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Abstract. Background: Tissue MicroArrays (TMAs) are a valuable platform for tissue based translational research and the
discovery of tissue biomarkers. The digitised TMA slides or TMA Virtual Slides, are ultra-large digital images, and can contain
several hundred samples. The processing of such slides is time-consuming, bottlenecking a potentially high throughput platform.

Methods: A High Performance Computing (HPC) platform for the rapid analysis of TMA virtual slides is presented in this
study. Using an HP high performance cluster and a centralised dynamic load balancing approach, the simultaneous analysis of
multiple tissue-cores were established. This was evaluated on Non-Small Cell Lung Cancer TMAs for complex analysis of tissue
pattern and immunohistochemical positivity.

Results: The automated processing of a single TMA virtual slide containing 230 patient samples can be significantly speeded
up by a factor of circa 22, bringing the analysis time to one minute. Over 90 TMAs could also be analysed simultaneously,
speeding up multiplex biomarker experiments enormously.

Conclusions: The methodologies developed in this paper provide for the first time a genuine high throughput analysis platform
for TMA biomarker discovery that will significantly enhance the reliability and speed for biomarker research. This will have
widespread implications in translational tissue based research.

Keywords: Cluster, dynamic load balancing, high performance computing, parallel processing, Tissue MicroArray, TMA, virtual
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1. Introduction

Tissue MicroArrays have become a very important
tool in the evaluation and discovery of tissue biomark-
ers that are clinically relevant and support diagnos-
tic classification, prognosis, or in defining sensitivity
or resistance to patient targeted therapies [13]. Hav-
ing up to several hundred tissue samples on a single
glass slide reduces to a single assay what would other-
wise be an expensive, time consuming and technically
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variable experiment. Techniques such as immunohis-
tochemistry (IHC) or fluorescence in situ hybridisation
(FISH) can obtain a simultaneous view of protein or
nucleotide sequence expression across a wide cohort of
patients with different clinical outcomes. For this rea-
son, the approach has been termed “high throughput”.
While this is true, in that it is a single assay platform
employed for multiple samples, the subsequent analy-
sis of biomarker expression on TMAs is still based on
visual inspection and scoring by a trained pathologist.
Whilst critical for successful biomarker analysis using
TMAs it represents a significant bottleneck in many
studies. In addition to the time it takes to manually
score hundreds of tissue cores, there are also issues as-
sociated with inter- and intra-observer reproducibility
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of scoring due to the subjectivity of visual interpreta-
tion by the naked eye. It is for these reasons that com-
puterised image analysis has once again come to the
fore, as a means of supplementing biomarker evalua-
tion by pathologists using TMAs.

Until recently image analysis of TMAs would have
been impracticable, since recording separate digital
images of each individual core using a standard camera
would have been enormously time consuming. How-
ever, the advent of virtual microscopy and high res-
olution scans of entire glass slides has allowed an
entire TMA slide to be scanned in a few minutes, com-
pletely capturing the biomarker densitometric and lo-
cation information in the form of a single digital image.
This provides an ideal platform to explore the use of
computer-vision algorithms [5,8,18] for the automated
analysis of tissue biomarkers within TMAs and the op-
portunity to develop a truly high throughput platform
for biomarker discovery in tissues.

A number of commercial systems are currently
available which provide computer-based analysis of
TMAs using generic algorithms for nuclear/cytoplas-
mic segmentation and quantitation of immunohisto-
chemistry. One of the major technical challenges in us-
ing virtual slides is the size of the images generated.
Scanning a typical region of 25 mm × 15 mm occupied
by TMA tissue samples on a glass slide at 40× magni-
fication can result in an image with 100,000 × 60,000
pixels [1], corresponding to 20 GB of uncompressed
data. At this resolution, an individual tissue core of
approximately 0.6 mm in diameter would be approx-
imately 9 mega-pixels. Analysing tissue structure and
biomarker density in images of this size on multiple
cores is computationally intensive and time consum-
ing. However, by analysing multiple cores simultane-
ously, using high performance computing (HPC) one
could theoretically significantly speed up biomarker
quantitation and TMA analysis. The discrete nature of
a TMA and its component tissue samples lends itself
perfectly to independent and highly parallelised analy-
sis.

Others have considered this in the context of Grid-
based computing [6,17,19] which is a highly distrib-
uted form of computing using a decentralised model.
Whilst providing certain speed advantages, Grid-based
computing can be difficult to control, manage and con-
figure for dedicated experiments [14]. This arises from
the fact that it tends to incorporate heterogeneous col-
lections of computers, with widely different capabil-
ities, managed by different organisations, widely dis-
tributed geographically, with inconsistent connections
and bandwidth. In this study we have explored an al-

ternative approach using a dedicated high performance
computer cluster specifically designed for the high per-
formance analysis of TMAs. The benefits of cluster-
based computing are that the computer architecture
is specifically designed to manage parallel process-
ing with consistency across processors in the clus-
ter and fast connections among nodes. These benefits
promised to provide a convenient and highly rapid ap-
proach to automated TMA analysis and this was tested
using a number of algorithms on TMAs with novel bio-
markers in lung cancer.

2. Materials and methods

2.1. High performance computing (HPC)

This study utilised the HPC Centre at the Queen’s
University of Belfast which currently houses a Hew-
lett-Packard (HP) BladeSystem c7000 enclosure with
multiple blade servers. Each blade consists of 2 Intel
Xeon E5420 quad-core processors at 2.5 GHz and 10–
16 GB of shared memory. There are altogether >9000
processor cores and 18 TB (terabytes) of shared mem-
ory available to use. The blades use gigabit Ethernet
interconnections and a fibre channel (FC) storage area
network (SAN) connection to hard drives. Currently,
the total size of hard drives is 250 GB. This cluster sys-
tem also uses a 64 bit Microsoft Windows HPC Server
2008 operating system and a Linux server.

2.2. System architecture

The cluster based HPC platform was developed for
(i) the rapid analysis of TMA virtual slides, and (ii) the
management of virtual slides. The schematic overview
of the overall system architecture is presented in Fig. 1.
It hosts five functional modules, namely a Parallel
Processing module, an Image File Access module, an
Analytic module, a Digital Slide Serving module and
a Digital Slide Viewing module. These are detailed be-
low.

2.2.1. Parallel Processing module
A Parallel Processing module was developed to al-

low the simultaneous analysis of multiple tissue cores
on the HP BladeSystem cluster. A centralised dy-
namic load balancing parallel strategy was developed.
This Parallel Processing module was programmed in
C/C++ language and a Microsoft implementation of
the Message Passing Interface (MPI) which is based on
MPICH2 (Argonne National Laboratory).

Load balancing refers to the technique to distribute
workload evenly across a set of processing units/cores.
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Fig. 1. System architecture of the HPC Platform for TMA Analysis. Image Generation (left) utilises scanning technology to generate high resolu-
tion images of the glass TMA slide. This is utilised within the HPC Platform (centre) which comprises a number of interacting functional modules.
Visualisation (right) of imagery and data generated from HPC analysis can be achieved remotely used web-based technology based on PathXL
platform (i-Path Diagnostics Ltd.). (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/ACP-CLO-2010-0551.)

Two approaches to load balancing were investigated to
determine relative efficiency in TMA analysis. (i) Sta-
tic load balancing: assuming there are p processor-
cores, a static load balancing approach assigns each
processor-core every pth TMA core in a round-robin
fashion. Each processor core is responsible for access-
ing the hard drives for loading and saving TMA im-
ages. (ii) Centralised dynamic load balancing (Fig. 2):
here a dedicated master processor-core is configured to
dispatch image processing tasks to worker processor-
cores (P0 to Pp), where worker processor-cores per-
form the analytical tasks. A new TMA-core processing
task is only assigned when a worker processor is idle
and requesting tasks from the master processor-core. In
dynamic load balancing, only worker processor cores
access hard drives for loading and saving, whereas the
master processor-core is only responsible for manag-
ing work load amongst worker cores.

2.2.2. Image File Access module
Virtual slides produced from different scanners use

variety of compression techniques and different file
formats [15]. These virtual slides are often not inter-
operable. A File Access module was adapted from the
PathXL framework (i-Path Diagnostics Ltd.) so that
virtual slides can be handled regardless of file for-

mats and compression used. Currently, the File Access
module supports virtual slides scanned using Aperio
ScanScope series scanners, Hamamatsu NanoZoomer
scanners and Carl Zeiss Mirax Scanners.

The File Access module is able to load virtual slides
into vendor-format-independent image data for view-
ing and further processing and output regions of vir-
tual slides in standard JPEG files. The proposed Im-
age File Access module unifies pixel format into a
vendor independent sequence of red–green–blue pix-
els (Fig. 3), which is essential for the design of virtual
slide viewing and analysis functionalities (introduced
in Sections 2.2.3–2.2.5). When it is required to output
certain regions of a virtual slide (e.g., a TMA core),
the output is saved as a .jpg file using the JPEG com-
pression algorithm from Intel JPEG Library (version
[2.0.18.50]).

2.2.3. Analytic module
The Analytic module was designed to accommodate

any algorithm, or set of algorithms for the analysis of
TMA cores. Two sets of analytic algorithms were im-
plemented and evaluated in the current study: (i) tissue
core texture pattern measurements used for histologi-
cal sub-typing and (ii) automated quantitation of bio-
marker IHC density on TMA core images.
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Fig. 2. Diagram illustrating the centralised dynamic load balancing approach for parallelise image processing tasks. The steps are numbered to
illustrate the workflow. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/ACP-CLO-2010-0551.)

Texture features are widely used in tissue imag-
ing for supervised and unsupervised learning [7,20]
across a variety of applications, both for tissue pat-
tern recognition and immuno-quantitation [9]. Tissue
texture computation allows for the recognition of pat-
tern changes associated with malignancy and facili-
tates the automatic identification and segmentation of
tumour regions in tissue samples and TMAs [4,20].
For high throughput biomarker evaluation using HPC
this is an essential approach for selecting tumour re-
gions within which biomarker IHC can be measured.
In this study, six popular statistical moments based tex-
ture features were implemented in the Core Analytic
module and used to evaluate the performance of the
HPC platform. Their mathematical formulae are listed
in Table 1. These were combined to form a classifier
for 100 × 100 pixel tiles, allowing the identification of
tumour regions in lung TMA samples.

An automated IHC quantification method was de-
veloped specifically for lung cancer TMA analysis (see
Section 2.4) and integrated seamlessly into the HPC
platform. This allows objective, rapid and continuous
assessment of biomarker expression and quantitative
analysis. The algorithm has a number of functions:

(a) The removal of carbon particle objects from
each TMA core image using static gray-level
thresholding at the value of 40.

(b) The separation of DAB brown colour channel
using the exact colour deconvolution method
proposed by study [16].

(c) The subsequent quantification of IHC (DAB –
brown) staining using a dynamic Otsu’s method
[12]. It is used for the determination of an opti-
mum threshold for each single TMA core based
on histogram distribution.

Using dynamic load balancing only, biomarker im-
age analysis was carried out on all three virtual TMA
slides. Following image load and decompression, the
Analytic module was called and performed on each
TMA core, generating a quantitative score. This score
was then used to generate a corresponding mark-up im-
age showing positively stained regions superimposed
in red. These mark-up images were eventually saved as
.jpg files using compression quality of 100.

Similar to the Image File Access module, the An-
alytic module is also integrated with the Parallel
Processing module for acceleration. The Analytic
module sits on the head node of the HPC platform.
Depending on the choice of either static or centralised
dynamic load balancing approach from the Parallel
Processing module, algorithms implemented in the An-
alytic module are dispatched to all allocated processor-
cores and processed in parallel until all tasks are com-
plete.
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Fig. 3. Flowchart of how the File Access module loads virtual slides. Currently Virtual slides produced using Aperio, Hamamatsu and Carl Zeiss
scanners are supported. Regions of these virtual slides are initially loaded into memory and subsequently decompressed using their corresponding
decompression method. Finally, these uncompressed data are converted into vendor format independent RGB format. (Colours are visible in the
online version of the article; http://dx.doi.org/10.3233/ACP-CLO-2010-0551.)

Table 1

Equations for the 6 texture features to be calculated on each TMA
core

Texture feature Expression

Average intensity m =
∑L−1

i=0 zip(zi)

Average contrast σ =
√

μ2(z)

Smoothness R = 1 − 1/(1 + σ2)

3rd moment μ3 =
∑L−1

i=0 (zi − m)3p(zi)

Uniformity U =
∑L−1

i=0 p2(zi)

Entropy e = −
∑L−1

i=0 p(zi) log2 p(zi)

Notes: zi is a random variable indicating intensity, p(z) is the his-
togram of the intensity level in a region, L is the number of possible
intensity levels.

2.2.4. Digital Slide Serving module
For TMA virtual slides to be viewed remotely,

a Digital Slide Serving module developed on the
PathXL Server (i-Path Diagnostics Ltd.) was utilised.
This transfers image data to an on-line viewer us-
ing a region-on-demand process and utilising the de-
coding capabilities of the Image File Access module
which is image format and vendor independent. Im-
ages are served as standard JPEG image over standard
TCP/IP protocols and viewed by end-users via a stan-
dard browser.

2.2.5. Digital Slide Viewing module
End users are able to view TMA virtual slide

through a unified client web interface, PathXL Client
(i-Path Diagnostics Ltd.). It works directly with the
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Digital Slide Serving module by requesting a spatial
region of the virtual slide at a specific magnification,
followed by placing returned images in the appropri-
ate position on screen. It is platform-independent and
operates within all standard web-browsers. In addition,
end users are able to request the HPC platform to per-
form certain instructions including analysis of TMA
slides which are implemented by the Core Analytic
module. PathXL currently communicates with the Core
Analytic module through the Microsoft HPC Job Man-
ager (Microsoft Inc.). Finally, end users are able to ac-
cess processing results for the last step either through
standard output files from the HPC Job Manager or
direct remote hard drive access.

2.3. TMA core database

A comprehensive TMA database (TMAX) was built
to allow the storage of extensive metadata associated
with TMA experiments [2,10], including patient, di-
agnostic, pathological and clinical information, virtual
TMA slide identifier, tissue core location, image analy-
sis results, classification data, etc. TMAX is also de-
signed to support data exchange standards across plat-
forms by generating XML based metadata [2]. The
TMAX database resides on the networked hard drives
on the HP BladeSystem.

Using a TMA de-arraying algorithm, key informa-
tion on the layout of the TMA is defined and stored in
the database and must be retrieved in order to process
a given virtual TMA on the HPC platform. The Tis-
sue table contains virtual slide file name (FileName)
and absolute path on server (FileDir). The Core table
stores location information for each of the TMA cores,
including the X and Y coordinates (in pixels) of the
bounding box TMA core’s top left corner, as well as
the Width and Height (in pixels) for each core.

2.4. Lung TMA samples

Having constructed the HPC approach to TMA
analysis, the system was subsequently evaluated on a
series of lung TMAs as part of on-going non-small
cell lung cancer research programme within the Cen-
tre for Cancer Research & Cell Biology at QUB. Lung
specimens were taken from 116 patients. These speci-
mens were paraffin-fixed and subsequently sampled to
construct 3 TMA blocks, namely TMA1, TMA2 and
TMA3. For each whole-tissue block, 3–4 cores were
taken and subsequently placed horizontally adjacent
within a same TMA block. For TMA1, 3 additional

controls from the same block were also taken and
placed in a same TMA block. TMA1 and TMA2 also
included a number of other types of controls. TMA3
does not have any controls. All TMA cores were sam-
pled at the diameter of 0.6 mm. These 3 TMA blocks
contained 490 tissue cores and used to generate a 5 µm
tissue sections. Using IHC (DAB), two of the sections
were stained for the BCL-2 family proteins NOXA
(Q13794) and BAK (Q16611) [3,11].

Each TMA slide was scanned using an Aperio
ScanScope CS scanner (Aperio Technologies Inc., San
Diego, CA, USA) with the objective of 20×/0.75 Plan
Apo, which gives the magnification of 40× and the
resolution of 0.25 µm/pixel. After scanning, TMA vir-
tual slides were compressed using the standard lib-
jpeg library (Independent JPEG Group – www.ijg.org)
for lossy compression. There are currently no studies
which have looked at the impact of compression on
measurements in tissue pathology and this is some-
thing that our group is exploring in detail – both
across compression types and compression quality lev-
els. Previous studies on quantitative IHC, appear to
have used a variety of compression quality levels (al-
though often not stated). For this reason we wanted
to include different compression quality levels to de-
termine impact if any on processing speed and used
compression values of 70 and 30 in this study. Further
work will be required to determine if compression has
a negative impact on accurate measurement in Digital
Pathology. Details of the three virtual slides are listed
in Table 2.

2.5. Evaluation of performance

Processing time and Speedup were used as perfor-
mance measurements. Processing time was measured
by the number of seconds to perform an operation.
Speedup is defined as the ratio of fastest sequential ex-
ecution time and parallel execution time:

Speedup =
Sequential Execution Time

Parallel Execution Time
. (1)

Given an image analysis algorithm and a specific
TMA virtual slide, the sequential processing time run-
ning on one processor core was firstly recorded. Fol-
lowing this, processing time using multiple processor-
cores was calculated, compared with sequential pro-
cessing time and Speedup calculations made. If static
load balancing approach is used, one processor-core
is initially allocated, whereas for centralised dynamic
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Table 2

TMA virtual slides details

TMA1 TMA2 TMA3

IHC marker NOXA BAK NOXA

Number of patients 31 37 48

Number of TMA cores per sample 4 3 3

Number of tissue cores 232 114 144

Segmented number of tissue cores 229 114 144

Number of controls 124 9 0

Virtual slide dimension (pixels) 160,290 × 65,017 61,505 × 54,619 80,436 × 51,100

Uncompressed image size (giga-bytes) 19.3 9.4 11.5

IJG-JPEG compression quality 30 70 30

IJG-JPEG compression ratio 38.65 24.71 35.32

File size (mega-bytes) 512 389 333

load balancing approach, two processor-cores are used
so that one processor-core could act as the master node
and the other one be the worker node.

For individual experiments, the impact of HPC was
evaluated on three processes: Image Loading, Image
Analysis and Image Saving:

• Image Loading: Loading the entire TMA virtual
slide and its component TMA cores at original
resolution into the system memory followed by
JPEG decompression.

• Image Analysis: Calculation of all algorithmic de-
rived features from every TMA core on a virtual
slide.

• Image Saving: Compressing every TMA core im-
age from a virtual slide using JPEG compression
and saving them to the HPC’s hard disk.

Finally, the impact of image compression on par-
allel processing of TMA samples was examined. All
TMA core images were JPEG-compressed using 411
sampling at the compression quality of 100 (maxi-
mum) and 0 (minimum) and the impact of HPC in-
duced processing speed analysed.

3. Results

For the evaluation of the performance of the HPC
platform, all three virtual TMA slides from the lung
TMA dataset were tested. These virtual slides contain
altogether 490 TMA cores (with 232, 114 and 114
cores, respectively). During TMA de-arraying process,
3 TMA cores were not successfully segmented which
gave the total of 487 segmented TMA cores. These
three TMA virtual slides were tested independently.

3.1. Loading and storing digital slides on HPC
platform

The processing time for the Image Loading and Im-
age Saving of virtual slides is significantly reduced
when using multiple processor cores. Figure 4A–C
shows that the processing time to load a TMA virtual
slide is rapidly reduced to less than 4 s by compari-
son to as much as 80 s using standard sequential code
with a maximum Speedup of 21.60. However, the ben-
efit of assigning more processor-cores peaks between
10 and 25, where speed improvement stabilises. Saving
images (Fig. 4D–F) is computationally more intensive
than Loading, with sequential code processing taking
between 150 and 286 s, depending on the size of the
TMA image and number of tissue cores. Again, Im-
age Saving significantly benefits from parallelisation
and increasing the number of processor-cores, reduced
time to <10 s and as much as 58.17 times faster than
sequential code.

3.2. Static load balancing vs. centralised dynamic
load balancing

A comparison of static and centralised dynamic load
balancing showed little difference in processing time,
as shown in the example using texture feature calcula-
tion on TMA1 (Fig. 5). Centralised dynamic load bal-
ancing is slightly faster when more than 10 processor-
cores were used. As results shown in Table 3, if the
Centralised Dynamic Load Balancing is used, it could
save >4% of processing time in Loading, and >16%
of processing time in Saving. However in situations
when the number of processor-cores are limited (<10
processor-cores per TMA slide), static load balancing
is a better choice as no processor-cores are sacrificed
for scheduling tasks as what happens using dynamic
load balancing.
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Fig. 4. Results for the time in seconds taken to load (A–C) and save (D–F) virtual slides. Time is plotted against the number of processor cores
used. The dashed line shows the corresponding time taken using the fastest sequential code. Loading times for (A) TMA1, (B) TMA2 and
(C) TMA 3 are plotted together with saving time for (D) TMA1, (E) TMA2 and (F) TMA 3. It is evident that increasing the number processing
cores significantly speeds up both loading and saving of digital images. (Colours are visible in the online version of the article; http://dx.doi.org/
10.3233/ACP-CLO-2010-0551.)

3.3. TMA texture measurements on HPC platform

Tumour region identification using texture compu-
tation is illustrated in Fig. 6. The time taken to cal-

culate texture features across a TMA virtual slide is
small compared to the time required with Loading
and Saving a whole virtual slide and its component
TMA cores. The average time for sequential code on
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Fig. 5. Comparison of processing time between static load balancing and centralised dynamic load balancing. This comparison was using the
calculation of texture features on TMA1 as an example. (A) Loading time, (B) Saving time. (Colours are visible in the online version of the
article; http://dx.doi.org/10.3233/ACP-CLO-2010-0551.)

Table 3

Percent of processing time saved using centralised dynamic load balancing over static load balancing

Centralised dynamic Static load % of time saved using

load balancing (s) balancing (s) centralised dynamic

load balancing (%)

TMA1 Loading 4.85 5.07 4.36

Saving 10.21 12.42 17.85

TMA2 Loading 3.559 4.20 15.65

Saving 6.08 7.71 21.10

TMA3 Loading 3.18 3.39 6.02

Saving 6.46 7.72 16.33

1 processor core for the calculation of texture features
on the entire TMA virtual slide is about 5 s (Fig. 7).
Using 10 or more processor-cores, reduces time taken
to <1 s1 regardless of whether static load balancing or
centralised dynamic load balancing approach was ap-
plied.

Without the proposed HPC platform, if we take the
average of sequential processing time of 261.91 s per
slide, to perform texture feature calculation for 90 vir-
tual slides, it would take 23,580 s (6.55 h) tradition-
ally using 1 processor core. However we estimated that
when process these virtual slides in parallel over 9000
processor-cores, it will only take the amount of time

1Processing time in Fig. 7 may appear to be negative as the result
of how it is calculated. In our test, the processing time for texture fea-
ture calculation is obtained as the time difference between two sep-
arate runs. The first iteration calculated the overall processing time
for Image Loading, texture feature calculation and Image Saving,
whereas the second iteration only calculated the overall processing
time for Image Loading and Image Saving.

for the processing of the slowest slide, which is 8.72 s
in our experiment (Table 4).

When low (0) and high (100) image compression
qualities were applied, experiments showed only slight
increase in processing time when analysing high com-
pression qualities. An example using TMA1 is shown
in Fig. 8. When 2 processor-cores were used, the iter-
ation for Saving a JPEG with compression quality of
100 (363.56 s) is 77.40 s slower than the iteration us-
ing a compression quality of 0 (286.15 s). During com-
pression and decompression, both images with low and
high compression qualities go through a same encod-
ing/decoding procedure. Therefore only fractional time
differences would occur as the result of these numer-
ical calculations. However, the image with high com-
pression quality has a larger amount of data (in bytes)
to be accessed from the hard drive, and results in an
increased demand on processors. Having a number of
processor working in tandem can off-set the process-
ing time required. The differences in processing time
between low and high compression quality images de-
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Fig. 6. Examples of tumour region identification using texture feature calculation. Figure A is a TMA core image, Figure B and C marked
tumour regions using contour and overlapping pseudo-colour. (Colours are visible in the online version of the article; http://dx.doi.org/
10.3233/ACP-CLO-2010-0551.)

Fig. 7. Runtime for calculating texture features (without loading
and saving) for TMA2. The solid line indicates the texture calcu-
lation time using centralised dynamic load balancing, whereas the
dashed line is the time taken for sequential code using 1 proces-
sor core. (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/ACP-CLO-2010-0551.)

creases rapidly with increasing numbers of processor-
core and became negligible when using our HPC plat-
form. This finding suggests with the use of multiple
processing cores, JPEG compression quality has little
influence in processing time, and in theory higher qual-
ity image could be used without impacting on speed of
analysis.

3.4. TMA biomarker quantification using HPC
platform

Visual inspection of the final mark-up images
showed good concordance between algorithm-based
segmentation and regions of positive immunoreac-
tions, indicating the success of this algorithmic ap-
proach. The measurement of density within these re-

gions allows for the evaluation of biomarker expres-
sion and its relationship to clinical outcome. Examples
of the biomarker quantification results are shown in
Fig. 9.

The speed of generating these results is also signifi-
cantly improved when using multiple processor-cores.
When using only 1 processor core, the runtime for
TMA1, TMA2 and TMA3 are respectively 1697.70 s
(28 min), 763.45 s (13 min) and 1003.30 s (17 min),
whereas with the use of the proposed HPC platform,
their runtime was reduced rapidly to be 76.53, 34.44
and 52.82 s (Fig. 10 and Table 5), which gave the
maximum Speedup of 22.17. When considering the av-
erage time for the processing of one TMA core, the
HPC platform gave the average processing time of
0.34 s, comparing with the average 7.11 s using only
1 processor-core. Similar to the calculation of texture
features, more TMA virtual slides can be processed
simultaneously using different set of 100 processor
cores. Over 90 slides are able to be processed for bio-
marker quantification in 76.53 s (which is also the time
to process the slowest TMA virtual slide). However it
would traditionally take about 103,932 s (28.87 h) us-
ing only one processor core.

4. Discussion

TMAs are a key tool in the search for new tissue
biomarkers but are hampered by the need to visually
score immunohistochemistry results on hundreds, pos-
sibly thousands of individual samples. In recent years,
there has been a renewed interest in the development of
computer-based image analysis for this purpose. Quan-
titative immunohistochemistry is made easier by the
inter-specimen consistency that is achievable in TMAs
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Table 4

Statistics for the overall processing time for texture feature calculation including Loading, Texture and
Saving from the test of the 3 TMA virtual slides

TMA1 TMA2 TMA3

Time taken using the fastest sequential code 371.30 s 198.80 s 215.62 s

Shortest parallel processing time 8.72 s 7.01 s 5.73 s

Number of processor-cores used 88 64 88

Maximum Speedup 42.58 28.36 37.63

Fig. 8. Increased amount of processing time in Saving when using
high compression quality. This figure shows the increased processing
time using the compression quality of 100 over compression quality
of 0 for TMA1, this plot shows the difference = (processing time
for compression quality 100) − (processing time for compression
quality 0). (Colours are visible in the online version of the article;
http://dx.doi.org/10.3233/ACP-CLO-2010-0551.)

which are stained as a single assay together with inter-
nal controls which can act as quantitative baseline. And
while DAB staining is not stoichiometric, it is hoped
that image measurement at least gives a more reliable
evaluation of immunohistochemical detection of bio-
markers than subjective visual interpretation. In this
study, a novel centralised high performance computing
approach was introduced for the rapid parallel analysis
of TMAs using virtual slides.

The bespoke software developed as part of this
study, allowed individual processor cores to retrieve
and load tissue core sub-images from the main virtual
TMA image, analyse these tissue core images using de-
fined algorithms, generate important quantitative data
from the tissue cores, and to do this in a highly paral-
lelised fashion. While this software was developed and
run on a dedicated high performance HP BladeSystem
Cluster with >9000 processor cores, it can easily op-
erate on clusters with a much lower specification, even
down to a standard dual-core platform common now on
any standard desktop or laptop PC architectures. The

functional components of the platform (i.e., Image File
Access, Parallel Processing, Analytic and Web serving
modules) were designed to allow the system to be used
immediately in a practical setting and this was evalu-
ated using some typical examples. The proposed HPC
architecture allows easy integration of other modules
with additional functionality such as the support of vir-
tual slide and image formats and other TMA core an-
alytic algorithms. The TMAX database can also be ex-
tended if necessary.

Two approaches to load balancing, namely static
load balancing and dynamic load balancing, were ex-
plored for the purpose of distributing image processing
workloads evenly across processor-cores. Static load
balancing best suits problems where image process-
ing tasks and processing time for each TMA core are
known a priori. Centralised dynamic load balancing
approach performs better when image complexity and
processing requirements across processors vary. Given
that TMA core images are often heterogeneous re-
sulting in different processing requirements, we found
centralised dynamic load balancing approach to be
most effective although the difference was marginal.
However, if we were to transfer this to a platform
where there was a limited number of processor-cores
available (e.g., 2–8 processors), static load balancing
would outperforms dynamic load balancing (as shown
in Fig. 5). This is mainly due the fact that no processor
cores are sacrificed for scheduling tasks in static load
balancing.

Experiments using a variety of TMA samples and
algorithms of varying complexity showed significant
speed improvements when using multiple processors.
For the analysis of single virtual TMA images with be-
tween 150 and 250 tissue cores, this study showed that
image loading can speeded up by as much as 21.60
times when using HPC and image saving by 58.17. The
overall performance for processing a TMA slide can
be speeded up by 42.58. The most significant Speedup
is achieved with circa 20 processor cores operating in
parallel. Making available further processor cores only
adds minimal benefit across the range of operations
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Fig. 9. Examples of biomarker quantification. A, B and C show 3 TMA core images, whereas D, E and F show their marked up DAB regions
using overlapping red colour. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/ACP-CLO-2010-0551.)

Fig. 10. Results for the amount of time for IHC quantification for all 3 TMA virtual slides. (A) Overall processing time for 3 TMA virtual slides,
(B) average processing time per TMA core. (Colours are visible in the online version of the article; http://dx.doi.org/10.3233/ACP-CLO-2010-
0551.)

Table 5

Statistics for the overall processing time for biomarker quantification over the 3 TMA virtual slides

TMA1 TMA2 TMA3

Time taken using the fastest sequential code 1697.70 s 763.45 s 1003.30 s

Shortest parallel processing time 76.53 s 34.44 s 52.82 s

Number of processor-cores used 40 61 88

Maximum Speedup 22.19 22.17 19.01
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that need to be performed on a single slide. The maxi-
mum theoretical speedup value can be explicitly calcu-
lated using Amdahl’s law [6] and Gustafson’s law [7].
A simple explanation in our case is that with the in-
creased number of processor cores, the inter processor-
core communication increases, e.g., the sending and
receiving of tissue-core coordinates and acknowledge-
ment messages for synchronisation. Such communica-
tions are a lot more time consuming by comparison
with on-chip processing. Therefore the speedup gained
with the increased amount of processor-cores eventu-
ally levels off.

The real benefit of using hundreds of processor cores
comes when multiple virtual TMA slides need to be
processed simultaneously. In high throughput labora-
tories, examining multiple biomarkers across TMA li-
braries, this could be of real benefit. Many TMA virtual
slides can be loaded and saved simultaneously given
there are enough processor cores. With the HP clus-
ter used in the current study there are more than 9000
processor cores available. If we were to generously al-
locate 100 processor-cores for the processing of one
TMA virtual slide, over 90 virtual TMA slides could
be processed simultaneously without queuing, with the
entire job taking <2 min by estimate, representing a
Speedup of approximately 3285.90 times. This cer-
tainly provides an opportunity for the rapid evaluation
of complex algorithms over large amount of TMA data.

Publications regarding the performance of the analy-
sis of TMA virtual slides are rare, which makes per-
formance comparison difficult. However, we have col-
lected benchmarks from a small number of studies [6,
21]. They are summarised in Tables 6 and 7 and com-
pared with our results.

Study [6] examined the role of parallel process-
ing in TMA image analysis and tested the perfor-
mance of data transfer between the remote storage
and the computing nodes using Grid computing. They
estimated data transfer rates of 1 megabyte ranging
from 1.2 to 6.5 s (Table 6). In the current cluster

Table 6

Data transfer speed comparison between this study and Galizia et al.

Method Data transfer time per MB (s)

Galizia et al. FTP 1.22

LCG2 6.51

GFAL3 2.77

Our approach Sequential 0.1423

Parallel 0.0077

Notes: FTP – File transfer protocol; LCG – Large hadron collider
computing grid; GFAL – Grid file access library.

based HPC platform and storage area network, the
hard drives are communicating with the blade server
through high speed fibre channel interconnect technol-
ogy, data transfer latency is a lot smaller than its coun-
terparts using Grids. We calculated data transfer time
in the following way:

Ttransfer ≈ 0.5 × (TLoad + TDeCom

+ TCom + TSave), (2)

where TLoad is the time for loading every TMA image
data from a virtual slide into memory from the cluster’s
networked hard drives, TDeCom is the time for JPEG
decompression, TCom is the time for JPEG compres-
sion of all TMA core images and TSave is the time to
store TMA core images at their full resolutions onto
the cluster’s hard drives.

As summarised in Table 6, our approach takes
0.0077 s (7.7 ms) to transfer per megabyte of data,
which significantly outperformed all benchmarks
given by [6]. As shown in Section 3.3, the amount
time used for data transfer takes up a large portion of
the overall processing time. The significant Speedups
in data transfer time results in the Speedup in overall
processing time, and it clearly exhibited the superiority
of using the proposed high performance clusters over
traditional Grids.

The time taken to carry out image analysis of the tis-
sue core depends on the complexity of the algorithm.
In the current study, the biomarker IHC quantification
algorithm is inherently more complex than image tex-
ture computation and takes considerably longer to run.
It is therefore difficult to directly compare results from
different studies when the algorithms used are differ-
ent. Yang et al. [18] used a Grid computing approach
to analysis breast TMA samples and recorded an av-
erage speed of 0.64 s per tissue core (Table 7). In the
current study, using <100 processor cores, texture fea-
ture computation took 0.04 s per TMA core with bio-
marker IHC quantification algorithm taking 0.34 s per
TMA core. When consider the use of all 9000 proces-
sor cores with the allocation of 100 processor cores for
each TMA virtual slide, our conservative estimation
would indicate that for texture imaging the processing
time for each TMA core would be 0.0006 s (0.6 ms)
and for IHC quantitation, 0.005 s (5 ms), representing
Speedup values of 3285.90 and 1461.79, respectively.

While the absolute value of these comparisons is not
really meaningful, it indicates that at least the cluster
based HPC approach is competitive with other studies
of this type and at most provides a faster, more reliable
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Table 7

Computation performance comparison between the this study and Yang et al.

No. TMA No. TMA Method Processing time Processing time Speedup

slides cores for all data (s) per TMA core (s)

Yang et al. n/a 3,744 Sequential 18,144,000 4,846.20 7,560

Grid 2,400 0.64

Our approach 1 162.3 Sequential (Texture) 262.20 1.61 36.51

(average per slide) Parallel (Texture) 7.15 0.04

Sequential (Quantification) 1,155 7.11 20.93

Parallel (Quantification) 54.60 0.34

Our approach 90 14,610 Sequential (Texture) 23,580 1.61 3,285.90

(theoretical estimation) Parallel (Texture) 8.72 0.0006

Sequential (Quantification) 103,932 7.11 1,461.79

Parallel (Quantification) 76.53 0.005

and manageable approach for high throughput TMA
analysis. It is well recognised in the HPC commu-
nity that cluster-based approaches are faster since the
processor technology is consistent with fast communi-
cation between processors. The benefit of cluster-based
HPC also lies in the ability to manage load balancing
strategies and the architectural design of all functional
modules. In building robust and reliable architectures
for high throughput analysis of TMAs this is the pre-
ferred model.

With increased demand for biomarker discovery as
part of tissue-based research programmes, drug discov-
ery and clinical trials, the demand for TMA generation
and analysis is increasing. The approach outlined in
this paper represents a powerful yet practical approach
to the genuine high throughput analysis of TMA us-
ing a combination of virtual microscopy, image analy-
sis and HPC to provide rapid quantitative data on tis-
sue samples. This approach represents the key to allow
fast and reliable evaluation of biomarkers as a means
of defining their relationship to diagnosis, clinical out-
come and response to therapy.
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