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Abstract. We explore the following question. Let G be the subgroup of

PSL(2, C) generated by the elements A and B , where A has two fixed points,

and B maps one fixed point of A onto the other; when is G discrete?

In conjunction with their work on the generalization of Jorgensen's inequal-

ity, Gehring and Martin [G-M] asked the following question (oral communica-

tion): Let G0 = (a,b) be the subgroup of PSL(2,C) generated by an elliptic

element a of order 6, and a parabolic element b, where b maps one fixed

point of a onto the other; is G0 discrete?

In this note, we give an affirmative answer to this question, describe some of

the properties of this interesting group, and explore the following more general

question:

Suppose a and b are elements of PSL(2, C), where a has exactly two fixed

points, and b maps one of these fixed points to the other. When is G0 — (a, b)

discrete?

1. We start with a necessary condition.

Proposition 1. If G0 is discrete, then either a is elliptic of order 2, 3, 4, or

6, or b is elliptic of order 2.

Proof. Normalize so that the fixed points of a are at 0 and oo, where b(0) =

oo. If b is not a half-turn (i.e., an elliptic element of order 2), then b(oo) ^ 0,

so a and bab~] have exactly the one fixed point at oo in common. Then the

commutator c — [a,bab~ ] = a(bab~ )a~ (bab~ )~ is parabolic with fixed

point at oo. In a discrete group, a loxodromic (including hyperbolic) element

and a parabolic element cannot share a fixed point, hence a is elliptic. It follows

that (a ,c) is a discrete group of Euclidean motions; hence the order of a must

be 2, 3, 4, or 6.     D

2. If b is a half-turn, then GQ preserves the fixed point set of a, so GQ con-

jugates a into a~  ; hence G0 is a Z2  extension of (a), the cyclic group
-
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176 BERNARD MASKIT

generated by a. It follows that, in this case, G0 is discrete if and only if (a)

is discrete. Of course (a) is discrete if and only if a is either loxodromic or

elliptic of finite order.

3. From here on we assume that b is not a half-turn, and that a isa geomet-

rically primitive elliptic transformation of order a = 2,3,4, or 6 (an elliptic

transformation is geometrically primitive if it is conjugate to a rotation of the

form z-»f Kl'9 z, q gZ). We will also assume that b maps one fixed point

of a onto the other. We will show below that G0 = (a, b) is discrete if b

is parabolic, hyperbolic, or a geometrically primitive elliptic transformation of

finite order. When it is necessary to make it clear which of these groups we are

referring to, we will label the group as G0(a,ô), where a is the order of a,

and either ô = 0, or S = oo, or a is an integer > 3. This has the following

meaning. If ô = 0, then b is hyperbolic; if ô — oo, then b is parabolic;

otherwise, b is a geometrically primitive elliptic transformation of order ô .

There are two other numbers that come up in conjunction with the number

a. The first is ß, defined by l/a + l/ß = 1/2 ; if a = 2, then ß = oo. The

second is y = ß/2. Note that ß is again an integer (including oo); also y is

an integer for a = 2,3, or 4, but not for a — 6.

We will show that these groups are discrete by explicitly constructing funda-

mental polyhedra, and using Poincaré's polyhedron theorem. A proof of this

theorem, along with the requisite definitions, can be found in [M, p. 73 ff].

We will need the following computation.

Lemma 1. Let a be an elliptic transformation of order a, with fixed points at

x and y. Let b be a Mobius transformation where b(x) = y. If a = 2, then

the commutator [a~l ,b~l] is parabolic, and if a = 3 or 4, then [a~ ,b~ ] is

elliptic of order y.

Proof. Normalize so that a has fixed points at 0 and oo, and so that ¿(0) = oo.

Write
(enila       0    \ .      (   s      t\

a={   0      e-«i/°)>        ¿=v-z-'    0)'

and compute the trace of the commutator.   D

One of the conclusions of Poincaré's polyhedron theorem is that one can

read off a presentation, in the usual group theoretical sense, from the identifi-

cations of the sides of the polyhedron. One is also often interested in knowing

which elements of a subgroup of PSL(2, C) are parabolic. Since every com-

mutative subgroup of rank > 1 in a discrete group of hyperbolic motions is

purely parabolic, it suffices to know the rank 1 parabolic subgroups. If one has

a given (convex) fundamental polyhedron P for the discrete group G, then

every fixed point of a parabolic element in G is equivalent to a point on the

boundary of P [M, p. 123]. It follows that one can also read off generators for

rank 1 parabolic subgroups from the identifications of the sides of P.
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SOME SPECIAL 2-GENERATOR KLEINIAN GROUPS 177

A presentation for a discrete subgroup H of PSL(2, C) is of the form H =

(ax,a2, ... : w"' — w22 ■■■ = 1), where the a. are generators of H, the w.

are words in these generators, and the a are either non-negative integers or

the symbol " oo ". The presentation has the following meaning. If one ignores

those words where a. — 0 or oo, then one has an ordinary presentation of the

algebraic structure of H. For each / where a . = oo, w] is parabolic, and the

maximal commutative subgroup of H containing it; has rank 1. Further, if

g is a parabolic element of H, where the maximal commutative subgroup of

H containing g has rank 1, then g is conjugate to a power of some w. with

a. — oo. For the purpose of uniformity of presentation, one sometimes has a

word of the form w   in the presentation; these have no meaning and should

be ignored.

Our polyhedra will all be convex, and will be constructed in the upper half-

space, H = {(z, t)\z G C, t > 0}, which we consider to be endowed with the

hyperbolic metric:

ds2 = r2(\dz\2 + dt2).

A (finite) convex polyhedron P in H is the intersection of a finite number

of (hyperbolic) half-spaces D. ; the half-space D. has boundary S¡ in H3, and

Sj has Euclidean boundary C   in C = C U {oo} . We will describe D. by B-,

the restriction of its Euclidean boundary to C. We denote the face of D lying

on the side S¡ by the same letter S¡ ; this should cause no confusion.

4. In this section, we explicitly construct fundamental polyhedra with identifi-

cations for a = 2,3, and 4, and for ô = 0, S > 3, and 6 = oo.

We start with some definitions. A Kleinian group G is a discrete subgroup

of PSL(2, C) ; it is of the first kind if every point of C is a limit point of G

(that is, every point is the limit of a sequence of points of the form {gm(x)} ,

where x is any point of H ); it is of the second kind otherwise.

If G is of the second kind, then the set of points on C at which G acts

discontinuously is called the regular set, and is denoted by Q = £l(G). If G is

finitely generated with Q./G connected (which is the only case that occurs here),

then Ahlfors' finiteness theorem asserts that Q/C7 can be represented as a closed

Riemann surface of genus p , from which a finite number of points have been

removed (these are identified as special points of order oo ), and the covering

is branched over finitely many points (these are identified as special points of

order s, where 5 is the order of branching). If in addition, every component of

Q is simply connected, then the signature of G is defined as (p ,n;sx, ... ,sj ,

where n is the total number of special points, and sx, ... ,sn are their orders.

A function group is a finitely generated Kleinian group where some compo-

nent of Q is kept invariant by the entire group. Function groups have more

complicated signatures (see [M, p. 271 ffj).
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178 BERNARD MASKIT

Theorem 1. For a = 2,3, or 4, the group GQ(a,S) is discrete. It has the

(Kleinian group) presentation:

G0 = (a,b: aa = b3 = [a~] ,b~lf = 1).

Further, GQ(a,S) is of the first kind if (a,ô) = (4,4), (4,3), or (3,3); it
is of the second kind otherwise. For the groups that are of the second kind, if

0^0, then every component of Q, is a circular disc, Q(C70)/C70 is connected

and has signature (0,3;y ,â,ô). If 3 = 0, then £l(GQ) is connected but not

simply connected; it can be topologically described by a function group signature

as follows: the signature has one part of basic signature (0,3;a,a,y), and there

is an a-connector between the two special points of order a.

Proof. We first remark that the statement about function group signatures can

be restated as follows: £l(G0)/G0 is a single Riemann surface of signature

(1,1 ;y), and there is a nondividing simple loop on this surface so that a is

the smallest positive power for which this loop lifts to a loop in Q.

Construction of GJa,0),a = 2,3,4

Normalize so that b(z) = X z, X > I, and so that a has its fixed points

at 1 and X . If a ^ 2, choose a, as opposed to a , so that the center of

the isometric circle of a lies in the upper half-plane. Define P by the sides

Bx = {z\ \z\ > 1} U {oo} ; B2 = {z\ \z\ < X} ; B3 is the outside of the isometric

circle of a ; and BA is the outside of the isometric circle of a- ; if a = 2, then

53 = S4 (see Figure 1, for a = 3 ). Observe that b(Sx) = S2, and a(S3) = S4 .

For a/2, the faces S3 and S4 meet at an angle of 2n/a ; this edge is

not equivalent to any other edge. The faces Sx and S2 meet the faces S3 and

S4 at an angle of n/ß ; these four edges are equivalent, and form a cycle of

Figure 1
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SOME SPECIAL 2-GENERATOR KLEINIAN GROUPS 179

edges, the sum of the angles in this cycle is In/y. Lemma 1 shows that the

corresponding cycle transformation, [a~l ,b~l], has order y.

For a = 2, the polyhedron has no edges; there is one reflection relation,

namely a =1; and there is one infinite cycle transformation, [a~\b~ ],

which is parabolic.

The information above shows that our polyhedron with identifications sat-

isfies the hypotheses of Poincaré's polyhedron theorem. We conclude that

G0(a, 0) is discrete, and has the given presentation.

Since the boundary of this fundamental polyhedron is a fundamental domain

for the action of G on C [M, p. 116], we see at once that Q(G0)/G0 is con-

nected; hence G0 is a function group. Identifying the sides of this fundamental

domain, we see that Q(C70)/t70 is a torus with one special point of order y . To

obtain the Kleinian group signature, note that there is a simple loop in Q(G0)

that is precisely invariant under (a) ; the projection of this loop is a simple

loop, which, when raised to the ath power, lifts to a loop. It follows from

the planarity theorem (see [M, p. 251]) that since we are on a torus with one

boundary component, this planar regular covering is completely determined by

the ramification number at the special point, and this one loop, together with

the number a.

Construction of G0(a, 3), a - 2,3,4, 2 < 3 < oo

We next take up the case that b is a geometrically primitive elliptic trans-

formation of order 3 > 2. We normalize so that b(z) = e27C,/ z, and so that

the fixed points of a are at e . If a ^ 2, then we further normalize, by

perhaps replacing a with a~ , so that a" (oo) lies inside the unit disc.

We define the sides of P by Bx = {z: - n/3 < arg(z) < -n/3 + n} ;

B2 = {z: n/3 - n < arg(z) < n/3} ; C3 is the circle passing through the fixed

points of a and making an angle of n/a with the unit circle (this angle is

measured outside C3 and inside the unit circle); then a is the composition of

reflection in C3 followed by reflection in the unit circle. Let B3 be the outside

of C3. For a = 2, set C4 = C3 ; for a > 2, let C4 = a(C3) ; in either case,

define B4 so that a maps B3 onto the complement of B4. Note that C4 also

makes an angle of n/a with the unit circle. These define a polyhedron P;

observe that b(Sx) = S2, and a(S3) = S4 (see Figure 2 for the case a = 3,

3 = 6).
It is an easy computation to see that the origin is contained inside C3 if

a > 3 ; C3 passes through the origin if a = 3 ; and the origin lies outside C3 if

a < 3 . If a > 3 , which can occur only when (a, 3) = (4,4), (4,3), or (3,3),

the boundary of P intersects the boundary of H in a finite number of points,

so the group is of the first kind; if a < 3 , then the boundary of P intersects

the boundary of H   in a fundamental domain for the action of G0 on C.

If a jí 2, then, exactly as above, the sides Sx and S2 meet the sides S3 and

S4 at the angle n/ß, and these four edges form a cycle of order y . Also, the
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180 BERNARD MASKIT

sides S3 and S4 meet at an angle of n/a ; this one edge is its own cycle of

order a .

If a = 2, then P has no edges, and has one infinite cycle; as above,

Lemma 1 shows that the corresponding infinite cycle transformation is parabolic.

In either case, we can conclude from Poincaré's polyhedron theorem that

Cr0(a,3) is discrete, and has the stated presentation. If (a,3) ^ (4,4), (4,3),

or (3,3), then the fundamental domain for G0 at the boundary of P has two

components (these are shaded in Figure 2). These two components are identified

by a, so one easily sees, by folding together the sides of this fundamental do-

main, that Çl(G0)/G0 has signature (0,3 ; y, 3,3). Since every uniformization

of a surface with this signature is given by a Fuchsian group, every component

of Í2(C70) is a circular disc.

Figure 2

Construction of C70(a,oo), a = 2,3,4

We normalize so that b(z) = z + 2, so that a has its fixed points at ±1, and

so that if a > 2, then the center of the isometric circle of a lies in the upper

half-plane. We construct the polyhedron P as follows. Bx = {z\ Re(z) > -1} ;

B2 = {z\ Re(z) < 1} ; B3 is the outside of the isometric circle of a ; and B4 is

the outside of the isometric circle of a~ . These form a polyhedron P, where

the sides Sx and S2 are identified by b, and the sides S3 and S4 are identified

by a (See Figure 3 for the case a = 3 ).

As in the two cases above, if a ^ 2, the sides Sx and S2 meet the sides S3

and S4 in four edges, each with an angle of n/ß ; these four edges form a cycle
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SOME SPECIAL 2-GENERATOR KLEINIAN GROUPS 181

Figure 3

of order y . There is also an edge between S3 and S4 , where the cycle consists

of only this one edge, and has order a. If a = 2, then a is a reflection

relation; P has no edges, and has one infinite cycle; the infinite cycle relation

is: [«-i,*-,r=i.
The fundamental domain on the boundary of P on the sphere at infinity

has two components that are connected via a . Hence, Q(G0)/GQ is connected.

Folding together the sides of this fundamental domain, we see that Q(G0)/G0

has signature (0,3 ; y, oo, oo). As above, this implies that every component of

Q(G0) is a circular disc.     □

5. The above construction does not work for a = 6, for in this case the sides

Sx and S2 meet the sides S} and S4 at an angle of n/3, so that the sum of

the angles in the cycle of these edges is 4zr/3 . We get around this difficulty by

constructing a larger group generated by reflections. We start by constructing a

hyperbolic polyhedron with four sides, where the sides meet at certain specified

angles. If Sm and Sn are sides of the polyhedron P, then we denote the

interior angle between Sm and Sn by 6mn .

Theorem 2. Let a be elliptic of order a = 2,3,4, or 6, and let b be hyper-

bolic, parabolic, or a geometrically primitive elliptic transformation of finite order

8 > 2, where b maps one fixed point of a onto the other. Then there is a poly-

hedron P, bounded by four sides, Sx, ... ,S4, where 6X2 = n/3 (if 3 = 0, then

Sx and S2 do not intersect, even on the sphere at infinity; if 3 = oo, then Sx
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182 BERNARD MASKIT

and S2 are tangent at the sphere at infinity); 6X3 = n/2; 6X4 = n/ß (these

sides are tangent at the sphere at infinity if a = 2 ); 023 = n/2 ; 624 = n/2 ;

634 = n/a. Denote reflection in S¡ by r.. Then the following hold.

(i) a = r3r4, and b = rxr2.

(ii) The group G(a, 8), generated by rx, ... ,r4 is discrete and has the pre-

sentation (rx, ... ,r4: r\ = ■■■ = r\ = (rxr2f = (rxr3)2 = (rxr4)ß =

(r2r3)2 = (r2r4)2 = (r3r4f = I).

(iii) If a > 8, then G(a,8) is of the first kind; it is of the second kind oth-

erwise. For 8 t¿ 0, the action of G(a ,8) on Í2 is that of the (2, ß, 8)-

triangle group, generated by rx, r2, and r4. For 8 = 0, the fundamental

domain for the action of G(a, 0) on its regular set is a quadrilateral with

angles n/2, n/2, n/2, and n/ß.

Proof. We start with the observation, again using Poincaré's polyhedron theo-

rem, that for conclusions (i) and (ii), it suffices to construct the polyhedron P,

with the sides meeting at the correct angles, where a and b are as described

in conclusion (i).

Construction of G(a, 0).

Normalize a and b as above so that b(z) — X z, X> 1, and so that a has

its fixed points at 1 and X ; we can also assume that if a > 2, then the center

of the isometric circle of a lies in the upper half-plane. Let Bx = {z||z| < X };

B2 = {z\\z\ > X} U {oo} ; B3 is the upper half-plane; and B4 is the outside of

the isometric circle of a (the fundamental domain for conclusion (iii) is shaded

in Figure 4).

Figure 4
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Figure 5

Construction of G(a, 8), 2 < 8 < oo

Normalize so that b(z) = e z ; a has its fixed points at e "'' ; and if

a > 2, the center of the isometric circle of a lies inside the unit circle. Let

Bx = {z\n/8 - n < arg(z) < n/3} ; B2 is the upper half-plane; B3 is the unit

disc; and B4 is the outside of the circle passing through the fixed points of a,

and making an angle of n/a with the (inside of the) unit circle (see Figure 5

for the case that a = 3, and 8 = 6; the fundamental domain for conclusion

(iii) is shaded).

Construction of G(a, oo)

Normalize so that b(z) = z + 2, so that a has its fixed points at ±1 , and so

that if q > 2, then the center of the isometric circle of a lies in the upper half-

plane. Let Bx = {z|Re(z) < 1}; B2 is the right half-plane; B3 is the upper

half-plane; and B4 is the outside of the isometric circle of a (the fundamental

domain for this group is shaded in Figure 6).   D

6. Let G(a,8) be the orientation preserving half of G(a,8).  Then G(a,8)

is generated by a = r3r4, b = rxr2, and c = rxr4, and has the presentation

G(a,3) = (a,b,c: aa = b5 = cß = (ac~1)2 = (bc~1)2 = (a~lb~lc)2 = 1).

Using the explicit constructions of the fundamental polyhedra for GQ and

G, it is easy to see that for a = 2,3, or 4, G0(a, 3) is a subgroup of index 2

in G(a, 3). We can make this explicit by observing that, up to the boundaries,

we obtain a fundamental polyhedron for G(a,3) from that of G(a,3) by

reflection in S2, and then we obtain the given fundamental polyhedron for

G0(a ,8) by reflecting that fundamental polyhedron in S3. We have shown the

following.
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Figure 6

Proposition 2. For a = 2,3, and 4, and for all possible 3,

[G(a,3):G0(a,8)] = 2.

Proposition 3. For every possible 3, G(6,3) = G0(6,3).

Proof. We first prove this result for S = oo. We renormalize so that a(z) =

e~n z, so that b(z) has its fixed point at 1, and so that b(0) = oo. Then

b(z) = (2z - I)/z. With this new normalization, we have C, = {z|Re(z) =

1}, C2 = {z\\z\ = l}, Cj = {z|Im(z) = 0}, and C4 = {z|arg(zj = n/6}

(see Figure 7). It is easy to compute reflections in these lines. Writing these

reflections as matrices in PGL(2, C), we obtain the following.

1

r=(l    °]

3     \°    1/ '

from which we compute

0 1
1 0

0
0

-in/6

a =

c =

(e-'nlb      0   \ ,      (2   -1\

{    0       e'*'6)'       b=[l     0)0       e
-i*/6   2e'n^

0 ,'"/6
)■

-1
Now set e = [a,bab    ], so that e(z) = z - 2.   Then a straightforward

computation shows that e~ aea = c~  . Hence t7(6,z5) = GJ6,3).
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C4

c2

Cl

Figure 7

There is an obvious homomorphism, given by conclusion (ii) of Theorem 2,

from (7(6,oo) onto G(6,3) (this is an isomorphism for 3 = 0), from which

we conclude that G(6,8) is generated by a and b for every 8.   D

7. We conclude with some remarks.

(i) We first note that (7(6,0) is a function group representing a surface of

signature (0,4 ; 2,2,2,3), so the fact that this group has only two generators is

related to the observation that the Fuchsian group of signature (0,4;2,2,2,3)

can be generated by two hyperbolic elements [P-R].

(ii) We note that for 8 j= 0, the group G(a,8) contains the following four

triangle groups, obtained by taking the defining reflections three at a time: the

(2,2,á)-triangle group, which is finite for 8 finite, and Euclidean for 8 = oo ;

the (2,ß,¿)-triangle group, which is finite if l/ß + 1/8 > 1/2, Euclidean

if l/ß + 1/3 = 1/2, and Fuchsian otherwise; the Euclidean (2,a,/?)-triangle

group; and the finite (2,2,a)-triangle group. Of course, G(a,8) contains the

orientation preserving half of these groups.

(iii) Since every G(a,3) with 3^0 contains the Euclidean (2,a,ß)-

triangle group, none of the groups we consider here has a compact fundamental

polyhedron in H .

(iv) The above analysis omits two cases. One expects that, in general, if a

and b are as above, where b is elliptic of finite order, but not geometrically

primitive, then (a, b) is not discrete. It is not clear if there are any exceptions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



186 BERNARD MASKIT

(v) If a and b are as above, and b is hyperbolic, then any quasiconformal

deformation of (a, b) is again discrete, and in general b is loxodromic. There

are also limits of such groups that are discrete. It is not known if there are any

other such discrete groups, where b is loxodromic.
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