
Strength Reduction via SSAPRE

Robert Kennedy, Fred Chow, Peter Dahl,
Shin-Ming Liu, Raymond Lo and Mark Streich

Silicon Graphics Computer Systems
2011 N. Shoreline Blvd.

Mountain View, CA 94043

Contact: Robert Kennedy (E-mail: rkennedy@mti.sgi.com, Tel.: USA 650-933-3336)

Abstract. We present techniques that allow strength reduction to be performed
concurrently with partial redundancy elimination in the SSAPRE framework. By
sharing the characteristics inherent to SSAPRE, the resulting strength reduction
algorithm exhibits many interesting attributes. We compare various aspects of the
new strength reduction algorithm with previous strength reduction algorithms. We
also outline and discuss our implementation of the closely related linear function
test replacement optimization under the same framework.

Keywords. Code motion, data flow analysis, dead code elimination, induction
variables, linear function test replacement, partial redundancy elimination, pro-
gram optimization, program analysis, program transformation, static single
assignment, strength reduction.

1 Introduction

Strength reduction refers to program optimization techniques in which expensive or
slow operations are replaced by more efficient and faster ones. Today, the term is used
mostly to refer to the common case in which computations involving multiplications
and additions are transformed to use only additions. This transformation is of universal
importance because it benefits any DO loop with arrays indexed by induction variables.

There are mainly two families of methods to perform strength reduction in an opti-
mizing compiler. The first family treats strength reduction as a loop optimization prob-
lem that requires explicit detection of induction variables, and implements the technique
as a stand-alone algorithm [CK77, ACK81, CP91, CSV95]. The second family effects
strength reduction by data flow analysis in the context of partial redundancy elimination
[JD82, Cho83, Dha89, KRS93]. The method described in this paper falls in the second
family.

Partial redundancy elimination (PRE) is a powerful optimization technique first
developed by Morel and Renvoise [MR79]. The technique removes partial redundancies
in the program through data flow analysis. Since global common subexpressions and
loop-invariant computations are special cases of partial redundancies, PRE handles
them elegantly. Joshi and Dhamdhere [JD82, Dha89] and Chow [Cho83] independently
describe techniques that allow a PRE implementation to simultaneously perform
strength reduction. In this framework, strength reduction does not depend on identifying
loop induction variables, and is not restricted to loops. In [KRS92, KRS94], Knoop et

al. give an alternative PRE algorithm called lazy code motion that improves on Morel

145

and Renvoise's results by avoiding unnecessary code movements, and by removing the
bidirectional nature of the original PRE data flow equations. They also presented the
lazy strength reduction algorithm [KRS93] that combines strength reduction with lazy
code motion.

A new algorithm to perform PRE, called SSAPRE, was recently developed by our
team at Silicon Graphics [CCK+97]. The development of this new algorithm was moti-
vated by the fact that traditional data flow analysis based on bit vectors does not inter-
face well with the static single assignment (SSA) form of program representation. In
contrast, the SSAPRE algorithm takes advantage of the SSA representation and intrinsi-
cally produces its optimized output in the same SSA form. It does not use bit vectors but
works instead on one expression at a time, using the use-defedges represented in SSA to
propagate data flow information. The SSAPRE algorithm thus exhibits the same
attributes of sparseness inherent in other SSA-based optimization algorithms. In this
paper, we present extensions that enable SSAPRE to perform strength reduction.

The rest of this paper is organized as follows. We first give an overview of SSAPRE
and the basis for extending it to cover strength reduction. Then, in Section 3, we present
the SSAPRE-based strength reduction algorithm as a collection of extensions to

SSAPRE. In Section 4, we compare SSAPRE-based strength reduction with prior
approaches. An optimization closely related to strength reduction is linear function test
replacement; in Section 5, we outline our implementation of this technique in the
SSAPRE-based strength reduction framework, and discuss the outcome. In Section 6,
we conclude by summarizing the contributions of this work.

2 Overview of Approach

Most of the analysis work of PRE is in determining where in the program to insert
computations. These insertions cause partially redundant computations to become fully
redundant. The partial redundancy problem is thus converted to the full redundancy

problem, which can be easily solved.

SSAPRE performs PRE one expression at a time, so it suffices to describe the algo-
rithm with respect to a given expression, say, a x b. SSAPRE consists of six separate
steps. The first two steps, ~-Insertion and Rename, construct an SSA form for the hypo-
thetical temporary h that represents the value of the expression. The next two steps,
DownSafety and WiIIBeAvail, perform sparse computation of global data flow attributes
based on the SSA graph for h. The fifth step, Finalize, determines where in the program
to insert computations of the expression, and marks those computations that need to be
saved and those that are redundant, and determines the use-def relationship among SSA
versions of the real expression temporary t. The last step, CodeMotion, transforms the
code to form the optimized program.

The Rename step plays the important role of identifying redundant computations of
the expression. In SSAPRE without strength reduction, two occurrences of a x b that are
assigned identical h-versions compute identical values, as illustrated in Fig. l(a). But if

146

a 1 x b 1 [h I 6---] a I x b 1 [h I 6---] a 1 x b 1 [h I 6 -]

a 2 ~ a 2 ~ a 1 + I

a 1 x b 1 [hll a s x b~ [h 2 6-] a s x b 1 [hi]

(a) redundant (b) not redundant (c) redundant if repaired
Fig. 1. Types of occurrence relationships

a is assigned after the first occurrence, the second occurrence is not redundant since it
computes a different value. In Fig. l(b). we call the assignment to a a killing definition,

since it kills the value computed by the first occurrence of a x b. Now, if we recognize

that a x b is a strength reduction candidate, and if the assignment to a is an incremental
update, it merely injures the first computation. The injured computation can be repaired

by incrementally updating the expression temporary t by a corresponding amount, so

that the repaired value can be used at the second occurrence instead of recomputing it.
Fig. l(c) illustrates this third situation. We call the incremental update to a an injuring

definition or simply an injury. Since injured computations can be repaired, injuries do

not justify assigning new h-versions. By assigning h I to both a t x b I and a 2 x b 1, we
expose the redundancy between these two occurrences subject to the injury being
repaired.

Because we regard injuring definitions as being transparent, the SSA graph built for
a x b by the O-Insertion and Rename steps can exhibit more connectivity and more
opportunities for redundancy elimination than if strength reduction is not performed.
Thus, the d~-Insertion and Rename steps need to be enhanced to ignore injuries in con-
structing the SSA graph. The generation of injury-repairing code is performed in the

CodeMotion step. The changes to support strength reduction in the SSAPRE algorithm

are confined to the @-Insertion, Rename and CodeMotion steps.

3 Strength Reduction Algorithm

We now give more detailed description of the extensions to incorporate strength
reduction in the SSAPRE algorithm. The reader is referred to [CCK+97] for a full dis-
cussion of the foundation of SSAPRE, and for details of the parts of the algorithm unre-
lated to strength reduction.

3ol Strength Reduction Candidates
The set of expressions we regard as strength reduction candidates is determined by

the set of assignment statements that we view as injuring definitions. The current imple-
mentation handles injuring definitions of the form:

a ~-- a _+ (expr)

147

i~---O i<- -O
t ~ - - O

i ~ - - O
t(----O

*u ~---0

i ~-- i+l
t +-- t+4

u ~ u+4

Fig. 2. Strength reduction of nested candidates

Consequently, we handle only strength reduction candidates of the forms a • b, - a and
a X b. For a X b, there is the additional restriction that one of the following must apply:

• (expr) is 1, or

• both (expr) and b are constants, or

• the injury is inside a loop, (expr) is loop-invariant, and b is either loop-invariant or is
another induction variable with respect to the loop.

This restriction is needed to ensure that the code inserted to repair the injury will not
contain any multiplication operation after constant folding and code motion; such a
multiplication would defeat the benefit of strength reduction. We do not depend on a

being a loop induction variable.

Our definition of strength reduction candidates only covers non-compound expres-
sions, which are expressions consisting of a single operator with only leaf operands.
This is consistent with the overall SSAPRE approach that relies on a subtree being con-
verted to a temporary before the parent operator is processed. If the subtree remains
intact, no PRE opportunity exists for the parent operator, and hence no strength reduc-
tion is possible. This bottom-up approach allows us to automatically strength-reduce
large expression trees made up of any combination of the -t-, - (negate) and × operators.
This is illustrated by Fig. 2, which shows a loop that initializes an array A of 100 ele-
ments to 0. The induction expression of the loop is &A+i×4. Each application of
strength reduction creates a new induction variable. We depend on a later dead code
elimination phase [CFR+91] to eliminate any extra induction variables created

3.2 ~-Insertion Step
One purpose of inserting ~ ' s for the hypothetical temporary h is to capture all possi-

ble insertion points for the current expression under PRE. Inserting too few ~ ' s will
cause some PRE opportunities to be missed, among other problems. On the other hand,
inserting more ~ ' s than needed will have a negative impact on the efficiency of the algo-

148

alXbl

a 2/¢---

a 3 ~--d?(a 2, a 1)

a 4 ~-a3+l

a4×bl
(a) original program

al×b I [h]

a 2 ~--
"a

as ~ (a 2 , a~)
h +-O(h, h)

a 4 ~--a3+1

a4Xb 1 [h]
(b) after ~ insertion,

before renaming

t1<--alXbl
ti

a 2 /)
t2~-a2×b 1

xa
a3 ~-~(a2, al)
t 3 ~-tp(t 2, tl)

a 4 ~-a3+]
t 4 ("'t3+b 1

t4
(c) after strength reduction

Fig. 3. Enhanced ~b insertion allows more strength reduction

rithm, because a larger SSA graph will be constructed.

As described in [CCK+97], q~'s are inserted according to two criteria. First, O's are
inserted at the iterated dominance frontiers (DF +) of each occurrence of the expression.
These O's are not affected by strength reduction. Second, a qb can be inserted where
there is a ~ for a variable 1 contained in the expression, because it indicates an alteration
of the expression reaches that merge point. The SSAPRE algorithm performs this sec-
ond type of • insertion in a demand-driven way; a q5 is inserted only if the expression is
partially anticipated. When we recognize that a definition is an injury under strength
reduction, an expression not otherwise partially anticipated can be partially anticipated,
so some d~'s omitted in the absence of strength reduction must be included. Therefore,
the demand-driven qb insertion algorithm needs to be enhanced to enable strength reduc-
tion. Fig. 3 gives an example of this situation. When we check for definition by ~'s in
the algorithm, we continue up the use-def edge at each injury to look for definitions by
q~'s instead of stopping at the injury. From the use of a 4 in Fig. 3(a), we arrive at its def-
inition through the incremental update in a4~--a3+1. Recognizing that this is an injuring
definition, we continue upward along the use-def edge from a 3 and arrive at its defini-
tion by ~, at which point we insert a qb for h in Fig. 3(b). At the end of strength reduc-
tion, this • for h will be replaced by a ¢ for the real temporary t, as shown in Fig. 3(c).

Fig. 4 gives the extended version of the O-Insertion step that handles strength
reduction. The parts that differ from the original algorithm 2 are highlighted in bold.

3.3 Rename Step
In the previous subsection, we show how the oh-Insertion step inserts more qb's in

the presence of strength reduction, in effect creating more opportunities for code motion

1. Following the convention in [CCK+97], we use qb in the SSA form for variables and • in
the SSA form for expressions.

2. The original algorithm is given in Fig. 4 of [CCK+97].

149

procedure alP-Insertion
for each expression E/do {

DF__phis[i] ~-- {}
for each variable j in E i do

Var_.phis[i][j] +--- {1
}
for each occurrence X of E i in program do {

DF..phis[i] b.- DF._phis[i] k.J DF+(X)
for each variable occurrence v in X do {

while (1, is defined by injuring-def) do
v ~-- previous version in r.h.s, of injuring-clef

if (v is defined by 4) {
j b-- index of v in X
Set_var_phis(Phi(v), i, j)

}
}

}
for each expression E i do

for each variable j in E i do
DF_.phis[i] ~ DF__phis[i] k.) Var_phis[i][j]

insert riP's for E i according to DF_phis[i]
}

end alP-Insertion

procedure Set_var_.phis(phi, i, j)
if (phi ~ Var_.phis[i][j]) {

Var..phis[i][j] +--- Var_.phis[i][j] t..J {phi}
for each operand v in phi do {

while (v is defined by injuring-clef) do
v ~ previous version in r.h.s, of injurlng-def

if (v is defined by ~))
Set_var~his(Phi(v), i, j)

}

end Set_var_phis

Fig. 4. Algorithm for enhanced • insertion

than if strength reduction is not performed. In contrast, the Rename step assigns more

occurrences of the expression to the same h-version, thus enabling more redundancies to

be identified than if strength reduction is not performed. Again, the enhancement to the
Rename step is in dealing with injuring definitions,

In the basic form of the algorithm, 1 Rename keeps track of the current version of the

expression and the variables contained in it by maintaining rename stacks for each of

them while conducting a preorder traversal of the dominator tree of the program. 2 There

are three kinds of occurrences of the expression: (1) the expressions in the original pro-

1. For the sake of simplicity, we present the enhancement with respect to the basic Rename
algorithm. Similar enhancement can be applied to the more practical Delayed Renaming algo-
rithm presented in Section 6,2 of [CCK+97].

2. The use of rename stacks during preorder traversal of the dominator tree originated in
[CFR+91].

t50

gram, which we call real occurrences; (2) the qb's inserted by q~-lnsertion; and (3)

operands, which are regarded as occurring at the exits of the predecessor nodes of the

corresponding edges. Upon encountering an occurrence q of the expression E, if q is a ~b

occurrence, we assign q a new h-version. If q is a real occurrence or a • operand, we

check the current version of every variable in the expression E (i.e., the version at the

top of each variable's renaming stack) against the version of the corresponding variable

in the occurrence on the top of E's rename stack. If all the variable versions match, the

occurrence as given by the top of E's rename stack is still intact and we assign q the

same h-version. If any variable version does not match, we check if q is an injured form

of the occurrence at the top of E's rename stack, as follows:

Let p be the occurrence at the top of E's rename stack. For each variable v in
E, we want to determine if its version Vq in q is an injury-updated version of
vp in p. Because we maintain the rename stack in a preorder traversal of the
dominator tree, 1 p must dominate the current occurrence q. Starting at Vq, we
look up Vq'S definition to determine whether Vq is an injured form of r))'s
value. I f Vq is not defined by an injuring definition, we conclude that q is not
an injured occurrence, and must be given a new h-version. If Vq is defined by
an injury, we look up v r in the right hand side of the injuring definition and if
v r and vp are the same version of v, we conclude that Vq is an injured form of
Vp'S value; otherwise we recursively determine whether v r is an injured form
of Vp'S value. If Vq is an injury-updated version of Vp, eventually we reach Vp.
If Vp or any v r is defined by a killing definition or a ~, we stop and conclude
that q is not an injured occurrence.

If q is an injured occurrence, we assign q the same h-version as given by the top of

E's rename stack. I f q is not an injured occurrence, we follow the same procedure as

when we were not performing strength reduction: (a) if q is a real occurrence, we assign

q a new version; (b) if q is a qb operand, we assign the special version _L to that q~ oper-

and to denote that no evaluation of E reaches that point. Finally, we push q on E's stack

and proceed.

3.4 CodeMotion Step
The three intermediate steps in SSAPRE: DownSafety, WilIBeAvail and Finalize, do

not require enhancement to perform strength reduction. These steps apply data flow

analyses to the SSA graph constructed by Rename, and arrive at the final SSA graph for
the real temporary t. In this final SSA graph, occurrences of the expression are marked

by the save and reload flags, and places to insert computations of the expression are
shown. Tile CodeMotion step introduces assignments to and uses of the real temporary

t, and transforms the code according to the SSA graph. Under strength reduction, this

1. In the preorder traversat, when we come across a definition while descending the dominator
tree, we push the new version on top of the rename stack; when the preorder dominator tree tra-
versal backtracks through the blocks containing the definitions, we pop the corresponding ver-
sions off the stack.

t51

step is responsible for generating the injury repair code, which updates t to maintain its

correct value across injuries to the expression's value.

We want to generate an update to t only at places where the injured occurrence is

partially anticipated; other updates to t would be useless. At the same time, we want to

collapse multiple updates to t into as few update statements as possible. We now present

an algorithm for generating injury repairs that is aimed towards these goals.

Processing of injury repairs occurs in the CodeMotion step when we encounter an

occurrence of the expression that is marked reload or is an operand of a qb marked

will be avail (both of these situations represent uses of t). Suppose q is such an occur-

rence. The definition of q's h-version, occurrence p,1 must dominate q. All the injuries

relevant to q can be visited by traversing the use-def edges of each variable in E starting

at q until we reach p. Our strategy is to generate the repair at the point of the latest injury

before each use of t. We define a need_repair flag for each injuring definition, initialized

to false. If need_repair is true, it means that an update to t needs to be generated at the

point of injury. We add a pre-pass to the CodeMotion step for setting this flag. In the

pre-pass, starting from q, we reach the first injuring definition and set its need_repair
flag to true. At the end of the pre-pass, those injuries closest to at least one use of t will

have their need_repair flags set to true. An injuring definition whose need_repair flag is

false represents an intermediate update to the expression value that can be accounted for

in the other update statements.

Injury repairs are generated in the main pass of CodeMotion. Starting from an

injured occurrence q, we arrive at the first injury, which must be marked need_repair.
There, we insert an update statement for t if it has not already been generated. The incre-
ment amount for t is determined by accumulating, while continuing up the use-def

edges, the increment amount from each injuring definition up to but excluding the next

injury that is marked need_repair. The accumulation also stops when we get to p. Fig. 5

gives routines that implement the injury repairing algorithm, and their invocations in the

CodeMotion step of SSAPRE.

Fig. 6 gives an example that shows the effects of the algorithm. The loop contains

branches and four induction variable increments. On strength-reducing 15<4, updates to t

need to be generated. Our algorithm successfully collapses the third and fourth injury
updates into a single one at the bottom of the loop.

Based on our definition of strength reduction candidates in Section 3.1, if the incre-
ment amount cannot be folded to a leaf node, it must be either a loop-invariant expres-

sion or another strength reduction candidate. We add the expression to SSAPRE's
worklist so that it will be optimized when SSAPRE works on it in due course.

There are limitations to what our algorithm can accomplish. In particular, our algo-

rithm does not collapse injury repairs across ~'s.

1. At this stage, the definition could also be an inserted occurrence.

152

procedure Set_need_repair(q)
p ~-- Avail_def[version(q)]
for each variable v in E do {

vp ~-- occurrence of v in p
v, ~ occurrence of v in q
i~(Vp != vq) { . .

D ~-- defining statement of Vq
need_repair(D) ~-- true

}
}

end Set_need_repair

procedure Repair_injuries(q)
p ~-- Avail__deJ[version(q)]
for each variable v in E do {

vp ~ occurrence of v in p
Vq ~ occurrence of v in q
if(vp != Vq) {

D ~-- defining statement of Vq
if (injury-repair for E not yet generated at D) {

done ~-- false
incr_amt <---- 0
S~---D
do {

incr_arnt ~-- incr..arnt + increment amount for t due to S
Vr z¢... occurrence of v in Rhs(S)
if (vp == Vr) {

dbne ~ true
} else {

S ~-- defining statement of v r
done ~-- need_repair(S)

}
} while (not done)
generate t ~ t + incr_ amt at D

}
}

/
end Repair jnjuries

procedure CodeMotion(E)
initialize need_repair to false for all injuring def statements
for each occurrence q in E's SSA graph

if (q is marked reload or q is a ~b operand)
Set_need_repair(q)

for each occurrence q in E's SSA graph {

if iq is marked reload or q is a ~ operand)
Repair_injuries(q)

}
end CodeMotion

Fig. 5. Injury repair algorithm in CodeMotion step

153

••. ~(i7, il)
l i36---i2+t

(i~4b--i3+ l

i 5 ~---~(i 3, i 4)
i5×4

~ i6<-''i5+1

i7+--~6~+~..~.
exit

i1×4 [hl]
~ h 2 ~ (inserted)

(i7, il)
(h3, hi)

i36---i2+1
- N ~ - r=T

~/ i4k'-i3+1

h 3 ~'-t~(h 2, h2)
i5X4 [h 3]

~ i66-i5+1

i7~-i6+1 ~ . ~n_r=T ~k.
exit

t I ~-- it×4

(i7' il)
(t6, tl)

[i3~--i2+1

[i4~--i3+1
L2~-- ' t3 +4

is +-ep(i3, i4)
t5 +--oo(t3, t4)

t5
-- i6<--Ei5+ 1

~ i 7 ~ - - - ~
~ / ~ 5 +8 ~xit

(a) original program (b) setting of need_repair (n_r) (c) final output

Fig. 6. Generating injury repairs

3.5 Second-Order Optimizations
Some opportunities for strength reduction do not appear until other expressions have

been strength-reduced. To expose such opportunities, we perform simple copy propaga-
tion and constant folding for the expressions inserted by the CodeMotion step before
moving on to the next PRE candidate. This incremental update after processing each
expression allows SSAPRE to handle situations that PRE-based schemes using bit vec-
tors cannot fully optimize without completely repeating PRE. An example appears in
Fig. 7, which shows code typical of a loop nest that iterates through the above-diagonal
elements of a matrix. The strength reduction candidate i × 4 is not exposed until j × 4
has been strength-reduced.

Fig. 8 shows a strength reduction candidate i × j that is the product of two induction
variables. Our scheme automatically strength-reduces it via the steps shown. Further
application of SSAPRE will move the loop-invariant a X b out of the loop.

4 Comparison with Prior Approaches

As we have remarked in the beginning of this paper, prior methods for performing
strength reduction can be divided into two families. The first family is loop-based, and
requires stand-alone implementation. The second family is based on data flow analysis,
and its implementation is typically integrated with PRE. Although our method belongs
to the second family, it combines desirable aspects of both approaches. We begin by
comparing our method with other methods belonging to the second family. We follow
with a discussion showing how our method incorporates advantages exhibited by the
first family.

t54

il~--1

/ / ~ 2 ~ ~(i3, il)

jx+-- i 2

i s 6-- i 2 + I

(a) original program

i~ e - 1

/ / / ~ O0(i 3, i,)

j l~- i2
t~ ~-- i 2 X 4 (was Jl X 4)

[,2 ,,)
• . . t 2 - o, *

~ t2+4

i~- - i2+1

(b) after PRE onj × 4 and
substituting i 2 for jl

i~ ~ - 1
u 1 ~ - 4 (was i I X 4)

~ 0(i3, iz)
u2 O(u3, Ul)
jl+- i2
t16- U 2

~ 2 ~''- ¢03, Jl)

. . , t2, , . .

_ ~ t2+4

i3 ~" i 2 + I
U 2 +4

(c) after PRE on i X 4 and
substituting 1 for i 1

Fig. 7. Second-order optimization example

Some PRE-based techniques derive most of their advantages from simultaneous exe-

cution with PRE. Since PRE is an indispensable optimization in modem optimizing

compilers, the resulting strength reduction incurs little or no compile-time overhead.

This approach also means lower implementation costs because the amount of code writ-
ten on top of PRE is small. It does not require control flow analysis, so strength reduc-

tion applies also to straight-line code and non-induction variables. Because it relies on

the PRE framework, the approach can guarantee optimal placement of the strength

reduction candidates. But there are drawbacks in the earlier methods. Without extra

work to determine the region constants in a loop, they can apply strength reduction only
to constant multipliers and increments by fixed constants. Because they use bit-vector-

based data flow analysis, these techniques have to work on all strength reduction candi-
dates at the same time so they cannot easily deal with strength reduction candidates

exposed by optimizing other expressions. Special efforts are needed to deal with nested

strength reduction candidates [Cho83]. It is nontrivial to determine when not to

i<- - i+a

j + - j + b

i + - i + a
t ~ - t + a X j

j ~-'-j+b
t ~ - t + b × i

Fig. 8. Strength reduction of i × j

i ~ - - i + a
t ~ - - t + v
u ~ - u + a × b
j ~--j+b
t ~ - t + u
v ~ - v + a X b

t55

strength-reduce because the number of increments inserted more than offsets the benefit
of the saved multiplication [JD82].

In our case, earlier compilation phases have gathered information about the loop
structure of the program. Using the SSA representation, we can easily determine the
variables and expressions that are loop-invariant, which allows us to form a larger candi-
date set for strength reduction. Because we work on one candidate at a time, we itera-
tively handle new strength reduction candidates and loop-invariant expressions formed
by earlier strength reduction as discussed in section 3.5.

Working on one candidate at a time could slow our algorithm down because we give
up the natural parallelism available through bit vectors. But while data flow analysis
based on bit vectors is performed with respect to the control flow graph, our work is
based on a sparse graph representation of the strength reduction candidate, so it takes
fewer steps to process each candidate. Because our algorithm continuously updates the
program representation, even though our base algorithm only applies to expressions
consisting of only one operator, we automatically handle large expression trees bottom-
up by repeatedly converting each operator node to a temporary.

In [KRS93], Knoop et al. describes an algorithm that accumulates multiple incre-
mental updates of t into a smaller number of updates. Their algorithm only works within
extended basic blocks. The algorithm we presented in Section 3.4 has greater coverage
because it accumulates incremental updates within regions separated by O's, which are
at least as large as, and often larger than extended basic blocks.

The first family of strength reduction techniques is represented by the classic algo-
rithm by Allen, Cocke and Kennedy, presented in [ACK81] and [CK77]. Researchers at
Rice University improved on this algorithm by applying techniques that take advantage

of an SSA representation of the program. The method presented in this paper shares the
characteristics with these algorithms in processing one expression at a time, though we
operate on the entire program instead of a single loop. Processing one expression at a
time allows us to easily customize the handling of individual types of expressions and
situations. For example, it is possible to extend our algorithm to the other forms of
strength reduction candidates as listed in lACK81]. Because our algorithm is effective
in combining multiple incremental updates into fewer updates, cases where the number
of increments inserted more than offset the benefit of the saved multiplication are rare.

One drawback of our method is that we cannot easily handle mutually defined
induction variables, of the form:

while (. .) {
i = j + 3;

j = i + 2 ;
}

We instead rely on an earlier phase in the compiler that transforms the loop to use a sin-
gle well-formed induction variable, so that the above form will never appear as input to

156

our strength reduction phase. The techniques to do this transformation are described in
[LLC96].

5 Linear Function Test Replacement

Strength reduction paves the way for another optimization called linear function test
replacement (LFTR) [CK77]. In the example of Fig. 2, if we convert the loop termina-
tion test i < 100 to the equivalent u < (&A+400), i can be removed from the loop by
subsequent dead code elimination. LFTR involves the following two tasks:

• locating each comparison operator such that replacing the test will allow the original
induction variable to be removed by dead code elimination;

• finding the best strength reduction candidate to replace the induction variable with.

Because the replacing candidate must be a temporary formed from strength reduc-
tion, LFrR depends on the results of strength reduction. In the loop-based family of
strength reduction techniques, LFTR is not difficult since any required analysis is
restricted to the loop in question. In the family of strength reduction techniques based
on data flow analysis, an LFTR algorithm was described by Chow [Cho83]. Chow's
PRE-based LFTR algorithm was implemented as a post-pass to PRE. It analyzes the
global data flow attributes computed by PRE at the basic block containing the compari-
son operator and selects the largest strength reduction candidate expression that is avail-
able at the comparison operator to do the replacement. The PRE-based LFTR algorithm
does not require identification of induction variables, and is not restricted to loops. After

dead code elimination, a final pass over the test replacement candidates suppresses those
replacements whose induction variables were not eliminated.

Under SSAPRE-based strength reduction, the data flow information for each expres-
sion is stored in data structures that we reclaim for use in processing the next expres-
sion. This makes it impossible to perform LFTR as a post-pass, because no data flow
information is available then. Instead, LFTR needs to be performed concurrently with
strength reduction and SSAPRE:

When we work on an expression under SSAPRE, we use a new kind of occurrence
node, each instance of which represents an LFTR candidate. We call these nodes com-

parison occurrences. They are of the form:

x op (expr) where op is one of <,>, <=,>=,==, /=

For example, for the strength reduction candidate i x j, we recognize i < (expr) and j <
(expr) as comparison occurrences. These comparison occurrences are assigned h-ver-
sions like other occurrences in the Rename step. If a comparison occurrence is not
assigned a new h-version, it implies the strength reduction candidate that can be used for
test replacement is potentially available at the comparison operation. The test replace-
ment is performed in the CodeMotion step, after verifying that the strength reduction
candidate is actually available at the comparison. For the strength reduction candidate

157

i × j , i < (expr) will be replaced by t < (expr) x j, andj < (expr) will be replaced by t <
i x (expr).

As with strength reduction, we also impose restrictions on the forms of the compari-
son expressions and strength reduction candidates handled to ensure that the new forms
of the comparison expressions are at least as efficient as the original ones. For straight-
line code, we require that the new right hand side be reducible to a leaf node via con-
stant folding. For loops, we require that the new right hand side be either loop-invariant
or be another strength reduction candidate, so that it will eventually be converted to a
leaf node after being processed by SSAPRE.

By performing LFTR concurrently with strength reduction and SSAPRE, we avoid a
separate LFTR phase in the optimizer. Instead, we incur some incremental overhead in
the PRE phase to do the LFTR work. Our implementation of SSAPRE handles only
non-compound expressions. Though this simplifies the implementation, it necessitates
multiple test replacements to achieve the effect of replacing by a compound expression.
For example, the program fragment in Fig. 2 requires two separate LFTR's: one to
transform the loop termination test from i < 100 to t < 400, and another to further
change it to u < (&A+400).

Because we perform data flow analysis on one expression at a time, gathering all the
possible replacing candidates together and picking the best from them is out of the ques-
tion. As a result, we have to perform LFTR at the first opportunity. Depending on the
order of the expressions in SSAPRE's worklist, we may not end up choosing the best
candidate. For the loop termination test i < 100, using the induction expression i x 4 for
test replacement is better than using i x j, because using i x j will cause 100 x j to be
inserted at the loop header. We can mitigate this problem by ordering SSAPRE's
worklist such that expressions with constant operands are processed earlier.

Since we incrementally update the program representation in LFTR, after dead code
elimination we cannot easily undo test replacements that did not allow any induction
variable to be eliminated. Useless LFTR's result in unnecessary loop-invariant computa-
tions being inserted at the loop header. Their negative impact on performance is notice-
able only in loops with small trip count. One possible solution to this problem is to
perform a preliminary induction variable analysis pass to tag induction variables that are
either live at loop exit or have uses not associated with induction expressions inside the
loop. We can then avoid performing LFTR on such variables, since they cannot be
removed by dead code elimination even after strength reduction and LFTR.

6 Conclusion

We have presented techniques that allow strength reduction to be integrated into the
SSAPRE framework. The techniques are easy to implement, and they incur little com-
pile-time overhead. From a different angle, they bring forth greater opportunities for
code motion, making SSAPRE more powerful. The resulting strength reduction inherits
all the characteristics of SSAPRE: output maintained in SSA form, sparse representa-

158

tion, sparse computation of global data flow attributes, and ease of handling large
expression trees. Because it works on one expression at a time, it also combines the best

of the two families of strength reduction algorithms.

In addition to strength reduction, we have also integrated linear function test
replacement into the SSAPRE framework. LFTR presents more integration problems

than strength reduction does, but with careful engineering, those problems are sur-

mountable in practice.

References

[ACK81] Allen, E, Cocke, J. and Kennedy, K. Reduction of Operator Strength, in Muchnick, S.
and Jones, N. (editors) Program Flow Analysis: Theory at~ Applications, Prentice
Hall, 1981, pp. 79-101.

[CP91] Cai, J. and Paige, R. Look Ma, No Hashing, and No Arrays Neither. Proceedings of
the 18th Symposium on Principles of Programming Languages, January 1991, pp.
143-154.

[CCK+97] Chow, E, Chan, S., Kennedy, R., Liu, S., Lo, R. and Tn, E A New Algorithm for
Partial Redundancy Elimination based on SSA Form. Proceedings of the SIGPLAN
'97 Conference on Programming Language Design and Implementation, June 1997,
pp. 273-286.

[Cho83] Chow, E "A Portable Machine-independent Global Optimizer - - Design and
Measurements," Ph.D. Thesis and Technical Report 83-254, Computer System Lab,
Stanford University, Dec. 1983.

[CK77] Cocke, J. and Kennedy, K. An Algorithm for Reduction of Operator Strength.
Communications of the ACM, 20:11 (1977)pp. 850-856.

[CFR+91] Cytron, R., Ferrante, J., Rosen B., Wegman, M. and Zadeck, K., Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph. ACM
Transactions on Programming Languages and Systems, October 1991, pp. 451-490.

[CSV95] Cooper, K., Simpson, T. and Vick, C. Operator Strength Reduction, Technical Report
CRPC-TR95635-S, Rice University, October 1995.

[Dha89] Dhamdhere, D. A New Algorithm for Composite Hoisting and Strength Reduction
Optimization (+ Corrigendum). International Journal of Computer Mathematics 27
(1989), pp. 1-14 (+ 31-32).

[JD82] Joshi, S. and Dhamdhere, D. A Composite Hoisting-Strength Reduction
Transformation for Global Program Optimization, Part I and II. International Journal
of Computer Mathematics, II (1982), pp. 21-41, 111-126.

[KRS92] Knoop, J., Ruthing, O. and Steffen, B., Lazy Code Motion. Proceedings of the
SIGPLAN '92 Conference on Programming Language Design and Implementation,
June 1992, pp. 224-234.

[KRS93] Knoop, J., Ruthing, O. and Steffen, B., Lazy Strength Reduction. Journal of
Programming Languages (1993) 1, pp. 71-91.

[KRS94] Knoop, J., Ruthing, O. and Steffen, B., Optimal Code Motion: Theory and Practice.
ACM Transactions on Programming Languages and Systems, October 1994, pp.
1117-1155.

[LLC96] Liu, S., Lo, R. and Chow, E. Loop Induction Variable Canonicalization in
Parallelizing Compilers. Proceedings of the Fourth International Conference on
Parallel Architectures and Compilation Techniques, October 1996, pp. 228-237.

[MR79] Morel, E. and Renvoise, C. Global Optimization by Suppression of Partial
Redundancies. Communications of the ACM 22(2), February 1979, pp. 96-103.

