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UNCOUNTABLE CATEGORICITY FOR GROSS MODELS

MICHAEL C. LASKOWSKI AND ANAND PILLAY

(Communicated by Carl G. Jockusch, Jr.)

Abstract. A model M is said to be gross if all infinite definable sets in M
have the same cardinality (as M). We prove that if for some uncountable κ, T
has a unique gross model of cardinality κ, then for any uncountable κ, T has
a unique gross model of cardinality κ.

1. Introduction

T will denote a countable complete theory. Morley’s theorem [6] states that if for
some uncountable cardinal κ, T has a unique model of cardinality κ, then for any
uncountable cardinal κ, T has a unique model of cardinality κ. Moreover, Baldwin
and Lachlan [2] subsequently characterized these uncountably categorical theories
as being precisely ω-stable theories with no Vaughtian pairs. We do the same thing
here, but restrict our attention to “gross models”, where M |= T is gross if any
infinite definable set X in M has cardinality that of M . In Theorem 1.7 below
we prove that T has a unique gross model in some uncountable cardinality if and
only if T has a unique gross model in each uncountable cardinality. Also included
is a characterization of such “uncountably gross-categorical theories”: T should
be ω-stable and any type over a model should be captured by types of Cantor-
Bendixon rank 1 in a precise sense described below. A stronger notion of grossness
is obtained by working in T eq. That is, define M to be eq-gross if every infinite
definable set in M eq has cardinality that of M . Morley’s theorem also holds for eq-
gross models, but the characterization of uncountably eq-gross-categorical theories
is somewhat cleaner: T is ω-stable and any nonalgebraic type is nonorthogonal to
a type of Morley rank 1. (See Theorem 3.4 and Remark 3.5.) In particular, we see
(Corollary 3.6) that if T is ω-stable and ω-categorical, then T has a unique eq-gross
model in every uncountable cardinality.

The topic of this paper arose from an examination of various sufficient conditions
for saturation in Rahim Moosa’s thesis [7]. In [4] Keisler investigates classes of
structures that are PCδ over Lω1,ω, which is a generalization of grossness. However,
with the exception of our Lemma 2.1, none of our results are contained there. In
our opinion, the most interesting results of the paper are the characterizations of
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uncountably gross-categorical and eq-gross-categorical classes and the differences
between them.

In the remainder of the introduction we give precise definitions, discuss the
complexity of the class of gross models, and state our main theorem. Section 2
contains a number of lemmas that culminate in a proof of Theorem 1.7. In Section 3
we discuss the many-sorted case as well as eq-grossness.

Let us repeat that T denotes a complete theory with infinite models in a count-
able language L. For now T can be taken to be 1-sorted. So the notion of the cardi-
nality M of a model of T is unproblematic. Notation is fairly standard. Through-
out “definable” always means “definable with parameters” and by a definable set
in M |= T we mean a subset of some Mn definable in M . We typically work in a
large, very saturated model C of T . In Sections 1 and 2 it is important that we are
working in the original language L as opposed to Leq. Consequently, the number
of variables in a formula is relevant. A 1-type is a type in a single variable, usually
denoted x. We denote the set of complete 1-types over a model by S1(M). By
contrast, the term “type” refers to a (partial) n-type with parameters from C for
an unspecified n, and S(M) denotes the union of the sets of complete n-types over
M for each n. In Section 3 we discuss the many-sorted case as well as T eq.

Although the model theory used in this paper is quite straightforward, in Sec-
tion 3 we use canonical bases in the context of a variant of Shelah’s semiregular
types theorem. In any case see [1], [11] and [8] for the required stability-theoretic
background and results.

Definition 1.1. A structure M is gross if every infinite definable subset of M has
size |M |.

A simple counting argument implies that M is gross if and only if every infinite
definable subset of M1 has size |M |.

It is readily seen that the class of gross models of T is PCδ with omitting a
type.1 For example, take L′ to be the expansion of L formed by adding a new
unary predicate symbol V , new constant symbols {cn : n ∈ ω}, and, for each L-
formula ϕ(x, ȳ), two new relation symbols Rϕ(ȳ, z) and Sϕ(x, ȳ, w). Take T ′ to
be the L′-theory containing T with axioms ensuring that the cn’s are distinct, for
every n and ϕ, V (cn) holds, ∀ȳ[Rϕ(ȳ, cn) ↔ ∃=nxϕ(x, ȳ)], together with a single
axiom stating that for every ȳ, either ∃z(V (z)∧Rϕ(ȳ, z)) or Sϕ(x, ȳ, w) describes a
bijection between M ′ and ϕ(M ′, ȳ) for any M ′ |= T ′. Additionally, let p(z) denote
the type {V (z)}∪{z 6= cn : n ∈ ω}. Then the class of gross models of T is precisely
the class of reducts of models of T ′ that omit p.

In general, the class of gross models is not a PCδ class. To delineate when it is,
recall that a theory T eliminates infinity if for every L-formula ϕ(x, ȳ) there is an
integer Nϕ such that for any model M of T and any ā from M , either ϕ(M, ā) is
infinite or has size at most Nϕ.

Proposition 1.2. Let T be any theory in a countable language. The class of gross
models of T is a PCδ-class if and only if T eliminates infinity.

Proof. First, if T eliminates infinity, then the construction of T ′ above can be
modified by replacing ∃z(V (z)∧Rϕ(ȳ, z)) by

∨
n≤Nϕ Rϕ(ȳ, cn) for every L-formula

ϕ, which obviates the need for the type p to be omitted.

1 A straightforward inductive argument shows that a class K of structures is PCδ omitting a
type if and only if K is PCδ over Lω1,ω in the sense of Keisler [4].
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Conversely, suppose that there is an L-formula ϕ(x, ȳ) witnessing that T does
not eliminate infinity. Then there is a countable model M of T and an infinite
subset A ⊆ ω such that for every n ∈ A there is ān from M with ϕ(M, ān) having
exactly n elements. By way of contradiction suppose that the class of gross models
of T is PCδ, i.e., there is a countable L′ ⊇ L and an L′-theory T ′ such that the
class of gross models of T is precisely the class of L-reducts of models of T ′. Then
clearly, since every countable structure is gross, M is the reduct of some M ′ |= T ′.

Now expand M ′ to M ′′ as follows: Let s = lg(ȳ). First, add a new s-ary relation
symbol P with interpretation {ān : n ∈ A} and add a new 2s-ary relation < on
P 2 whose interpretation satisfies ān < ām if and only if n < m. Next, Skolemize
this expanded structure, obtaining a larger (countable) L′′ ⊇ L′ ∪ {P,<} and our
expansion M ′′.

Note that by Ramsey’s theorem, given any infinite subset B ⊆ A and any L′′-
formula ψ, there is an infinite B′ ⊆ B that is {ψ}-indiscernible. Thus, by compact-
ness (as in the proof of the Ehrenfeucht-Mostowski theorem) there is a model N ′′

of T ′′ and a set of s-tuples {c̄α : α < ω1} from N ′′ such that:

(1) 〈c̄α : α < ω1〉 are order-indiscernible;
(2) N ′′ is the Skolem Hull of {c̄α : α < ω1};
(3) for any α1 < · · · < αn < ω1 and any L′′-formula ψ(x̄1, . . . , x̄n), if N ′′ |=

ψ(c̄α1 , . . . , c̄αn) for some (equiv. for any) α1 < · · · < αn < ω1, then there is
an infinite subset B ⊆ A such that M ′′ |= ψ(āj1 , . . . , ājn) for all j1 < · · · <
jn from B.

In particular, N ′′ |= P (c̄α)∧ (c̄α < c̄β) for all α < β < ω1. Clearly, N ′′ has size ℵ1.
Our desired contradiction follows from the following claim.

Claim. The set ϕ(N ′′, c̄α) is countably infinite for all α < ω1.

Proof. Fix α∗ < ω1. First, for each l ∈ ω, since only finitely many elements of
P (M ′′) = {ān : n ∈ A} satisfy ∃<lxϕ(x, ān), ϕ(N ′′, c̄α∗) has at least l elements.
Hence ϕ(N ′′, c̄α∗) is infinite.

By way of contradiction, suppose that ϕ(N ′′, c̄α∗) were uncountable. Since L′′ is
countable there would be an L′′-term τ(x̄1, . . . , x̄n) and uncountably many, strictly
increasing n-tuples 〈ᾱj : j ∈ ω1〉 of elements from ω1 such that, letting ĉj denote
the ns-tuple (c̄αj1 , . . . , c̄αjn),

(4) N ′′ |= τ(ĉj) 6= τ(ĉl) ∧ ϕ(τ(ĉj), c̄α∗)

for all j < l < ω1. Without loss of generality, we may assume that for some
1 ≤ k ≤ n, α∗ is the kth element of ᾱj for all j < ω1.

By the ∆-system lemma (or more precisely by its proof) there is anm, k ≤ m < n
and an uncountable X ⊆ ω1 such that for all j < l < ω1, the first m entries of ᾱj
and ᾱl are the same, and, letting β̄j denote the subsequence of ᾱj consisting of the
final n−m entries, every element of β̄j is less than every element of β̄l. Choose any
j < l from X and let ψ be the formula described in (4). Then, translating to M ′′, let
b1 < · · · < bm denote the firstm elements ofB ⊆ A, whereB is chosen to correspond
to {ψ} in Clause (3) above. Then, any (n − m)-tuples of integers dm+1, . . . , dn,
em+1, . . . , en from B satisfying bm < dm+1 < · · · < dn < em+1 < · · · < en will
necessarily satisfy

M ′′ |= τ(āb1 , . . . , ābm , ādm+1 , . . . , ādn) 6= τ(āb1 , . . . , ābm , āem+1 , . . . , āen)
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as well as M ′′ |= ϕ(τ(āb1 , . . . , ābm , ādm+1, . . . , ādn), ābk). Hence, ϕ(M ′′, ābk) is infi-
nite, a contradiction. �

Example 1.8(c) gives a theory T that does not eliminate infinity, yet has ex-
actly one gross model in every uncountable cardinality. Despite the complexity of
describing the class of gross models, such classes do have nice closure properties.
Each of the following observations is easily verified:

Remark 1.3. (i) Any countable model of T is gross.
(ii) For every model M of T and every cardinal κ ≥ |M |, there is a gross ele-

mentary extension of M of size κ.
(iii) The union of a countable elementary chain of gross models of T is gross.

The central notion in the analysis of gross models is that of a type over a model
having Cantor-Bendixon (CB) rank 1. Recall:

Definition 1.4. A 1-type p ∈ S1(M) has CB-rank 1 if p is nonalgebraic and there
is a formula ϕ(x) ∈ p such that for any L(M)-formula ψ(x, c̄), one of ϕ(x)∧ψ(x, c̄)
or ϕ(x)∧¬ψ(x, c̄) is algebraic. An L(M)-formula ϕ(x) has CB-Rank 1, Multiplicity
1 if there is a unique p ∈ S1(M) of CB-rank 1 with ϕ ∈ p.

When M is ω-saturated, then M has type CB-rank 1 if and only if it has Morley
rank 1, but CB-rank 1 types occur over nonsaturated models as well. In particular,
if M is any model of an ω-stable theory, then every nonalgebraic formula over M
with one free variable is an element of a CB-rank 1 type. A CB-rank 1 type is clearly
strongly regular, but a strongly regular type in S1(M) need not have CB-rank 1
over M . As an example, let T be the theory of a single equivalence relation E with
infinitely many classes, each infinite. Then for any M |= T , the type p(x) ∈ S1(M)
asserting that x is in a new E-class is strongly regular but not of CB-rank 1.

Definition 1.5. A CB-rank 1 construction over M is a sequence 〈(ai,Mi) : i ∈ α〉
such that

(1) M0 = M ;
(2) Mi+1 is prime over Miai;
(3) tp(ai/Mi) has CB-rank 1; and
(4) Mβ =

⋃
{Mi : i < β} for all nonzero limit ordinals β < α.

Definition 1.6. A type p ∈ S(M) is accessible if there is a CB-rank 1 construction
〈(ai,Mi) : i ∈ α〉 over M such that Mα realizes p.

Theorem 1.7. The following are equivalent for any complete theory T with infinite
models in a countable language:

(1) for some uncountable cardinal κ, T has exactly one gross model of size κ;
(2) T is ω-stable and every type over every countable model of T is accessible;
(3) T is ω-stable and every type over every model of T is accessible;
(4) every uncountable gross model is saturated;
(5) for every uncountable cardinal κ, T has exactly one gross model of size κ.

Example 1.8. (a) There are (ω-categorical) theories satisfying Conditions (1)–(5)
in the theorem above that have the DOP, and so have 2κ models of cardinality κ
for all κ > ω.

(b) There are theories satisfying Conditions (1)–(5) in the theorem above that
have infinite Morley rank.
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(c) There are theories satisfying Conditions (1)–(5) in the theorem above that
do not eliminate infinity.

(a): The basic example of an ω-categorical, ω-stable theory with the DOP works.
This is the theory of a structure with an infinite set of “vertices” and between any
two vertices there is an infinite set of “edges”.

(b): Consider a structure with three predicates P , Q and V , an equivalence
relation E on Q, a unary function g, and n-ary functions fn for 1 ≤ n < ω. P is
infinite, and for each n, fn is a bijection between Pn and an E-equivalence class
Un on Q (where Un and Um are distinct if n 6= m). All E-classes on Q are infinite.
As well, g : Q → V is the canonical surjection induced by E (i.e., g(a) = g(b) iff
E(a, b)). Note that RM(Un) = n for all n whereby RM(Q) = ω. On the other
hand, any E-class different from each Un has CB-rank 1 and CB-multiplicity 1, as
have the formulas P (x) and V (x).

(c): Take disjoint, unary predicates Q, V and an equivalence relation E on Q.
For each finite n > 0, Q contains exactly one E-class with exactly n elements. As
in (b) the language includes the canonical surjection g : Q→ V induced by E.

2. Proof of Theorem 1.7

We begin by showing that uniqueness of gross models of some uncountable car-
dinality implies ω-stability of T . The crucial point is the following lemma, which
gives gross models realizing few types over countable sets. If T eliminates infinity,
this would be a trivial Ehrenfeucht-Mostowski argument. But in general we must
do a bit more. This fact was also proved by Keisler (see Theorem 33 of [4]), and
Shelah gives a sketch of a proof in Step 1 of the proof of Theorem 5.2 in [9].

Lemma 2.1 (T any countable complete theory). For any uncountable cardinal κ,
T has a gross model M of cardinality κ such that for any countable subset A of M ,
only countably many complete 1-types over A are realized in M .

Proof. Let N be a gross model of T of cardinality λ ≥ i(2|T |)+ . Enlarge the
language L of T to a language L′ by adjoining a predicate symbol Pϕ(ȳ) and function
symbol fϕ(ȳ, x) for each formula ϕ(x, ȳ) ∈ L. Expand N to an L′-structure N ′, by
interpreting Pϕ as the set of c̄ from N such that ϕ(x, c̄) is algebraic (has finitely
many realizations), and by interpreting fϕ(c̄,−) as a bijection between ϕ(x, c̄)N

and N if ¬Pϕ(c̄) and anything you want otherwise. Note that L′ is countable. Now
add Skolem functions to N ′ to get an expansion N ′′, in a countable language L′′

with theory T ′′ say.
Fix κ > ω. Using Erdös-Rado (see [10] or Lemma A.3 of [5]) we can find an

(L′′)-indiscernible sequence 〈ai : i < κ〉 in some model of T ′′, such that for every
n, tpL′′(a0, . . . , an−1) is realized in N ′′. Let M ′′ be the Skolem hull of {ai : i < κ},
and M the L-reduct of M ′′. So M is a model of T of cardinality κ that realizes
only countably many types over any countable subset.

It remains to prove that M is gross. Now M ′′|L′ is a model of Th(N ′). So
whenever c̄ is from M , and ¬Pϕ(c̄) holds in M ′′, ϕ(x, c̄)M has cardinality κ. On
the other hand, every (partial) finitary type of T ′′ realized in M ′′ must be realized
in N ′′. But for any ϕ(x, ȳ) ∈ L, N ′′ omits the type: {Pϕ(ȳ)} ∪ {there are infinitely
many realizations of ϕ(x, ȳ)}. So M ′′ omits this type too. What this means is that
if c̄ is from M and ϕ(x, c̄)M is infinite, then M ′′ |= ¬Pϕ(c̄); so as mentioned above
ϕ(x, c̄)M has size κ. �
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Corollary 2.2. Suppose κ is uncountable and that T has a unique gross model of
cardinality κ (up to isomorphism). Then T is ω-stable.

Proof. If not, there is a countable model M0 of T over which there are uncountably
many types. Choose a model M of cardinality κ containing M0 and realizing
uncountably many of these types. It is easy to extend M to a gross model of
cardinality κ. Then M is not isomorphic to the gross model of cardinality κ given
by Lemma 2.1. �

The following two lemmas, which describe the relationship between CB-rank 1
types and gross models, rely on the ubiquity of types of CB-rank 1 in S1(M) when
M is a model of an ω-stable theory.

Lemma 2.3. Suppose that T is ω-stable. For every countable model M of T and
every uncountable κ, there is a CB-rank 1 construction of a gross model N extending
M of size κ.

Proof. This is essentially bookkeeping. The point is that if 〈(ai,Mi) : i < α〉 is a
CB-rank 1 construction over M , then by choosing Mα to be prime over Mα−1aα−1

when α is a successor ordinal, and equal to
⋃
{Mβ : β < α} when α is a limit,

then for every nonalgebraic formula ϕ(x, c̄) over Mα one can find a realization aα
of ϕ(x, c̄) such that tp(aα/Mα) is CB-rank 1. Thus, 〈(ai,Mi) : i ≤ α〉 is a CB-rank
1 construction over M and we can continue. �
Lemma 2.4. Suppose that T is ω-stable. If 〈(ai,Mi) : i ∈ α〉 is a CB-rank 1
construction over M and κ > |M |+ |α|, then for any gross model N extending M
of size κ there is an elementary f : Mα → N extending the identity map on M .

Proof. Arguing by induction on i < α, it suffices to show that whenever N is a gross
extension of M , |N | > |M |, and p = tp(a/M) has CB-rank 1, then p is realized
in N . Let ϕ(x) ∈ p witness that p has CB-rank 1 (and multiplicity 1). ϕ(x) has
|N |-many realizations in N , so is realized by some a ∈ N \M . But then a /∈ acl(M);
so a realizes p. �

An obstruction that one faces when working with CB-rank 1 types over a model
is that CB-rank is typically not preserved under nonforking extensions. However,
if the base model is relatively ω-saturated in the extension, then this obstruction
is eliminated. Moreover, the assumption of relative ω-saturation can be preserved
along CB-rank 1 constructions. These preservation results are summarized in the
following lemma. Recall that if M is an elementary substructure of N , we say that
M is relatively ω-saturated in N if every type over a finite subset of M that is
realized in N is realized in M .

Lemma 2.5. Suppose that T is ω-stable and M is a relatively ω-saturated submodel
of a model N of T .

(1) If q ∈ S(N) is the nonforking extension of a type p ∈ S(M), then p has
CB-rank 1 if and only if q has CB-rank 1.

(2) If tp(a/N) does not fork over M , N(a) is prime over Na, and M(a) � N(a)
is prime over Ma, then M(a) is relatively ω-saturated in N(a).

Proof. (1) Since being nonalgebraic is absolute, q has CB-rank 1 implies p has
CB-rank 1 whenever M � N . Conversely, suppose that q does not have CB-rank
1 and choose any ϕ(x, ā) ∈ p. Then there is an L(N)-formula ψ(x, c̄) such that
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both ϕ(x, ā) ∧ ψ(x, c̄) and ϕ(x, ā) ∧ ¬ψ(x, c̄) are infinite. Choose c̄′ from M such
that tp(c̄′/a) = tp(c̄/a). Then the L(M)-formula ψ(x, c̄′) demonstrates that the
CB-rank-multiplicity (over M) of ϕ(x, ā) is not (1, 1).

(2) Fix a finite tuple b̄ from M(a) and choose c̄ from M such that tp(b̄/Ma)
is isolated by a formula over ac̄. Choose d ∈ N(a) arbitrarily. We will show that
tp(d/b̄) is realized in M(a). To this end, suppose tp(d/Na) is isolated by θ(x, a, ē).
Choose ē′ from M with tp(ē′/c̄) = tp(ē/c̄). It is readily checked that θ(x, a, ē′)
isolates tp(d/b̄); hence this type is realized in M(a). �

Lemma 2.6. If p ∈ S(M) is accessible, then p is accessible via a CB-rank 1
construction of finite length.

Proof. Suppose that 〈(ai,Mi) : i ∈ α〉 is a CB-rank 1 construction over M such
that Mα realizes p. We set some notation:

• For any c ∈Mα, r(c) = the least β such that c ∈Mβ .
Note that the ordinal r(c) is a successor as long as it is positive. So let ρ(c) = r(c)−1
for every c ∈Mα \M . (In particular ρ(ai) = i.)

• For a finite F ⊆ Mα, let the closure of F be F ∪ {aρ(c) : c ∈ F} and let
r(F ) = max{r(c) : c ∈ F}.

Note that the closure of a finite set is finite, r(F ) = r(closure of F ), and r(F ) = 0
if and only if F ⊆M .

• For each i ∈ α, chooseDi ⊆Mi finite such that there is a formula ϕ(x,Di) ∈
tp(ai/Mi) of CB-rank-multiplicity (1, 1) over Mi.
• For each c ∈ Mα, choose B(c) ⊆ Mρ(c) finite such that tp(c/aρ(c)B(c))

isolates tp(c/aρ(c)Mρ(c)).
• For F ⊆Mα, let F ′ =

⋃
{Di \M : ai ∈ F} ∪

⋃
{B(c) \M : c ∈ F \M}.

Note that r(F ′) < r(F ) as long as r(F ) > 0.
Now choose c̄ from Mα realizing p. Let F0 denote the closure of c̄. Given a

finite, closed Fn, let Fn+1 be the closure of F ′n. Since α ≥ r(F0) > r(F1) > · · ·
whenever the sets are nonempty, it follows that there is n such that Fn = ∅. Let
G =

⋃
{Fl : l < n}, and let H = {r(c) : c ∈ G}. It is easily checked that

〈(ai,M ′i) : i ∈ H〉, where M ′0 = M and the “next” M ′ is prime over M ′iai, is a
CB-rank 1 construction over M that realizes p. �

Lemma 2.7. Suppose that T is ω-stable and every type p ∈ S(M) is accessible for
every countable model M of T . Then every type over every model of T is accessible.

Proof. Let N be any model of T and choose q ∈ S(N) arbitrarily. Choose B ⊆ N
finite such that q is based and stationary over B. Take M ⊇ B to be any countable,
relatively ω-saturated substructure of N , and let p denote the restriction of q to M .
Let 〈(ai,Mi) : i ∈ k〉 be a CB-rank 1 construction over M such that Mk realizes
p (by Lemma 2.6 we may assume k < ω). Without loss of generality, we may
assume that Mk is independent of N over M . Construct any sequence 〈Ni : i ∈ k〉
satisfying N0 = N , Mi � Ni, and Ni+1 is prime over Niai for each i. We claim
that 〈(ai, Ni) : i ∈ k〉 is a CB-rank 1 construction over N . To see this, we argue
that for each i < k, Mi is relatively ω-saturated in Ni and tp(ai/Ni) has CB-rank
1. But these statements are exactly the content of Lemma 2.5, which is applicable
since tp(ai/N) does not fork over Mi. Finally, it is clear that Nk realizes q, since
Mk realizes p and Mk is independent of N over M . �
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Proof of Theorem 1.7. (1) ⇒ (2). Choose an uncountable cardinal κ such that T
has exactly one gross model N of size κ. T is ω-stable because of Corollary 2.2.
Thus, N is saturated. Fix a countable model M of T and a type p ∈ S(M). Since
N is saturated, we may assume M � N . By Lemma 2.3 we may assume that N is
constructible over M by a CB-rank 1 construction. However, since N is saturated,
it must surely realize p, and so p is accessible.

(2)⇒ (3) is exactly Lemma 2.7.
(3) ⇒ (4). Fix an uncountable gross model N of T . We argue that N is

saturated. Choose any M � N such that |M | < |N | and choose any p ∈ S(M).
By (3) and Lemma 2.6 there is a CB-rank 1 construction 〈(ai,Mi) : i < k〉 over M
such that Mk realizes p. Thus, by Lemma 2.4, N realizes p as well.

(4)⇒ (5) and (5)⇒ (1) are immediate. �

3. Extensions to many-sorted theories and T eq

Suppose now that T is a many-sorted theory, still in a countable language (so in
particular with at most countably many sorts). By the cardinality of M |= T we
mean the sum of the cardinalities of the SM for S a sort. It is then natural to call
M |= T gross if every infinite definable subset of SM has cardinality |M | for each
sort S.

There is no problem in adapting the proofs from Section 2 to this context. What
is more interesting is identifying what happens when we pass from T to T eq.

Definition 3.1. A model M of T is eq-gross if M eq is gross.

It is readily checked that M is eq-gross if and only if for every definable D ⊆Mn

and every definable equivalence relation E on M2n, D/E is either finite or has size
|M |. The following example illustrates the distinction between the two versions of
grossness, even in the context of ω-categorical theories.

Example 3.2. Let T be the (ω-categorical) theory of a single equivalence relation
E with infinitely many classes, each of which is infinite. Then for every uncountable
κ, the model Mκ |= T consisting of countably many E-classes, each of size κ, is
gross but not eq-gross. Furthermore, for any uncountable cardinal κ, T has exactly
one eq-gross model of size κ, while it has nonisomorphic gross models of size κ.

Since T being eq-gross is equivalent to T eq being gross, Theorem 1.7 provides us
with a cheap proof of Morley’s theorem for eq-gross models of a theory. However, we
are able to provide a cleaner characterization of those theories having exactly one
eq-gross model in some (every) uncountable power. The following lemma, which
we state in greater generality than is needed here, is the primary reason why this
notion is better behaved than grossness.

Lemma 3.3. Suppose that T is a stable theory and T = T eq. If p ∈ S(A) is regular
and nonorthogonal to some type of Morley rank 1, then there is a type q ∈ S(A) of
Morley rank 1 that is not weakly orthogonal to p.

Proof. (This is as in the standard proof of the existence of semiregular types.) Let
M ⊇ A be chosen such that there are a realizing p|M and b such that tp(b/M) has
Morley rank 1 and a and b fork over M (so b ∈ acl(Ma)). Thus a forks with bM
over A. Let c ∈ Cb(stp(bM/aA))\acl(A). Then c ∈ acl(aA)∩dcl(b1M1, . . . , bnMn),
where (biMi)i is a Morley sequence in stp(bM/aA). Then tp(c/A) is regular, and
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c is independent of M1 ∪ · · · ∪Mn over A. So tp(c/M1 · · ·Mn) is regular. But c
is in the definable closure of some elements which have Morley rank 0 or 1 over
M1 ∪ · · · ∪Mn. This all implies that tp(c/M1 · · ·Mn) has Morley rank 1 and hence
tp(c/A) has Morley rank 1. �

Theorem 3.4. Let T be any complete theory in a countable language with infinite
models. Then the following conditions are equivalent:

(1) T has exactly one eq-gross model in some uncountable κ;
(2) T is ω-stable and every nonalgebraic eq-type is nonorthogonal to an eq-type

of Morley rank 1;
(3) T is ω-stable and for every M |= T , every nonalgebraic p ∈ S(Meq) is

nonweakly orthogonal to a type q ∈ S(M eq) of Morley rank 1;
(4) every uncountable eq-gross model is saturated;
(5) T has exactly one eq-gross model in every uncountable κ.

Proof. Throughout this proof we work in T eq. In fact, to ease notation, we assume
T = T eq. So when we write “type” or “model” we mean an eq-type or Meq with
respect to the original theory.

(1) ⇒ (2). This is like (1) ⇒ (2) in the proof of Theorem 1.7, but within the
category of ω-saturated models of T . Suppose that N is the only gross model of T of
size κ > ω. Then T is ω-stable by Corollary 2.2; hence N is saturated. In particular,
the countable, saturated model M embeds into N . Now if some nonalgebraic type
were orthogonal to all types of Morley rank 1, then some nonalgebraic type p ∈
S(M) would be orthogonal to all types of Morley rank 1. Now define a construction
sequence 〈(ai,Mi) : i < α〉 akin to a CB-rank 1 construction, but where each Mi+1

is chosen to be ω-saturated and dominated by ai over Mi. Note that since each
Mi is ω-saturated, a type q ∈ S(Mi) is of CB-rank 1 if and only if it has Morley
rank 1. Consequently, since p was chosen to be orthogonal to all types of Morley
rank 1, one proves by induction on i < α that tp(a/Mi) does not fork over M for
any a realizing p. In particular, p is omitted in Mα. However, since M is itself
ω-saturated, it is routine to show that a gross model N ′ extending M of size κ is
constructible by such a sequence. But, since there is only one gross model of size κ,
N ′ is saturated; hence p is realized in N ′. Thus, p is nonorthogonal to tp(ai/Mi)
for some i, which is a contradiction.

(2) ⇒ (3). This is exactly Lemma 3.3. (For the ω-categorical case recall that
every model is ω-saturated.)

(3) ⇒ (4). We claim that every type p ∈ S(M) over every countable model M
is accessible. If this were not the case, then choose M and p ∈ S(M) not accessible
with the Lascar rank U(p) as small as possible. By (3) p is weakly orthogonal to
some q ∈ S(M) of Morley rank 1. Choose a realizing q and let M ′ be prime over
Ma. Let b be a realization of p that forks with a over M . Since p′ = tp(b/M ′) is
a forking extension of p, there is a CB-rank 1 construction sequence over M ′ that
realizes p′. But then, concatenating (a,M) to that construction sequence yields a
CB-rank 1 construction over M that realizes p; hence p is accessible. Now since
T is ω-stable and every type over a countable set is accessible, (4) follows from
Theorem 1.7.

(4)⇒ (5) and (5)⇒ (1) are immediate. �

Remark 3.5. It is easily shown that Condition (3) of Theorem 3.4 is equivalent to
“T is ω-stable and in every proper elementary pair M � N of models, ϕN \ϕM 6= ∅
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for some L(M)-formula of CB-rank 1, Multiplicity 1.” This should be compared
with “T is uncountably categorical if and only if T is ω-stable and in every proper
elementary pair M � N of models, ϕN \ ϕM 6= ∅ for every L(M)-formula of CB-
rank 1, multiplicity 1.” (That the latter condition implies “no Vaughtian pairs” is
immediate from the abundance of CB-rank 1 types over models.)

Corollary 3.6. If T is ω-stable and ω-categorical, then every uncountable gross
model of T eq is saturated.

Proof. By Theorem 3.4 it suffices to show that any nonalgebraic type is nonorthog-
onal to a type of Morley rank 1 (in T eq). However, by [3], T has finite Morley rank
and thus every type has finite U -rank. Thus every nonalgebraic type is nonorthog-
onal to an eq-type of U -rank 1. By ω-categoricity (and superstability) any type of
U -rank 1 has Morley rank 1. �

Note that Example 3.2 indicates the necessity of passing to T eq for this result.
Finally, the example of countably many disjoint, infinite unary predicates demon-
strates that the result above cannot be generalized to ω-stable theories with nfcp
or of finite Morley rank.
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