
L. Baresi and R. Heckel (Eds.): FASE 2006, LNCS 3922, pp. 293 – 307, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Technique to Represent and Generate Components
in MDA/PIM for Automation*

Hyun Gi Min and Soo Dong Kim

Department of Computer Science,
Soongsil University,

511 Sangdo-Dong, Dongjak-Ku, Seoul, 156-743, Korea
hgmin@otlab.ssu.ac.kr, sdkim@ssu.ac.kr

Abstract. Component-Based Development (CBD) is an effective approach to
develop software effectively and economically through reuse of software
components. Model Driven Architecture (MDA) is a new software development
paradigm where software is generated by a series of model transformations. By
combing essential features of CBD and MDA, both benefits of software
reusability and development automation can be achieved in a single framework.
In this paper, we propose a UML profile for specifying component-based
design in MDA framework. The profile consists of UML extensions, notations,
and related instructions to specify elements of CBD in MDA constructs.
Once components are specified with our profile at the level of PIM, they
can be automatically transformed into PSM and eventually source code
implementation.

1 Motivation

MDA is a new software development paradigm where a model plays a key role in
automatic software development [1]. It provides a systematic framework to understand,
design, operate, and evolve all aspects of enterprise system, using engineering methods
and tools. The framework is based on modeling different aspects and levels of
abstraction of such systems, exploiting interrelationships between these models.

A very common technique for achieving platform independence is to target a
system model for a technology-neutral virtual machine. A model in PIM is reusable
over different platforms. Hence, we regard PIM as neither executable unit nor
implemented unit. PIM enables models to be traced and improves maintainability
through modifying model and regeneration into PSM.

CBD is another promising approach to develop software system effectively and
economically through reuse of software components. Especially, domain-common
components provide a common set of features and functions in a domain, so that
application members can utilize the components by customizing the behavior with
minimum effect.

* This work was supported by the Korea Research Foundation Grant funded by the Korean

Government (MOEHRD). (KRF-2004-005-D00172).

294 H.G. Min and S.D. Kim

Therefore, if MDA is combined with CBD approach, we can acquire a highly
effective development environment where the commonality and variability(C&V) in a
domain are modeled and developed as MDA compatible components, and software
development can be greatly automated. Moreover, since C&V is reflected in
designing PIM and code-level components are not limited to only one platform, the
reusability of components is greatly increased.

In this paper, we suggest techniques to combine the advantage of CBD and MDA.
We first define a component-based PIM (CB-PIM) and proposed a UML profile for
specifying component design in MDA/PIM. The profile consists of UML extensions,
notations, and related instructions to specify elements of CBD in MDA constructs. If
components are designed by using the proposed method, the design can be
automatically transformed into source code implementation, yielding benefits of
reusability and automation.

2 Foundation

2.1 Model Driven Architecture (MDA)

MDA is an approach to using models in software development. The essence of
MDA is making a distinction between Platform Independent Models (PIMs) and
Platform Specific Models (PSMs). To develop an application using MDA, it is
necessary to first build a PIM of the application, then transform this using a
standardized mapping into a PSM, and finally map the latter into the application
code by automation.

The three primary goals of MDA are portability, interoperability and reusability
through architectural separation of concerns [1]. Some of the motivations of the MDA
approach are to reduce the time of adoption of new platforms and middleware,
primacy of conceptual design, and interoperability. The MDA approach makes it
possible to save the conceptual design and the MDA helps to avoid duplication of
effort and other needless waste [2][3].

2.2 UML Profile

A UML profile defines standard UML extensions that combine and/or refine existing
UML constructs to create a dialect that can be used to describe artifacts in a design or
implementation model. The UML profile defines a set of UML extensions that
capture the structure and semantics. It defines several standard extension mechanisms,
including stereotypes, constraints, tagged values and icons [4]. When one defines a
profile, it is common MDA practice to also define mappings that specify how to
transform models conforming to the profile into artifacts appropriate to the kinds of
systems. If a model is not specified by a particular UML profile, the model can not be
transformed automatically by MDA mechanism.

The OMG has adopted a MOF metamodel of Java and EJB to complement the
UML profile for EJB [5], a UML profile for modeling enterprise application
integration [6] and a UML profile for CORBA [7] as well. However, these profiles
only support implementation levels and do not present component of a PIM level.

 A Technique to Represent and Generate Components in MDA/PIM for Automation 295

2.3 Fontoura’s UML-F

UML-F is an UML extension that supports working with object-oriented frameworks
and allows the explicit representation of framework variation points [8]. A
framework, UML-F assumes, is a collection of several fully or partially implemented
components with largely predefined cooperation patterns between them.

This framework implements the software architecture for a family of applications
with similar characteristics, which are derived by specialization through application-
specific code. UML-F suggests constraint {appl-class}, {variable}, {extensible},
{static}, {dynamic}, {incomplete}, {for all new methods} and {optional}.

However, elements are not explicitly identified in this model and no precise
definition for the elements is suggested. Only the overall meaning of a framework that
UML-F reference is explained.

2.4 Exertier’s Component Design PIM

Exertier suggests a ‘Component Design PIM’ that represents a platform-independent
solution expressed in terms of software components [9]. The modeling of the
distributed components PIM includes four major activities. Partition the system: The
architecture of a software subsystem identifies a set of architectural elements, here
components, which collaborate to achieve the system’s functional and non-functional
requirements. The objective of this activity is to specify this decomposition. Perform
the component boundary design: As defined by UML2.0, a component is a modular,
deployable and replaceable (pluggable) part of a system. It encapsulates its internal
part and exposes a set of interfaces. Perform the component internal design: When the
boundary of a component has been defined, its internal design can be performed.
Perform the components logical deployment: Components collaborate to reach
functional and non-functional requirements of the subsystem.

This research only suggests four activities for designing component as a PIM.
However, it does not deal with how to specify each activity and variability of
component for PIM.

2.5 Kim’s Variation Types

Kim’s work establishes a theoretical foundation on variability in component based
development by defining five types of variability and three kinds of variability scope
[10]. In this, various variability-related terms are defined such as Variation Point
(VP), Variant, and Variability. Also, five types of variability in CBD are identified;
variability on Attribute, Logic, Workflow, Interface and Persistence. Attribute is
defined as an abstract storage to store values, and it is realized as constants, variables,
or data structures.

Attribute variability denotes occurrences of variation points on attributes. Logic
describes an algorithm or a procedural flow of a relatively fine-grained function. Logic
variability denotes occurrences of variation points on the algorithm or logical
procedure. Workflow variability denotes occurrences of variation points on the
sequence of method invocations. Persistency is maintained by storing attribute values of
a component in a permanent storage so that the state of the component can alive over

296 H.G. Min and S.D. Kim

system sessions. Persistency variability denotes occurrences of variation points on the
physical schema or representation of the persistent attributes on a secondary storage.

3 Elements of Component Design

In this section, we define elements of a component design and each element is
elaborated in details.

A component is defined as a set of related classes, and it provides a relatively
coarse-grained functionality as Fig. 1. All the classes in a component are related in
some way; association, inheritance, aggregation, composition, and dependency.
Operations available through the interface of components are generally larger-grained
than methods in a class. The behavior of these operations is modeled as a workflow,
which is a sequence of method invocations among the objects/classes in a component.

Provided

Customize

Required Workflow

Class Dependency

Variability

VariantVariation Point
2..*

1..*

2..*

1..*

OperationParameter

Interface

Constraint

Component

1..*

1

1..*

1

1..*
1

1..*
1 2..*

1..*
2..*

1..*

Invariant Precondition Postcondition

Fig. 1. The metamodel of component

An interface has one or more operations, and each operation is given a signature
that consists of the operation name, input parameters and a return type. Semantics of
each operation should be described to define the behavior and constraints of the
operation. It is described by a pre-condition, a post-condition, an invariant, side
effects, and constraints. A post-condition describes the state of an object that should
be met after an operation finishes execution. A side effect of an operation is any
additional changes in the state of related objects besides the main object.

Variabilities are characteristics that may vary from application to application. In
general, all variabilities can be described in terms of alternatives. Variability is
defined as variation points and variants. Modeling and realizing variability is one of
the unique features of CBD. Variability is characterized by a number of variations
within the common requirement. It consists of variation points and all their valid
variants for variable requirement that is determined to have a minor and detailed
difference among some family members by relevant stakeholders.

A variation point identifies one or more locations in a software asset at which the
variation will occur [11]. Griss defines variation point as an explicitly designated
location within a component at which a variability mechanism may be used to create a

 A Technique to Represent and Generate Components in MDA/PIM for Automation 297

customized component [12]. A Variation Point is a place in software where the minor
difference occurs for variable requirement. A Variant is a value or instance that can
validly fill in a variation point, i.e. a variant resolves a variation point.

A software quality model is a specification of software quality attributes and their
relationship. ISO 9126 is a representative quality model for generic software [13]. A
quality attribute is a non-functional characteristic of a component or a system, such as
integrability, usability, efficiency, modifiability, reliability, security, transaction,
flexibility or availability. Also, deployment of component affects performance,
reliability, security, availability, capacity and bandwidth. The component is an
executable unit. Therefore, we need not only functionality of component but also
extra functional information that supports components deploying and operating.

4 Component Development Process Using UML Profiles

In this section, we propose a component development process using UML profile for
specifying components to improve the applicability of PIM of component level as
Fig. 2. Analysis process extracts functional and non-functional requirements. The
analyzed requirements are represented using UML 2.0 by object oriented design
process. This process yields PIMs based on objects.

Object Oriented
Design

Object Oriented
DesignAnalysisAnalysis

Detailed
Component

Design

Detailed
Component

Design

Process Flow

Artifacts Flows

Transfor-
mation

Requirement
Specification

Object PIM

UML 2.0

EJB PSM

UML Profile
for EJB

EJB
Component

Conceptual
Component

Design

Conceptual
Component

Design

CB-PIM

UML Profile
for Components

Transfor-
mation

Fig. 2. Component Development Process using UML Profile for Components

In the conceptual component design, the PIMs of object level transform into
component-based PIM (CB-PIM) that presents general component information. The
general component information that is units, interfaces, variability, and environments
of components does not depend on component platforms such as EJB, CORBA, etc.
This process identifies the general component information. None of these can be
represented by UML 2.0 [19]. Therefore, we need to UML profile for specifying
components to present these. The UML profile will be introduced later. Object PIM
transforms into CB-PIM that is not dependent on component platform such as EJB
and CORBA.

In the detailed component design, the CB-PIM can be automatically transformed
into each PSM using the UML profile for component platforms such as UML profile
for EJB. Finally, the generated PSMs are transformed into each component source.
Therefore, traditional MDA process reuses the object level of PIM. Our MDA process

298 H.G. Min and S.D. Kim

reuses the component level of CB-PIM. Once components are specified with our
profile at the level of PIM, they can be automatically transformed into PSM and
eventually source code implementation.

5 UML Profile for Specifying Components

In this section, we suggest a UML profile for specifying components. Our UML
profile to represent CB-PIM is based on the UML 2.0. Elements from UML 2.0 and
EDOC are used in our profile; the elements for CB-PIM that are not supported by
UML 2.0 [14] are extended from MOF. Our UML profile is MOF. Therefore, the CB-
PIM that is specified by our profile can be presented by common MDA tools.

5.1 UML Profile for Specifying Component Units

In CBD, a component is the fundamental unit of packaging related objects [12], hence
we need to specify the related objects in a component in PIM. A port is a connection
point between a classifier and its environment. Connections from the outside world
are made to ports according to provided and required [15]. Workflow in a component
can be designed by sequence and communication diagrams according to UML 2.0.
The UML profile for specifying component units is presented as Table 1.

Table 1. The Elements of UML Profile for Component Units Design

Components are in general classified into system components and business
components [16]. A system component interacts with client programs and manages
client transactions by coordinating message flows among participating components
and/or objects which mostly manipulate data. System components provide a system
service that is the external representation of the system, providing access to the

Element Presentation Applies to Remarks

Component «component» component Use UML 2.0

System Component «SysComponent» component

Business Component «BizComponent» component

Transient Class «Transient» class

Persistence Class «Persistence» class Default

Primary Key «UniqueId» attribute

Synchronous Message «Sync» method Default

Asynchronous Message «Async» method

Message Call «use», «call», etc. dependency Use UML 2.0

Relationships
association, inheritance,
composition, aggregation,
dependency

relationship Use UML 2.0

Constraints { }, pre:, post:, inv: class, method,
relationship, etc. Use OCL

Algorithm Use Text method Use OCL, ASL

 A Technique to Represent and Generate Components in MDA/PIM for Automation 299

services of the system. This service acts as a façade and a mediator for the business
service [17]. A business component consists of persistent objects which handle
persistent business data. Hence, business components execute upon the requests from
system components. To denote two types of components in PIM, we use stereotypes;
«SysComponent» and «BizComponent».

Persistency objects that should be stored in database or file systems are represented
by a stereotype «Persistence». If some objects such as value objects [17] for
transforming data are not persistency, a stereotype «Transient» is used. Asynchronous
messages use a stereotype «Async» that are described at methods in class, sequence,
and communication diagrams. Constraints and algorithms can be expressed by Object
Constraints Language (OCL), and Action Semantic Language (ASL).

As Fig. 3 shows, the LoanMgr component is denoted as a system component with
«SysComponent» stereotype, and composed of one class. The LoanAccount
component is denoted as a business component with «BizComponent» stereotype, and
its two member classes are shown.

«SysComponent»
LoanMgr

«BizComponent»
LoanApplication

«use»

«BizComponent»
LoanAccount

«use»

Loa nMgr

Account LoanAccount

LoanApplication Mortgage

Fig. 3. Example of Expressing Component Units

5.2 UML Profile for Specifying Interfaces

A component provides its component-level interface, i.e. the protocol for accessing
the service of the component. In CBD, an interface is clearly separated from
component implementation to increase the maintainability and replaceability [12].
Hence, we need to specify some interfaces as well as component units in CB-PIM as
Table 2.

Table 2. The Elements of UML Profile for Interface Design

Element Presentation Applies to Remarks

Interface «Interface» Interface Use UML 2.0

Provided Interface «ProvidedInterface» Interface Use UML 2.0

Customize Interface «CustomizeInterface» Interface

Required Interface «RequiredInterface», Interface Use UML 2.0

Signature operationName(param:Type):
ReturnType Operation Use UML 2.0

Constraints { }, pre:, post:, inv: Class, Method,
Relationship OCL

Algorithm Use Text Method OCL, ASL

300 H.G. Min and S.D. Kim

In CBD, three types of interface can be modeled; provided, customize and required
interfaces. The provided interface specifies the services provided by a component and
it is invoked by other components or client programs at runtime. The stereotype
«ProvidedInterface» is used to denote this interface, and the name of the provided
interface is defined by using ‘Ip’ prefix name.

Components often provide mechanisms to tailor the behavior of the components
through an interface designed especially for this purpose. A customize interface
consists of methods that are used to assign a variant to a variation point [18]. To
specify customize interface, we use a stereotype «CustomizeInterface» and ‘Ic’ prefix
on the name of the customize interface.

The required interface specifies external services invoked by the current
component, i.e. a specification of external services required by the current component
[18]. By specifying the required interface for a component, we can precisely define
the services invoked by the current component. This information can be later used in
integrating related components into an application or a component framework. The
required interface can be specified with a stereotype «RequiredInterface». An
interface consists of operation signatures and their semantics. The semantics can be
expressed in terms of pre- and post-conditions and invariants using OCL.

«SysComponent»
LoanMgr

«BizComponent»
LoanApplication

«use» IpLoanApplication

makeLoanApp()
examinationLoanApp()

<<ProvidedInterface>>

IcLoanApplication
<<CustomizeInterface>>

Fig. 4. Example of Expressing Interfaces

Fig. 4 shows an example of expressing interfaces and their realized components in
CB-PIM, where a LoanApplication component is realized by IpLoanAppication
interface and IcLoanApplication interface. The IpLoanApplication interface is a
required interface of LoanMgr component. The LoanMgr component requests
services of the LoanApplication component. The required interface of the LoanMgr is
the IpLoanApplication.

5.3 UML Profile for Specifying Variation

The commonality and variability is made explicit through variation points and
variants in the components and other reusable component elements [12]. The goal is
to create a set of reusable components that expresses commonality and variability
appropriate to the family of applications.

The variability can increase the reusability of component. However, the UML
does not support notations of variability. Therefore, variability is designed by non-
standard stereotypes, tagged values, or note elements [20]. If the variability is
presented by standard notation, MDA tools identify variation points by the

 A Technique to Represent and Generate Components in MDA/PIM for Automation 301

variability. The variation points of PIM or PSM can be filled by other design
artifacts and automation tools.

We define types of variation that are attribute variability, logic, workflow,
persistency and interface variability as in [10]. To express variation points of a
component in CB-PIM, we propose «VP-Attr», «VP-Logic», «VP-WF», «VP-
Persistency» and «VP-Interface» stereotypes as in Table 3.

Table 3. UML Profile for Variation Design

Element Presentation Applies to Remarks
Variation Point (VP) «VP» Attribute, Method

Attribute VP «VP-Attr» Attribute, Use case

Logic VP «VP-Logic» Method

Workflow VP «VP-WF» Method

Interface VP «VP-Interface» Operation

Persistency VP «VP-Persistency» Operation, Method

Variant «Variant» Class, Operation, Method

Variation Scope {vScope = value} Variation Point Close, Open

VP ID {vpID = value} Variation Point, Variant

Variant ID {varID = value} Variant

Constraints { }, pre:, post:, inv: Class, Method, Relationship OCL

Algorithm Use Text Class, Method OCL, ASL

ID of Variation Point

ID of Variant

ID of Variation PointVariation Point

Variant

Variation Scope

Fig. 5. Example of Expressing Variation

We present two kinds of scope of variation points. Open scope of variation point
has any number of variants which are already known and additional variants which

302 H.G. Min and S.D. Kim

are currently unknown but can possibly be found later at customization or deployment
time. In constraint, close scope of variation point has two or more variants which are
already known [10].

Fig. 5. shows an example of expressing variability in CB-PIM. The logic of
calculateIntereste()can be changed by each family member. The class
‘LoanApplication’ has two variation points which are guarantor and replyCount. Two
variants of the attribute guarantor are a type String and a class Guarantor. The
attribute guarantor has variation that has two variants; String and object Guarantor. If
the variant string is set as {varID=”1”}, the attribute has string data type to store
guarantor’s ID. If the object Guarantor is set, the data type of the attribute becomes
Guarantor. In the implement process, the variation will be implemented by the value
of varID later.

5.4 UML Profile for Specifying Extra-Function

A component is an executable unit. We need not only functionality of components but
also extra functionality of components that supports components deploying and
operating. The extra functional properties extensions are motivated more by the desire
to ensure that interface specifications are sufficiently complete to ensure correct
integration than by the desire to extend the scope of information hiding to additional
properties. Both ends are served by these extensions [21].

To specify extra functional information in CB-PIM more practically, we classify
properties into four types; deploy property, runtime property, transaction property and
security property as Table 4 . A deploy property captures information for deploy on
server. A runtime property specifies runtime environment for component instances. A
transaction property defines method of transaction. A security property manipulates
strategy about usage of component.

For example, the stereotype «DeployProperty » specifies information for deploy
environment. An attribute deployedName as align is called and managed by
component middleware server. When the component is running in a server, the
mechanism of the component server may use the align name. The components are
packaged automatically by the artifactName attribute.

Table 4. UML Profile for Extra Functional Design

Element Presentation Applies to Remarks

«DeploymentProperty» Stereo type Deployment
Property deployedName, artifactName

Component
Tagged Value

«RuntimeProperty» Stereo type

Runtime
Property

virtualClientsPerInstance,
instancePerComponent,
instanceTimeToLive
componentTimeToLive,
instanceInactivityTimeout

Component
Tagged Value

«TXProperty» Stereo type Transaction
Property useTX, TXAttrType,

TXIsolation, TXTimeOut

Component,
Interface,
Class,
Method Tagged Value

«SecurityProperty» Stereo type Security
Property userRoleName

Component, Interface,
Class, Method Tagged Value

 A Technique to Represent and Generate Components in MDA/PIM for Automation 303

Our UML profile represents an activation policy that describes how a client gains
access to the component, whether it has exclusive access to the component, and
certain lifetime restrictions on the component. The stereotype «RuntimeProperty»
specifies information for runtime environment and lifetime restrictions. The activation
constraints that can currently be specified in a runtime property are: limits on the
number of clients per-instance and per-component, restrictions on the number of
instances per-component, limits on the time an instance or a component may exist,
including an inactivity timeout, the name by which clients may activate the
component and activation operations which allow parameterized activation of the
component.

Fig. 6. PIM showing Deploy Property of LoanMgr Component

The stereotype «TxProperty» specifies strategy about transaction of component. If
useTX attribute is false, other transaction attributes are ignored by PSM or Code
level. The attribute TxAttrType has a TxAttrTypeKind enumeration type. The
TxAttrTypeKind enumeration type consists of required, requiredsNew, supports,
mandatory, notSupported and never value. The attribute of TxIsolationType has a
TxIsolationTypeKind enumeration type. The TxIsolationTypeKind enumeration type
consists of readUncommitted, readCommitted, repeatableRead and serializable. The
TxTimeOut is a timeout period for transaction operation. If the transaction access
time is over TxTimeOut, the transaction should be rolled back.

The stereotype «SecurityProperty» contains strategy about security of component.
The attribute of userRoleName is the permitted role name of a component’s caller.
The role of the component is assigned by this userRoleName attribute. The customize
interface may used by an administrator. In this case the userRoleName attribute of the
«SecurityProperty» is an ‘administrator’. The provided interface may used by all
customers. This userRoleName is an ‘all’. This attribute may apply to <security-role-
ref>, <security-role> and <method-permission> in the deployment descriptor at PSM
level for EJB. Fig. 6 shows an example of expressing extra functional property of a
LoanMgr system component in CB-PIM.

304 H.G. Min and S.D. Kim

6 Assessment

The Fountoura’s UML-F [8] is based on object framework. Elements are not
explicitly identified in this model and no precise definition for the elements is
suggested. UML-F reference only explained the overall meaning of a framework.
Exertier’s research [9] only suggests four activities for designing components with a
PIM. This research does not deal with how to specify each activity and the variability
of components with a PIM. The UML 2.0 and UML profile for EDOC [22] does not
fully present the profiles for specifying general component.

Table 5. Comparing the suggested UML Profile with others (✔: Supported)

 Technique
Factor

Comp.
Spec.

UML
2.0

EDOC
Profile

Our
Profile

Remarks

Component Units ✔ ✔ ✔ ✔ «SysComponent», etc.
Provided Interface ✔ ✔ ✔ ✔ «ProvidedInterface»
Required Interface ✔ ✔ ✔ «RequiredInterface»
Customize Interface ✔ ✔ «CustomizeInterface»
Variation Point ✔ ✔ «VP-Attr», etc.
Variant ✔ ✔ «Variant», etc.
Non Functional Design ✔ ✔ «TXProperty», etc.
Workflows ✔ ✔ ✔ ✔ Sequence Diagram, etc.
Reusing Model Level ✔ ✔ ✔ PIM Level

Our profile covers variability and extra functional designs as well as the four
designs of Exeriter’s component design PIM such as partition of the system,
component boundary design, component internal design, and components logical
deployment as in Table 5. Therefore, once components are specified with the
suggested UML profile for specifying components at the level of CB-PIM, they can
be automatically generated each source code implementation as shown in Fig.7. A
CB-PIM can be reused into diverse platforms.

CB-PIM

EJB PSM CORBA PSM

EJB Comp. CORBA Comp.

EJB PSM CORBA PSM

EJB Comp. CORBA Comp.

Approach without CB-PIM Approach with CB-PIM and Our Profile

[*]Rewriting for each platform

Automatically operation
Operation in manual

An artifact made by automation

An artifact made by manual work

Once Rewriting

Changed Component Spec.

Legend

Changed Component Spec.

Fig. 7. An advantage of CB-PIM and UML Profile for Specifying Components

 A Technique to Represent and Generate Components in MDA/PIM for Automation 305

If the mechanism for implementing components which is shown in Fig.7 is
supported with a tool, various components such as EJB and CORBA can be
effectively implemented by using the seamless method and tools. To make our
approach more practical and useful, we are developing a prototype development tool
based on Eclipse as Fig. 8. The prototype will support all our UML profile and the
mechanism.

Eclipse can plug modules such as our component designer and code generator
prototypes as in Fig. 8. The component designer based on Graphical Editor
Framework (GEF) [23] stores the PIM models to extended UML2 file for our profile.
UML2 [24] is an EMF-based implementation of the UML™ 2.0 metamodel for the
Eclipse platform. The code generator transfers the UML2 file to codes by using XMI
schema. Eclipse basically includes a code editor. Therefore, components can be
specified with our UML profile for specifying components at the level of CB-PIM.
CB-PIM can be automatically transformed into each PSM and eventually each source
code implementation by use the tool.

Code Generator
(CB-PIM→PSM →Code)

Fig. 8. Component Designer based on Eclipse

7 Conclusion Remarks

CBD is to develop software system effectively and economically through reuse of
software components. Effective components should be designed using interfaces,
component units, variability, and non-functional factors for components. As a basic
reuse unit, components often come in black-box form, only exposing well-defined
interface while hiding internal details.

MDA is a n approach to using models in software development. The essence of
MDA is making a distinction between PIM and PSM. To develop an application using
MDA, it is necessary to first build a PIM of the application, then transform this using
a standardized mapping into a PSM, and finally map the latter into the application
code by automation.

If a component’s middleware is changed but requirement is not modified, the
related components should be redesigned and re-implemented because components
platforms are diverse. If component specifications are designed at MDA/PIM, we can
automatically create the components that are satisfied by the component platform of
an application. Therefore, we need the UML profile for specifying components to
make machine-understandable design for MDA tools.

306 H.G. Min and S.D. Kim

In this paper, we proposed a UML profile for specifying component-based design
and component development process in MDA framework. Our UML profile consists
of UML extensions, notations, and related instructions to specify elements of CBD in
MDA constructs. It can be presented by general UML and MDA design tools. Once
components are specified in the proposed profile at the level of PIM, they can be
automatically transformed into PSM and eventually source code implementation by
MDA tools. By using the UML profile for specifying components, we believe that the
productivity, reusability, applicability, and maintainability of components can be
greatly increased by automation.

[1] OMG, “MDA Guide Version 1.0.1,” omg/2003-06-01, June 2003.
[2] Flater., D., “Impact of Model-Driven Architecture,” In Proceedings of the 35th Hawaii

International Conference on System Sciences, January 2002.
[3] Frankel, D. and Parodi, The MDA Journal, Model Driven Architecture Straigth from the

Masters, Meghan-Kiffer Press, 2004.
[4] Frankel, D., Model Driven Architecture™:Applying MDA™ to Enterprise Computing,

Wiley, 2003.
[5] Java Community Process, UML Profile For EJB_Draft, 2001.
[6] OMG, “UML™ Profile and Interchange Models for Enterprise Application

Integration(EAI) Specification,” 2002.
[7] OMG, “UML Profile for CORBA Specification V1.0, OMG,” Nov. 2000.
[8] Fontoura, M., Pree, W., and Rumpe, B., “UML-F: A Modeling Language for Object-

Oriented Frameworks,” Lecture Notes in Computer Science Vol. 1850, 2000.
[9] Exertier, D., Lnaglois, B., and Roux, X., “PIM Definition and Description,” Proceedings

of 1st European Workshop, Model-Driven Architecture with Emphasis on Industrial
Applications(MDA-IA 2004), 2004.

[10] Kim, S., Her, J., and Chang, S., “A theoretical foundation of variability in component-
based development,” Information and Software Technology, Vol. 47, p.663-673, July,
2005.

[11] Muthig, D. and Atkinson, C., “Model-Driven Product Line Architectures,” Lecture Notes
in Computer Science Vol. 2379, pp.110-129, 2002.

[12] Heineman, G. and Councill, W., Component-Based Software Engineering, Addison
Wesley, 2001.

[13] Kim, S. and Park, J., "C-QM: A Practical Quality Model for Evaluating COTS
Components", IASTED International Conference on Software Engineering (SE'2003),
2003.

[14] Choi, S., Chang, S., and Kim, S., “A Systematic Methodology for Developing
Component Frameworks,” In Proceedings of 7th Fundamental Approaches to Software
Engineering (FASE'04) Conference, Lecture Notes in Computer Science Vol. 2984, 2004.

[15] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling Language Reference
Manual, Second Edition, Addison-Wesley, 2004.

[16] Cheesman, J. and Daniels, J., UML Components, Addison-Wesley, 2001.
[17] Roman, E., Mastering Enterprise JavaBeans™ and the Java™2 Platform, Enterprise

Edition, WILEY, 1999.
[18] Kim, S., Min, H., and Rhew, S., “Variability Design and Customization Mechanisms for

COTS Components,” Lecture Notes in Computer Science Vol. 3480, pp. 57-66, 2005.

References

 A Technique to Represent and Generate Components in MDA/PIM for Automation 307

[19] OMG, Unified Modeling Language: Superstructure version 2.0, ptc/03-08-02, 2003.
[20] Geyer, L. and Becker, M., “On the Influence of Variabilities on the Application-

Engineering Process of a Product Family,” ” Lecture Notes in Computer Science Vol.
2379, 2002.

[21] Bachman, F. and Bass, L., “Volume II:Technical Concepts of Component-Based
Software Engineering,” CMU/SEI-2000-TR-008, May 2000.

[22] OMG, UML Profile for EDOC V1.0, 2004.
[23] Eclipse Project, Graphical Editor Framework (GEF), at URL: http://www.eclipse.

org/gef/
[24] Eclipse Project, UML2, at URL: http://www.eclipse.org/uml2/

	Motivation
	Foundation
	Model Driven Architecture (MDA)
	UML Profile
	Fontoura’s UML-F
	Exertier’s Component Design PIM
	Kim’s Variation Types

	Elements of Component Design
	Component Development Process Using UML Profiles
	UML Profile for Specifying Components
	UML Profile for Specifying Component Units
	UML Profile for Specifying Interfaces
	UML Profile for Specifying Variation
	UML Profile for Specifying Extra-Function

	Assessment
	Conclusion Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

