Hindawi

Complexity

Volume 2019, Article ID 9610826, 18 pages
https://doi.org/10.1155/2019/9610826

Research Article

WILEY

Hindawi

Spectral Complexity of Directed Graphs and Application to

Structural Decomposition

Igor Mezic

,12 Vladimir A. Fonoberov (®,> Maria Fonoberova

,2 and Tuhin Sahai ®*

ICenterfor Control, Dynamical Systems and Computation, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
ZAimdyn, Inc., 1919 State St., Ste. 207, Santa Barbara, CA 93101, USA

3Bruker Nano, 112 Robin Hill Rd, Goleta, CA 93117, USA

*United Technologies Research Center, 2855 Telegraph Ave, Suite 410, Berkeley, CA 94115, USA

Correspondence should be addressed to Igor Mezi¢; mezic@ucsb.edu

Received 4 October 2018; Accepted 27 November 2018; Published 1 January 2019

Academic Editor: Hassan Zargarzadeh

Copyright © 2019 Igor Mezi¢ et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce a new measure of complexity (called spectral complexity) for directed graphs. We start with splitting of the directed
graph into its recurrent and nonrecurrent parts. We define the spectral complexity metric in terms of the spectrum of the recurrence
matrix (associated with the reccurent part of the graph) and the Wasserstein distance. We show that the total complexity of the
graph can then be defined in terms of the spectral complexity, complexities of individual components, and edge weights. The
essential property of the spectral complexity metric is that it accounts for directed cycles in the graph. In engineered and software
systems, such cycles give rise to subsystem interdependencies and increase risk for unintended consequences through positive
feedback loops, instabilities, and infinite execution loops in software. In addition, we present a structural decomposition technique
that identifies such cycles using a spectral technique. We show that this decomposition complements the well-known spectral
decomposition analysis based on the Fiedler vector. We provide several examples of computation of spectral and total complexities,
including the demonstration that the complexity increases monotonically with the average degree of a random graph. We also

provide an example of spectral complexity computation for the architecture of a realistic fixed wing aircraft system.

1. Introduction

Given that complex engineering systems are constructed
by composing various subsystems and components that
interact with one another, it is common practice in modern
engineering design to consider the directed interconnectivity
graph as a representation of the underlying system [1]. Thus,
the question of inferring complexity of a given system from
the resulting graph arises naturally, with the idea being
that higher complexity graphs imply higher complexity of
system design and testing procedures [2]. System complexity
is particularly important in the context of complex aerospace
systems and leads to frequent budget overruns and project
delays [2, 3]. Thus, early identification of complexity levels
can enable early intervention and system redesign to mitigate
risk.

A graph can be analyzed using either combinatorial
graph-theoretic methods or by matrix representations such

as the adjacency matrix. In the latter case, algebraic methods
for analysis are available. In particular, the spectrum of the
matrix associated with an undirected graph can be related to
its structural properties [4, 5]. Previously, the graph spectrum
has been used to compute properties such as clusters [6, 7]
and isomorphisms [8]. Unfortunately, such relationships are
not readily available in the case of directed graphs that arise
frequently in typical engineering applications (and in various
social network settings) due to the directionality of flow
information or energy.

In directed graph theory, a common source of complexity
is the existence of directed cycles in the graph. This led
Thomas J. McCabe in 1976 to measure the complexity of
a computer program [9, 10], using the so-called cyclomatic
complexity, which counts the number of linearly independent
cycles in the program. A good survey on software system
complexity metrics can be found in [11, 12]. We argue that
these cycles are particularly important in the context of

http://orcid.org/0000-0002-2873-9013
http://orcid.org/0000-0001-8408-8211
http://orcid.org/0000-0001-5438-524X
http://orcid.org/0000-0003-1896-8768
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9610826

engineering systems. In particular, they are important drivers
of complexity. For example, cycles can give rise to positive
feedback loops [13], which lead to system instabilities. Cycles
in engineering systems also make design and analysis chal-
lenging from a simulation convergence perspective [14, 15].

Considering the above arguments, we develop a class of
complexity metrics based on the algebraic properties of a
matrix that represents the underlying directed graph. There
exists extensive literature on graph complexity measures
of information-theoretic and energy type [16, 17]. Such
measures can either directly or indirectly be related to the
moduli of eigenvalues of the underlying graph matrices. Our
approach is based on ideas that are fundamentally different
from the underlying concept present in the above works.
Namely, we start with the postulate that the complexity of
a system should be a measure of the distance from the least
complex system of the same size. We assume that the least
complex system is the one where every component is isolated,
not interacting with any other component (thus lacks any
interdependencies). We develop our “spectral complexity”
metric by using a Wasserstein-type distance on spectral dis-
tribution of the recurrence matrix of the directed graph (for
an application of such an approach to measure uncertainty,
see [18]).

Based on the above spectral complexity approach, we
then develop a novel graph decomposition technique that
is based on cyclic interaction between subsystems and does
not resort to symmetrization of the underlying matrices. This
approach facilitates the identification of strongly interacting
subsystems that can be used for design and analysis of com-
plex systems. In particular, our goal is to group subsystems
that should be codesigned or coanalyzed. Our methodology
can be viewed as a complementary approach to Fiedler-based
methods and can also be used to provide graph sparsification
(19].

The problem of structural decomposition, clustering or
partitioning graphs (or data) into disjoint groups, arises in
numerous and diverse applications such as social anthropol-
ogy [20], gene networks [21], protein sequences [22], sensor
networks [23], computer graphics [24], and Internet routing
algorithms [25]. In general, the problem of clustering requires
one to group a set of objects such that each partition contains
similar objects or objects that are “close” to one another with
respect to an appropriate metric. Alternatively, graph parti-
tioning can be mathematically posed as the minimization of
the number of edges that cross from one subgroup of nodes
to another while maintaining a balanced decomposition
[6].

Graph clustering is a well-studied topic and spectral clus-
tering has emerged as a very popular approach for decompos-
ing graphs [6]. These methods for clustering graphs use the
eigenvalues and eigenvectors of the graph Laplacian matrix
to assign nodes to clusters [6]. The theoretical justification
for these methods was given by M. Fiedler (see [26, 27]).
In spectral graph partitioning, one computes the eigenvector
corresponding to the smallest nonzero eigenvalue of the
Laplacian matrix. This eigenvector is known as the Fiedler
vector [6] and is related to the minimum cut in undirected
graphs [26, 27]. The signs of the components of the Fiedler

Complexity

vector can be used to determine the cluster assignment for
the nodes in the graph [6].

The drawback of spectral clustering and other traditional
partitioning methods is that they are restricted to undirected
graphs [6] (they assume that the adjacency matrix is symmet-
ric). The problem of clustering undirected graphs has been
well studied (we refer the reader to [5, 7, 28-32]). However, for
many applications, the adjacency matrix resulting from the
underlying graph representation is not symmetric. Examples
include engineering systems [33], social networks, citation
networks, Internet communications, and the World Wide
Web to name a few [34].

The theory for spectral partitioning of directed graphs
has not been developed as extensively as that for undirected
graphs [35]. In [36], the graph Laplacian for directed graphs
is defined and its properties are analyzed. The Cheeger
inequality for directed graphs is also derived in [36]. In
[37], the author extends the work in [36] to partition
directed graphs. A method for clustering directed weighted
graphs based on correlations between the elements of the
eigenvectors is given in [38]. In [39], spectral clustering for
directed graphs is formulated as an optimization problem.
Here the objective function for minimization is the weighted
cut of the directed graph. In [40], communities or modules
in directed networks are found by maximizing the modu-
larity function over all possible divisions of a network. The
heuristic for this maximization is based on the eigenvectors
of the corresponding modularity matrix. Recently, in [41], the
authors develop a fast local approach to decompose graphs
using network motifs. There are recent papers that consider
complex eigenvalues of the graph transition matrix to achieve
clustering [42, 43]. While [43] concentrates on 3 cycles in a
directed graph, our methods enable detection of more general,
almost-cyclic structures. The spectral decomposition that we
develop in this paper looks beyond the Fiedler vector for
partitioning. We utilize complex eigenvalues of the graph
transition matrix to identify underlying cycling behavior. The
methods of [42] are closer to ours. The paper [42] appeared in
print and on arXiv after our submission. Also, the clustering
methodology we provide was first disclosed in an internal
report to DARPA [44]. We define a different algorithm for
clustering, and give a more general theoretical justification
for the method based on the work in [45].

The paper is organized as follows. In Section 2, we
introduce the idea of spectral complexity of a directed graph.
We compare the new measure of complexity to the stan-
dard graph energy complexity metric used in literature. In
Section 3, we propose an approach for partitioning directed
graphs which groups nodes into clusters that tend to map into
one another (i.e., form “almost cycles”). In Section 4, we give
examples and compare our results with existing methods.

2. Spectral Complexity

The key idea underlying our methodology is that every
digraph G = (V, A, B), where V is a set of nodes, A is a set of
directed edges, and B is a set of weights, can be represented
using a multivalued (one-to-many) map T' : V. — V that

Complexity

maps node i to a set of nodes j € V;, with the associated
probabilities p;; = B;;/ ;B> B;j being weights. If a node
is a sink and has no edges, we set p;; = 1. We consider the
weighted adjacency matrix U whose i, j element is p;;. This
matrix is analogous to the Koopman operator in dynamical
systems [46, 47].

We can decompose the state-space of one-to-many maps
into the recurrent set V, and nonrecurrent set V,,.. We define
the recurrent set as the set of all the points k € V such that
every orbit that starts at k lands in k some time later. The
rest of V is the transient (nonrecurrent) set. Obviously, the
row-stochastic matrix U has its restriction R to the recurrent
set, where R is obtained from U by deleting the rows and
columns corresponding to transient set nodes. Note that R
is also row-stochastic, since nodes in the recurrent set have
0 probability of transitioning to the transient set. We call T
irreducible if we can get from any initial state k to any final
state [, that is, I € T"(k) for some n and every k,I. V can be
split into irreducible components. It can be shown that, on
each irreducible component, every state has the same period
where the period is the greatest common divisor of all n
such that k € T"(k) [48]. We identify complex vectors with
elements v;, j € V with functions f : V. — C such that
f(j) = vj, j € V.The level set of f is a set C. in V such
that f = ¢, ¢ € C on C; that is, the function has a constant
value on C. In the following, we will use the notion of period
p = k/j, where k, j are integer and k > j to mean p = k if
k/jis not an integer and k/ j otherwise. We have the following
theorem.

Theorem 1. Let T be irreducible of period d. Then

(1) A, = lisaneigenvalue of U and R. The eigenspace of A
is one-dimensional and consists of constant functions

2 Ay = ¢! is an eigenvalue of U and R, where j =
1,...,d. The eigenspaces associated with each of these
consist of vectors whose level sets define an invariant
partition of period that is equal to d/ j

(3) The remaining eigenvalues of U satisfy |A;| < 1

(4) If there is a pure source node, then 0 is in the spectrum
of U

Proof. Ttems (1) and (3) are a simple consequence of the
Perron-Frobenius theorem [49]. Item (2) follows from the
observation [48] that a Markov chain with period d possesses
eigenvalues A ;; = ™% and from the fact that T is a Discrete
Random Dynamical System [47]. Then Theorem 15 in [47]
implies (note that, following the proof in Appendix 1 of [47],
the reversibility condition can be relaxed) that the associated
eigenfunction f;,; is a deterministic factor map of T'. The
theorem also implies that the state space V splits into sets
on which f;,; has constant value. The number of such sets
is d provided d/j is not an integer and d/j if it is. The last
statement follows from the fact that if i is a source node, then
a vector that is 1 on 7 and 0 on all other nodes gets mapped to
0byU.

If T is not irreducible, it can always be split into irre-
ducible components, and then Theorem 1 can be applied

on each component. In Theorem 1, the cycle of order d is
identified and its eigenvectors serve to partition the graph
by using their level sets. The lower-order cycles are also
associated with an eigenvalue and an associated partition.

Theorem 2. IfA;; = eI is an eigenvalue of U or R, where
n < d, then the eigenspace associated with it consists of vectors
whose level sets define an invariant partition of period that is
equal to n/ j.

Proof. This also follows from Theorem 15 in [47] if we take
the state space to be a discrete space V of n nodes and T as a
random dynamical system on it. O

Theorems 1 and 2 give us motivation to define a measure
of complexity based on the structure of recurrent (i.e., cycle-
containing) and nonrecurrent sets. Here are the postulates
that we use for defining complexity, which is based on the
properties of T:

(1) Any graph that consists of disconnected single nodes
has complexity equal to the sum of complexities of the
nodes

(2) Any linear chain has complexity equal to the sum of
complexity of the nodes and weights of the edges

(3) Complexity of a graph that has no nonrecurrent part
and #n nodes is measured as a distance of distribution
of eigenvalues of U to delta distribution at 1, called
the spectral complexity, added to the sum of the
complexity of the nodes.

Note that in the definition of spectral complexity we use the
notion of distance on the unit disk. There are a variety of
choices that can be made, just like the choice of L' norm or
L? norm on Lebesgue spaces. We now describe definitions
and algorithms for computation of complexity, with a specific
choice of distance based on the Wasserstein metric.

2.1. Definition of Spectral and Total Complexity of a Directed
Graph. In this section, we propose an algorithm for calculat-
ing the complexity of directed graphs using the spectral prop-
erties of the matrix R. To construct the matrix for a graph,
we start by removing all the sources and their corresponding
edges until no sources are left. This is motivated by the
notion that sources are elements that contribute to complexity
in a linear manner and will be included in the complexity
metric through the edge weights. We note that a source is
a node with only outgoing edges (a disconnected node is
not a source). In matrix terms, every source contributes to
a zero (generalized) eigenvalue. We then construct the edge
weighted adjacency matrix for the new graph that effectively
captures the dynamics of the multivalued map T (a random
walk on the graph). Thus, the rows of this adjacency matrix
are normalized, such that the sum of the elements in any
given row is 1. This is achieved by dividing each element
in the row by the sum of all the row elements. If the row
contains only zeros (the given node is a sink), we put a 1
on the diagonal element in that row; that is, we add a self
loop in a standard manner of associating a Markov chain

with a graph. This changes the zero eigenvalue associated with
that row to 1. Note that the eigenvector associated with this
eigenvalue is constant on the connected component, and all
the other eigenvalues and eigenvectors remain unchanged.
We call the resulting matrix R the recurrence matrix. As
a corollary of Theorem 1, we have that this matrix always
has an eigenvalue 1 associated with a constant vector, and
all of the remaining eigenvalues are distributed on the unit
disk.

We now define a complexity measure on the class of
recurrence matrices. For a K x K recurrence matrix, we will
define the least complex matrix to be the identity matrix
(this matrix corresponds to a graph with no edges). This
corresponds to the graph in which each node only has a
pure self-loop. We define complexity as the distance of the
eigenvalue distribution of R from the eigenvalue distribution
of the identity matrix. Distance on distributions can be
measured in different ways. Here we adopt an approach based
on the Wasserstein distance. For this, we first need to define a
distance on the unit disk. We do this using polar coordinates
rand 6, considering the unit disk as the product space I x S',
where I = [0, 1]. The distance on I is the usual one d(r,,1,) =
|r, — r,], while on S! we impose the discrete metric:

1 if, #6,
d(6,,6,) = _ o)
0 if6, =0,

Now, the normalized Wasserstein distance between the least
complex eigenvalue distribution and the one with eigenvalues
Ai = (Ti,ei), i: 1,...,1’1, iS

WA
F= E(Z(l—ri)+“{e¢o} (91')>’)
i=1

where K is the number of nonzero eigenvalues of the
recurrence matrix R and 14, is the indicator function on
the set {6 # 0}. The following fact on the graph with least
spectral complexity is obvious:

Fact. The graph with K disconnected nodes has spectral
complexity 0.

The first term in the spectral complexity function (2)
is a measure of the amount of “leakage” in the graph. If
one is performing a random walk on the graph, then the
leakage is a measure of the probability of transition between
nodes [50]. This term takes values between 0 (no leakage)
and 1 (probability of transition is 1). In other words, the first
term captures the decay in probability density of a random
walk and the second term captures the cycles. According to
the above definition, the maximally complex graph in some
class should maximize both terms separately. Namely, the
eigenvalues of such a graph would be radially as close to zero
as the class definition allows and would have the maximal
number of eigenvalues off the positive real line inside the unit
disc, thus maximizing the second term. The following result
indicates how the maximum spectral complexity of a graph is
achieved if the graph family is not restricted.

Complexity

Theorem 3. Let R be a K x K recurrence matrix of a K-node
graph. Then maximal spectral complexity F is achieved for a
matrix with constant entries.

Proof. A recurrence matrix R with constant entries has K — 1
zero eigenvalues corresponding to eigenvectors that have —1
at jth component and 1/(K — 1) for all other components.
(Note that these are counted as 0 # 0 eigenvalues.) Since 1
is always an eigenvalue, the resulting eigenvalues maximize
both the first and the second sum in F, making it 2(K — 1)/K.

O

From the above theorem, it is clear that graphs with a
large number of nodes have maximal spectral complexity
very close to 2. This is evident in the example we present in
the next section.

If the entries of R are such that it forms a random Markov
matrix [51], then, as we prove next, the complexity increases
to maximal complexity as the size of the matrix increases.

Theorem 4. Let [a’jk,j,l > 1 be i.i.d random variables with

bounded density, mean m, and finite positive variance o> Every
realization of By, j,1 < K gives a weighted directed graph. Let
R bea K x K recurrence matrix of such a K-node graph. Then
F(R) — 2 as K — oo, with probability 1.

Proof. The recurrence matrix R is a random Markov transi-
tion matrix [51] with the underlying Markov chain irreducible
with probability 1. Let

1 n
R =~ 2.0, (3)
=1

be the empirical measure supported on the location of
eigenvalues of the matrix p. sy, where §, is the Dirac delta

function centered at eigenvalue A 5 Then, Theorem 1.3 in [51]
implies that y, z, converges to the uniform measure on the
disk %,,,, = {z € C | z < o/m}. This, in turn, implies that
the modulus of eigenvalues of R goes to zero as K — oo and
that

RNES
Klinoof (;(ﬂ{(m} (91')> =1 (4)

Also, noting that limy_, (K — 1)/K = 1, we conclude the
proof. O

The above result is interesting in the context of numerical
tests that we do in Section 2.3, which show random graphs
of increasing size whose complexity converges to 2, and
in Section 4.2, where most of the eigenvalue distributions
for several web-based networks are within a disk in the
complex plane, but a small proportion is not, indicating the
nonrandom nature (and lower complexity) of these networks.

The use of the “counting” of eigenvaues with 6; # 0 in the
second term of F makes the spectral complexity measure have
some features of discrete metrics, as the following example
shows.

Complexity

p

Q=0

1-p

FIGURE 1: Graphical representation of the family of graphs with
two nodes, equal strength self loops, and equal strength connecting
edges.

Example 5 (spectral complexity in a class of recurrent 2-
graphs). We consider graphs with 2 elements that have both
a self-loop and an edge connecting them to the other element,
with uniform probabilities as shown in Figure 1.

Such a system has R of the form

R- [p 1= P] , 5)
l-p p

where p € [0, 1]. The eigenvalues A of R satisfy the equation
(p=2)=(1-p) (6)

One solution comes from
p-A=1-p=>A=2p-1, (7)

and the other comes from
p-A=p-1=A=1 (8)

For p < 1/2, the self-loop is weaker than the edge connecting
to the other node, and for p > 1/2 the opposite is true. The
spectral complexity is

(1—|2p—1|+1)=(1+2p)’ ifpsl
lo-ee-y p
— ——=1l-p ifp>

Spectral complexity of this class of graphs distinguishes
between graphs that have stronger self-interaction than inter-
action between the nodes, characterized by p > 1/2, and the
graphs in which the interaction between the nodes is stronger
than the self-interaction. Note that spectral complexity is
discontinuous at p = 1/2. This is in line with the behavior
of the underlying Markov chain: for p > 1/2 any initial
probability distribution on the chain will decay exponentially
and monotonically to the uniform distribution. For p < 1/2,
the decay of the distribution assumes oscillatory manner, thus
representing a qualitative, discontinuous change in behavior.
Note that for p = 1/2 the complexity measure shows
features of a discrete metric. Thus, the discontinuity in the
complexity metric accurately captures the transition from
the more complex oscillatory evolution of the distribution
to the invariant measure (for p < 1/2) versus the less
complex monotonic convergence to the invariant measure
for p > 1/2. We note that the oscillatory nature of the
distribution, in the more complex case, corresponds to strong

k1 k12 k2

FIGURE 2: Graphical representation of the mass-spring system.

interaction between nodes (since p < 1/2). This is in contrast
with the weak interactions between nodes in the p > 1/2
case, whereby the graph interactions are less important when
compared to the self-interaction of nodes.

2.2. Physical Intuition for Complexity Metric and Mean-
ing of Eigenfunctions of the Recurrence Matrix for the
Network Behavior. Spectral objects associated with undi-
rected graphs—such as the Fiedler eigenvalue, which is
associated with speed of mixing of the associated Markov
chain and reflects connectivity of the underlying graph,
and the Fiedler vector, whose components indicate sub-
graphs that have strong internal connectivity but weak
interconnectivity— often have impact on the physical under-
standing of the network. The same is true for the eigenvalues
and eigenvectors of the matrix R. They have strong correlation
with the structural properties of the underlying graph. For
example, existence of a real eigenvalue 0 > A > -1
indicates that the network can be split into two subnetworks
that have weak internal connectivity but strong intercon-
nectivity between two subnetworks (see Example 5). Also,
the associated eigenvector values can be clustered into two
separate sets that indicate the mentioned subgraphs. Both the
simple Example 5 and the large graph Wikipedia example in
Section 4.2 provide evidence for this statement. Analogously,
an eigenvalue set A;,A,.1;, whose arguments are close to
(0,71/3,2m/3), indicates that the graph possesses 3 subgraphs
with weak internal and strong connectivity between the 3
subgraphs. An example of this is shown in Section 4.2 for the
Gnutella network.

The complexity metric has the above spectral elements as
part of the metric. It speaks to the structural complexity of
the graph, but it has a physical meaning for the behavior of
the network as well. As a simple example, consider the case of
spring mass system illustrated in Figure 2. If we set k; = k,,
the weight matrix is

k, k
R [1 12] (10)
ki ky
The associated recurrence matrix is then
1 —
R- [p1-r] an
l-p p

where p =k, /(ky + ky,).

Now assume that p = 1. This indicates a decoupled
system, and the complexity of such system is clearly the
smallest among all considered systems. For p slightly smaller
then 1, the complexity is small, as the system is “almost
decoupled.” For p = 0, the system has one eigenvalue

at —1, indicating that the 2 masses interact strongly, while
there is no self-interaction for either mass. It is physically
intuitive that the highest complexity occurs for p = 1/2, in
which case the effects of both the spring attached to only
one of the masses and the spring attached to both masses
have equal influence on the individual mass motion. It is
also intuitive that the situation with p = 0 is less complex;
for example, in design considerations, we do not need to
take into account the properties of two of the springs. This
intuition carries over to other examples. If we take three
masses with no self-interaction, but connected by springs,
there is a double eigenvalue at —1 and thus its complexity is
larger than that of the 2-mass system. The more balanced the
self connectivity is with the connectivity to other nodes, the
more complex tasks like engineering design will become. It
is sometimes argued that networks with full connectivity are
simpler to analyze, but this comes from a statistical mechanics
approach to the problem. In a design engineer or mainte-
nance engineer world, adding an edge in the device or net-
work design always increases the complexity of the resulting
system.

The above discussion introduces a way of measuring
the complexity of the recurrent part of a directed graph
and points to the intuitive aspects of the definition. But
complexity of the graph is not solely a function of the
recurrence and cycles. Namely, more components in a graph
and more edges between nonrecurrent nodes contribute to
complexity as well; and we assume they do so in a linear
fashion. Thus, if for a particular application we need to take
into account the weights of nodes and the weights of the
removed edges while removing sources, the total complexity
C can be formulated in the following way:

y (5 o4+ X1 B) + WF (12)
1+W '

C=

where W is the user-defined weighting parameter for the
spectral complexity in the total complexity metric which can
take any value from [0,00). N is the initial total number
of nodes, «;’s are the complexity of the individual nodes.
This is obtained either as user input or by some measure
of complexity of dynamics on the individual node, e.g.,
through the use of the spectral distribution associated with
the Koopman operator of the dynamical system [47]. M is
the number of edges removed while removing source nodes,
and B;’s are the weights of the edges that were excluded in
the source nodes removal step. F is given by (2) and y is
the scaling factor that arises due to the fact that the terms

N« +Z§\£1 B;) and F might have vastly different numerical
values. One choice for y is the following:

) E(F) 13
E (Z,Iil o + Zj\il ﬁ)) "

Note that the expectation is taken over various configurations
of the system, and thus the probability distribution on a
collection of graphs must be given. An alternative choice is
to replace the E operator with the nonlinear max operator in
(13).

Complexity

FIGURE 3: Graphical representation of the family of unicycle directed
graphs.

Example 6 (unicyclic directed graphs). Consider the family
of unicyclic connected graphs, with nodes v;, j = 1,...,N,
andedgese;; = 0, k < N-1,j# k+1lej;,, =1, j=
l,...,N-1Landey,; =1ey; =0, j# 1(see Figure 3). Let
the complexity of individual nodes be 1, and y = 1. Then the
complexity is equal to C = (2N + W)/(1 + W) and increases
monotonically with the size of the graph.

2.3. Comparison with Graph Energy. In this section, we
compare the spectral complexity introduced in this paper to
graph energy. The notion of graph energy [52, 53] emerged
from molecular and quantum chemistry, where it has found
use in ranking proteins on the basis of the level of folding [54].
It has also been used as a metric for complexity of graphs.
The graph energy complexity, interestingly, does not peak
for graphs with maximum possible connections (the rank of
the adjacency matrix for a complete graph is not maximum).
Instead, statistically, the most complex graphs are those with
=~ 2/3 possible connections [55]. Note that this complexity
metric fails to capture directed cycles in the graph, since one
is forced to work only with either undirected or symmetrized
directed graphs, as demonstrated below.

The algorithm for calculating graph energy is as follows.
At first, for a given graph, we construct the adjacency matrix
M:

1, for all edges (i,j), i # j of the graph;
M, = (14)
0, otherwise.

The graph energy C is calculated by using the following
formula:

|A|

Cz(ﬁZb,()ZSVD(M), (15)

k=1

where b4 are edge weights, |A| is the number of edges in the
graph, and SVD(M) is a vector of singular values of matrix
M. Equation (15) can be used with symmetrized adjacency
matrix Mi(jsy ™ = M;;VM ;, where V is the logical OR operator.
We present Figures 4 and 5 to highlight the difference

between the complexity introduced in this paper and the

Complexity

2

1.8
1.6 |
1.4
1.2

1}

0.8
0.6 |
04
0.2

0 1 1
10° 10! 10% 10°

Average degree

—— New Complexity by Eq.(2)
Second term in Eq.(2)
———— First Term in Eq.(2)

FIGURE 4: Complexity computed using (2) (red), second term in
(2) (blue), and first term in (2) (green) as a function of the average
degree of the graph. Each graph has 1000 nodes.

14000

12000

10000

8000

6000

4000

2000

10° 10! 102 10
Average degree

—— Graph Energy by Eq.(5)
Graph Energy by Eq.(5)
(symmetrized matrix)

FIGURE 5: Graph energy calculated by (15) as a function of the
average degree of the graph. In the case when the matrix was sym-
metrized, the average degree relates to the initial nonsymmetrized
matrix. Each graph has 1000 nodes.

graph energy. Random graphs were probabilistically con-
structed using the following formula: the probability with
which a node is connected to another node is given by

Average Degree
b= € =8 (16)
Number of Nodes

All graphs considered have 1000 nodes. The average degree
was varied from 1 to 20 in increments of 1 and then from
50 to 1000 in increments of 50. The degree is defined as
the number of outgoing edges from each node. All weights
of the edges are equal to 1. Each realization was repeated
10 times.

The spectral complexity increases fast with the average
degree, reaching values of about 1.8 (out of the maximum
possible value of 2) at an average degree of about 20/1000
of the total number of nodes; it then continues to increase
monotonically, but less rapidly, with the average degree.

In the case of the graph energy, as shown in Figure 5,
the maximum energy is reached when the average degree is
at about 50% of the total number of nodes; then the graph
energy starts to decrease.

This difference can be understood from the following
argument. For simplicity, we take graphs with edge weights
all equal to 1. As shown in Theorem 4, random graphs with
large average degree will statistically have eigenvalues with
modulus close to zero. Since graph energy is equal in this
case to the sum of moduli of eigenvalues, the graph energy
will be small. In other words, small graph energy is in fact
indicative of a large number of connections in the graph and
thus large, not small, complexity. Namely, the key to decrease
of energy of random graphs is the decrease in the moduli of
the eigenvalues. In contrast, the metric F counts the number
of complex eigenvalues, which will in the case of a random
graph with large average degree tend to increase with the
average degree.

In the case of graphs corresponding to engineered sys-
tems, there is no reason why the complexity should decrease
with increasing the number of connections (interdependen-
cies) in the graph. Thus, we believe that the complexity
measure introduced in this paper is more appropriate for
engineering and physical systems. We note that the graph
energy metric might be more appropriate from an informa-
tion theory standpoint.

We additionally note that, in [56], the authors develop
a complexity measure that is based on the entanglement of
cycles in directed graphs. They compute this metric using a
game theoretic approach (using a cops-and-robbers game).
This reachability approach is similar in spirit to our spectral
cyclomatic complexity measure. However, we note that,
in general, computing k-entanglements scales as O(n**),
whereas our approach in general scales as O(1’) and much
faster than that for sparse graphs. The spectral complexity
captures the “entanglements” at all scales of the graph (for all
k). Moreover, unlike the approach in [56], our methodology
leads to natural clustering of the graph that is discussed in the
next section.

3. Clustering of Directed Graphs

The clustering of undirected graphs is a well-developed
area [5-7] with several decades of research behind it. The
area of clustering of directed graphs is far less developed.
However, the analysis and clustering of directed graphs
are slowly coming in vogue [36, 57-59]. In [36], the

8
N5 12
1
® N3
>,
NF 1 -
N/ \
=
o N4 —4 >
<
5, N b
N

L8\

4

A

o N7

Complexity

-1 -0.5 0 0.5 1

FIGURE 6: An example graph (left); eigenvalues of the recurrence matrix (right). The blue dot is the eigenvalue of the pure cycle of size 3. The
big red dot is the generating eigenvalue as it is closest to the blue point within the green sector.

author generalizes random walk based Cheeger bounds to
directed graphs. These bounds are related to the spectral
cuts often used for graph partitioning [5]. In [57], the
authors generalize Laplacian dynamics to directed graphs,
resulting in a modularity (quality) cost function for optimal
splitting.

An alternative approach has focused on block modeling
[58, 59]. Under this methodology, nodes are grouped into
classes that exist in an image graph. This assignment is per-
formed based on node connectivity and neighbor properties.
This approach assumes that a template image graph and roles
(for the nodes) are supplied a priori. The graph is then fit
onto the image graph using an optimization scheme [58].
Although the approach extends to directed graphs, such
image graphs are not always available in engineering or social
systems.

In the following, we introduce a new graph clustering
approach that complements standard spectral methods for
decomposing graphs. In particular, we construct a new
algorithm that is based on computing the underlying cycles
in the graph by computing the corresponding generating
eigenvalues and eigenvectors. In particular, by decomposing
the graph into these cycles, we aim to identify strongly
interacting components in a directed graph. The method is
compared to Cheeger and Laplacian dynamic based methods
[36,57].

From the discussion leading to Theorem 1, we recognize
that cycling in a directed graph is associated with its recurrent
part. Thus, we can use spectral properties, and in particular
complex eigenvalue pairs, of the recurrence matrix R in
order to recognize cycles in a directed graph. Note that,
according to Theorem 1, a set of complex eigenvalues with
unit modulus always has a generator ™9, We extend this
idea to eigenvalues off the unit circle and search for such
generating eigenvalues.

In our algorithm, we seek the dominant cycle in a graph
by identifying an eigenvalue (the generating eigenvalue) that
is closest to a pure cycle on the unit circle. The algorithm is as
follows: we compute nonzero eigenvalues A ; of R. We then

compute the angles «; of the calculated eigenvalues in the
complex plane and set

1
K,,;, = argmin {—

| K-1
17)
S 2mi
-) min |e —t—l)—A-l R
t; jes xp(K ())
where K = 2,..., N, N is the number of nonzero eigenvalues,

and S is the set of eigenvalues for which (27/K) x (t —
1.5) < a; < (2n/K) x (t — 0.5). If the set S is empty,
then the minimum in (17) is 1. We denote the number of
clusters corresponding to the dominant cycle as K,;,. Then
we find the generating eigenvalue(s) and the corresponding
eigenvector(s). We choose j such that n/K,,;,, < «; <
3m/K,,;,- We want the generating eigenvalue to be close to
the case of a pure cycle of size K,,;,,, when the generating
eigenvalue is at 27/K,,;,. We find the index of the first
generating eigenvector as argmin j|A ;—exp(27i/K,,;,)|. Other
generating eigenvalues are those that are within a predefined
threshold (we use 107 in our work) of the first generating
eigenvalue.

For each generating eigenvector v;, we compute angles ¢;
in the range [0, 27] for each element 1 < i < N. Then we
obtain graph clusters by partitioning coordinates of v; into
K,,;,, groups by splitting the unit circle into K,,,;,, equal parts.
Disconnected nodes and sinks are placed in separate clusters.

For example, the 7-node graph (see Figure 6 (left)) with 6
nonzero eigenvalues of the recurrence matrix (red points in
Figure 6 (right)) has K,,,;, = 3 clusters. The sector of the unit
circle, which contains the generating eigenvalue, is between
n/K,,;, and 37/K,,;, and is colored with green in Figure 6
(right). The generating eigenvalue is the nonzero eigenvalue
that is closest to the eigenvalue of the pure cycle of size K,,,;,,.

In previous work [60, 61], a method for identifying
coarse-grained dynamics using aggregation of variables or
states in linear dynamical systems was developed. The condi-

tion for aggregation is expressed as a permutation symmetry

Complexity

of a set of dual eigenvectors of the matrix which defines the
dynamics. It is based on the fact that the n x k aggregation
matrix IT reduces a (transition) matrix P describing a linear
dynamical system if and only if there exists a set of k linearly
independent vectors invariant under P’, for example (left)
eigenvectors, which respect the same permutation symmetry
group as II. It is straightforward to identify permutation
symmetries in the invariant vectors of P A permutation
symmetry is realized through identical elements in the vec-
tors. Thus, by identifying the above permutation symmetries,
one can group elements in a complex (directed) graph. In
other words, the algorithm that we introduced above leads
to a natural method for graph sparsification [19].

4. Examples

4.1. Fixed Wing Aircraft Example. To test both our cluster-
ing approach and the complexity metric, we consider the
architecture of a fixed wing aeroplane system [33]. This is
a particularly important and relevant example, since recent
analysis by the RAND Corporation concluded that the
increase in cost of fixed wing aircraft is primarily due to
increased complexity [62]. An example of the impact of the
complexity of fixed wing aircraft is the recent cost overruns
of the F-35 platform [3].

The aerospace system considered in this work consists
of the following functional subsystems: aircraft engine, fuel
system, electrical power system (EPS), environmental control
system (ECS), auxiliary power unit (APU), ram cooler, and
actuation systems. These subsystems may be connected to one
another through various means. For example, the engine may
provide shaft power to the fuel system, the EPS, and actuation
system. Similarly, the APU may be connected to the engine as
it may be required to provide start-up pneumatic power. Note
that the interconnections need not be electrical or mechanical
in nature. Since the fuel system can be designed to absorb heat
from the actuation system and EPS, the dependencies of the
subsystems may also be thermal. For a discussion on these
systems, we refer the reader to [33]. An example architecture
depicting the subsystems and their interconnections is shown
in Figure 7.

Traditionally, aerospace system architectures are specified
by subsystems (such as EPS, ECS, etc.) and their intercon-
nections. The exploration of design space for these aerospace
systems can be a particularly daunting and challenging
task. One possible approach to this problem has been to
enumerate all feasible architectures and then pick the most
desirable one [33]. It would appear that the exponential
size of the design space would make this enumeration task
intractable. However, the feasible set is typically very sparse
and generative filters can be used to enumerate all the possible
system designs [33].

In generative filters, one starts by defining the functional
subsystems and then listing their interconnection rules.
Based on these rules, one can efficiently identify all possible
architectures [33]. Using generative filtering on the fixed wing
aircraft system gives 27,225 feasible architectures (signifi-
cantly less than the 2** possible combinations of subsystem

Engine

APU

Ram
cooler
’m;m‘
Fignt contrs

ez

FIGURE 7: Example architecture of a fixed-wing aeroplane system.

interconnection). One can now analyze and rank the resulting
architectures based on complexity and interdependencies.

After analyzing 27,225 configurations of a system, we
show the most complex one and the least complex one from
the definition of metrics in (2) and (12) with W = oco. We
compare results obtained by using our spectral complexity
with those obtained by using graph energy.

We compare our clustering results with those obtained
by using the Fiedler method, Cheeger bounds [36], and
modularity maximization [57]. Our approach for the Fiedler
method is as follows: at first for a given graph we construct the
adjacency matrix M according to (14). Then we symmetrize
the obtained matrix as Ml.(jsy " - M;; V Mj;, where V is
the logical OR operator. After that we find the Laplacian
matrix L = D — M, where D is the degree matrix. In
this matrix, rows sum to zero. The Fiedler approach is based
on the second smallest eigenvalue and the corresponding
eigenvector of the symmetric matrix L. In particular, the signs
of the components of the corresponding eigenvector are used
to partition the graph in two parts.

In the following, N1 will correspond to the engine, N2 to
the fuel system, N3 to the EPS, N4 to the ECS, N5 to the APU,
N6 to the ram cooler, and N7 to the actuation system.

4.1.1. High Complexity Architecture. After analyzing all 27,255
configurations, the architecture number 26,940 in Figure 8
was found to be the most complex. The eigenvalues for the
graph are displayed in Figure 9.

The complexity for this graph by using (2) and W = oo in
(12) is equal to 1.4043. The complexity for the random graph
with the same number of nodes and average degree by using
(2) and W = oo in (12) is equal to 0.9237. The complexity
predicted by (2) for the high complexity graph is about 152%
of the value of complexity predicted in expectation by the
same equation for a random graph. The complexity for this
graph by using (2) and W = 1 in (12) is equal to 1.2012.

The computed complexity can be motivated from a
“system cycle” standpoint. In particular, in Figure 8, the cycles
are

(1) Fuel System — Fuel System (self-loop)

10

FIGURE 8: Graph configuration 26,940. Edge weights are shown next
to the edges. Node 1 has weight 20, node 2 has weight 8, node 3 has
weight 10, node 4 has weight 10, node 5 has weight 15, and node 6
has weight 4.

Arch 26940, complexity 1.4043

08 r
0.6
04
0.2

of
-0.2
-04r
-0.6 1

=08 1

1 . . . ,
-1 -0.5 0 0.5 1

FI1GURE 9: Eigenvalues for high complexity architecture.

(2) Engine — Fuel System — Engine
(3) Engine — Fuel System — APU — Engine
(4) Fuel System — APU — EPS — Fuel System

(5) Fuel System — APU — EPS — Ram Cooler —
Fuel System

(6) Fuel System — APU — EPS — ECS — Engine

Complexity

These cycles capture energy, fuel, and data flows and inter-
actions. We note that increased interactions among aircraft
subsystems can be related to reduced efficiencies and failures
[63]. Thus, multiple intersecting cycles with several nodes
give rise to higher complexity systems, since failure in single
subsystems would propagate through and across the cycles,
thereby requiring additional redundancies for safety.

The nodes form the following clusters: cluster 1 contains
nodes 1 (engine), 4 (ECS), and 6 (ram cooler); cluster 2
is node 2 (fuel system), cluster 3 is node 3 (EPS), and
cluster 4 is node 5 (APU). Here we note that the single-
node clusters are ones that cooccur in multiple cycles. By
visual inspection, one can see the “leaky” (in the sense that
eigenvalues corresponding to it are at a large distance from
the unit circle) 4-cycle composed of the clusters; the system
cycles through the 4-cycle give rise to high complexity. This
leakiness naturally arises due to the interactions of the various
cycles (enumerated above) at common nodes such as Fuel
System, APU, and so forth.

The energy for this graph by using (15) is equal to 28.3401
(sum of singular values is equal to 7.9352). If the matrix is
symmetrized, then the energy for this graph by using (15) is
equal to 33.9041 (sum of singular values is equal to 9.4931).

By using the Fiedler method, the graph is divided into the
following clusters: cluster 1 contains nodes 2 (fuel system), 3
(EPS), and 6 (ram cooler); cluster 2 contains nodes 1 (engine),
4 (ECS), and 5 (APU), which captures neither strongly
connected components nor critical nodes that cooccur in
multiple cycles.

Using a Cheeger bound approach [36], we find that the
above graph is split into two groups. Cluster 1 contains
nodes [1,2] and cluster 2 contains nodes [3,4,5,6]. The
spectral approach for modularity maximization (by analyzing
the leading eigenvector) yields a clustering where nodes
[1,2,4,6] are in the first cluster and nodes [3, 5] lie in cluster
2. Neither of these methods capture the visually evident
cycling behavior. We now contrast this architecture with one
of low complexity as identified by our approach.

4.1.2. Low Complexity Architecture. After analyzing all 27,255
configurations as above, the architecture number 1,160 in
Figure 10 was found to be the least complex, not counting
very simple graphs containing mostly disjoint nodes after
removing sources. The eigenvalues for the graph are displayed
in Figure 11.

The complexity by using (2) and W = co in (12) is equal to
0.5847. The complexity for the random graph with the same
number of nodes and average degree by using (2) and W = co
in (12) is equal to 0.8136. The complexity predicted by (2)
for the low complexity graph is about 71% of the value of
complexity predicted in expectation by the same equation for
a random graph. The complexity by using (2) and W = 11in
(12) is equal to 0.8195.

As in the previous case, the complexity can again be
motivated from a “system cycle” standpoint. In particular, in
Figure 8, the cycles are

(1) Fuel System — Fuel System (self-loop)

(2) Engine — Fuel System — Engine

Complexity

FIGURE 10: Graph configuration 1,160. Edge weights are shown next
to the edges. Node 1 has weight 20, node 2 has weight 8, node 3 has
weight 10, node 4 has weight 10, node 5 has weight 15, node 6 has
weight 4, and node 7 has weight 8.

Arch 1160, complexity 0.58466

0 0.5

FIGURE 11: Eigenvalues for low complexity architecture.

(3) Engine — EPS — Engine
(4) APU — EPS — APU
(5) Fuel System — APU — EPS — Fuel System

Compared to the architecture with higher complexity, we see
that this example has only 5 cycles versus 6 in the previous
one. Additionally, the cycles in the higher complexity archi-
tecture have more nodes (hops) when compared to the low

11

complexity architecture. Thus, the previous architecture had a
higher complexity when compared to the current one, despite
the fact that the current example has one additional node (7
nodes) when compared to the previous one (6 nodes).

The nodes form the following clusters: cluster 1 contains
nodes 1 (engine) and 5 (APU); cluster 2 contains nodes 2
(fuel system) and 3 (EPS). It is easy to check that these
nodes generate the cycles in the graph. The eigenvalues
indicate a “leaky” two-cycle with these two clusters. Nodes
4 (ECS), 6 (ram cooler), and 7 (actuation systems) are sinks.
These unidirectional connections lower the complexity of the
system.

The energy for this graph by using (15) is equal to 25.6040
(sum of SVDs is equal to 7.2359). If the matrix is symmetrized,
then the energy for this graph by using (15) is equal to 34.8340
(sum of SVDs is equal to 9.8444). Thus, in contrast to spectral
complexity, they are not much different in values obtained for
the high complexity architecture. Note that the self-loop of
node 2 is not included in the energy calculation.

Using a Cheeger bound approach [36], we find that the
clustering approach finds no partition. The spectral approach
for modularity maximization (by analyzing the leading eigen-
vector) and Fiedler method both yield a clustering where
nodes [1,2, 3, 5] are in the first cluster and nodes [4, 6, 7] lie
in cluster 2. Once again, these methods do not capture the
cycling behavior.

4.2. Large Network Examples. In this subsection, we provide
examples of calculating complexity and clustering for some
large graphs.

4.2.1. Wikipedia Who-Votes-on-Whom Network. At first
we consider the Wikipedia who-votes-on-whom network
with 7,115 nodes ([34]). Nodes in the network represent
Wikipedia users and a directed edge from node i to node
j represents that user i voted for user j. After removing
sources, the network has 2,372 nodes. This is to be expected,
since most nodes are simply voters that do not compete in
elections (making them sources with no incoming edges).
In Figure 12, we show nonzero elements of the recurrence
matrix. The multiplicity of A; = 0 is 82 and the multiplicity
of A; = 1 is 1005, which corresponds to 42.4% of the
total number of nodes. In Figure 13, we show all nonzero
eigenvalues of the recurrence matrix.

Complexity. The complexity obtained from (2) is equal to
1.0418 (0.4938 + 0.5480). The complexity for the random
graph with the same number of nodes and average degree by
using (2) is equal to 1.8171 (0.8215 + 0.9956). The complexity
predicted by (2) for the Wikipedia who-votes-on-whom
graph is about 57% of the value of complexity predicted by the
same equation for the random graph, indicating an internal
structure to the graph. Looking at the eigenvalue distribution
shown in Figure 13, we see that it has the structure of
randomly distributed eigenvalues inside a disk of small
radius. We know from Theorem 4 that such distributions of
eigenvalues yield high spectral complexity. There is also a set
of eigenvalues away from that disk on positive and negative

12
0 I
500
Ra
-
= .
g 1000
(9]
=
N
=}
e~ 1500 k-
2000 |

0 500 1000 1500 2000
Columns of the matrix
FIGURE 12: Nonzero elements of adjacency matrix for Wikipedia

who-votes-on-whom network after removing sources. The number
of nonzero elements of adjacency matrix is 57,650.

-0.2

-0.4

-0.6

-0.8

-1 . 1
-1 -0.5 0 0.5 1

FIGURE 13: Nonzero eigenvalues for Wikipedia who-votes-on-whom
network after removing sources.

real line inside the unit disc. We next show, using clustering,
that there is internal structure corresponding to a low period,
namely, period 2-cycle that contributes to an eigenvalue on the
negative real line that lowers complexity over the maximally
complex graph or even a random graph.

Clustering. There are 56 disjoint single nodes for Wikipedia
who-votes-on-whom network which are not considered for
clustering. The graph contains 1,016 sinks. The clustering was
done for the strongly connected component. We obtained

Complexity

10

Total number of selected nodes (percent)

10

—— Ratio of C1->C2 edges to C1->Cl1 edges
—— Ratio of C2->C1 edges to C2—>C2 edges

FIGURE 14: The ratio of the number of edges going from cluster X
to cluster Y to the number of edges inside cluster X depending on
the percentage of nodes in all clusters for Wikipedia who-votes-on-
whom network. Cluster X can be cluster Cl or cluster C2 and cluster
Y can be cluster CI or cluster C2. The asterisk shows the point where
the sum of two ratios is the maximum.

cluster Cl1 of 622 nodes and cluster C2 of 678 nodes. The
generating eigenvalue is -0.5792588, indicating a 2-cycle.

In Figure 14, we plot the ratio of the number of edges
going from cluster X to cluster Y to the number of edges
inside cluster X depending on the percentage of nodes in all
clusters. The percentage of nodes in all clusters is calculated
as follows: we first sort the generating eigenvector in the
ascending order. We then compute the fraction of nodes to
keep such that the sum of the ratios is the maximum.

In the following, we select such percentage of nodes in all
clusters so that the sum of two ratios, plotted as solid lines
in Figure 14, is the maximum. We mark the found point of
2.9% with = on Figure 14. The obtained graph is shown in
Figure 15, where nodes’ numbers are numbers in the graph
before removing sources. The number of nodes in each cluster
and the ratio of the number of edges between clusters or
inside the cluster to the number of nodes in the cluster are
shown in Table 1. The average degree of this graph is 1.3243,
calculated as the ratio of the total number of outgoing edges
from each cluster and edges inside each cluster to the total
number of nodes in clusters. In the table, the number in
parenthesis shows the number of nodes in the corresponding
cluster. Other numbers show the ratio of the number of edges
from X to Y to the number of nodes in X, where X can be
cluster Cl and cluster C2 and Y can be cluster Cl and cluster
C2. As it can be seen from the table, the biggest ratio is for C1
to C2 and for C2 to CL

The number of nodes in each cluster and the ratio of the
number of edges between clusters or inside the cluster to the
number of nodes in the cluster in the case of 100% of initial
number of nodes in all clusters are shown in Table 2. The

Complexity

13

Cluster2

F1Gure 15: Clustering for Wikipedia who-votes-on-whom network with 2.9% of initial number of nodes in both cluster C1 and cluster C2.
Nodes labels are nodes numbers in the network before removing sources. The nodes from cluster Cl are situated on light red background.
The nodes from cluster C2 are situated on light green background. The edges going from cluster Cl to cluster C2 are red, the edges going from
cluster C2 to cluster Cl are green, and the edges inside clusters are black.

TaBLE I: The number of nodes in each cluster and the ratio of the
number of edges between clusters or inside the cluster to the number
of nodes in the cluster in Wikipedia who-votes-on-whom network
with 2.9% of initial number of nodes in all clusters.

X X—Cl1 X—C2
C1(19) 0.1053 1.2105
C2 (18) 1.2222 0.1111

TaBLE 2: The number of nodes in each cluster and the ratio of the
number of edges between clusters or inside the cluster to the number
of nodes in the cluster in Wikipedia who-votes-on-whom network
with 100% of initial number of nodes in all clusters.

X X—Cl1 X—C2
Cl1(622) 14.2910 17.5595
C2 (678) 14.4130 14.5619

average degree is 30.3508. As it can be seen from the table,
the biggest ratio is for Cl to C2.

We also performed clustering for the strongly connected
component by using the Fiedler method. We obtained cluster
10£1,280 nodes and cluster 2 of 20 nodes (a highly unbalanced

TaBLE 3: The number of nodes in each cluster and the ratio of the
number of edges between clusters or inside the cluster to the number
of nodes in the cluster in Wikipedia who-votes-on-whom network
(Fiedler method).

X X—Cl1 X—C2
C1 (1280) 29.7891 0.5398
C2 (20) 29.600 2.1500

cut). The table for the number of nodes in each cluster and
the ratio of the number of edges between clusters or inside
the cluster to the number of nodes in the cluster are shown in
Table 3. The number of edges between and inside clusters is
calculated for the directed graph before the symmetrization
of the adjacency matrix. The smallest ratio is for Cl1 to C2,
what reveals the weak connection from CI to C2. We see that
the method is not capable of uncovering any strong internal
structure in this directed graph.

4.2.2. Gnutella Peer to Peer Network. In the following, we
consider the Gnutella peer to peer network with 6,301 nodes

14

Rows of the matrix

YR VAN I I (RPN

6000

2000 3000 4000 500
Columns of the matrix

FIGURE 16: Nonzero elements of adjacency matrix for Gnutella peer
to peer network after removing sources. The number of nonzero
elements of adjacency matrix is 19744.

Nonzero Eigenvalues

-1 -0.5 0 0.5 1

FIGURE 17: Nonzero eigenvalues for Gnutella peer to peer network
after removing sources.

([34]). Nodes represent hosts in the Gnutella network topol-
ogy and edges represent connections between the Gnutella
hosts. After removing sources, the network has 6,179 nodes.
In Figure 16, we show nonzero elements of the recurrence
matrix. There are 674 zero eigenvalues and 3,836 one eigen-
values, which are 62.0% of the total number of nodes. In
Figure 17, we show all nonzero eigenvalues of the matrix. We
again see the structure similar to the Wikipedia network but
with even stronger indication of complexity indicated by the

Complexity

40

A o o et i o e e e

10" 10°

Total number of selected nodes (percent)

Ratio of C1->C2 edges to C1->C1 edges
Ratio of C2—>C3 edges to C2—>C2 edges
Ratio of C3—>C1 edges to C3—>C3 edges
----- Ratio of C1->C3 edges to C1->Cl edges
----- Ratio of C2—>C1 edges to C2—>C2 edges
----- Ratio of C3—>C2 edges to C3—>C3 edges

FIGURE 18: The ratio of the number of edges going from cluster X
to cluster Y to the number of edges inside cluster X depending on
the percentage of nodes in all clusters for Gnutella network. Cluster
X can be cluster Cl or cluster C2 or cluster C3 and cluster Y can be
cluster Cl or cluster C2 or cluster C3. The asterisk shows the point
where the sum of three ratios plotted as solid lines is the maximum.

concentration of eigenvalues inside the disk of small radius.
The eigenvector corresponding to the eigenvalue of about 0.5
has zero components for sinks and the same sign nonzero
components for nodes that are not sinks.

Complexity. The complexity by using (2) is equal to 0.5638
(0.2661 + 0.2977). The complexity for the random graph with
the same number of nodes and average degree by using (2)
is equal to 1.5522 (0.5976 + 0.9546). Thus, the complexity
predicted by (2) for the Gnutella graph is about 36% of the
value of complexity predicted by the same equation for the
random graph, again indicating structure induced by a low-
period cycle that we uncover next.

Clustering. There are 151 disjoint single nodes in the Gnutella
graph which are not considered for clustering. The graph
contains 3,960 sinks. The clustering algorithm found the
generating eigenvalue —0.1054572 + 0.2470956i (see the
circled eigenvalue in the Figure 17). From the associated
generating eigenvector, we obtained three clusters: cluster C1
of 659 nodes, cluster C2 of 675 nodes, and cluster C3 of 734
nodes.

In Figure 18, we plot the ratio of the number of edges
going from cluster X to cluster Y to the number of edges inside
cluster X depending on the percentage of nodes in all clusters.

In the following, we select such percentage of nodes in
all clusters so that the sum of three ratios, plotted as solid
lines in Figure 18, is the maximum. We mark the found point

Complexity

15

Cluster2

CORCT
@ oG &

& G n S
&

WAAN
D G

975

/>
Y

N
20T

iz

FIGURE 19: Clustering for Gnutella peer to peer network with 4.6% of initial number of nodes in clusters Cl1, C2, and C3. Nodes labels are
nodes numbers in the network before removing sources. The nodes from cluster Cl are situated on light red background. The nodes from
cluster C2 are situated on light green background. The nodes from cluster C3 are situated on light blue background. The edges going from
cluster Cl are red, the edges going from cluster C2 are green, the edges going from cluster C3 are blue, and the edges inside clusters are black.

of 6.0% with * on Figure 18. After removal of nodes that
become disjoint when the clusters were reduced in size, this
percentage is 4.6. The obtained graph is shown in Figure 19,
where nodes’ numbers are numbers in the graph before
removing sources. The number of nodes in each cluster and
the ratio of the number of edges between clusters or inside
the cluster to the number of nodes in the cluster are shown in
Table 4. The average degree of this graph is 0.9263. As it can
be seen from the table, the biggest ratios are for C1 — C2, C2
— C3,and C3 — CL

The number of nodes in each cluster and the ratio of the
number of edges between clusters or inside the cluster to the
number of nodes in the cluster in the case 0of 100% are shown
in Table 5. The average degree of this graph is 4.5034. As
it can be seen from the table, the biggest ratios are for Cl
— C2, C2 — (3, and C3 — Cl, but the ratio between
them and other elements of the matrix is smaller than in the
6% case.

TABLE 4: The number of nodes in each cluster and the ratio of the
number of edges between clusters or inside the cluster to the number
of nodes in the cluster in Gnutella network with 4.6% of initial
number of nodes in all clusters.

X X—Cl1 X—C2 X—C3
Cl1 (40) 0.0250 0.8750 0.0250
C2 (28) 0.0357 0.0357 0.8214
C3(27) 0.7778 0.1111 0.0741

The clustering of the strongly connected component by
using the Fiedler method gives cluster 1 of 1,878 nodes and
cluster 2 of 190 nodes. The number of nodes in each cluster
and the ratio of the number of edges between clusters or
inside the cluster to the number of nodes in the cluster
are shown in Table 6. The number of edges between and
inside clusters is calculated for the directed graph before the

16

TABLE 5: The number of nodes in each cluster and the ratio of the
number of edges between clusters or inside the cluster to the number
of nodes in the cluster in Gnutella network with 100% of initial
number of nodes in all clusters.

X X—Cl1 X—C2 X—C3
C1(659) 1.1153 2.3505 1.2337
C2 (675) 0.9052 1.1037 2.2504
C3 (734) 2.0763 11662 1.3093

TaBLE 6: The number of nodes in each cluster and the ratio of the
number of edges between clusters or inside the cluster to the number
of nodes in the cluster in Gnutella network (Fiedler method).

X X—Cl1 X—C2
C1(1878) 4.3679 0.2023
C2(190) 2.5632 1.2789

symmetrization of the adjacency matrix. As it can be seen
from the table, the smallest ratio is for CI to C2, what reveals
the weak connection from Cl to C2. Again, the method fails
to uncover the internal structure in the graph because the
structure is of cycling type and not of separate subgraph type.

5. Conclusions

In this work, we proposed a new, spectral measure of
complexity of systems and an associated spectral clustering
algorithm. This complexity measure (that we call spectral
complexity) is based on the spectrum of the underlying
interconnection graph of the subcomponents in the system.
Spectral complexity is a natural extension to software com-
plexity measures developed in [9]. We find that, compared
to competing complexity measures (such as graph energy),
spectral complexity is more appropriate for engineering
systems. For example, one of its features is that the complexity
monotonically increases with the average node degree. In
addition, it properly accounts for structure and complexity
features induced by cycles in a directed graph. Using the spec-
tral complexity measure, comparison of complex engineered
systems is enabled, potentially providing significant savings
in design and testing.

Spectral complexity also provides an intuitive approach
for clustering directed graphs. It partitions the graph into
subgroups that map into one another. Our partitioning shows
a strong cycling structure even for complex networks such as
Wikipedia and Gnutella which the standard methodologies
like the Fiedler vector partitioning do not provide.

Our methods are demonstrated on engineering systems,
random graphs, Wikipedia, and Gnutella examples. We find
that the high and low spectral complexity architectures
uncovered by our methods correspond to an engineer’s
intuition of a high complexity versus a low complexity
architecture. Namely, the low complexity of the engineered
architecture is related to more layers in its horizontal-vertical
decomposition [45, 64], that is, with a graph structure closer
to acyclic.

Complexity

It is of interest to note that the methods introduced here
have been proven to be of strong use in data-driven analysis
of dynamical systems [65], which should make it possible to
combine the introduced measure of complexity with measure
of dynamic complexity for dynamical systems on networks.

Data Availability

The data used to support the findings of this study are
included within the article.

Disclosure

The views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense or
the U.S. Government. The paper is approved for public release
and distribution is unlimited.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by AFOSR Grant FA9550-
17-C-0012 and by DARPA Contract FA8650-10-C-7080.

References

(1] D. S. Eppinger and R. T. Browning, Design Structure Matrix
Methods and Applications, MIT press, 2012.

[2] A. Pugliese, E. James, and R. Nilchiani, “Acquisition and
development programs through the lens of system complexity,”
2018.

[3] D. Robbins, J. Bobalik, D. D. Stena et al., “F-35 subsystems
design, development and verification,” in Proceedings of the
Aviation Technology, Integration, and Operations Conference, p.
3518, 2018.

[4] D. M. Cvetkovi¢, M. Doob, and H. Sachs, Spectra of Graphs:
Theory and Application, vol. 87, Academic Press, New York, NY,
USA, 1980.

[5] R. K. E. Chung and F C. Graham, “Spectral graph theory,
Number 92, American Mathematical Soc., 1997.

[6] U.von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395-416, 2007.

[7] T. Sahai, A. Speranzon, and A. Banaszuk, “Hearing the clusters
of a graph: a distributed algorithm,” Automatica, vol. 48, no. 1,
pp. 15-24, 2012.

[8] S. Klus and T. Sahai, “A spectral assignment approach for the
graph isomorphism problem,” Information and Inference: A
Journal of the IMA, 2018.

[9] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308-320, 1976.

[10] T.J. McCabe and C. W. Butler, “Design complexity measure-
ment and testing,” Communications of the ACM, vol. 32, no. 12,
pp. 1415-1425, 1989

[11] J. K. Navlakha, “A survey of system complexity metrics,” The

Computer Journal, vol. 30, no. 3, pp. 233-238, 1987.

Complexity

[12] M. Shepperd and D. C. Ince, “A critique of three metrics,” The
Journal of Systems and Software, vol. 26, no. 3, pp. 197-210, 1994.

[13] K. J. Astrom and R. M. Murray, Feedback Systems: An Intro-
duction for Scientists and Engineers, Princeton University Press,
2010.

[14] T. Moshagen, “Convergence of explicitely coupled Simulation
Tools (Co-simulations),” Journal of Numerical Mathematics,
2017.

[15] S.Klus, T. Sahai, C. Liu, and M. Dellnitz, “An efficient algorithm
for the parallel solution of high-dimensional differential equa-
tions,” Journal of Computational and Applied Mathematics, vol.
235, no. 9, pp. 3053-3062, 2011.

[16] M. Dehmer and A. Mowshowitz, “A history of graph entropy
measures,” Information Sciences, vol. 181, no. 1, pp. 57-78, 2011.

[17] M. Dehmer, X. Li,and Y. Shi, “Connections between generalized
graph entropies and graph energy;,” Complexity, vol. 21, no. 1, pp.
35-41, 2015.

[18] I. Mezic and T. Runolfsson, “Uncertainty propagation in
dynamical systems,” Automatica, vol. 44, no. 12, pp. 3003-3013,
2008.

[19] M. B. Cohen, J. Kelner, J. Peebles et al., “Almost-linear-time
algorithms for Markov chains and new spectral primitives
for directed graphs,” in Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pp. 410-419,
ACM, New York, NY, USA, 2017.

[20] C. Kottak, Cultural Anthropology, McGraw Hill, New York, NY,
USA, 5th edition, 1991.

[21] N. Speer, H. Frohlich, C. Spieth, and A. Zell, “Functional
grouping of genes using spectral clustering and gene ontology,”
in Proceedings of the International Joint Conference on Neural
Networks, IJCNN 2005, pp. 298-303, August 2005.

[22] A. Paccanaro, J. A. Casbon, and M. A. S. Saqi, “Spectral
clustering of protein sequences,” Nucleic Acids Research, vol. 34,
no. 5, pp. 1571-1580, 2006.

[23] A. Muhammad and A. Jadbabaie, “Decentralized computation
of homology groups in networks by gossip,” in Proceedings of the
2007 American Control Conference, ACC, pp. 3438-3443, USA,
July 2007.

[24] 1. Herman, G. Melangon, and M. S. Marshall, “Graph visualiza-
tion and navigation in information visualization: a survey;,” IEEE
Transactions on Visualization and Computer Graphics, vol. 6, no.
1, pp. 24-43, 2000.

[25] D. Kempe and E. McSherry, “A decentralized algorithm for
spectral analysis,” in Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pp. 561-568, ACM, New
York, NY, USA, 2004.

[26] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak
Mathematical Journal, vol. 23(98), pp. 298-305, 1973.

[27] M. Fiedler, “A property of eigenvectors of nonnegative symmet-
ric matrices and its application to graph theory,” Czechoslovak
Mathematical Journal, vol. 25(100), no. 4, pp. 619-633, 1975.

[28] N. Biggs, “Norman Linstead Biggs, and Emeritus Norman
Biggs,” in Algebraic graph theory, vol. 67, Cambridge University
Press, Cambridge, UK, 1993.

[29] B.S. Everitt, S. Landau, and M. Leese, Cluster analysis, Arnold,
4th edition, 2001.

[30] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice Hall, 1988.

[31] T. Sahai, A. Speranzon, and A. Banaszuk, “Wave equation
based algorithm for distributed eigenvector computation,” in

17

Proceedings of the 49th IEEE Conference on Decision and Control
(CDC ’10), pp. 7308-7315, 2010, 2010.

[32] S. E. Schaeffer, “Graph clustering,” Computer Science Review,
vol. 1, no. 1, pp. 27-64, 2007.

[33] L. E. Zeidner, A. Banaszuk, and S. Becz, “System complexity
reduction via spectral graph partitioning to identify hierarchi-
cal modular clusters,” in Proceedings of the 10th AIAA Aviation
Technology, Integration and Operations Conference ATIO ’I0, p.
9265, September 2010.

[34] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large
network dataset collection,” 2015.

[35] R. A. Brualdi, “Spectra of digraphs,” Linear Algebra and its
Applications, vol. 432, no. 9, pp. 2181-2213, 2010.

[36] E. Chung, “Laplacians and the Cheeger inequality for directed
graphs,” Annals of Combinatorics, vol. 9, no. 1, pp. 1-19, 2005.

[37] D. Gleich, “Hierarchical directed spectral graph partitioning,”
Information Networks, 2006.

[38] A. Capocci, V. D. P. Servedio, G. Caldarelli, and F. Colaiori,
“Detecting communities in large networks,” Physica A: Statisti-
cal Mechanics and its Applications, vol. 352, no. 2-4, pp. 669-676,
2005.

[39] M. Meila and W. Pentney, “Clustering by weighted cuts in
directed graphs,” in Proceedings of the 7th SIAM International
Conference on Data Mining (SDM *07), pp. 135-144, SIAM, April
2007.

[40] E. A. Leicht and M. E. J. Newman, “Community structure in
directed networks,” Physical Review Letters, vol. 100, no. 11,
Article ID 118703, 2008.

[41] H. Yin, A. R. Benson, J. Leskovec, and D. E Gleich, “Local
higher-order graph clustering,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2017, pp. 555-564, Canada, August 2017.

[42] H.Van Lierde, T. W. Chow, and J. Delvenne, “Spectral clustering
algorithms for the detection of clusters in block-cyclic and
block-acyclic graphs,” Journal of Complex Networks, 2018.

[43] K. Christine and G. Sanders, “Detecting highly cyclic
structure with complex eigenpairs,” 2016, https://arxiv.org/abs/
1609.05740.

[44] 1. Mezic, V. A. Fonoberov, M. Fonoberova, and T. Sahai,
“Complexity and clustering metrics,” in Proceedings of the
DARPA METAII PI meeting, September 2011.

[45] 1. Mezic, “Coupled nonlinear dynamical systems: asymptotic

behavior and uncertainty propagation,” in Proceedings of the
2004 43rd IEEE Conference on Decision and Control (CDC), vol.

2, pp- 1778-1783, IEEE, December 2004.

[46] B. O. Koopman, “Hamiltonian Systems and Transformation in
Hilbert Space,” Proceedings of the National Acadamy of Sciences
of the United States of America, vol. 17, no. 5, pp. 315-318, 1931.

[47] I. Mezic and A. Banaszuk, “Comparison of systems with
complex behavior,” Physica D: Nonlinear Phenomena, vol. 197,
no. 1-2, pp. 101-133, 2004.

[48] G.Grimmettand D. Stirzaker, Probability and random processes,

Oxford university press, 2001.

A. Katok and B. Hasselblatt, Introduction to the modern theory

of dynamical systems, vol. 54, Cambridge University Press, New

York, NY, USA, 1997.

[50] W. Huisinga and B. Schmidt, Advances in Algorithms for Macro-
molecular Simulation, Chapter Metastability and Dominant
Eigenvalues of Transfer Operators, Lecture Notes in Compu-
tational Science and Engineering, Springer, Berlin, Germany,
2005.

[49

https://arxiv.org/abs/1609.05740
https://arxiv.org/abs/1609.05740

18

[51] C. Bordenave, P. Caputo, and D. Chafa, “Circular law theorem
for random Markov matrices,” Probability Theory and Related
Fields, vol. 152, no. 3-4, pp. 751-779, 2012.

[52] I. Gutman, The energy of a graph. 10, steiermrkisches mathe-
matisches symposium (stift rein, graz, 1978), Ber. Math.-Statist.
Sekt. Forsch. Graz, (100-105), 1978.

[53] I. Gutman, “The energy of a graph: old and new results,” in
Algebraic Combinatorics and Applications, pp. 196-211, Springer,
Berlin, Germany, 2001.

[54] E.Estrada, “Characterization of 3D molecular structure,” Chem-
ical Physics Letters, vol. 319, no. 5-6, pp. 713-718, 2000.

[55] I. Gutman, T. Soldatovi¢, and D. Vidovi¢, “The energy of a graph
and its size dependence. A Monte Carlo approach,” Chemical
Physics Letters, vol. 297, no. 5-6, pp. 428-432,1998.

[56] D. Berwanger, E. Gradel, L. Kaiser, and R. Rabinovich, “Entan-
glement and the complexity of directed graphs,” Theoretical
Computer Science, vol. 463, pp. 2-25, 2012.

[57] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P.
Onnela, “Community structure in time-dependent, multiscale,
and multiplex networks,” Science, vol. 328, no. 5980, pp. 876—
878, 2010.

[58] J. Reichardt and D. R. White, “Role models for complex
networks,” The European Physical Journal B, vol. 60, no. 2, pp.
217-224, 2007.

[59] B. Karrer and M. E. J. Newman, “Stochastic blockmodels
and community structure in networks,” Physical Review E:
Statistical, Nonlinear, and Soft Matter Physics, vol. 83, no. 1,
Article ID 016107, 2011.

[60] M. N. Jacobi and O. Gornerup, “A spectral method for aggre-
gating variables in linear dynamical systems with application
to cellular automata renormalization,” Advances in Complex
Systems, vol. 12, no. 2, pp. 131-155, 2009.

[61] M. N. Jacobi and O. Goernerup, “A dual eigenvector condition
for strong lumpability of Markov chains,” 2007, https://arxiv
.org/abs/0710.1986.

[62] M. V. Arena, O. Younossi, K. Brancato et al., Why has the cost
of fixed-wing aircraft risen? a macroscopic examination of the
trends in us military aircraft costs over the past several decades,
Rand national defense research Inst santa monica CA, 2008.

[63] J. A. Rosero, J. A. Ortega, E. Aldabas, and L. Romeral, “Moving
towards a more electric aircraft,” IEEE Aerospace and Electronic
Systems Magazine, vol. 22, no. 3, pp. 3-9, 2007.

[64] J. Xu and Y. Lan, “Hierarchical feedback modules and reaction
hubsin cell signaling networks,” PLoS ONE, vol. 10, no. 5, Article
ID e0125886, 2015.

[65] M. Budisic, R. Mohr, and I. Mezic, “Applied Koopmanism,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 22,
no. 4, 047510 pages, 2012.

Complexity

https://arxiv.org/abs/0710.1986
https://arxiv.org/abs/0710.1986

Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

