
future internet

Article

Interactive 3D Exploration of RDF Graphs through
Semantic Planes

Fabio Viola 1,2,∗ ID , Luca Roffia 1,2 ID , Francesco Antoniazzi 1,3 ID , Alfredo D’Elia 2 ID ,
Cristiano Aguzzi 1,2 ID and Tullio Salmon Cinotti 1,2 ID

1 Department of Computer Science and Engineering (DISI), University of Bologna, 40126 Bologna, Italy;
luca.roffia@unibo.it (L.R.); francesco.antoniazzi@unibo.it (F.A.); cristiano.aguzzi@unibo.it (C.A.);
tullio.salmoncinotti@unibo.it (T.S.C.)

2 Advanced Research Center on Electronic Systems “Ercole De Castro” (ARCES), University of Bologna,
40125 Bologna, Italy; alfredo.delia4@unibo.it

3 Centro Nazionale per la Ricerca e Sviluppo nelle Tecnologie Informatiche e Telematiche (INFN CNAF),
40127 Bologna, Italy

* Correspondence: fabio.viola@unibo.it

Received: 19 July 2018; Accepted: 14 August 2018; Published: 17 August 2018
����������
�������

Abstract: This article presents Tarsier, a tool for the interactive 3D visualization of RDF graphs.
Tarsier is mainly intended to support teachers introducing students to Semantic Web data
representation formalisms and developers in the debugging of applications based on Semantic
Web knowledge bases. The tool proposes the metaphor of semantic planes as a way to visualize an
RDF graph. A semantic plane contains all the RDF terms sharing a common concept; it can be created,
and further split into several planes, through a set of UI controls or through SPARQL 1.1 queries,
with the full support of OWL and RDFS. Thanks to the 3D visualization, links between semantic
planes can be highlighted and the user can navigate within the 3D scene to find the better perspective
to analyze data. Data can be gathered from generic SPARQL 1.1 protocol services. We believe that
Tarsier will enhance the human friendliness of semantic technologies by: (1) helping newcomers
assimilate new data representation formats; and (2) increasing the capabilities of inspection to detect
relevant situations even in complex RDF graphs.

Keywords: semantic web; linked data; internet of things; visualization; 3D; computer graphics

1. Introduction

The Semantic Web [1] introduced to Information Technology a novel way to intend the Web and
its resources. In fact, the Web is evolving from a set of interlinked human-understandable HTML pages,
towards a set of interlinked machine-understandable data. The implementation of such innovative
vision started with a layered architecture. First, data are modeled, stored and retrieved as a set of
RDF (https://www.w3.org/RDF/) triples composed of a subject, a predicate and an object: as the
object of a triple can assume the role of the subject of other triples, the underpinning data structure can
be represented as a directed labeled graph. Second, RDFS (https://www.w3.org/TR/rdf-schema/)
and OWL (https://www.w3.org/OWL/) provide a set of constructs to define an ontology [2] with
the concepts and relationships considered relevant for a given application domain. Through the
ontology, it is possible to assert meaningful RDF triples. Third, data can be stored into RDF stores
by means of SPARQL Updates (https://www.w3.org/TR/sparql11-update/) and retrieved through
SPARQL Queries (https://www.w3.org/TR/rdf-sparql-query/). An RDF store can be fully managed
by a SPARQL protocol service through the SPARQL 1.1 Protocol (https://www.w3.org/TR/sparql11-
protocol/). Gyrard et al. [3] described and compared four ontology repositories for IoT and smart

Future Internet 2018, 10, 81; doi:10.3390/fi10080081 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-1381-3807
https://orcid.org/0000-0003-1546-1574
https://orcid.org/0000-0002-8173-8044
https://orcid.org/0000-0003-2993-0263
https://orcid.org/0000-0002-8934-3303
https://orcid.org/0000-0002-6877-5254
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/OWL/
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-protocol/
http://dx.doi.org/10.3390/fi10080081
http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com/1999-5903/10/8/81?type=check_update&version=2

Future Internet 2018, 10, 81 2 of 30

cities (analysis of May 2018): Ready4SmartCities, OpenSensingCity, LOV and LOV4IoT. LOV4IOT
includes 448 ontologies, a high number considering that the repository is limited to Smart Cities or
IoT vocabularies. LOV (Linked Open Vocabularies) (https://lov.linkeddata.es/dataset/lov) [4] is an
innovative observatory of the semantic vocabularies ecosystem. In this paper, authors proposed an
interesting overview of the impressive growth of the repository: in approximately four years (March
2011–June 2015), the number of vocabularies hosted by LOV grew from less than 100 to 511 (66.14% of
which developed in English). As of August 2018, the number is 650. This is significant evidence of
how Semantic Web technologies are gaining momentum in the last decade, also thanks to the spread
of the Internet of Things.

How can the content of an RDF knowledge base (KB) be visualized? The simplest way could
be a single table with three columns (i.e., subject, predicate, and object). Unfortunately, this solution
scales very poorly. In fact, even with a few dozen triples, dominating the content becomes almost
impossible. An alternative is represented by a (possibly very large) set of tables where every property
is mapped into a relation. Even though relational tables have been widely used to optimize data
storage and retrieval [5], this may not be the best choice for an effective visualization of RDF data. In
fact, data visualization should provide an expressive and clear representation to easily grasp complex
concepts and identify recurring structures (e.g, subgraphs characterized by a similar topology as in
networks of hundreds of sensors semantically mapped in a graph). One of the most natural (and
diffused) ways to represent an RDF KB is a graph, as it directly maps with the RDF data model: RDF
data can be, as previously mentioned, represented as a directed and labeled graph where the subject
and the object of each statement are linked by an edge whose label is the predicate of the statement.
As this graph can be very complex (i.e., composed by many nodes and many edges), a tool for its
visualization should address a set of issues and requirements that can be summarized as:

p0 Pre-Filtering: When dealing with RDF knowledge bases, the amount of triples contained in the
data store may be really high (e.g., DBpedia contains more than 6.6 M triples). Representing in
a graphical way such a large amount of data is usually both ineffective (it is hard for the user
to retrieve the information he looks for) and inefficient (it is heavy from the point of view of
memory occupation and computational resources). Then, a pre-filtering mechanism is required
to extract the subgraph that is really relevant for the user from the full knowledge base.

p1 Node placement: Node positioning should be smart enough to avoid overlapping with other
graphical elements such as edges or labels. The complexity of this task grows with the size of the
KB. If possible, linked resources should be placed close to each other to easily gather as much
information information as possible in a glimpse.

p2 Incremental approach: Often, only a small portion of a large KB needs to be inspected. Creating the
visualization that fits the user needs may require a series of steps (e.g., to specify the information
that must be represented and how it should be done). Thus, the incremental building of the view
should be supported.

p3 Filtering: Filtering must be as flexible as possible to focus on the parts considered relevant for a
task by hiding/showing information. Providing powerful filtering features in a user-friendly
way is often a difficult task. It is, nevertheless, very important because of the close relationship
to one of the techniques that are usually used in designing and debugging queries. According
to an incremental progressive method, every step consists in applying a new condition to the
previous query: in that way, a less error-prone coding technique, while at every step a new filter
is applied to results, until the required level of precision is reached in the request.

p4 Support for RDFS and OWL: Both RDFS and OWL must be supported. The user should be able
to select and filter the graph content by means of concepts such as class, domain and range of
properties, datatype and object properties distinction.

p5 Support for a high number of scenarios: Semantic Web and Linked Data technologies may
be applied to totally different and heterogeneous domains even within the same application.
The datasets in the Linked Open Data cloud mainly belong to seven domains (cross-domain,

https://lov.linkeddata.es/dataset/lov

Future Internet 2018, 10, 81 3 of 30

geographic, media, life sciences, government, user-generated content, and publications) [6],
while in the Internet of Things (IoT) where SW technologies are often applied, the application
domains are more than 50 [7]. Depending on the specific use case, the end user may be interested
in completely custom visualization perspectives.

In this article, we propose Tarsier: an interactive and ontology agnostic tool for the 3D visualization
of RDF graphs. Tarsier implements all the above-mentioned features and it allows partitioning the
KB into semantic planes. A semantic plane can be defined as a set of RDF terms sharing a common
meaning and it can be created directly or indirectly through standard SPARQL 1.1 queries. We argue
that this approach would help to understand or extract the structure of represented data by following
a common mental approach: splitting the KB among planes, each of them related to a specific concept.
The user can incrementally build a view by adding and/or removing information according to its
actual needs and splitting the information among planes. Relationships among resources in different
planes are in such a way emphasized. Furthermore, the user may still maintain a view on the rest
of the knowledge base, if needed. To the best of the authors’ knowledge, none of the existing tools
provides a similar feature and we argue that many application domains may benefit of a multiplanar
visualization. Eventually, Tarsier is also suitable to view reified knowledge bases [8], since it allows
the distinction among the raw triples, the statements reifying them and the information about the
statements (i.e., meta information). Very poor support to reification is currently provided by the
existing tools.

The idea of Tarsier is grounded on the authors’ experience in teaching Semantic Web technologies
in the “Interoperability of Embedded Systems” course held at the School of Engineering and
Architecture of the University of Bologna. The course is focused on the application of Semantic
Web data representation means to context-aware IoT applications. Examples of these applications
are presented in [9,10], respectively, belonging to the areas of Domotics and Electro-mobility with
knowledge bases hosting up to one hundred thousand triples. On top of this teaching experience,
the authors believe that the learning curve of RDF, RDFS/OWL and SPARQL is often steep, due to the
strong linked nature of data. Tarsier should support students learning to deal with RDF knowledge
bases by providing an interactive exploration tool for small- or medium-sized knowledge bases (up to
a few thousand triples). Through Tarsier, students can play with classes, instances, relationships using
filters to toggle their visibility or isolate the interesting entities by moving them on proper semantic
planes. The tool would help the students during the so-called “sensemaking” activity that consists
in understanding the content and overall structure of an ontology [11]. Furthermore, we believe that
Tarsier can also be helpful for developers to inspect and debug applications based on Semantic Web
knowledge bases.

The rest of the paper is organized as follows: Section 2 presents the proposed tool, starting
from the initial considerations on the motivations which brought to its conception. Then, its internal
software architecture is explained and examined in detail. In Section 3, the proposed approach is
shown in practice through examples: several use cases are introduced and commented. In Section 4,
an evaluation of Tarsier is proposed based on user surveys and performance analysis. Section 5
summarizes the state of the art of the visualization of semantic KBs, with an overview of the existing
tools. Finally, in Section 6, conclusions are drawn and future works are outlined.

2. Tarsier: Splitting Data among Semantic Planes

In this section, we present Tarsier and the approach based on the concept of Semantic Plane.
The approach is described in Section 2.1. The architecture of the software is presented in Section 2.2,
while implementation details are in Section 2.3. The full list of features is detailed in Section 2.4.
The mechanism exploited by Tarsier to identify the elements in a graph is shown in Section 2.5,
while Section 2.6 describes the User Interface of the tool.

Future Internet 2018, 10, 81 4 of 30

2.1. Semantic Planes

The main contribution of Tarsier is the ability to visualize an RDF graph (or portion of it)
subdivided into different layers, built according to the user’s needs. We name these layers semantic
planes, since every layer is built to group a set of resources (and optionally their attributes) sharing a
set of common semantic features. The meaning conveyed by a semantic plane may be very simple
(e.g., all resources belonging to the class foaf:Person), or the result of a more complex filtering (e.g.,
the set of resources belonging to the class foaf:Person that work on the same project but do not know
each other). Adopting such a layered visualization allows:

• focusing on the information considered meaningful by looking at the related plane, while
preserving a non-intrusive view on the rest of the knowledge base;

• focusing on the incoming and outgoing edges of a subgraph (i.e., semantic connection
between planes).

As detailed in the following sections, semantic planes are the results of filtering and this feature
is accessible for both inexperienced and advanced users. In fact, semantic planes may be created by
selecting over the list of properties (i.e., datatype or object), classes, instances and blank nodes or
through SPARQL queries. Both filtering operations can be iterated and combined to refine the content
of semantic planes.

2.2. Tarsier Architecture

Tarsier (https://github.com/desmovalvo/tarsier) was designed following a client-server
architecture, depicted in Figure 1. This architectural choice is motivated by the need to pre-process a
potentially very large set of data (i.e., to subdivide RDF Terms among classes, instances, datatype and
object properties) while still providing light clients that only focus on the drawing task. Server-side,
the main components are:

• A config manager, through which the server can be configured.
• A client for SPARQL endpoints, to retrieve data from the desired datasets.
• A Cache Manager. Since Tarsier is intended to be used also with dynamic systems where the KB

evolves quickly, the application creates a snapshot of the knowledge base: (1) to avoid changes
that would disrupt the user process of analysis; and (2) to have a local cache that speeds up every
query to data. The user is able to update the local storage producing a new snapshot.

• A data extractor that performs the above-mentioned identification of RDF terms. The resulting
information is then organized in a data structure that helps the client to easily retrieve all the
elements needed to draw and apply the filters selected by the user. The data extractor performs
its task through a set of SPARQL queries detailed in Section 2.5.

• The HTTP interface through which client and server communicate.

https://github.com/desmovalvo/tarsier

Future Internet 2018, 10, 81 5 of 30

Figure 1. Software architecture of Tarsier. Implementation details are reported with the italic font.

2.3. Implementation

From the implementation point of view, Tarsier server is a Python 3 application that through the
framework Tornado (http://www.tornadoweb.org/en/stable/) provides an HTTP interface to receive
requests from the clients. The server can be configured through a proper YAML Semantic Application
Profile (YSAP) file (a YAML-encoded in the JSAP format: http://wot.arces.unibo.it/TR/jsap.html)
containing the port of the server and all the SPARQL queries needed by the Data Extractor. Tarsier
server relies on rdflib to maintain a local cache.

Client-side, Tarsier is a Javascript application that exploits HTML5, and in particular the canvas
element, to build a 3D representation of the knowledge base. While the UI is built using the framework
Bootstrap (https://getbootstrap.com/), the drawing part is in charge of Babylon JS (https://www.
babylonjs.com/). Babylon JS was selected because of its support to hardware acceleration.

The client is started with a default configuration that can be overwritten by loading a YAML file
(that hosts the parameters for a set of SPARQL endpoints and all the settings to customize the drawing)
and modified at run-time through the UI. The configuration file may also contain saved SPARQL
queries to easily recall the most frequently used ones.

2.4. Features

Tarsier is characterized by a set of features summarized in the following list.

Initial Knowledge Base : Tarsier is a visualization tool for RDF graphs. As such, it allows to view the
whole content of a graph through the canvas. However, RDF graphs may be very large, hosting
a high number of triples too difficult to represent in an effective way. For this reason, Tarsier
supports a pre-filtering of the knowledge base through SPARQL Construct queries (addressing
in this way the requirement p0) that can be also loaded from a file. In this way, the user may
dominate the complexity of the underlying knowledge base focusing only on the information
considered relevant for the current task. An example is shown in Figure 2.

http://www.tornadoweb.org/en/stable/
http://wot.arces.unibo.it/TR/jsap.html
https://getbootstrap.com/
https://www.babylonjs.com/
https://www.babylonjs.com/

Future Internet 2018, 10, 81 6 of 30

Figure 2. RDF graphs can host a number of triples too high to be effectively and efficiently visualized
(a), but a prefiltering stage can help to visualize only a subgraph of interest (b).

Support for RDFS and OWL : Despite being ontology agnostic (to adapt to different use cases,
as suggested by point p5), Tarsier, through its data extractor (see Section 2.5), is able to detect
classes, datatype properties and object properties through the use of RDFS and OWL constructs
(requirement p4). Comments and labels are also retrieved with the specific predicates.

Visualization techniques : Being able to quickly distinguish classes from other resources, datatype
from object properties and rdf:type relationships above all may significantly speed up the
analysis process (Figure 3a). Therefore, Tarsier adopts a classification algorithm based (mostly)
on a set of SPARQL queries (detailed in Section 2.5) to identify classes, instances of classes,
blank nodes, object and datatype properties and rdf:type relationships and paint each of them
with a different color. Furthermore, a smart placement algorithm allows facing requirement p1,
representing items through the following scheme: classes and individuals are represented as
equidistant spherical meshes on two different circumferences. The circle dedicated to classes
is the innermost, since usually the number of concepts is less than the number of instances.
Blank nodes lay on a third circumference. Datatype properties of an instance are equidistant
spheres placed on a circumference centered on the instance (Figure 3c). Further research will be
carried out to design and test different arrangement methods.

Figure 3. The classification of RDF terms among blank nodes, individuals, classes or literals as well as
data and object properties, bound to using colors provide a more intuitive visualization (a), if compared
to a monochrome one (b), the drawing strategy adopted by Tarsier (c) .

Filtering : The filtering mechanism (Figure 4) implemented by Tarsier allows selecting items through
UI or SPARQL queries and decide what action to perform. Selection can be related to classes,
instances, datatype or object properties as well as literals, URIs or blank nodes. The action

Future Internet 2018, 10, 81 7 of 30

consists in showing or hiding selected meshes as well as moving them across layers. Every
filter applies to the current visualization, allowing incremental filtering. This mechanism allows
iteratively building a visualization that fits the user need even for novice users. Tarsier’s filtering
mechanism meets the requirements identified in points p2 and p3.

Figure 4. Filtering helps to gradually build the desired visualization of data: an example knowledge
base (a); the result of filtering (b); and one of the UI boxes through which filtering can be applied (c).

2.5. Data Extractor

Data extracted from the triple store is classified through a set of SPARQL queries. First, classes
(and details, if present) are retrieved with the SPARQL query proposed in Listing 1.

Listing 1: Classes.
PREFIX rdf:<http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rdfs:<http :// www.w3.org /2000/01/rdf -schema#>
PREFIX owl:<http ://www.w3.org /2002/07/ owl#>
SELECT DISTINCT ?class ?label ?comment
WHERE {

{ ?resource rdf:type ?class .
OPTIONAL { ?class rdf:label ?label } .
OPTIONAL { ?class rdf:comment ?comment }

}
UNION {

?class rdf:type owl:Class .
OPTIONAL { ?class rdf:label ?label } .
OPTIONAL { ?class rdf:comment ?comment }

}
UNION {

?class rdf:type rdfs:Class .
OPTIONAL { ?class rdf:label ?label } .
OPTIONAL { ?class rdf:comment ?comment }

}
}

The data extractor also retrieves a list of Datatype properties and Object properties, respectively,
with the SPARQL queries of Listings 2 and 3.

Future Internet 2018, 10, 81 8 of 30

Listing 2: Datatype Properties.
PREFIX rdf:<http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rdfs:<http :// www.w3.org /2000/01/rdf -schema#>
PREFIX owl:<http ://www.w3.org /2002/07/ owl#>
SELECT DISTINCT ?prop ?domain ?range ?label ?comment
WHERE {

{ ?prop rdf:type owl:DatatypeProperty .
OPTIONAL{ ?prop rdfs:range ?range } .
OPTIONAL{ ?prop rdfs:domain ?domain } .
OPTIONAL{ ?prop rdfs:label ?label } .
OPTIONAL{ ?prop rdfs:comment ?comment }

}
UNION {
?s ?prop ?o .
FILTER isLiteral (?o)

}
}

Listing 3: Object Properties.
PREFIX rdf:<http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX rdfs:<http :// www.w3.org /2000/01/rdf -schema#>
PREFIX owl:<http ://www.w3.org /2002/07/ owl#>
SELECT DISTINCT ?prop ?domain ?range ?label ?comment
WHERE {

{ ?prop rdf:type owl:ObjectProperty .
OPTIONAL { ?prop rdfs:range ?range } .
OPTIONAL { ?prop rdfs:domain ?domain } .
OPTIONAL { ?prop rdfs:label ?label} .
OPTIONAL { ?prop rdfs:comment ?comment }

}
UNION
{ ?s ?prop ?o .

FILTER (isIRI(?o) || isBlank (?o))
}

}

As detailed in Section 2.6, the user interface also presents a list of the Resources, Literals and
Blank Nodes. Since this information is already available through the underlying Python RDFlib after
the pre-filtering query, no further queries are used.

2.6. User Interface

In this section, the user interface of Tarsier is presented. A screenshot of the UI is presented in
Figure 5. The top left hand side panel allows the user to load the above mentioned configuration file
and shows all the parameters read from it. Among these parameters, it is worth mentioning the colors
used to draw meshes in the 3D canvas and the level of detail (LOD) that allows setting the quality of
the representation (i.e., to find the best trade-off between resource usage and appearance). On the right
hand side, there is the canvas managed by Babylon JS. Below the canvas, a text box shows information
about the clicked elements.

Future Internet 2018, 10, 81 9 of 30

Figure 5. UI of Tarsier.

The bottom part of Figure 5 shows the control panel available to manipulate the view. This panel
presents the following eight cards:

• Classes: Presents a lists of the classes identified by the data extractor using the query in Listing 1.
A checkbox is drawn next to each item to select and deselect the related class. On the selected
items, the user may act to toggle visibility or move them across layers. Through this box, it is also
possible to show/hide and move resources belonging to the selected classes.

• Resources: Contains a list of referents (i.e., IRI resources). As for the classes, the user is allowed
to select/deselect items and modify visibility and the layer they belong to.

• Blank Nodes: This panel presents the list of blank nodes found in the knowledge base, along
with the buttons to change visibility and layer.

• Object Properties: This box contains the list of object properties detected by the data extractor
(with the SPARQL Query of Listing 3). This box allows to select properties and show/hide or
move to other layers the subject and/or of the triples with that predicate.

• Data Properties: In this card, all the data properties are shown and the same functionalities of the
previous boxes are provided.

Future Internet 2018, 10, 81 10 of 30

• Literals: Through this box, it is possible to see all the literals (i.e., values of the datatype properties)
found in the knowledge base and move them or toggle their visibility.

• Filter Using SPARQL: While the previous boxes allow modifying the view without any
knowledge of the SPARQL query language, more complex analysis are possible through this card.
The results of the SPARQL query are then shown on a new semantic plane or on a set of semantic
planes (i.e., one for each variable in the variable list of the query). The text area in this box is also
used to input a SPARQL construct query for the initial extraction of the knowledge base.

• Plane names: Moving object from one plane to another causes the creation of semantic planes.
The user, who knows the real meaning of a plane, can set and update the name through this box.

3. Use Cases

This Section proposes three use cases to see Tarsier in action. The first use case is a didactic scenario
based on the FOAF ontology, often proposed by the authors to student of the course “Interoperability
of Embedded Systems” that inspired the tool. In the second one, Tarsier is used to visualize data
extracted from DBpedia, while in the third we propose a different use case based on the reification
pattern.

3.1. Use Case #1: Teaching through FOAF

From the didactic point of view, Tarsier may help to face the learning curve of Semantic Web
technologies. Tarsier allows visualizing an RDF graph, being it an ontology or the content of a store
and isolate the concepts of interest, while still maintaining a view to the rest of the data. It is not
intended to build or modify RDF stores, but rather to explore and debug. It can then be considered as
part of a student or developer toolkit, together with ontology editors, dashboards and APIs.

The default color scheme, also visible in the following examples, is based on the one proposed by
the well-known ontology editor Protégé (https://protege.stanford.edu/). Classes are depicted with
the orange color, datatype and object properties, respectively, with green and blue, while the color
dark purple is used to draw individuals. A little modification consists in the adoption of the color
red to mark the property rdf:type, which is, in our opinion, very important to quickly identify the
relationship between a class and its instances. Lastly, blank nodes are represented with light purple.

Based on the FOAF ontology (http://xmlns.com/foaf/spec/) (one of the first met by students
approaching Semantic Web technologies), we propose a simple knowledge base representing people,
projects and relations among them. For the sake of clarity, the size of the knowledge base will be kept
small. This is not limiting, since the UI proposes intuitive filtering functions to hide unwanted items.
Displaying only a small-sized graph, the potentiality of Tarsier may emerge even through static images.
Using Tarsier, we want to visually answer to the following questions:

1. Is there a person without friends?
2. Is there any un-assigned project?
3. Do Person1 and Person2 share any projects?

Before answering the questions, it is important to introduce the knowledge base adopted in these
examples. To do so, Table 1 briefly summarizes the content of the knowledge base. The graphical
representation of the full graph is instead proposed by Figure 6.

https://protege.stanford.edu/
http://xmlns.com/foaf/spec/

Future Internet 2018, 10, 81 11 of 30

Table 1. Use Case #1: Summary of the knowledge base.

OWL Ontology T-Box Content

Classes (Person, Project ∈ foaf) 2
Object Properties (knows, currentProject ∈ foaf) 2
Datatype Properties (name, surname, status ∈ foaf) 2

OWL Ontology A-Box Content

Persons 25
Projects 5
Links among persons (i.e., foaf:knows) 250
Links persons-projects (i.e., foaf:currentProject) 125

Figure 6. Full knowledge base of the Use Case #1.

Question 1: Is there a person without friends? This question can be answered in multiple ways.
For example, we may issue a SPARQL query such as the following one:

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT ?p1
WHERE {

?p1 rdf:type foaf:Person .
?p2 rdf:type foaf:Person .
FILTER NOT EXISTS { ?p1 foaf:knows ?p2 } .
FILTER NOT EXISTS { ?p2 foaf:knows ?p1 } .
FILTER (?p1 != ?p2)

}

However, Tarsier provides an even simpler way to achieve this scope through the creation of the
following semantic planes. In order, the user should:

(a) Create a first semantic plane containing all the instances of the class foaf:Person. This causes
the instances and their datatype properties to be moved above the rest of the knowledge base.

(b) Create a second semantic plane containing all the instances of the class foaf:Person that are
involved in a friendship relationship (i.e., being either the subject or the object of a foaf:knows

Future Internet 2018, 10, 81 12 of 30

triple). In this way, all persons without friends, if any, remain on the previously created plane.
This can be done by selecting the object property foaf:knows and clicking on Raise (S and O).

(c) Finally, just to have a better view, it is possible to hide unwanted information (e.g., all the datatype
properties and all the object properties except foaf:knows).

The previous steps are shown in Figure 7. Through the semantic planes, the existence of an
instance of the class foaf:Person not linked to the others that stand on the mid-plane renamed as
“Persons with no friends” is then immediately noticed. To enhance the readability, datatype properties
and object properties other than foaf:knows were hidden through the UI commands.

Figure 7. Use Case #1, Question 1: From the full knowledge base, a new semantic plane containing all
the instances of the class foaf:Person is created (a). Then, all the instances involved in a friendship
are moved to a second plane (b). All the unnecessary edges are hidden to notice one instance of the
class foaf:Person with no incoming or outgoing foaf:knows edges (c).

Question 2: Is there any unassigned project? Finding unassigned projects is the second task. One could
answer this question through the following query:

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
SELECT ?p
WHERE {

?p rdf:type foaf:Project .
?person rdf:type foaf:Person .
FILTER NOT EXISTS { ?person foaf:currentProject ?p }

}

However, Tarsier allows retrieving and showing the same information without having to know
the SPARQL query language. Again, the user may draw upon semantic planes by (in order):

(a) Creating a semantic plane containing all the projects (i.e., selecting the class foaf:Project and
clicking on Raise instances); and

(b) Hiding all the data properties and all the arcs related to foaf:knows and rdf:type.

The result of these actions is shown in Figure 8. The user may immediately notice that all the
existing projects are assigned to instances of the class foaf:Person.

Future Internet 2018, 10, 81 13 of 30

Figure 8. Use Case #1, Question 2: The semantic plane of the projects clearly highlight that all projects
are bound to at least one person (a). This is more evident when unnecessary edges are hidden (b).

Question 3: Do Person1 and Person2 share any projects? The third question can, once again, be answered
through a SPARQL query:

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
ASK {

foaf:Person1 foaf:currentProject ?p .
foaf:Person2 foaf:currentProject ?p

}

Once again, the user may avoid typing a SPARQL Query creating a semantic plane for the projects
(Step a) and a semantic plane hosting only the resources foaf:Person1 and foaf:Person2 (Step b).
Hiding object properties different from foaf:currentProject and all the datatype properties (Step c),
it is easy to notice that one of the projects (hosted by the middle semantic plane) presents two incoming
edges from the topmost plane (the one related to the selected persons). Thus, it is possible to verify that
the previous question has an affirmative answer and, if needed, a click on the project reveals further
information. These steps and the results are visualized in Figure 9.

Figure 9. Use Case #1, Question 3: Do foaf:Person1 and foaf:Person2 work on at least one common
project? To answer this question we start creating a semantic plane hosting all the projects (a). Then, a
second plane hosting foaf:Person1 and foaf:Person2 is created (b). Hiding unnecessary edges, it is
easy to identify a project where both work together (c).

Future Internet 2018, 10, 81 14 of 30

3.2. Use Case #2: Exploring DBpedia

DBpedia (http://dbpedia.org) is a Public Data Infrastructure for a Large, Multilingual, Semantic
Knowledge Graph. As stated in the Introduction, a tool for the visualization of RDF graphs should
provide functionalities to declare the portion of the knowledge base that the user intends to inspect.
This is particularly true with DBpedia, since visualizing a graph containing 6.6 M entities (as of the
last official release dated 2017) can be both heavy and slow to compute and ineffective from the point
of view of the results. Thus, the first step when using Tarsier with DBpedia should be the definition
of the subgraph of interest through a proper SPARQL CONSTRUCT. In this section, we focus on a
specific use case, i.e. retrieving from DBpedia and visualizing the following.

All the artists born in Bologna between 1000 AD and 2000 AD and people who inspired them.

The desired information can be retrieved from DBpedia with a SPARQL query such as the
following:

PREFIX : <http :// dbpedia.org/resource/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX dbo: <http :// dbpedia.org/ontology/>
SELECT ?artist ?artBirthD ?artDeathD ?artBirthP ?artName ?ins ?insName ?insBirthD
?insDeathD ?insBirthP ?insDeathP
WHERE {

?artist rdf:type dbo:Artist ;
rdf:type foaf:Person ;
foaf:name ?artName ;
dbo:birthDate ?artBirthD ;
dbo:birthPlace :Bologna .

OPTIONAL {
?artist dbo:deathDate ?artDeathD } .

OPTIONAL {
?artist dbo:deathPlace ?artDeathP } .

OPTIONAL {
?artist dbo:influencedBy ?ins .
?ins rdf:type foaf:Person ;

dbo:birthPlace ?insBirthP ;
dbo:birthDate ?insBirthD .

OPTIONAL {
?ins dbo:deathPlace ?insDeathP ;

dbo:deathDate ?insDeathD }} .
FILTER (? artBirthD > "1000 -01 -01"^^xsd:date).
FILTER (? artBirthD < "2000 -01 -01"^^xsd:date)

}

From the original SPARQL SELECT query, it is possible to design a specific SPARQL CONSTRUCT
query to define a graph with the same meaning:

http://dbpedia.org

Future Internet 2018, 10, 81 15 of 30

PREFIX : <http :// dbpedia.org/resource/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
PREFIX dbo: <http :// dbpedia.org/ontology/>
CONSTRUCT {

?artist rdf:type dbo:Artist ;
rdf:type foaf:Person ;
foaf:name ?artName ;
dbo:birthDate ?artBirthD ;
dbo:birthPlace :Bologna ;
dbo:deathDate ?artDeathD ;
dbo:deathPlace ?artDeathP ;
dbo:influencedBy ?ins .

?artDeathP rdf:type dbo:Place .
:Bologna rdf:type dbo:Place .
?ins rdf:type foaf:Person ;

dbo:birthPlace ?insBirthP ;
dbo:birthDate ?insBirthD ;
dbo:deathPlace ?insDeathP ;
dbo:deathDate ?insDeathD .

?insDeathP rdf:type dbo:Place .
?insBirthP rdf:type dbo:Place .

}
WHERE {

?artist rdf:type dbo:Artist ;
rdf:type foaf:Person ;
foaf:name ?artName ;
dbo:birthDate ?artBirthD ;
dbo:birthPlace :Bologna .

OPTIONAL {
?artist dbo:deathDate ?artDeathD } .

OPTIONAL {
?artist dbo:deathPlace ?artDeathP } .

OPTIONAL {
?artist dbo:influencedBy ?ins .
?ins rdf:type foaf:Person ;

dbo:birthPlace ?insBirthP ;
dbo:birthDate ?insBirthD .

OPTIONAL {
?ins dbo:deathPlace ?insDeathP ;

dbo:deathDate ?insDeathD }} .
FILTER (? artBirthD > "1000 -01 -01"^^xsd:date).
FILTER (? artBirthD < "2000 -01 -01"^^xsd:date)

}

Using Tarsier, the user is then able to explore the subgraph, as shown in Figure 10.

Future Internet 2018, 10, 81 16 of 30

Figure 10. Visualization of the graph extracted from DBpedia (Use Case #2), containing all the artists
born in Bologna between 1000 AD and 2000 AD and people who inspired them.

The subgraph extracted with the CONSTRUCT can be browsed by using the mouse and clicking
on spheres and edges to see the relative data. However, where Tarsier comes in help is answering
questions through the use of semantic planes. Based on the knowledge base just retrieved, we propose
three questions:

1. Are there any relations among influencers?
2. Are there any connections between living artists and influencers?
3. Are there any living artists?

Question 1: Are there any relations among influencers? Answering this question is easy through the use
of semantic planes. In fact, it is sufficient to create a semantic plane hosting influencers (Step a) and
hide unwanted information (Step b), to notice the presence of two links among influencers (Figure 11).
Clicking on these links, it is possible to discover that Carlo Cignani was influenced by Francesco Albani
and Ludovico Carracci was influenced by Annibale Carracci. Note that, in Figure 11, all other object
properties and all data properties were hidden through the proper controls.

Future Internet 2018, 10, 81 17 of 30

Figure 11. Use Case #2, Question 1: A semantic plane showing the influencers, placed above the
semantic plane with the rest of the KB (a). Hiding unnecessary edges produces a more effective
visualization (b).

Question 2: Are there any connections between living artists and influencers? An answer to this question
can be easily found with two iterative steps that corresponds to the creation of two semantic planes:
the first dedicated to influencers, and the second to living artists. This second plane can be created
with a simple SPARQL query:

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX dbo: <http :// dbpedia.org/ontology/>
SELECT ?art
WHERE {

?art rdf:type dbo:Artist .
FILTER NOT EXISTS { ?art dbo:deathPlace ?dp }.
FILTER NOT EXISTS { ?art dbo:deathDate ?dd }

}

A third optional step is to hide unwanted information. These steps and the resulting visualization
are depicted in Figure 12. This picture clearly highlights the absence of connections between the two
new semantic planes. Thus, at least according to DBpedia, none of the living artists born in Bologna is
influenced by another artist.

Future Internet 2018, 10, 81 18 of 30

Figure 12. Use Case #2, Question 2: A semantic plane hosting influencers is created on top of the
ground plane (a). A second semantic plane containing the living artists stands above the semantic
plane of the influencers (b). No links between these two planes exists (c). At the bottom, the rest of the
knowledge base.

Question 3: Are there any living artists? To answer this question, it is sufficient to move all the artists to
a dedicated semantic plane and hide all the data properties except dbo:deathDate. These two steps
are depicted in Figure 13a,b. All the resources not connected to a green sphere are living artists. The
task is then achieved. Figure 13c shows a close-up on the second plane where resources without visible
data properties can be considered as living artists. This closer look helps in noticing something strange
in the knowledge base. Through Tarsier, in fact, it is easy to notice that many resources have more
than one visible green ball, i.e., they died more than once. This is the case, for example, of Alessandro
Tiarini, for which the death date is reported as “1668-02-08” and “"1668-2-8” (clearly the same date
with different formatting) or the case of Domenichino which instead has two death dates that differ
not only for the formatting, but also for the value of the year (“1641-4-6” and “1648-04-06”).

Therefore, Tarsier allowed identifying the wrong use of a functional property.

Figure 13. Use Case #2, Question 3: A semantic plane hosting artists is created on top of the ground
plane (a). Unnecessary edges are hidden and the remaining green spheres refer to the dbo:deathDate
property (b). Having more than one of these spheres means that the related artist has more than one
death date (c).

3.3. Reificated KBs

The use case presented in this section still involves FOAF with persons and projects.
The knowledge base adopted in this use case is a very simple one showing relationships among
people and projects. Organizations (yet a concept borrowed from FOAF) confirms the relationships

Future Internet 2018, 10, 81 19 of 30

by also adding a start date and the envisioned end date (if any). The confirmation of a relationship
between a person and a project, in this sample knowledge base, is expressed through the reification
pattern. In this specific case, the standard reification [12] (involving then the rdf:Statement class) will
be take as a reference point. A summary of the knowledge base is proposed in Table 2.

Table 2. Use Case #3: Summary of the Knowledge Base.

OWL Ontology T-Box Content

Classes
(Person, Project, Organization ∈ foaf, Statement ∈ rdf) 4

Object Properties (currentProject ∈ foaf, ackBy, startDate, endDate ∈
ns, subject, predicate, object ∈ rdf) 6

Datatype Properties (name, surname, status ∈ foaf, object ∈ rdf) 5

OWL Ontology A-Box Content

Persons 20
Projects 5
Organizations 2
Links persons-projects (i.e., foaf:currentProject) 20
Links organizations-persons (i.e., foaf:member) 20
Acknowledged statements (i.e., ns:ackBy) 20
Statements time-stamped with ns:startDate 20
Statements time-stamped with ns:endDate 10

Before presenting the example in detail, a brief introduction to standard reification is proposed.
Through RDF, information can be easily represented as a set of triples (subject, predicate and object).
Here is an example:

foaf:Person1 foaf:currentProject foaf:ProjA

Sometimes, this it is not enough and there is the need to state something more about a given triple.
This can be achieved through the reification pattern, where a triple t = (s, p, o) is broke down into four
triples. The first is used to declare a statement, and the others to express its components. Thus, the
previous triple can be decomposed as follows:

ns:St1 rdf:type rdf:Statement
ns:St1 rdf:subject foaf:Person1
ns:St1 rdf:predicate foaf:currentProject
ns:St1 rdf:object foaf:ProjA

(where ns is a custom namespace). In this way, information related to the previous triple can be
expressed by simply referring to the statement as follows:

ns:St1 ns:ackBy foaf:Organization1
ns:St1 ns:startDate ‘‘...’’
ns:St1 ns:endDate ‘‘...’’

The unfiltered content of the knowledge base is presented in Figure 14, while Figure 15 shows one
of the present statements on a dedicated plane. This visualization allows viewing the subject, predicate
and object composing the triple (again, a click on these items allows seeing all the related information).
In the described scenario, one instance of the class rdf:Statement is used to link a person to its current
project. Organizations may acknowledge the triple and append information to each statement as the
start and end date of the collaboration. Link outgoing from the statement (i.e., the pink sphere, since in
our case is a blank node) represent the information appended to it by the Organization: in this case,
only a data property is bound to the statement, so no end date is envisioned for the collaboration of

Future Internet 2018, 10, 81 20 of 30

the person with that project. The presence of the underlying semantic plane (i.e., the ground) name
allows maintaining a view on the rest of the knowledge base, even when looking at a single statement.
It is then possible to notice, in the specific example, that the predicate is linked to the ground by a high
number of links, so many other statements may have this predicate; the project only has three links
with the ground (a click on them reveals that are links of type foaf:currentProject).

Figure 14. Use Case #3: The unfiltered knowledge base of the reification use case.

Figure 15. Use Case #3: A statement has been moved to a dedicated plane.

In Figure 16, another example based on the same knowledge base is proposed. All the statements
have been moved to a proper semantic plane (Step a), while one of the organizations (i.e., instances
of foaf:Organization) was moved to the topmost plane (Step b). Then, all the rdf:type edges have
been hidden for the sake of readability. This allows visually identifying the relationship among
the selected organization and all the instances of rdf:Statement. It is then easy to notice how this
organization took the burden of acknowledging all of the present statements.

Future Internet 2018, 10, 81 21 of 30

Figure 16. Use Case #3: A first semantic plane hosts instances of the class rdf:Statement (a). A
multi-planar view with a topmost semantic plane dedicated to foaf:Organization1 shows the link
among the organization and the statements (b). Then, unnecessary edges are hidden (c).

4. Evaluation

In this section, the preliminary results of the evaluation of the user experience are presented
(Section 4.1), followed by a computational assessment of the performance of the tool (Section 4.2).

4.1. User Evaluation

Since Tarsier was mainly born as a tool to support students dealing with Semantic Web
technologies, an evaluation of the user experience is important to assess the validity of the approach
and identify possible improvements. Sixteen participants were selected among the students attending
the course “Interoperability of Embedded Systems” held at the Computer Engineering faculty of the
University of Bologna. Six of them have had previous minor experience on Semantic technologies. For
the others, this university course has been the first contact with RDF knowledge bases. User evaluation
methods based on a set of tasks to assess efficiency and effectiveness were employed. The evaluation
was preceded by a short presentation of the tool (10 min) where the basics of the UI and the aim
of the tool were discussed. Then, the experimenters were free to explore the tool and perform a
feature walkthrough (10 min). Through the concurrent think-aloud protocol (CTA), we gathered the
insights of users’ cognitive processes while both free experimenting and performing five assigned
tasks characterized by increasing complexity. In the first three tests, they were asked to interact with a
local SPARQL Endpoint based on SEPA [13], the same adopted by students for their final assessment
project. The remaining tests were about the visualization of data contained in DBpedia. Participants
were free to allocate the desired amount of time to carry out the assigned tasks for a total time of
one hour.

At the end of the test, students completed a survey with two set of questions: the first task-specific,
intended to understand how the user carried out each task, while the second aimed at the overall
evaluation of the tool. Students were also allowed to write a short sentence after each question
to express their opinion and highlight strong and weak points of the tool and its approach based
on semantic planes. The test was intended to assess the level of usability and the learning curve,
the overall feedback and the perceived level of utility and novelty. This was achieved through ten
five-point Likert items (selected scale: Strongly disagree, Disagree, Neutral, Agree, and Strongly Agree).

The results of the final users questionnaires are shown in Figure 17. The preliminary results suggest
that the tool is useful for newcomers, as well as effective to understand data. The idea of semantic planes
and the filtering mechanism were judged positively by all the participants. Among the suggestions
received from the students, the most common was related to “adding more visual tips and feedbacks”.
This request was promptly accepted and new messages to confirm the action performed by the user were
added. Moreover, a help screen was added to further guide a new user to the tool and three introductory

Future Internet 2018, 10, 81 22 of 30

videoclips (available on the GitHub page: https://github.com/desmovalvo/tarsier) showcase it through
three examples based on the three use cases proposed in this paper.

Figure 17. Mean and standard error of the mean (SEM) of the results of the questionnaire items.

4.2. Performance Evaluation

Even though performance is not a primary aspect of inspection tools including Tarsier, this section
presents the results of preliminary evaluation tests. Intuitively, the time needed to draw the graph
depends on three main factors:

• the amount of data to be traced (i.e., the number of meshes);
• the requested level of detail that is one of the parameters configurable by the user; and
• wether the 3D scene has been initialized (i.e., the latter condition is defined cold start).

A generic dataset proposed with five different sizes was utilized. Datasets are identified by labels
DS#i with i = 1, . . . , 5. Dataset DS#i contains 200 · i triples, and the full representation requires drawing
200 · i + 1 spherical meshes and 200 · i bezier curves (adopted for datatype and object properties).
For the purpose of this test, the specific content of the knowledge base does not influence the evaluation.

Every dataset was tested with both a cold start condition and with an already initialized scene.
Four LOD values were tested (4, 8, 12 and 16). All tests were performed on a Dell Alienware with
8-core Intel(R) Core(TM) i7-4720HQ CPU at 2.60GHz and 8 GB RAM. Both server and client were
running on the same machine using Google Chrome 64.0.

Figures 18a, 19a, 20a, 21a and 22a report the results of cold start test, while Figures 18b, 19b, 20b,
21b and 22b report the results of tests executed on an instance of Tarsier where the scene was already
initialized. The charts confirm the expected behavior of the application: time needed to draw the
graph grows with the size of data and with the requested level of detail. Furthermore, a cold start of
Tarsier (i.e., where the scene is not yet initialized) requires a higher number of milliseconds to complete
the drawing. Lastly, Figure 23 compares the time needed to identify the role of each RDF term in the
knowledge base for the five different datasets.

https://github.com/desmovalvo/tarsier

Future Internet 2018, 10, 81 23 of 30

(a) DS#1 (Cold Start) (b) DS#1

Figure 18. Time to represent DS#1.

(a) DS#2 (Cold Start) (b) DS#2

Figure 19. Time to represent DS#2.

Future Internet 2018, 10, 81 24 of 30

(a) DS#3 (Cold Start) (b) DS#3

Figure 20. Time to represent DS#3.

(a) DS#4 (Cold Start) (b) DS#4

Figure 21. Time to represent DS#4.

Future Internet 2018, 10, 81 25 of 30

(a) DS#5 (Cold Start) (b) DS#5

Figure 22. Time to represent DS#5.

Figure 23. Time employed by the data extractor to analyze data depending on the dataset.

5. Related Work

Graph theory [14] and the use of graph data structures have found their application in several
domains, from chemistry and biology, to social sciences, networks and, of course, the Semantic Web [1].
In particular, ontologies and Linked Data take the form of oriented and labeled graphs and so the tools
for their interactive visualization could be classified as: (1) tools for the visualization and exploration
of all kinds of graphs with the support of plugins/extensions to import semantic data; and (2) tools

Future Internet 2018, 10, 81 26 of 30

specifically designed for the Semantic Web. In general, the former offer sophisticated analysis and
exploration features for graphs expert users, while the latter implement a reduced set of functions
but are more suitable for Semantic Web users. While in the rest of this section we focus on the use
of graphs, we would like to mention that this is not the only approach to RDF data visualization,
as demonstrated by Gallego et al. [15] who proposed for example a method to visualize RDF data
based on a 3D adjacency matrix. In the literature, many algorithms to layout graphs and interact
with them have been proposed. Among all the algorithms we have been able to discover, here we
provide the ones that, from our point of view, are more related to our scenario. Gansner et al. [16]
proposed a method for drawing directed graphs, and later on Gansner and North [17] presented a
graph visualization software along its application in several fields. In 2007 Gansner and Koren [18]
focused on algorithms for positioning nodes and routing edges to maximize the readability of circular
layouts. An algorithm for drawing labeled nodes removing overlapping nodes and minimizing, at
the same time, the drawing area is presented by Gansner and Hu [19]. Binucci et al. [20] focused on
the problem of drawing arrows in directed graphs. Some problems related to 3D representation are
presented by Brandenburg et al. [21]. An algorithm and the related tool for grouping nodes in not
overlapping regions based on node attributes that allow a user to interactively filter the results is
presented by Shneiderman and Aris [22]. The main algorithms presented by Gansner et al. [23] are
implemented by the GraphViz open source graph visualization software [24], while, focusing on object
relationships, Gansner et al. [25] presented a tool for visualizing relational data with geographic-like
maps. Stolper et al. [26] presented a new idea of graph-level operations to provide a new model of
graph exploration along with the potential of discovering new network visualization techniques.
Wu et al. [27] made an interesting list of considerations about the methods used on average to build
visualization systems. For instance, the limited flexibility of some tools is highlighted, regarding
their specific context of use, or their lack of extensibility towards interactive use. A novel language is
presented, called DeVIL, that is able to correlate user interactions with the database views in a variety
of ways. The DeVIL program is then translated into a workflow that creates the interface and listens to
user’s direct and indirect requests. The main difference between those workflows and Tarsier is that
in the cited work the matter of discussion is how to visualize predefined views of a database in an
effective and if possible interactive way. That is, DeVIL requires users to know what is in the database.
Tarsier, on the other side, aims to allow exploration of the data stored and to offer a standard way to
interact with every semantic graph.

From our point of view and with respect to our aims, Gephi [28] represents the most interesting
tool in the graphs visualization and interaction category. The support to RDF can be provided by
two plugins: VirtuosoImporter (https://marketplace.gephi.org/plugin/virtuoso-importer/) and
SemanticWebImport (https://marketplace.gephi.org/plugin/semanticwebimport/). The latter offers
also the possibility of simple filtering using SPARQL. Another tool for network data integration,
analysis and visualization is Cytoscape (http://www.cytoscape.org/). In this case, the RDF support
is implemented by a set of extensions such as General SPARQL (http://apps.cytoscape.org/apps/
generalsparql) or OWLPlugin (http://apps.cytoscape.org/apps/owlplugin). We were not able to
load the datasets we would like to test but only the ones conforming with the BioPAX format (http:
//www.biopax.org/).

Moving to the research works more related to ontologies and Linked Data visualization, among
all the papers we have been able to go through, citetSayers2004 first attempted to visualize and
interact with an RDF graph using a web browser: the aim was to visualize only a portion of interest
through a research over literals. An incremental graph navigation method is presented by Dokulil
and Katreniakov [30] that proposed what they call “node merging” as a way to include into a vertex,
not only its label, but also a list of incoming and outgoing edges. In addition, Deligiannidis et al. [31]
proposed a tool implementing an incremental algorithm to layout the explored sub-graphs. Focusing on
not ontology-expert users, Lohmann et al. [32] presented a visual language based on a set of graphical
primitives and a color scheme (VOWL 2). Instances are not considered in this tool, although their

https://marketplace.gephi.org/plugin/virtuoso-importer/
https://marketplace.gephi.org/plugin/semanticwebimport/
http://www.cytoscape.org/
http://apps.cytoscape.org/apps/generalsparql
http://apps.cytoscape.org/apps/generalsparql
http://apps.cytoscape.org/apps/owlplugin
http://www.biopax.org/
http://www.biopax.org/

Future Internet 2018, 10, 81 27 of 30

number can be shown for the selected class. An example of a tool implementing VOWL 2 is provided
by WebOWL (http://vowl.visualdataweb.org/webvowl.html). Another tool in this context is tFacet
(http://www.visualdataweb.org/tfacet.php) that has been presented by Brunk and Heim [33] and is
based on the concept of faceted exploration [34]. Facets can be extracted through SPARQL queries to
SPARQL endpoints and, also in this case the exploration starts with the limitation of the initial search
space to avoid displaying very large amount of data. Focusing on relationships discovery between
two or more nodes, Heim et al. [35] presented RelFinder (http://www.visualdataweb.org/relfinder.
php), a tool that implements a process consisting in four steps: object mapping, relationship search,
visualization, and interactive exploration. A last example of a tool designed for not expert users is
presented by Heim and Lohmann [36]. This tool aims at combining scatter plots (i.e., to support the
visual identification of linear correlations, clusters, patterns, and extreme values) with the interaction
metaphor of magic lenses [37]. For a general discussion on a model designed to describe and thus
better understand the human–computer interaction in the Semantic Web, we invite the reader to
refer to the paper by Heim et al. [38]. To the best of our knowledge, Dadzie and Pietriga [39] and
Nuzzolese et al. [40] published two of the most recent papers on semantic data visualization. In the
former, the authors investigated on different approaches for exploratory discovery and analysis of
Linked Data provided by a set of tools, while the latter authors focused on presenting a tool based on a
novel approach to Linked Data exploration named Encyclopedic Knowledge Patterns (EKPs).

We conclude this section by presenting a set of tools that we think can be representative of the
ones specifically designed for ontology and Linked Data visualization. The first is the query service
offered by WikiData (https://query.wikidata.org/): the user can formulate a SPARQL query and the
results are shown in many different ways, including a graph. Using the graph representation, the user
can navigate the graph by clicking on each node. Every click opens the direct relationships with other
nodes (i.e., first by presenting the number of resources). As stated at the beginning of this section, the
WikiData query service is an example of the different ways of presenting the results of a SPARQL query
(e.g., charts, tables, map, timeline, etc.). Another tool is RDF Gravity (http://semweb.salzburgresearch.
at/apps/rdf-gravity/). In a 2011 work, Bremer et al. (http://www.ebremer.com/nexus/2011-05-15)
investigated whether it would be possible to use semantics to enhance research collaborations within
scientists sharing interests in their field. Their software, which the authors were unable to find and
try, however, seems achievable with a wise use of Tarsier and might take advantage of the concept of
semantic plane to get better visualization of the knowledge retrieved.

LOD Live (http://en.lodlive.it/) offers a service to browse RDF resources through the interaction
with SPARQL endpoints (e.g., DBpedia). One can incrementally navigate the Linked Data starting
from a selected resource. Around a resource, a set of symbols represents different kinds of relationship,
such as direct relations, group of direct relations, inverse relations and group of inverse relations. A
specific symbol is assigned to the owl:sameAs property (i.e., a very relevant aspect when dealing with
heterogeneous data sources such as in the Linked Data domain). OWL visualization is also crucial
with reference to ontology design. One of the most used tool in this sense is Protégé (http://protege.
stanford.edu/). The Protégé ontology editor can be extended with plugins to visualize the ontology as a
graph [41,42]. This feature can be provided by plugins such as OntoGraf (http://protegewiki.stanford.
edu/wiki/OntoGraf), OWLViz (http://protegewiki.stanford.edu/wiki/OWLViz) and Jambalaya (http:
//protegewiki.stanford.edu/wiki/Jambalaya) (not supported by the last stable version of Protégé).
Ontograf allows to select a starting point in the ontology and then expand it to show subclass relations,
instances, datatype and object properties. Different automated positioning methods are provided, but
no repositioning and filtering mechanisms (e.g., based on SPARQL). OWLViz visualizes only classes
and “is-a” relationships among them. Jambalaya [43] is designed to show classes and instances, as
well as relationships. Jambalaya also provides support for grouping nodes based on relationships (e.g.,
subclasses are represented as nested node of the superclass). Lomov and Shishaev [44] proposed a
novel approach to the visualization of ontologies called cognitive frames. Through cognitive frames,
the knowledge of a target concept related to the visualized fragment of ontology can be conveyed to

http://vowl.visualdataweb.org/webvowl.html
http://www.visualdataweb.org/tfacet.php
http://www.visualdataweb.org/relfinder.php
http://www.visualdataweb.org/relfinder.php
https://query.wikidata.org/
http://semweb.salzburgresearch.at/apps/rdf-gravity/
http://semweb.salzburgresearch.at/apps/rdf-gravity/
http://www.ebremer.com/nexus/2011-05-15
http://en.lodlive.it/
http://protege.stanford.edu/
http://protege.stanford.edu/
http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OntoGraf
http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/Jambalaya
http://protegewiki.stanford.edu/wiki/Jambalaya

Future Internet 2018, 10, 81 28 of 30

the user. This approach is more focused on terminological data, rather than assertional data which are
the main focus of our work.

6. Conclusions

This paper presents Tarsier, an interactive tool for the visualization of RDF knowledge bases with
support for RDFS and OWL and its metaphore of Semantic planes that allows grouping all the RDF
terms sharing common concepts. Semantic planes can be created, modified and split through a set of
UI controls or through SPARQL 1.1 queries. The purpose of the presented tool is mainly to support: (1)
students learning how to deal with Semantic Web data representation formats; and (2) software
developers during the debugging of applications with RDF stores. In fact, through the pre-filtering
phase, it is possible to extract a subgraph from a very large dataset. Preliminary user evaluation tests
suggest that the three-dimensional visualization of the small- and medium-sized knowledge bases,
combined with the approach of semantic planes and a powerful filtering mechanism, is useful for
newcomers to understand the nature of data and its structure. Future, relevant enhancements of
Tarsier will consist in: (1) support for the whole set of SPARQL constructs (e.g., to support aggregation
functions); (2) alternative arrangement methods for meshes in the 3D space; and (3) support for
real-time visualization of data through semantic event processing architectures (e.g., [13,45,46]). This
would help to monitor the evolution of RDF resources through specific SPARQL subscriptions.

Author Contributions: Conceptualization, F.V., A.D.; Investigation, F.V., L.R. and F.A.; Funding Acquisition,
T.S.C.; Resources, T.S.C.; Software, F.V.; Visualization, F.V.; Writing-Original Draft, F.V., L.R., F.A. and A.D.;
Writing-Review & Editing, F.V., L.R., F.A. and C.A.

Funding: The work presented in this paper is funded by the Advanced Research Center on Electronic Systems
“Ercole De Castro” (ARCES), University of Bologna, 40125 Bologna, Italy.

Acknowledgments: The work presented in this paper is being developed at the Advanced Research Center on
Electronic Systems “Ercole De Castro” (ARCES), University of Bologna, 40125 Bologna, Italy.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Berners-Lee, T.; Hendler, J.; Lassila, O. The semantic web. Sci. Am. 2001, 284, 28–37. [CrossRef]
2. Gruber, T.R. Ontology. In Encyclopedia of Database Systems; Liu, L., Özsu, M.T., Eds.; Springer:

Berlin/Heidelberg, Germany, 2009.
3. Gyrard, A.; Zimmermann, A.; Sheth, A. Building IoT based applications for Smart Cities: How can ontology

catalogs help? IEEE Internet Things J. 2018, 1. [CrossRef]
4. Vandenbussche, P.Y.; Atemezing, G.A.; Poveda-Villalón, M.; Vatant, B. Linked Open Vocabularies (LOV):

A gateway to reusable semantic vocabularies on the Web. Semant. Web 2017, 8, 437–452. [CrossRef]
5. Chebotko, A.; Lu, S.; Jamil, H.M.; Fotouhi, F. Semantics Preserving SPARQL-to-SQL Query Translation for

Optional Graph Patterns; Tech. Rep. TR-DB-052006-CLJF; Wayne State University: Detroit, MI, USA, 2006.
6. Zhao, L.; Ichise, R. Ontology integration for linked data. J. Data Semant. 2014, 3, 237–254. [CrossRef]
7. Asin, A.; Gascon, D. 50 sensor applications for a smarter world. In Libelium Comunicaciones Distribuidas;

Tech. Rep.: Zaragoza, Spain, 2012.
8. Nguyen, V.; Bodenreider, O.; Sheth, A. Don’t like RDF reification?: Making statements about statements

using singleton property. In Proceedings of the ACM 23rd International Conference on World Wide Web,
Seoul, Korea, 7–11 April 2014; pp. 759–770.

9. D’Elia, A.; Perilli, L.; Viola, F.; Roffia, L.; Antoniazzi, F.; Canegallo, R.; Salmon Cinotti, T. A self-powered
WSAN for energy efficient heat distribution. In Proceedings of the 2016 IEEE Sensors Applications
Symposium (SAS), Catania, Italy, 20–22 April 2016; pp. 1–6.

10. D’Elia, A.; Viola, F.; Montori, F.; Felice, M.D.; Bedogni, L.; Bononi, L.; Borghetti, A.; Azzoni, P.; Bellavista, P.;
Tarchi, D.; et al. Impact of Interdisciplinary Research on Planning, Running, and Managing Electromobility
as a Smart Grid Extension. IEEE Access 2015, 3, 2281–2305. [CrossRef]

http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.1109/JIOT.2018.2854278
http://dx.doi.org/10.3233/SW-160213
http://dx.doi.org/10.1007/s13740-014-0041-9
http://dx.doi.org/10.1109/ACCESS.2015.2499118

Future Internet 2018, 10, 81 29 of 30

11. Motta, E.; Mulholland, P.; Peroni, S.; d’Aquin, M.; Gomez-Perez, J.M.; Mendez, V.; Zablith, F. A novel
approach to visualizing and navigating ontologies. In International Semantic Web Conference; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 470–486.

12. Hernández, D.; Hogan, A.; Krötzsch, M. Reifying RDF: What Works Well with Wikidata? In Proceedings of the
11th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS 2015), Bethlehem,
PA, USA, 11 October 2015; pp. 32–47.

13. Roffia, L.; Azzoni, P.; Aguzzi, C.; Viola, F.; Antoniazzi, F.; Salmon Cinotti, T. Dynamic Linked Data: A
SPARQL Event Processing Architecture. Future Internet 2018, 10, 36. [CrossRef]

14. Harary, F. Graph Theory; Addison-Wesley Series in Mathematics; Addison-Wesley Pub. Co.: Boston, MA,
USA, 1969.

15. Gallego, M.A.; Fernández, J.D.; Martínez-prieto, M.A.; Fuente, P.D. RDF Visualization Using a
Three-Dimensional Adjacency Matrix. In Proceedings of the 4th International Semantic Search Workshop
(SEMSEARCH2011), Hyderabad, India, 29 March 2011.

16. Gansner, E.R.; Koutsofios, E.; North, S.C.; Vo, K.P.a.V.K.P. A technique for drawing directed graphs\nA
technique for drawing directed graphs. IEEE Trans. Softw. Eng. 1993, 19, 214–230. [CrossRef]

17. Gansner, E.R.; North, S.C. An open graph visualization system and its applications to software engineering.
Softw. Pract. Exp. 2000, 30, 1203–1233. [CrossRef]

18. Gansner, E.; Koren, Y. Improved circular layouts. In Graph Drawing; Springer: Berlin/Heidelberg, Germany,
2007; pp. 386–398.

19. Gansner, E.R.; Hu, Y. Efficient, Proximity-Preserving Node Overlap Removal. J. Graph Algorithms Appl. 2010,
14, 53–74. [CrossRef]

20. Binucci, C.; Chimani, M.; Didimo, W.; Liotta, G.; Montecchiani, F. Placing Arrows in Directed Graph Drawings;
Springer: Cham, Switzerland, 2016; pp. 1–19.

21. Brandenburg, F.J.; Eppstein, D.; Goodrich, M.T.; Kobourov, S.G.; Liotta, G.; Mutzel, P. Selected Open
Problems in Graph Drawing. In Graph Drawing; Liotta, G., Ed.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2003; Volume 2912, pp. 515–539.

22. Shneiderman, B.; Aris, A. Network visualization by semantic substrates. IEEE Trans. Vis. Comput. Graph.
2006, 12, 733–740. [CrossRef] [PubMed]

23. Gansner, E.R.; Koren, Y.; North, S. Graph Drawing by Stress Majorization. In Proceedings of the 12th
International Symposium on Graph Drawing (GD 2004), New York, NY, USA, 29 September–2 October 2004;
Volume LNCS 3383, pp. 239–250.

24. Ellson, J.; Gansner, E.R.; Koutsofios, E.; North, S.C.; Woodhull, G. Graphviz and Dynagraph—Static and
Dynamic Graph Drawing Tools. In Graph Drawing Software; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 127–148.

25. Gansner, E.R.; Hu, Y.; Kobourov, S.G. GMap: Drawing Graphs as Maps; Springer: Berlin/Heidelberg,
Germany, 2009.

26. Stolper, C.D.; Kahng, M.; Lin, Z.; Foerster, F.; Goel, A.; Stasko, J.; Chau, D.H. GLO-STIX: Graph-Level
Operations for Specifying Techniques and Interactive eXploration. IEEE Trans. Vis. Comput. Graph. 2014,
20, 2320–2328. [CrossRef] [PubMed]

27. Wu, E.; Psallidas, F.; Miao, Z.; Zhang, H.; Rettig, L.; Wu, Y.; Sellam, T. Combining Design and Performance
in a Data Visualization Management System. In Proceedings of the 8th Biennial Conference on Innovative
Data Systems Research (CIDR ’17), Chaminade, California, 8–11 January 2017.

28. Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating
Networks. Third Int. AAAI Conf. Weblogs Soc. Media 2009, 8, 361–362.

29. Sayers, C. Node-Centric Rdf Graph Visualization; Mobile and Media Systems Laboratory, HP Labs: Palo Alto,
CA, USA, 2004.

30. Dokulil, J.; Katreniakov, J. Visualization of Large Schemaless RDF Data. In Proceedings of the International
Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM’07), Papeete,
France, 4–9 November 2007; pp. 243–248.

31. Deligiannidis, L.; Kochut, K.J.; Sheth, A.P. RDF Data Exploration and Visualization. In Proceedings of
the ACM First Workshop on CyberInfrastructure: Information Management in eScience, Lisbon, Portugal,
9 November 2007; pp. 39–46. [CrossRef]

http://dx.doi.org/10.3390/fi10040036
http://dx.doi.org/10.1109/32.221135
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1203::AID-SPE338>3.0.CO;2-N
http://dx.doi.org/10.7155/jgaa.00198
http://dx.doi.org/10.1109/TVCG.2006.166
http://www.ncbi.nlm.nih.gov/pubmed/17080794
http://dx.doi.org/10.1109/TVCG.2014.2346444
http://www.ncbi.nlm.nih.gov/pubmed/26356946
http://dx.doi.org/10.1145/1317353.1317362

Future Internet 2018, 10, 81 30 of 30

32. Lohmann, S.; Negru, S.; Haag, F.; Ertl, T. VOWL2: User-Oriented Visualization of Ontologies. In Proceedings
of the Knowledge Engineering and Knowledge Management: 19th International Conference, EKAW 2014,
Linköping, Sweden, 24–28 November 2014.

33. Brunk, S.; Heim, P. Tfacet: Hierarchical faceted exploration of semantic data using well-known interaction
concepts. CEUR Workshop Proc. 2011, 817, 31–36.

34. Yee, K.P.; Swearingen, K.; Li, K.; Hearst, M. Faceted metadata for image search and browsing. In Proceedings
of the ACM SIGCHI Conference on Human Factors in Computing Systems, Ft. Lauderdale, FL, USA, 5–10
April 2003; pp. 401–408.

35. Heim, P.; Lohmann, S.; Stegemann, T. Interactive relationship discovery via the semantic web. In Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Berlin/Heidelberg, Germany, 2010; Volume 6088 LNCS, pp. 303–317.

36. Heim, P.; Lohmann, S. Semlens: Visual analysis of semantic data with scatter plots and semantic lenses.
In Proceedings of the 7th International Conference on Semantic Systems—I-Semantics ’11, Graz, Austria, 7–9
September 2011; pp. 175–178.

37. Bier, E.A.; Stone, M.C.; Pier, K.; Buxton, W.; DeRose, T.D. Toolglass and magic lenses: The see-through
interface. In Proceedings of the ACM 20th Annual Conference on Computer Graphics and Interactive
Techniques, Anaheim, CA, USA, 2–6 August 1993; pp. 73–80.

38. Heim, P.; Schlegel, T.; Ertl, T. A Model for Human-Computer Interaction in the Semantic Web Categories
and Subject Descriptors. In Proceedings of the 7th International Conference on Semantic Systems, Graz,
Austria, 7–9 September 2011; pp. 150–158.

39. Dadzie, A.S.; Pietriga, E. Visualisation of linked data—Reprise. Semant. Web 2017, 8, 1–21. [CrossRef]
40. Nuzzolese, A.G.; Presutti, V.; Gangemi, A.; Peroni, S.; Ciancarini, P. Aemoo: Linked data exploration based

on knowledge patterns. Semant. Web 2017, 8, 87–112. [CrossRef]
41. Storey, M.A.; Lintern, R.; Ernst, N.; Perrin, D. Visualization and protege. In Proceedings of the 7th

International Protégé Conference, Bethesda, Maryland, 6–9 July 2004.
42. Sivakumar, R.; Arivoli, P. Ontology visualization PROTÉGÉ tools—A review. Int. J. Adv. Inf. Technol. 2011,

1, 1–11. [CrossRef]
43. Storey, M.; Musen, M.; Silva, J.; Best, C.; Ernst, N.; Fergerson, R.; Noy, N. Jambalaya: Interactive visualization

to enhance ontology authoring and knowledge acquisition in Protégé. In Proceedings of the Workshop on
Interactive Tools for Knowledge Capture (K-CAP-2001), Victoria, BC, Canada, 20 October 2001; pp. 1–9.
[CrossRef]

44. Lomov, P.; Shishaev, M. Creating Cognitive Frames Based on Ontology Design Patterns for Ontology
Visualization. In Knowledge Engineering and the Semantic Web; Klinov, P., Mouromtsev, D., Eds.; Springer
International Publishing: Cham, Switzerland, 2014; pp. 90–104.

45. Roffia, L.; Morandi, F.; Kiljander, J.; D’Elia, A.; Vergari, F.; Viola, F.; Bononi, L.; Salmon Cinotti, T. A semantic
publish-subscribe architecture for the Internet of Things. IEEE Internet Things J. 2016, 3, 1274–1296. [CrossRef]

46. Rinne, M.; Nuutila, E. Constructing Event Processing Systems of Layered and Heterogeneous Events with
SPARQL. J. Data Semant. 2017, 6, 57–69. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3233/SW-160249
http://dx.doi.org/10.3233/SW-160222
http://dx.doi.org/0.5121/ijait.2011.1401
http://dx.doi.org/10.1145/502716.502778
http://dx.doi.org/10.1109/JIOT.2016.2587380
http://dx.doi.org/10.1007/s13740-016-0073-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Tarsier: Splitting Data among Semantic Planes
	Semantic Planes
	Tarsier Architecture
	Implementation
	Features
	Data Extractor
	User Interface

	Use Cases
	Use Case #1: Teaching through FOAF
	Use Case #2: Exploring DBpedia
	Reificated KBs

	Evaluation
	User Evaluation
	Performance Evaluation

	Related Work
	Conclusions
	References

