qs;Y)) < r(e,s), or 
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(ii) ~e,s(Me,s; y) ! and cPe,s(Me,s; y) =1= Qs(Y) and if u = u(cPe,s(Me,s; y)) then 
for all z::; u re,s(Qs;z) ! and r(e,s) > u(reAQs;z)). (That is, we are currently 
preserving a disagreement.) 

Now at each stage s, position (e, n) of B - As for each n is associated with Re and 
may, or may not be assigned. We shall suppose that for all m, n, if m > n, (e, m) > 
(e, n). Now, at each stage s there will be at least one element added to As+l - As. 
This will mean then at stage s there is at least one linear combination x( (e, n), s) 
of elements of As and B(e,n),s with x( (e, n), s) = LaiEA. Aiai + ,b(e,n),s b =1= 0), 
with x( (e, n), s) > s. This observation will be the key to preserving computations. 
In the construction to follow, action by higher priority requirements automatically 
cancels lower priority ones. Also, for two assigned positions (e, n) < (e, m), if (e, n) 
requires attention then (e, m) automatically becomes unassigned. 

At this stage we will briefly describe the idea for satisfying the Re. Roughly 
speaking we shall proceed as follows: wait for a stage s to occur where we have 
a 'target' t((e,n},s) (an element of B) and l(e,s) > t((e,n},s). We then assign a 
linear combination of x = x((e,n},s) as above as a follower of Re targeted for Q. 
Now, notice that 

x ((e, n), s) > s > max {u (cPe,s (Qs; y)) : y::; t = t ((e, n), s)} . 

We now again wait tilll(e, s) > x. Our idea is to preserve all computations now, 
and wait till we can clear all elements y with t ::; Y ::; s into A and I (e, s) > x 
again. At such a stage x become confirmed. The point is that if we ever get 
to add x to Q then by restraints either the ~e,s(Me,s; x) computation is final, in 
which case we have disagreement cPe,s(Me,s; x) = ° =1= 1 = Qe(x), or some number 
< u (cPe,s(Me,s; x)) enters Me. The only remaining such numbers are < t and so 
this gives a disagreement below t by choice of x. Formal details now follow. 

We say Re requires attention at stage s + 1 via (e, n) if it is unsatisfied at stage 
s, all positions (e, m) with m < n are assigned or bogus, and 

(5.3) (e,n) is waiting and confirmed and b!(s),s::; t((e,n},s), or 
(5.4) (e, n) is not confirmed and f(s) ::; (e, n), or 
(5.5) (e, n) is unassigned and 
(i) f(s) ::; (e, n), 
(ii) Vy::; b(e,n),s(re,s(Qs;y) !), 
(iii) for some linear combination x( (e, n), s) = LaiEA. Aiai + ,b(e,n),s of As U 

{b(e,n),s} with, =1= 0, we have x( (e, n), s) > max{ u(r e,s(Qs; y)): y ::; b(e,n),s}, 
(iv) Vy ::; x( (e, n), s)(cPe,s(Me,s; y) !), and 
(v) if m = max{ u(cPe,s(Me,s; y): y::; x( (e, n), s))} then l(e, s) > m, and l(e, s) > 

R(e, s) = max{r(j, s): J ::; e}. 
If (5.5) holds, we shall say that Re requires attention via (e, n) through x = 
x((e,n},s). 

Construction. Stage s + 1. 
Step 1. For all e::; s and positions (e,n) with follower x = x((e,n},s) if 
(i) (e, n) is not waiting, 
(ii) (e, n) is not confirmed, and 
(iii) l(e, s) > R(e, s), 

declare x as waiting. 
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Step 2. Determine any threatened requirement as follows: see if b!(s),s = 
t({e,n),s) for some (e,n) which is assigned but does not require attention at stage 
s + 1. (It will follow that (e, n) must be confirmed but not waiting.) In this case 
set g(s) = I(s) + 1. Otherwise set g(s) = I(s). (By cancellation b!(S)+l,s may be 
threatened also, but will be of lower priority.) 

Step 3. Find the least e if any, such that Re requires attention. 
(a) Ifno such e exists, find the least k such that both bk,s and bg(s),s+bk,s exceed 

all uses, numbers, etc., used by this stage. 
Set As+l = As U {bg(s),s, bk,s}' Set Qs+l = Qs U {bk,s, bg(s),s + bk,s}' For all 

assigned positions h with h ~ g(s), cancel the assignments so that x(h, s + 1) and 
t( h, s) become undefined. 

{ 
bi,s for i < g(s), 

Set bi,s+l = bi+l,s for g(s) ~ i < k, 
bi+2,s otherwise. 

For all q set r(q, s + 1) = r(q, s). Otherwise do nothing. 
(b) If for some e, Re requires attention, find the least e and the corresponding 

(e, n). We pick (e, n) by selecting which option of (5.3)-(5.5) first holds (the highest 
priority option), where we give (5.3) higher priority than (5.4) which in turn is 
higher than (5.5). All lower priority positions (that is, (j, k) with j > e) with 
(j, k) ~ (e, n) become bogus at this stage. Now adopt"the appropriate case below. 

Case 1. (5.3) holds. Re now becomes satisfied. 
Subcase (i). bg(s),s =1= t( (e, n), s). Find k as in (a) and set 

As+l = As U {bg(s),s, bk,s, t( (e, n), s)} 

and set Qs+l = Qs U {bg(s),s + bk,s, bk,s, x( (e, n), s)}. Cancel all assignments for 
h ~ g(s). Otherwise do nothing. 

Subcase (ii). bg(s),s = t({e,n),s). Set As+l = As U {t({e,n),s)} and Qs+l = 
Qs U {x( (e, n), s)}. Cancel as before. 

Case 2. (5.4) holds. (e, n) becomes confirmed (but not waiting). 
Subcase (i). g(s) = (e, n). For each i with 1 ~ i ~ s, find k(i) as in (a), so that 

bg(s)+i,s + bk(i),s exceeds all previously considered numbers, and set As+l = As U 
{bg(s)+i,s, bk(i),s: 1 ~ i ~ s}, and Qs+l = QsU{bk(i),s, bg(s)+i,s+bk(i),s: 1 ~ i ~ s}. 
Cancel as before for h ~ g(s) + 1. For all q ~ (e, n), t(q, s + 1) = t(q, s), (if defined). 
Restraints are maintained. Renumber the bi,s. 

Subcase (ii). g(s) =1= (e, n). Find i with 1 ~ i ~ s as in subcase (i), with this time 
b(e,n)+l + bk(i),s and bk(i),s appropriately large. Also find k for g(s) as in (a). Set 

A S+1 = As U {bg(s),s, bk,s, b(e,n)+i,s + bk(i),s: 1 ~ i ~ s}. 

Set Qs+l = Qs U {bg(s),s + bk,s, bk,s, b(e,n)+i,s + bk(i),s,bk(i),s: 1 ~ i ~ s}. Cancel as 
before for h ~ g(s) with h =1= (e, n). For q ~ (e, n), t(q, s + 1) = t(q, s) (if defined). 
(But notice here that t( (e, n), s + 1) = b(e,n)-l,s+l after renumbering the bj,s.) 

Case 3. (5.5) holds. (e, n) now becomes assigned, and x( (e, n), s) becomes the 
current follower associated with (e, n). 

Set r(e, s + 1) = s + 1, and t( (e, n), s + 1) = b(e,n),s' (e, n) is not confirmed. Find 
k as in (a), and set As+l = As U {bg(s),s, bk,s}, and Qs+l = Qs U {bg(s) + bk,s, bk,s}. 

End of construction. 
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Clearly (Q)* = (A)* and lims bj,s = bi exists, since bi,s+1 =f bi,s only if i ::::: f(s). 
This also means A ST f(w), since, to determine if aj E B is in A or not (as we 
know "Is (bj,s ::::: aj)), it suffices to find a stage So where "Is> So (/(s) > j). Then 
aj E A +-+ aj E Aso. Also f(w) ST A, since bf (s),s,bf (s)+1,s or bf (s)+2,s is always 
enumerated into As+l - As. Thus, given j, A-recursively find a stage So where 
"Is> So, bk,s = bk,so for all k S j + 3. Then "Is> So (/(s) > j). Hence f(w) ST A. 

Thus it will suffice to show that 
(i) all the Re are met, 
(ii) all the Re receive attention at most finitely often, 
(iii) lims r( e, s) = r( e) exists. 

Since the r(e, s) only change when Re receives attention, (ii) --+ (iii). Thus the 
remainder of the verification will be devoted to (i) and (ii), and will consist of a 
series of lemmas under an inductive hypothesis. Let So be the least stage such that 

Vj < e "Is> So (Rj does not receive attention at stage s). 

Now suppose, by way of contradiction, that Re is not met, or receives attention 
infinitely often. By the way followers are assigned in (5.5), it is easy to see that in 
either case we must suppose l(e, s) --+ 00 and infinitely many followers are assigned 
to Re after stage so. By choosing So least, we may suppose that Re has no followers 
at stage So. 

LEMMA 5.6. Suppose that at some stage s + 1 > so, Re receives attention via 
(e, n) and (5.3) applies. Then for all t ::::: s + 1, Re is satisfied at stage t. 

PROOF. Let s, (e, n) be as given by the hypothesis. By the construction, and 
choice of so, it follows that at some stage S1 + 1 with So < SI + 1 < s + 1, Re 
received attention via (e, n) by way of (5.5). Choosing the largest such SI + 1 we 
know that for all stages t with SI + 1 S t < s + 1 

(i) Re does not receive attention at stage t via (e, m) with m < n, 
(ii) (e, n) remains assigned at stage t. 

Now as (5.5) applied at stage SI + 1, we know 

x( (e, n), SI + 1) > M = max {u(f e,S1 (Qs1; y)): y S b(e,n),s1} , 

where l(e, s) > U(~e,s1 (Me,S1 ;z)) for z S x((e, n), SI + 1) (and all the computations 
halt). 

At this stage r(e, SI + 1) = SI + 1. By the way we define k, by (i) and (ii) above 
and since (e, n) is assigned at stage s + 1, we see that 

(iii) QS1 [M] = Qs[M], since 
(iv) QS1 [SI] = Qs[sd· 

This follows by the above, and since (e, n) is waiting at stage s + 1. 
Now, at some stage S2 with S1 +1 < s2+1 < s+l, (e, n) must have been confirmed 

via (5.4). This means that for all x E B, if b(e,n),s1 < x S S1, then x E As2 +1. As 
(e, n) became waiting at some stage S3 + 1 with S2 + 1 < S3 + 1 S s + 1, it follows 
that at stage s3, l(e, S3) > S1. This means by (iii) and (iv) above, if x E A and 
t( (e, n), s) = b(e,n),s1 < x S S1 then in fact x E A..1. 

Now, at stage s+ 1 we act by putting t((e,n),s) into A and more importantly, 
x((e,n),s) into Qs+1 - Qs. 

There are two cases. 
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Case 1. 'tit ~ s (At [SI] = A[SI]). Then we shall restrain forever the disagreement 
(v) iPe,t(Me,t; x( (e, n), s)) = 0 "# 1 = Qt(x( (e, n), s)). 
Case 2. 3t' ~ s (At [SI] "# A[stJ). Then t' > s, and for all stages t with s < t < t', 

(v) applied. At stage t' we get a new disagreement as follows: Since At' [SI] "# A[SI], 
some z :$ Si enters At' -At'-I. Since t'-l ~ s, it follows that z :$ t( (e, n), s), by our 
previous analysis. But by choice of x = x( (e, n), s), we know x > u(f e,SI (QSI; z)) 
and so because of the restraints imposed, x> u(fe,t(Qt;z)). Hence, 

'tit ~ t'[fe,t{Qt; z) = 0"# 1 = Qt'(z)]. 

Thus Re becomes satisfied at stage s + 1, and does not receive attention again. 0 
In view of this, we may now suppose that for all (e, n) assigned after stage so, 

(5.3) does not apply to (e, n). Define a position (e, n) to be permanently waiting, if 
it becomes waiting at some stage s > So and does not get unassigned after stage s. 

LEMMA 5.7. There are infinitely many permanently waiting positions associ-
ated with Re. 

PROOF. First we shall show that infinitely many positions get confirmed. Sup-
pose not. Let nl, .. . ,nm be the set of positions which are confirmed at the last 
stage SI such that any (e, k) position gets confirmed. We may suppose 

(e, ni) < (e, ni+l) for all 1 :$ i.:s m - l. 

We may also suppose that by definition of ( , ), for all p, q > ni+l, if p > q then 
(e, q) + 1 < (e,p). 

Let m(j) = (e, ni+l + j) for j ~ 1. We shall show that f(w) is recursive contrary 
to hypothesis. 

Let z E w. Find the least stage t(z) > SI and the least m(j) > z such that m(j) 
gets assigned at stage t(z). We can do this because we know that once m(k) gets 
assigned it cannot be cancelled by choice of g(s), and the fact that once m(k) is 
assigned f(s) $ m(k), for then m(k) would be confirmed. Then it follows by this 
analysis that 'tis > t(z) (J(s) > m(j)). Thus 'tis > t(z) (J(s) > z). This implies 
that z E f(w) iff z E [f(w)]t(z), hence f(w) =T 0, a contradiction. 

Therefore, infinitely many positions get confirmed. Now, as l(e, s) -+ 00 each 
such confirmed position must become (permanently) waiting unless cancelled by the 
coding strategy kills it before it becomes waiting. But our coding strategy (step 
2) specifically protects the highest priority position to be threatened. We now can 
argue by induction that infinitely many positions must become waiting, and this 
will be permanent since once they become waiting, they cannot be cancelled lest 
(5.3) apply. 0 

Finally, we get the theorem as follows: we shall show that f(w) is recursive. 
Let (e, n) be the first assigned permaently waiting position, and let it become 

so at stage S1. Let m(j) = (e, n + j) for 1 :$ j. We compute if z E f(w) or not as 
follows. 

Find a stage t1 > S1 such that for some least m(j), 
(i) z < m(j), 
(ii) m(j) is waiting at stage tl. 

Then z E f(w) iff z E [f(w)k, since otherwise (5.3) would apply. Consequently 
f(w) =T 0, a contradiction, giving the theorem. 0 
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Of course, some II E L(lIoo ) do not have BRP. For example, let A be a USP r.e. 
subset of a recursive basis of lIoo ; then A has BRP. However, on the positive side 
we have a better result. 

THEOREM 5.8. Let 8 be any r.e. degree. Then 8 contains an r.e. subspace with 
BRP. 

PROOF. Let A be an r.e. subset of a recursive basis of II 00 such that A is a 
cylinder. It is shown by Ambos-Spies and Fejer in [AF], that A has the following 
property: 

Let C ~w A; then there exists an r.e. splitting Al U A2 of A with 
Al =w C. 

Now let R be an r.e. basis of (A)*. Then R ~w (A)* =w A. By the property 
above it follows that R corresponds to a splitting of A. 0 

6. Strong atomicity. The results of §§5 and 6 show that there appear to be 
no simple relationships between the (degrees of) r.e. splittings of an r.e. basis of II 
and the degrees of bases of II except those of §4. Indeed, the results of §3 and §5 
together pin down the principal difficulty in classifying BW): 

(6.1) Suppose W EEl Q = II for W, Q, II E LWoo). What can be said about d(W), 
d(Q) and dW)? Furthermore, what can be said about the collection of degrees 
C(W) = {d(Q'): Q' E LWoo) and W EEl Q' = lI}? 

The point is, that in the r.e. set case, often we can use degree-theoretic results to 
prove results about the possible splittings of an r.e. set A. For example suppose A 
is complete. Then by Lachlan's nondiamond theorem, we cannot split A = Al uA2 
with Al I TA2 and inf{d(Al)' d(A2)} = O. The fact that we do not know the 
answers to (6.1) means that a similar process fails for LWoo). The property which 
is (trivially) true of r.e. sets which makes this process work, is 

(6.2) If Al U A2 = A then d(Ad V d(A2) = d(A). 
The failure of this property to hold for L(lIoo ), means that we need new proofs 

for various theorems (if true, for example [Sh]) and that it may be possible that 
we have virtually no control over C(W) of (6.1). One example of this, is that it 
may be possible to always split II = Q EEl W with 0 <T W ~T Q ~T lI. In this 
section, we shall show that this is not the case (answering several questions from 
the literature), by constructing a strongly atomic r.e. nonrecursive subspace. Recall 
that II E LWoo) is strongly atomic if, whenever II = QEElW then inf{d(Q), d(W)} = 
O. 

In the next section, we shall use these spaces together with some properties of 
W-degrees to further explore (6.1). Thus we shall prove-using these concepts-
the ultimate failure of (6.2), by proving there exist II E LWoo) and W E LWoo) 
such that W is a summand of lI, but for all Q E LWoo) with W EEl Q = lI, 
d(W) V d(Q) ¥- dW). The results of this section may therefore be viewed also as a 
lemma for this later construction. 

In fact, we shall prove a surprisingly strong existence theorem as follows: 

THEOREM 6.3. There exists a high r. e. subset A of a recursive basis R such 
that every r.e. complement of (R - A)* is strongly atomic. 

PROOF. Our construction is similar to that of a high minimal pair, and is a 
modification of Downey and Welch [DW]. Let R be a recursive basis of lIoo . We 
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construct A = Us As in stages so that R - A has the desired properties. We 
identify, where appropriate R with w. We let ( , ) denote a fixed 1-1 pairing of 
R and x(n) = {y: (n, y) E X} the nth slice of X. Recall We denotes the eth r.e. 
set. Define B = Us Bs as follows: let c(e,8) = card (we,s)' For each 0 ~ e ~ 8, 
set B~~l = 0 if c(e, 8) = 0 and B~~l = {(e, 0), ... , (e, c(e, 8))} otherwise. Now set 
B(e) = U B~e) and B = Ue B(e). Now B(e) = W iff card (we) = 00 so that if Y is a 
thick subset of B then Y is high (that is, Y C Band Y =* B). Thus we shall meet 

Pe: A(e) =* B(e) and A C B. 

Recall that Ie is the eth r.e. independent set and We the eth r.e. space with 
We,s = {x E (Ie,s)*: x ~ m} with m = max{8, n} where n = max{y lyE Ie,s}, 
We must also meet the requirements 

Ne: If e = (n,j, k, m) then if 
(i) Wj n Wk = {a}, 
(ii) (Wj EB Wk)* n (R - A)* = {a}, and, 
(iii) Wj EB Wk EB (R - A)* = Vo,,, then, 
(iv) If iPm(Ij) = iPn(h) = f and f is total, then f is recursive. 

By the well-known remark of Posner (cf. [S02]), we may replace (iv) by (iv)': If 
iPm(Ij) = iPm(h) = f and f is total then f is recursive. The basic idea of meeting 
the Ne is as follows. For a single requirement Ne we associate a certain restraint 
r(e,8) (which depends on the use functions and length of agreement generated 
by (i)-(iv)' above). This restraint remains active until we reach a stage where the 
appropriate lengths of agreement all rise to exceed the previous one. Such a stage is 
called (e- ) expansionary. For example at this stage we may have (Wj,s)* n (Wk,s)* = 
{a}, (Wk,s U Wj,s)* n (R - As)* = {a} and the lengths of agreement between Voo 
and (Wj,s)* EB (Wk,s)* EB (R - As)* together with those of iPm(Wj,s) and iPm(Wk,s) 
have both exceeded our previous lengths of agreement. At this stage we enumerate 
one follower x of some Pj into As. We then raise restraints to the use functions 
associated with the above computations, until the next expansionary stage. We 
must be very careful here as we must ensure that no stray linear combinations may 
enter both sides below the restraint, and as in [DR!] we must enumerate nothing 
into A which may be dependent relative to IJ',s U Ik,s U (R - As) on elements of 
Voo below r(e,8) (see the definition of (a, s)-free in the construction). In this way 
we can ensure that at most one element below the restraint may enter Ij,s U Ik,s so 
that knowledge that Wj EB Wk EB (R - A)* = Voo and iPm(Ij) = iPm(h) allows us to 
simply wait until the computations recover and t cannot change below the length. 
In this way we show f is recursive. 

The interaction of the various Ne's presents some problems, namely we must 
simultaneously play many strategies according to guesses as to the final values 
of r(e, 8), and whether or not B(e) is infinite (so that, e-expansion stages and j-
expansion stages for j < e cooperate to impose essentially finite restraint on the 
whole construction). This may be accomplished in various ways (cf. [S02,3]). Here 
we use Lachlan's binary tree of strategies. We play the Pe on the even nodes and 
Ne on the odd ones. As usual, we define a binary ordering on the nodes so that 
we respect restraints to the left or below the node at which we are playing. By 
definition of "accessible node (= play)" we give a decision procedure which ensures 
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the "true path" , the leftmost branch is played infinitely often, contains only correct 
plays and our ordering ensures all the Pe and Ne are met. 

Let T be the complete binary tree. For a, T E T, write a 5;;; T if a is an initial 
segment of T and Ih(o-) for the length of a. We define a left partial ordering < on 
T via a < T ..... [(a 5;;; T) V 3/, E Tb"O 5;;; a and /''' 1 5;;; T)]. For each a E T, if 
Ih(a) = 2e, we say a is even and assign Pe to a. We therefore write Pu, A(u), B(u) 
and R(u) for Pe, A(e), B(e) and R(e) respectively. If Ih(a) = 2e + 1, we say a is odd 
and assign Ne to a. We shall write Nu, Iu, Wu, Vu, Ju and <Pu for Ne, Ij , Wj, Wk, Ik 
and <Pm respectively. 

In the construction to follow, we shall enumerate where possible, unrestrained 
(with priority e) elements of B into A. To do this we define r(a, s), the a-restraint 
at stage s. We ensure that if lh(a) > s then r(a, s) = O. Define R(a, s) = 
max{r, (T,t): T :$ a and t :$ s}. Notice that AsR(a,s) is a monotone increasing 
function for each a E T. The key restraint definition is 

DEFINITION. We say x E V 00 is (a, s)-free if "IT :$ a(x f/. [(Wr,sUVr,s)UR(a, s)]*). 
REMARKS. (i) Observe that if x is (a, s)-free then 

"IT :$ a {(Wr,s U Vr,s)*[R(a, s)] = (Wr,s U Vr,s U {x} )*[R(a, s)]). 

(ii) We observe that restricting additions to A to only (a, s)-free elements will 
allow us to meet a single Ne . We essentially must ensure that between expansions 
only one element may enter Wr or Vr. Fix T. Let W = Wr and V = Vr. Suppose we 
have some existing restraint Rs = R( T, s), and we wish to enumerate some x :$ Rs 
into A for the sake of some Pj for j > e. Without loss of generality let s be a gap, 
namely the appropriate lengths of agreement expand above Rs. Specifically 

(i) W; E9 Vs· E9 (R - As)*[Rs] = Voo[Rs], 
(ii) <pr(Ws; z) = <Pr(Vs; z) for all Z :$ Y for some y > Rs (with maximum use u, 

say). 
At this stage we place x E R into A S +1 - As, that is remove it from (R - AsH)*' 

We raise Rs to RsH generated by the y and u above, and only add (T, s + I)-free 
(at least) elements to As. Assuming we are successful in this restraint we claim 
that elements :$ Rs may enter only one of Wt or lit until the next gap. For suppose 

{Zl," . ,zn} = ((Ws)* E9 (Vs)* E9 (R - As)*)[Rs] 
- ((Ws)* E9 (Vs)· E9 (R - As - {x})*), 

then also (by (i)) 

{Zl,"" zn} = Voo[Rs]- ((Ws)* E9 (Vs)* E9 (R - As - {x} )*). 

Then if Z enters ((Wt )* U (lit)*) for any t ~ s for any Z E {Zl,"" zn} then we claim 
that by exchange, at that stage (Wt )* E9 (Vt)* E9 (R - At)*[Rs] = Voo[Rs]. Therefore 
either no Z :$ Rs enters either Wt or lit or exactly one Z :$ Rs may enter one of Wt 
or Vt . 

Recall that we wish to construct A 5;;;* B, with A 5;;; B. Thus for notational 
convenience we define Q(a, s) = P,Z (z E Rand Z is (a, s)-free). To meet the Pu we 
employ a "guess" of A defined as follows: for each (s,x), x E Au,s ..... ((x E As)V3T 
[T is an even node and T"O 5;;; a and x E R(r) and x is (a, s)-free]). Set Au = 
lims Au,s, The Au,s are columnwise recursive. Note that "Is :$ t (Au,t - Au,s 5;;; 
At - As). 
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Given u, s define the following functions: 

use u(u, s, x) = min{z: <P.,.,s (W.,.,s [z]; x) ! and <P.,.,s (V.,.,s [z]; x) !} (and z ~ s). 
length leu, s) = min{x: (<p.,.,s(W.,.,s; x) j) V (<p.,.,s(V.,.,s; x) j) 

V (<p.,.,s(W.,.,s; x) #- <P.,.,s(V.,.,s; x)) 
V ((W.,.,s)*[u(u,s,x)] n (V.,.,s)*[u(u,s,x)] i {O}) 

703 

V (((W.,.,s)* EB (V.,.,s)*) [u(u, s, x)]n(R - A.,.,s)*[u(u, s, x)] i {O}) 
V (((W.,.,s)* EB (V.,.,s)*) EB (R - A.,.,s)*) [u(u, s, x)] 

#- Voo[u(u, s, x)])}. 

That is the length of agreement established at stage s, node u according to the 
matrix describing N.,.: 

maximum length. ml(u, s) = max{l(u, t) I t ~ s}. 
maximum use. mJ.t(u,s) =max{u(u,t,x) I t ~ s and x ~ l(u,t)}. 
We are now in a position to give a decision procedure for our tree. We shall 

inductively define an accessible (finite) branch of length s, called AC(s). If u E 
AC(s), we say s is a u-stage. For each u and s we define < (u, s), the last u-stage 
s via ls(u,s) = max{t: t < s and (t = OVu E AC(t))}. We formally define AC(s) 
and r(u, s) via 

(i) for all s,0 E AC(s). 
(ii) For all s and even nodes u, r(u, s) = o. 
(iii) For aIls and u iflh(u) > s then r(u,s) = 0 and u ~ AC(s). In particular 

r(u,O) = 0 if u #- 0. 
(iv) For all s and even nodes u if u E AC(s + 1), lh (u) < s, t = ls(u, s) and 

B~"') - B~"') = 0, then ul\O E AC(s + 1). Otherwise if lh (u) ~ s, ul\l E AC(s + 1). 
(v) For all s and odd nodes u if lh (u) ~ s then 
(a) if t = ls(u, s) and leu, s) > ml(u, t) then ul\O E AC(s + 1), 
(b) otherwise ul\l E AC(s + 1). 
(vi) For all s and odd nodes u, if ul\O E AC(s+ 1) then set r(u, s+ 1) = mu(u, s). 
(vii) For all s and odd nodes u with lh (u) ~ s + 1, if ul\O ~ AC(s + 1) then 

r(u, s + 1) = r(u, s). 
Construction. 
Stage O. Ao = 0. 
Stage s + 1. Suppose 37 E AC(s + 1) such that 7 is even, and there exists 

x E R such that x E BiT) - A~T) and x is (7, S + I)-free. In this case we say x 
requires attention via 7 at stage s + 1. Let X s+l be the least such x (if any) and set 
As+l = As U {xs+d. If no such x exists set As+l = As. 

To complete the construction set A = Us As. 
End of construction. 
DEFINITION. We define the true path (3 of T as follows: 0 E (3, and for all u, if 

u E (3 then u"o E (3 iff 3°Os(u"0 E AC(s)); otherwise u"l E (3. 
REMARK. (iii) The true path (3 is an infinite branch of T such that if u E (3 

then there are infinitely many stages s at which u E AC(s) while there are only 
finitely many stages s at which (37) (7 < u and 7 i u and 7 E AC(s)). 

LEMMA 6.2. If u E (3 and u is an even node then lims R( u, s) = R( u) exists 
and is finite. 
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PROOF. Let a E fJ and t be such that (by Remark (iii)), \:Is ~ t \:17([7 < a and 
7 i a] ---. 7 i. AC(s)). Let 7 :$ a. If 7 is even t.hen r(7, s) = 0 for all s. If 7 is odd 
then 7 < a, as a is even we have 

Case 1. If 7 i a, then r(7, s) = r(7, t) for all s ~ t by (vii). 
Case 2. If 7 ~ a, then 71\0 < a and 71\0 i a so 71\0 i. AC(s) for all s ~ t, and 

here by (viii) r(7,s) = r(7,t) for s ~ t. 0 

LEMMA 6.3. Each x E R requires attention at most finitely often. 

PROOF. Let x be the least element of R requiring attention infinitely often. 
Then x E B - A. Choose t such that \:I s ~ t \:Iy < x (y does not require attention at 
stage x). Let s ~ t, 7 be such that x requires attention via 7 at stage s + 1. Then 
at this stage x = X s+l. 0 

LEMMA 6.4. \:Ie (B(e) =* A(e)) and A' =T 0". 

PROOF. Fix e and let a E fJ be such that lh (a) = 2e. Let t be a stage such 
that \:Is ~ t, R(a, s) = R(a, t) = R(a). By construction R(a)* is finite dimensional. 
For each x E B(e) - A(e) we may find a stage Sx > t at which no y < x requires 
attention. Then at each such stage x must be restrained by R(a). However in this 
case, infinitely many elements of B(e) must occur in (R - A) and so an infinite 
dimensional space (namely {x E B(e) -A(e)}) is restrained by a finite dimensional 
one R(a)*). Therefore at most finitely many x E B(e) - A(e) are restrained from 
entering A. Finally A' =T 0" by construction of B. 0 

LEMMA 6.5. If a E fJ and a is even, then al\O E fJ iff B(u) = w(u). 

PROOF. Straightforward induction. 0 

LEMMA 6.6. \:Ia (a E fJ ---. Au = A). 

PROOF. Consider A(e). Let 7 E fJ with Ih(7) = 2e. If 71\0 i a, then A1r) = 
A(r) by definition of Au. Suppose 71\0 ~ a. By the above lims Q(a, s) = Q(a) 
exists. By definition A1r) [Q(7)] = A(r) [Q(7)]. Now suppose x E R and x ~ Q(7), 
then x E A1r). Since 3°Os (71\0 E AC(s + 1)), by (iv) (of the definition of AC) 
3OOs(Bir) -Bl~{r,s) i- 0). Since B(r) is an initial segment of R (or w), B(r) = w(r). 
By Lemma 6.5 and the fact that x is (7, s)-free for infinitely many s, x E A(r) and 
so A1r) = A(r). 0 

LEMMA 6.7. Suppose a E fJ is odd, Vu EEl Wu EEl (R - A)* = Voo , <I>u{Vu) = 
4>u (W u) = f and f is total. Then al\ 0 E fJ· 

PROOF. By Lemma 6.6 Au = A, we note that lims l(a, s) = 00. Thus by (iv) 
3°Os(aI\0 E AC(s)) and so al\O E fJ. 0 

LEMMA 6.8. Suppose a E fJ and a is odd. Let t be a stage such that 
(i) \:17(7"1 ~ a ---. A(r) = A~r)). 
(ii) \:Is ~ t \:17([7 < a and 7 i a] ---. 7 i. AC(s)). 

Let s, u be such that t :$ s :$ u, s + 1 and u + 1 are a"O-stages and s + 1 = 
Is(a"O, u + 1). Then either 

(a) (Vu,s)*[r(a, s)] = (Vu,u) * [r(a, s)], or 
(b) (Wu,s)*[r(a, s)] = (Vu,u)*[r(a, s)]. 
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PROOF. Let a, t, sand u be as above. By remark (ii) provided we were successful 
in (a, s + 1) restraining between stages s + 1 and u + 1, the result will follow. By 
construction at most one number enters A at any stage. Let f be the least stage 
such that some x < Q(a, s + 1) in R receives attention (with a ~ u) through r 
say. Since t ~ s < f, no node p < a is in AC(f) so ria. Therefore as, by 
definition of s + 1 and u + 1, a"O rf. AC(f) so a"O rt. r. Hence a < r. However 
by construction r(a, s + 1) ~ r(a, f) ~ R(r, f) contradicting the fact that x is not 
a-restrained (rather a-free). 0 

LEMMA 6.9. Suppose V<T EB W<T EB (R - A)* = Voo and <I><T(V<T) = <I><T(W<T) = f 
and f is total. Then f is recursive. 

PROOF. By Lemma 6.6, A<T = A, and by Lemma 6.7, a"O E (J. For each r if 
r" 1 ~ a then B( r) is finite and so A (r) is finite. Let t be a stage so large that 

(i) 'Ir(r"l ~ a -+ A~r) = A(r)). 
(ii) 'Is ~ t 'Ir([r < a /\ r rt. a] -+ r rf. AC(s)). 

Now by hypothesis limsl(a,s) = 00. We show how to compute <I><T(V<T) = f recur-
sively. 

Let z E Voo. Find a stage s ~ t such that a"O E AC(s + 1) and z < l(a, s). 
Let y = u(a, s, z). Then <I><T,s(V<T,s[Y]; z) = <I><T,S (W<T,S [y]; z) and Y ~ r(a, s + 1). 
Let u be a a"O stage with s+1 = ls(a, u+l). By Lemma 6.8 one of (V<T,s) * [r(a, s)] or 
(W<T,s)* [r(a, s)] equals (V<T,u)* [r(a, u)] or (W<T,u) * [r(a, s)] respectively. E.g. (V<T,s)* [y] 
= (V<T,u) * [y]. Thus 

By induction, if Sf is the least stage Sf ~ t with a"O E AC(s + 1) and x < l(a, s) 
and if u > Sf is any a"O stage, the <I><T,u(V<T,U; z) = <I><T(V<T; z) and so f is recursive, 
concluding the proof of Theorem 6.1. 0 

Using a similar (but easier) construction we may also prove 

THEOREM 6.10. There exists an immune co-r. e. subset R of a recursive basis 
B such that every r.e. complement of (R)* is strongly atomic. 

Theorems (6.3) and (6.10) combine to give us a wealth of existence results as 
follows. 

THEOREM 6. 11. There exist strongly atomic V E L(V 00) of the following types: 
(i) V is high, 
(ii) V is low, 
(iii) V is supermaximal, 
(iv) V is k-thin for any k E w, 
(v) V is nowhere simple and nonrecursive, 
(vi) V is super-r-maximal, but not maximal (and may be constructed to be con-

tained in no maximal, or contained in a maximal r. e. subspace). 

PROOF. (i) is immediate by (6.3). To get (ii) use Theorem 6.3 where we 
consider A (of 6.3) as nonsimple. Then we can Sacks' split A as Al U A2 with 
Ai low and nonrecursive. By [DRl] there exists V E L(Voo) with V =r Al and 
V EB (B - A)* = Voo. Then V has the desired properties. (iii)-(vi) all follow by 
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[Do2], who showed that if R is immune and fully co-r.e., then (R)* automatically 
has r.e. complements of the desired types. 0 

We remark that [DW] used strongly atomic r.e. sets to give examples of r.e. 
sets with very strong antisplitting properties. We do not know if the analogous 
properties hold in L(Voo). The key to the results of the next section, though, is the 
use of these spaces since if Q EB W = V, then Q ;foT 0, W;foT 0 implies Q IT W. 

7. Anticupping. In this section using a fairly complicated construction via the 
results of §6, we shall show that any reasonable analogue of (6.2) fails. Our result 
is 

THEOREM 7.1. There exists V E L(Voo) and W, Q E L(Voo ) such that QEBW = 
V, and for all Q', FE L(Voo) if Q' EB F = V and if Q' =T Q, then d(Q) V d(F) i 
d(V). 

We shall establish (7.1) by the next result. 

THEOREM 7.2. There exists an r.e. nonrecursive basis B of V E L(Voo) such 
that 

(i) B is a W -anticupping witness for V, 
(ii) d(V) is contiguous, 
(iii) V is strongly atomic. 
LEMMA 7.3. (7.2) -+ (7.1). 

PROOF. By §4, there exists Q E L(Voo) with Q $ W = V for some W E L(Voo), 
and Q =T D(Q) =T B. Now suppose for some Q', F E L(Voo) , Q' =T Q and 
Q' EB F = V and d(Q') V d(F) = d(V). Let A(Q) = {2x I x E Q} and A(F) = 
{2x + 1 I x E F}. Then A(Q) U A(F) =T V. By contiguity A(Q) U A(F) =w V. 
Now, as Q' EB F = V, by strong atomicity, as 0 <T Q' <T V (by contiguity), it 
follows that F <T V. Hence A(F) W-cups A(Q) to V, contradicting the fact that 
B is W-anticupping witness for V. Hence (7.1) holds for V. 0 

The remainder of this section is devoted to a proof of (7.2). Interestingly, we 
shall construct V with a fully extendible basis. Thus, let R = {ao < al < ... } be 
an r.e. basis of Voo. We shall construct A = Us As C Rand B = Us Bs such that 
(B)* = (A)* and satisfy 

P2e+1 : A =f. Re (where Re is the eth r.e. subset of R). 
P2e : B =f. We· 

Strong atomicity 

Contiguity 

Anticupping 

N2e : If We EB Ve = (A)* and We(We) = We(Ve) = f 
and f is total, then f is recursive. 

De: If t e(B # Qe) = A then A ~w Qe· 
Here A # B denotes {2x: x E A} U {2x + 1: x E B}, and (we, We, Ve) denotes a 
standard enumeration of triples of T-reduction (We) and a pair of independent r.e. 
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subspaces (We, Ve)' (~e, Oe, Me) a standard enumeration of triples of pairs of T-
reductions (~e, Oe) and r.e. sets Me), and (fe, Ne) a standard enumeration of pairs 
consisting of a W-reduction (fe) with use be) and an r.e. set Qe. The ranking is 

Do,No,Nl,Po,Dl,N2,N3,Pl, .... 
For the Nj requirements we shall build a "confirmation tree" similar to the one 
used by Stob [Stj. Let 

l(2e + 1, s) = max{x: Vy < x(~e,s(Me,s; y) = As(Y)& Oe,s(As; y) = Me,s(Y))}, 
l(2e,s) = max {x: Vy < x (We,s(Ve,s;Y) = We,s(We,s;Y)& 

(We,s EB Ve,s)*[yj = (As)*[yJ)). 

Associated with the l(2e, s) will be a restraint r(2e, s), generated by the maximum 
element used in l(2e, s) denoted by mu(2e, s), and, as in §6, we define y to be (2e, s)-
free if its addition to As+! - As would not injure the computations involved. As this 
is so similar to §6, we do not mention this further, save to say similar modifications 
apply for the u-strategy, and thus this is replaced by (17, s)-free with lh (17) = 2e. 

For the N 2e+1 we use the confirmation notion of Stob [Stj. Without the "guess-
ing" for an element x targeted for A, associated with some Rj for j > 2e + 1, if a 
stage s occurs with 

(7.4) { (i) l(2e+l,s»x, 
(ii) Vy <5, x (l(2e + 1, s)) > u(~e,s(Me,s; y)), 

then x becomes confirmed at this stage, and we cancel all lower priority followers 
(including, if necessary, followers of the same requirement which are smaller). Using 
the derived u-strategy, this will suffice to show contiguity. (Cf. [St, ASl, DWj.) 

Finally, the De will not be guessed, but will act like a Sacks restraint. It will 
be along the lines of [LS, Theorem 4.1j and will impose only B-restraint (not 
A-restraint). We define a restraint p(e, s) via a marking function a(e, s) defined 
inductively as follows: a( e, 0) = O. a( e, s + 1) is the least n such that 

(i) n <5, a(e, s) and n E As+! - As, 
(ii) n = a(e,s) and fe,s(Bs#Qe,s;y) i for some y <5, n, 
(iii) n ~ a(e, s) and f e,s(Bs # Qe,s; y) ! for all y < n; for all y < n, 

f e,s(Bs # Qe,s; y) = As+!(y) &f e,s(Bs # Qe,s; n) # As+1(n). 
Then 

p'(e,s+I)=I+ (1 + 'Ye,s+!(m)), and 
m:::;a(e,s+l) 

p(e, s + 1) = max{p'(j, s + 1): j <5, e}. 

Now, the De will not interact with the P2e+1 since it imposes no A-restraint. 
However, it will interact with the B-restraint, and so with the P2e . This will be 
reflected in the changing "B-follower associated with the A-follower x at stage s," 
but we shall ensure that this will be finite injury for any choice of x. 

Briefly, we initially appoint a follower x targeted for both B and A. Now we do 
not know whether or not a(j, s) -+ 00 for each j <5, e. We wait till a(j, s) > x and 
then we reset the follower y = x targeted for B to be y = x + g where g E Bs+ 1 - B s 
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and g E As+l - As, and x + g is very large. We do this for each j ~ e the first time 
a(j, s) > x (that is, finitely often). This idea ensures that when y is reset for the 
last time, once y EWe,s we can set As+l = As U {x} which forces p( e, s + 1) < y 
and thus allows us to add y to Bs+l - Bs to satisfy P2e+1 . 

At stage s + 1 with s a a-stage, we shall say that P2e requires attention if 
Bs n We,s = 0 and 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

P2e has no A-follower with guess 0', or 

P2e has an A-follower x with guess 0' such that the associated B-
follower y is bogus, meaning that condition (7.7) is unsatisfied: 

"If we set As+l = As U {x} then y < pee, s + 1)", or 

P2e has an A-follower x with guess 0' such that the associated B-
follower y EWe,s and y is not bogus. 

We shall call (7.7) the bogus condition. 
(Briefly, the idea here, is that we shall use x to force the p( e, s) to drop sufficiently 

to allow us to add y to B. For a given x with guess along the true path, we need 
only reset y because of the bogus condition, finitely often.) 

The P2e+1 will only be subject to tree conditions. We construct the priority tree 
as follows (following [St)). A stage s is a a-stage defined by induction on lh (0') via 

(i) every stage is a 0-stage. 
(ii) If s is a a-stage and lh(a) = 2e, then ifYt < s (t is a a-stage ---> 1(2e,s) > 

l(2e, t)), s is a a"O-stage. Otherwise s is a a"I-stage. 
(iii) If s is a a-stage and lh (0') = 2e + 1, then if \It < s (t is a a-stage ---> 

1 (2e + 1, s) > 1 (2e + 1, t)) then s is a a" O-stage. Otherwise s is a a" I-stage. 
Similarly, the a-restraint rea, s) for lh (0') odd is defined by induction to drop to 

o at {3"0 = 0' stages, and to be maintained at {3" 1 = 0' stages as in the construction 
of §6. The contiguity nodes are only cancellation ones, and impose no restraint. 

A requirement P2e+ 1 requires attention 

(7.9) 

(7.10) 

if it has no follower with guess ~ as, 

for some follower x with guess Cas, x ERe,s, 

Construction. Stage s + 1. 
Step 1 (Cancellation). Find the unique as of length s such that s is a as-stage. 

Cancel all followers, etc. with guesses weaker than as (that is guesses T to's)' 
Step 2 (Confirmation). Now for any number x targeted for A with guess 0' ~ as 

and for any e with x not already 2e-confirmed, if lh (0') ~ 2e and (7.4) holds for x, 
declare x as 2e-confirmed and cancel all lower priority followers, etc. (Actually, only 
one follower gets confirmed by this process, all the others that might be confirmed 
will get cancelled.) 

Step 3. Cancel any followers that have guesses weaker than 0' (for 0' = as) and 
are not (a,s)-free. 

Step 4. Find f such that Pf requires attention (f least). Cancel all followers 
etc. of Pj for j > f with guesses :2 0' (0' ~ as, lh(a) = e + 1). 

Case 1. f = 2e + 1. 
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Subcase (i). (7.9) holds. Find the unique u ~ Us with lh (u) = 2e + 2. Find a 
fresh number x E R exceeding all computations etc., which is not (u, s)-restrained, 
and appoint x as a follower of P2e+l with guess u. 

Subcase (ii). (7.10) holds. Now let 9 be a fresh number in R such that g, x + 9 
exceed all computations, are (u, s)-free etc. (as in §6) and set 

AS +1 = As U {x, g} and B S +1 = Bs U {x + g, g}. 

P2e+1 is now met (forever). Cancel all followers of P2e+1 . 

Case 2. f = 2e. 
Subcase (i). (7.5) holds. Find as above a fresh free number x and appoint x as 

an A-follower with associated B-follower y = x. 
Subcase (ii). (7.6) holds. Find a large fresh free number 9 (so that both g, x + 9 

are fresh and free) and reassign the B-follower by making y = x + 9 the B-follower 
associated with x. (The previous one is no longer associated with x.) Set A S +1 = 
As U {g} and BsH = Bl U {g}. 

Subcase (iii). (7.7) holds. Set AS +1 = As U {x} and BaH = Bs U {y}. P2e is 
now met. Cancel all followers of P2e . 

End of construction. 
We shall now give the verification, sketching only, because of its similarity with 

the literature and §6. Evidently, all the N2e are met for the same reason as they 
were in §6. Also (B)* = (A)* is easy to see (by induction). Because we have 
transported the contiguity machinery of Ambos-Spies [ASt] or Stob [St], A will 
be contiguous (see also [LS, DW]) (or perhaps recursive). 

Briefly, assuming all the other requirements are met, let u be the guess on the 
true path corresponding to an N 2e+1 requirement, and suppose <I>e(Me) = A and 
Oe(A) = Me so that u = r3"'O. Let t be a stage by which higher priority activity 
has ceased. Then any follower x targeted for A after stage t is either cancelled, u-
confirmed or enumerated into A, and furthermore, x must have guess T no stronger 
than u. Let z be given. Let tl be the least u-stage exceeding t with l(u, t) > z. 
Then for some q < tl, Oe,tl (A[q]; z) = Me(z). Let .6.(z) = tl. Find the least u-
stage t2 ~ tl with At2[.6.(Z)] = A[.6.(z)]. It will follow that Me(z) = Me,t2(Z). For 
suppose not. This means that there are currently followers y targeted for A with 
.6.(z) ::; y ::; u = U(Oe,t2(At2 ;z)) < t2 (for otherwise At2[U] = A[u], new followers 
are large). By cancellation at u-stages, as y is not cancelled at stage t2, it must 
have been appointed at u-stage t3 with tl ::; t3 < t2' As y is still a follower at 
stage t2 no follower k < y can enter A after stage t3 before stage t2, as any such 
k must have higher priority. Thus At3[Y] = At2[Y] and y::; .6.(z). This contradicts 
the choice of t2 as the least u-stage with At2 [.6. (z)] = A[.6.(z)]. Hence Me ::;w A. 

Finally A ::;w Me as follows: go to stage x. If x is not a follower targeted for 
A at stage x then x rt. A. Again we suppose x is a stage where guesses stronger 
than u cease to act. Go to the least stage t > x by which some follower ~ x is 
u-confirmed. Now if x rt. At and x is not cancelled at stage t then x is u-confirmed 
at t. Set u(x) = U(<I>e,t(Me,t; x)). It is not too difficult to see that if tl is the least 
u-stage with Me,tl [u(x)] = Me[u(x)] then x E A iff x E Atl . 

To see that all the P2e and P2e+1 are met, it will suffice to show that by way of 
induction, a follower x of P2e+1 with guess on the true path can require attention 
(because of a bogus associated B-follower) finitely often. 
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Let 

m{s+I)=I+ 
m::E;c.(j),j::E;e 

c.(j)=lim. c.(j,s) existing 
p::E;x,j::E;e 

c.(j,s)-+oo 

Then lims m{s) = m exists. Let s be the least stage where m{s) = m. Now 
at some least u-stage > s, the B-follower y associated with x will be reset to 
exceed m. Inspection of m{s + 1) reveals that this is the last time y becomes reset. 
Now assuming B = We, at some u-stage t > s, y occurs in We,t and then will get 
enumerated into Bt+1 - Bt . Hence the P2e+1 and the P2e get met by an induction 
argument along the true path. 

Finally all the De are met. Following [L8], suppose fe{B#Qe) = A, and all 
higher priority requirements have received attention by stage so. To decide if n is 
in B find a stage t > So such that 

n < a{e, t), 

Then n E A iff nEAt, else the least m ~ n to enter A - At will give us a 
disagreement to preserve forever by the way we have p-restrained B (at each stage 
s, Z E Bs - Bs- 1 iff z > p{e, s) after stage so). This would contradict the fact that 
a(e, s) ---. 00 and thus fe(B#Qe) = A ---. A ~w Qe. This concludes our proof of 
the result. 0 

8. m-degrees of bases. Various splitting results for r.e. sets can be obtained 
by using the m-degrees of splittings. For example, in [DW and AS2], the authors 
used strongly atomic sets to get various splitting/embedding results. One of the 
primary reasons these results held, was that if A1 u A2 = B1 U B2 = A for strongly 
atomic A, with the Ai, Bi infinite and A1 =T Bll then Ai =m Bi and A2 =m B2· 
We shall show that for no r.e. subspace is this situation possible. 

Although we shall not pursue this aspect of m-degrees of bases, we remark that 
the m- and I-degrees of bases may be very useful in studying orbits of L{Voo). We 
feel that this is so because of Guichard's classification [Gull of the automorphisms 
of L(Voo), as those induced by recursive invertible semilinear transformations of Voo 
(Such transformations must, of course, be I-degree preserving, as we mentioned in 
§l.) 

THEOREM 8.1. Suppose V E L(Voo) and B is an r.e. nonrecursive basis of V. 
Then there exists an infinite collection {Oi liE w} of r. e. bases of V such that 

(i) for all i, Oi =T B, and, 
(ii) for all i =f. j, Oi 1m OJ. 

PROOF. To simplify notation, we prove a weaker statement and indicate how the 
obvious modification could be supplied. We shall prove that there exist 0 1 , O2 r.e. 
bases of V with 0 1 =T O2 =T Band 0 1 ~m O2 . We build Oi = Us Oi,s in stages. 
Let {<Pi: i E w} be a list of all partial recursive functions, and B = {bo; b1 , ... } an 
effective listing of B. We satisfy 

Re: If <Pe total, there exists Xe such that either (i) Xe E 0 1 and 
<Pe(xe) ¢. O2 or (ii) Xe ¢. 0 1 and <Pe(xe) E O2. 
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In some ways, the construction is similar to that of Theorem 4.7 (i), in the sense 
that at each stage we put either bo + bs+1 or bs+1 into Oi,s ensuring Oi =T B. The 
selection of which alternative to choose depends on the satisfaction of the Re. For 
example, if 4Je,s 1 and tells us to put bs+1 into O2 we put bo + bs+1 in instead. In 
the case where 4Je is total the nonrecursiveness of B ensures that Re will be met. 

Specifically, we employ a set of movable markers, m(e) for e = 0,1,.... We 
let m(e, s) denote the position of m(e) at stage s. If m(e, s) is defined then we 
ensure that 4Je,s(m(e, s)) L m(e, s) E 01,s and 4Je,s(m(e, s)) tI. O2. At stage s + 1, 
we wish to put either bo + bs+1 or bs+1 into Oi,s+l. In particular, for all those 
y = 4Je,s (m( e, s)) where m( e, s) is defined we would like to keep y out of 02,s+1. This 
may be impossible since we must wait till 4Je,s (m( e, s)) 1 and put one of bo + bs+1 or 
bs+1 into 02,s+1 so that we injure certain requirements. We select the appropriate 
member of bo + bs+1' bs+1 to injure the requirement of lowest overall priority where 
Re becomes injured at stage s + 1 if m(e, s) is defined and 4Je,s(m(e, s)) E 02,s+1 -
02,s. The key point is that if Re is injured at stage s+ 1, there must be some i < e 
such that m(i, s) is defined and 4Ji,s(m(i, s)) E {bs+1, bo + bs+d - {4Je,s(m(e, s))} 
so that Ri forces Re's injury. But then 4Ji,s(m(i,s)) E (02,s)* - 02,s so that 
4Ji,s(m(i, s)) can never enter O2 and so Ri will be met, and never injure another 
requirement. Thus the number of injuries to Re is at most e and this allows, as 
usual, Re to be met. 

Construction. 
Stage o. Set 0 1,0 = O2,0 = {bolo 
Stage s + 1. Case 1. If there exists j ~ s such that m(j, s) is defined and 

4Jj,s (m(j, s)) E {bo + bs+ 1; bs+1}, then put one of bo + bs+1, bs+1 into 02,s+ 1 so as 
to injure the requirement of lowest priority being threatened. Search for the least 
e ~ s + 1 such that 

(i) m(e, s) is undefined, 
(ii) 3z[z ~ s + 1 and 4Je,s(z) 1 and Z E (Ol,s)* - 01,s and 4Je,s(z) E 02,s+1], 
(iii) at least one of 4Je,s+l (bs+1) 1 or 4Je,s+1 (bo + bs+d 1. If there is no such e, 

set 01,s+1 - C1,s U {bs+d. If there is such an e, there are two subcases. 
Subcase (a). There exists x E {bo +bs+1} with 4Je,s+1(x) 1 and 4Je,s(x) E 02,s+1. 

Pick the least such x and set 01,s+1 = 01,s U ({bo + bs+1, bs+d - {x}). 
Subcase (b). Otherwise. Pick the least x E {bo + bs+1,bs+d with 4Je,s(x) L put 

a m(e) marker on it and put x into 01,s+1. 
Case 2. There is no j ~ s such that m(j, s) is defined and 4Jj,s(m(j, s)) E 

{bo +bs+1, bs+d. Now look for the least e satisfying (i), (ii) and (iii) of case 1 with 
02,s replacing 02,s+1. If no such e exists set Oi,s+1 = Oi,s U {bs+d for i = 1,2. If 
there is such an e there are three subcases. 

Subcase (a). 3x(x E {bo + bs+1, bs+1} and 4Je,s+l(X) E 02,s and 4Je,s+1(x) 1)· 
Pick the least such x and set 01,s+1 = 01,s U ({bo + bs+1,bs+d - {x}). Set 
02,s+1 = 02,s U {bs+1}. 

Subcase (b). Subcase (a) does not hold, but there exists x E {bo + bs+1,bs+1} 
such that 

(i) 4Je,s+1 (x) Land 
(ii) 4Je,s+l(X) E {bo +bs+t.bs+d· 

Pick the least such x, set 02,s+1 = 02,s U {4Je,s+l(X)} and put 01,s+1 = 01,s U 
({bo + bs+t. bs+1} - {x}). 
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Subca8e (C) Otherwise. Let x be the least such that x E {bo + bs+l,bs+d and 
¢>e,s+l (x) 1· Then set CI,s+1 = CI,s U {x}, C 2,s+1 = C 2 ,s U {bs+ l } and put an m(e) 
marker on. 

Finally, if in either Cases 1 or 2, any requirement Rj is injured at stage s + 1, we 
remove the m(j) marker from its current position. If Rj is not injured and m(j, 8) 
is defined set m(j,8 + 1) = m(j, 8). Now for all e :::: 8 + 1, if m(e, s + 1) is not as 
yet defined but 

(i) 3d(d E CI,s+1 and ¢>e,s+l(d) 1 and ¢>e,S+l(d) ~ C 2 ,s+d and 
(ii) 3z(z E (CI,s+d* - CI,s+1 and ¢>e,s+I(Z) 1 and ¢>e,s+l(z) E C 2 ,s+d, then 

pick the least such d and define m( e, s + 1) = d. 
Set Ci = Us Ci,s' 
End of construction. 
We must now verify that (i) Ci is a basis for V, (ii) Ci =T B and (iii) C I tm C 2 

for i = 1,2. Now (i) is clear by exchange since either bS+ 1 or bo + bS+l enters Ci at 
stage s + 1. Let i = 1. Given an oracle for B to decide if x E C I , first ask if either 
x or x-bo is in B. If not x ~ C I . If so, either x = bs or x-bo = bs some s, and we 
may find this by simply enumerating B. Thus Ci ::::T B and similarly B ::::T Ci. It 
remains to verify (iii). Suppose C I ::::M C2 • Let e be least such that Re is not met. 
Then by the remark preceding the construction we may find a stage t such that Re 
is not injured at, or after stage t. We claim that failure of Re to be met implies C I 

is recursive. To decide if x E Cll find a stage s 2:: t where ¢>e,s(x) 1 (here we use ¢>e 
total as Re not met). Then x E C I iff x E CI,s for otherwise x E C I - G't,s implies 
that we can use x to meet Re. 

To get the full statement of the theorem the requirements Re are replaced by 
R~ : If e = (i, j, k) then i =I- j and ¢>k total implies there exists Xe 

such that either (i) Xe E C i and ¢>e(xe) ~ Cj, or, (ii) Xe ~ Ci 
and ¢>k(Xe) E Cj. 

We feel it is clear that an entirely similar construction will succeed in meeting the 
R~, and leave this to the reader. 0 
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