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In this study, the problem of finite-time nonfragile dissipative-based filter design for wireless sensor networks that is described
by discrete-time systems with time-varying delay is investigated. Specifically, to reduce the energy consumption of wireless sensor
networks, it is assumed that the signal is not transmitted at each instant and the transmission process is stochastic. By constructing
a suitable Lyapunov-Krasovskii functional and employing discrete-time Jensen’s inequality, a new set of sufficient conditions is
established in terms of linear matrix inequalities such that the augmented filtering system is stochastically finite-time bounded
with a prescribed dissipative performance level. Meanwhile, the desired dissipative-based filter gain matrices can be determined
by solving an optimization problem. Finally, two numerical examples are provided to illustrate the effectiveness and the less
conservatism of the proposed filter design technique.

1. Introduction

In the past few decades, wireless sensor networks (WSNs)
have gained considerable attention due to their wide range
of applications in various fields, such as mobile commu-
nications, target tracking, robotic systems, military, envi-
ronmental sensing, and monitoring of traffic [1, 2]. WSNs
normally consist of a large number of distributed nodes called
sensor nodes, where the communication between the nodes is
through radio signals. Since the sensors are battery powered,
energy consumption is one of the main issues in WSNs. In
recent years, different types of protocols have been proposed
to reduce the energy consumption of the sensors in WSNs.
For instance, in [3], the nonfragile randomly occurring
filter gain variation problem is studied for a class of WSNs
with energy constraint by using the Lyapunov technique
and linear matrix inequality (LMI) approach. The multirate
transmission protocols discussed in [4–7] are deterministic,
since the transmission instant is pre-set which is not allowed
to vary and this may lead to poor performance estimation.
The authors in [8] considered not only the transmission rate

of signals but also the successive nontransmissions, which
leads to much conservatism.

In many practical problems, it is important to focus on
the stability and filtering issue of a system over a prescribed
time interval, in which the state trajectories remain within
a predetermined bound over a given finite-time interval
under some given initial conditions [9, 10]. Therefore, much
attention has been given to the problemof finite-time filtering
for dynamical systems with the use of Lyapunov technique
and LMI approach [11–13]. By constructing a probability-
dependent Lyapunov-Krasovskii functional, a set of sufficient
conditions is established in [14] to obtain an energy-to-
peak filter design for networked Markov switched singular
systems over a finite-time interval.Wang et al. [15] studied the
finite-time filter design problem of switched impulsive linear
systems with parameter uncertainties and sensor induced
faults by using the mode-dependent Lyapunov-like function
approach. Sathishkumar et al. [16] developed a finite-time𝐻∞ filter design for a class of uncertain nonlinear discrete-
timeMarkovian jump systems represented by Takagi-Sugeno
fuzzy model with nonhomogeneous jump process. The
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asynchronous resilient controller design problem is inves-
tigated in [17], for a class of nonlinear switched systems
with time delays and uncertainties in a given finite-time
interval. The problems of finite-time stability and finite-time
stabilisation for T-S fuzzy system with time-varying delay
are investigated in [18]. The authors in [19] have designed a
finite-time sliding mode controller for a class of conic-type
nonlinear systems with time delays and mismatched external
disturbances.

On another active research front, dissipativity theory was
introduced by Willems in [20], which plays an important
role in a wide range of fields, such as systems, circuits, and
networks. Compared with passivity and 𝐻∞ performance,
dissipative system theory is a more general criterion and
it is used for the analysis and the synthesis of dynamical
control systems [21, 22]. Specifically, dissipativity means that
the increase in energy storage in the system cannot exceed
the energy supplied from outside the systems. Recently, few
important results have been reported on dissipative-based
filtering for various classes of time-varying delay systems.
To mention a few, Feng and Lam [23] discussed the robust
reliable dissipative filtering problem of uncertain discrete-
time singular system with interval time-varying delay and
sensor failures, where a set of conditions was derived in
terms of LMIswhichmakes the filtering error singular system
regular, causal, asymptotically stable, and strictly (Q,S,R)-
dissipative. In [24], a set of sufficient conditions is devel-
oped by using reciprocally convex approach with Lyapunov
technique for reliable dissipativity of Takagi-Sugeno fuzzy
systems in the presence of time-varying delays and sensor
failures. A new criterion of stability analysis for generalized
neural networks subject to time-varying delayed signals is
investigated in [25]. By employing the LMI approach, a new
set of sufficient conditions is obtained in [26] for the existence
of reliable dissipative filter which makes the filtering error
system stochastically stable and strictly (Q,S,R)-dissipative.

On the other hand, perturbations often appear in the
filter gain, which may cause instability in dynamic systems
and usually lead to unsatisfactory performances. However,
in practical problems, the presence of small uncertainties
and inaccuracies during the implementation of filters may
provide poor performance of the systems [27]. Therefore, it
is important and necessary to design a filter that should be
reliable and insensitive to some amount of gain fluctuations
[28–30]. Xu et al. [31] studied the problem of passive control
for fuzzy Markov jump systems with packet dropouts, where
a nonfragile asynchronous controller is designed to guarantee
that the closed-loop system is mean-square stable with a
satisfactory passivity performance index. A novel method
to address a proportional integral observer design for the
actuator and sensor faults estimation based on Takagi-
Sugeno fuzzy model with unmeasurable premise variables is
presented in [32].The nonfragile finite-time filtering problem
is studied in [33] for a class of nonlinear Markovian jumping
systems with time delays and uncertainties.

It is worth mentioning that, so far in the literature, only
few works have been reported on finite-time filter design
for wireless sensor networks. However, all the aforemen-
tioned works have not unified the external disturbances,

time-varying delay, sensor failures, and filter gain variations,
despite its practical importance. Motivated by the above,
the reliable finite-time dissipative-based nonfragile filtering
problem for discrete-time systems with time-varying delays
and sensor failures has been investigated in the present study.

Themain contributions of this paper are given as follows:

(i) Dissipative-based finite-time filter design problem is
formulated for a class ofWSNswith energy constraint
and filter gain variations, which is represented by
discrete-time systems with time-varying delay.

(ii) A reliable nonfragile filter is designed such that the
augmented filtering system is stochastically finite-
time bounded and dissipative. The proposed filter
design includes 𝐻∞ filter and passivity filter designs
as special cases.

(iii) A set of sufficient conditions is developed in terms of
LMIs to obtain the desired nonfragile filter design.

(iv) A unified filter design is proposed to deal with
the external disturbances, time-varying delay, sensor
failures, and filter gain variations, which makes the
system more practical.

Finally, two numerical examples with simulation results are
provided to demonstrate the effectiveness of the obtained
results.

The brief outline of this paper is as follows. In Section 2,
the problem of WSNs with time-varying delay and sensor
faults is formulated, and some essential definitions and lem-
mas are given. The finite-time boundedness of the filtering
error system is analyzed and a nonfragile reliable dissipative-
based filter is designed in Section 3. Section 4 provides the
simulation results to demonstrate the effectiveness of the
obtained results. Some conclusions of this work are given in
Section 5.

Notations. The following standard notations will be used
throughout this paper. The superscript “𝑇” stands for matrix
transportation; R𝑛 denotes the 𝑛-dimensional Euclidean
space; E{⋅} represents the mathematical expectation; 𝑙2[0,∞)
stands for the space of 𝑛-dimensional square integrable
functions over [0,∞); 𝐴 > 0 (𝐴 ≥ 0) means that 𝐴 is
positive definite (positive-semidefinite); 𝜆𝑃 and 𝜆𝑃 denote
the maximum and minimum eigenvalues of the matrix 𝑃,
respectively; diag{⋅ ⋅ ⋅ } stands for a block-diagonal matrix.
Moreover, the notion ∗ used inmatrix expressions represents
a term that is induced by symmetry.

2. Problem Formulation

In this study, we consider a class of wireless sensor networks
(WSNs), which can be described by the discrete-time system
with time-varying delay in the following form:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴𝑑𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐵𝑤 (𝑘) , (1)

where 𝑥(𝑘) ∈ R𝑛 is the state vector; 𝑤(𝑘) ∈ R𝑞 is the
disturbance signal belonging to 𝑙2[0,∞); 𝜏(𝑘) is the time-
varying delay satisfying 𝜏1 ≤ 𝜏(𝑘) ≤ 𝜏2, where 𝜏1 > 0
and 𝜏2 > 1 + 𝜏1 are prescribed integers representing the
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lower and upper bounds of the delay, respectively; 𝐴,𝐴𝑑,
and 𝐵 represent system coefficient matrices with appropriate
dimensions. Supposing that there are 𝑚 distributed sensors
for the system (1), themeasurement of the𝑝-th sensor is given
by

𝑦𝑝 (𝑘) = 𝐶𝑝𝑥 (𝑘) + 𝐷𝑝𝑤 (𝑘) , 𝑝 = 1, 2, . . . , 𝑚, (2)

where 𝑦𝑝(𝑘) ∈ R𝑝 is the observation collected by the 𝑝-th
sensor; 𝐶𝑝 and 𝐷𝑝 are constant matrices with appropriate
dimensions. Motivated by the results in [8], in order to save
energy in WSNs, in this paper the measurement signal is
assumed that it may not be transmitted to the remote filter
at each instant. It is to be noted that the measurement signal
is transmitted at least once over 𝑁𝑝(> 0) time steps and the
transmission can happen at any time in these 𝑁𝑝 time steps.
Let 𝑦𝑝(𝑘) denote the measurement signal sequence and 𝑦𝑝(𝑘)
is the transmitted measurement. The above transmission
protocol shows that there is no transmission at some time
instants. In such situations, there is no input to the filter and
the input to the filter has to be predefined by some rules.
Thus, it is reasonable to assume that the filter may use the last
transmitted measurement signal as its input [8]. Therefore,
the input to the filter must be one member of the transmitted
subset {𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), . . . , 𝑦𝑝(𝑘 − 𝑁𝑝 − 1)}. Moreover, to
reflect the random selection of filter input, a set of stochastic
variables 𝛽𝑝,𝑠(𝑘) ∈ {0, 1}, 𝑠 = 0, 1, . . . , 𝑁𝑝 − 1 is introduced
such that 𝛽𝑝,𝑠(𝑘) = 1, if 𝑦𝑝(𝑘 − 𝑠) is selected at time 𝑘 as
the filter input, and 𝛽𝑝,𝑠(𝑘) = 0, otherwise. Furthermore, it
is assumed that the expectations of the stochastic variables
are known, that is, E{𝛽𝑝,𝑠(𝑘) = 1} = 𝛽𝑝,𝑠, where 𝛽𝑝,𝑠 is the
transmission probability and satisfies ∑𝑁𝑝−1

𝑠=0 𝛽𝑝,𝑠 = 1.
Based on the above transmission protocol, the filter input

can further be expressed by

𝑦𝑝 (𝑘) = 𝛽𝑝,0 (𝑘) 𝑦𝑝 (𝑘) + 𝛽𝑝,1 (𝑘) 𝑦𝑝 (𝑘 − 1) + ⋅ ⋅ ⋅
+ 𝛽𝑝,𝑁𝑝−1 (𝑘) 𝑦𝑝 (𝑘 − 𝑁𝑝 + 1) . (3)

Let 𝑁0 = max{𝑁1, 𝑁2, . . . , 𝑁𝑝} and define 𝑥(𝑘) =
[𝑥𝑇(𝑘) 𝑥𝑇(𝑘 − 1) ⋅ ⋅ ⋅ 𝑥𝑇(𝑘 − 𝑁0 + 1)]𝑇, and 𝑤(𝑘) =
[𝑤𝑇(𝑘) 𝑤𝑇(𝑘 − 1) ⋅ ⋅ ⋅ 𝑤𝑇(𝑘 − 𝑁0 + 1)]𝑇. Now, by substitut-
ing (2) into (3), we can get

𝑦𝑝 (𝑘) = 𝑁𝑝−1∑
𝑠=0

𝛽𝑝,𝑠 (𝑘) {𝐶𝑝𝐹𝑝,𝑠𝑥 (𝑘) + 𝐷𝑝𝐽𝑝,𝑠𝑤 (𝑘)} , (4)

where 𝐹𝑝,𝑠 and 𝐽𝑝,𝑠, respectively, are 𝑛 × 𝑛𝑁0 and 𝑞 × 𝑞𝑁0

matrices containing an identity matrix at the (𝑠 + 1)-th block
and the rest of elements are zero.

Let 𝛽𝑝(𝑘) = [𝛽𝑝,0(𝑘), 𝛽𝑝,1(𝑘), . . . , 𝛽𝑝,𝑁𝑝−1(𝑘)], and 𝛽𝑝(𝑘) ∈{[1, 0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁−1

], . . . , [0, 0, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑁−1

, 1]}, then the possible real-

izations of𝛽𝑝(𝑘) is𝑁𝑝. Moreover, define𝛽(𝑘) = [𝛽1(𝑘), 𝛽2(𝑘),. . . , 𝛽𝑚(𝑘)], 𝐹𝛽(𝑘) = [𝐹𝑇1,𝛽1(𝑘) 𝐹𝑇2,𝛽2(𝑘) ⋅ ⋅ ⋅ 𝐹𝑇𝑚,𝛽𝑚(𝑘)]𝑇
and 𝐽𝛽(𝑘) = [𝐽𝑇1,𝛽1(𝑘) 𝐽𝑇2,𝛽2(𝑘) ⋅ ⋅ ⋅ 𝐽𝑇𝑚,𝛽𝑚(𝑘)]𝑇. Here, it is
noted that the total number of possible realizations of 𝛽(𝑘)

is 𝑁 = 𝑁1 × 𝑁2 × ⋅ ⋅ ⋅ × 𝑁𝑚 and 𝛽(𝑘) could be viewed as
the signal that specifies one particular case of (𝐹𝛽(𝑘), 𝐽𝛽(𝑘)).
Again, introduce a new set of stochastic variables 𝜎𝑖(𝑘) ∈{0, 1}, 𝑖 ∈ {1, 2, . . . , 𝑁}, which could be designed in such a
way that if 𝛽𝑝(𝑘) = [1, 0, . . . , 0] for 𝑝 = 1, 2, . . . , 𝑚, then𝜎1(𝑘) = 1, if 𝛽𝑝(𝑘) = [1, 0, . . . , 0] for 𝑝 = 1, 2, . . . , 𝑚 − 1 and𝛽𝑚(𝑘) = [0, 1, . . . , 0], then 𝜎2(𝑘) = 1, and so on. Therefore,
at any time instant, there is only one realization of 𝛽(𝑘) such
that ∑𝑁

𝑖=1 𝜎𝑖(𝑘) = 1.
By using the probabilities of sensor transmissions 𝛽𝑝,𝑠,

the probability E{𝜎𝑖(𝑘) = 1} = 𝜎𝑖 can be determined. For
example, let us consider two sensors and assume that the
measurement is transmitted within two time steps stochas-
tically and their probabilities are 𝛽1,0, 𝛽1,1 and 𝛽2,0, 𝛽2,2,
respectively. Now, using probability rules, it can be seen that𝜎1 = 𝛽1,0𝛽2,0, 𝜎2 = 𝛽1,0𝛽2,1, 𝜎3 = 𝛽1,1𝛽2,0 and 𝜎4 =
𝛽1,1𝛽2,1. The main objective of this study is to design an
appropriate reliable filter such that the considered WSNs (1)
with sensor failures are stochastically finite-time bounded
and (Q,S,R) − 𝛾 dissipative. For this purpose, the sensor
failure model in the following form is adopted in this paper:𝑦𝐺(𝑘) = 𝐺𝑦(𝑘), where 𝐺 is a diagonal matrix representing
sensor fault range defined in the interval 0 ≤ 𝐺 ≤ 𝐼 and𝑦(𝑘) is the filter input vector received from sensor and is
expressed as 𝑦(𝑘) = ∑𝑁

𝑖=1 𝜎𝑖(𝑘){𝐶𝐹𝑖𝑥(𝑘) + 𝐷 𝐽𝑖𝑤(𝑘)} with𝐶 = diag{𝐶1, 𝐶2, . . . , 𝐶𝑚}, 𝐷 = diag{𝐷1, 𝐷2, . . . , 𝐷𝑚}, and𝐹𝑖 and 𝐽𝑖 are some appropriate matrices obtained from 𝐹𝛽(𝑘)
and 𝐽𝛽(𝑘). On the other hand, define 𝑧(𝑘) = 𝐿𝑥(𝑘), where𝑧(𝑘) ∈ R𝑚 is the output signal to be estimated and 𝐿 is a
constant matrix with appropriate dimension.

Now, it is the right time to consider the filter equa-
tion consisting of gain fluctuations and sensor faults to be
designed for the system (1) and that is given by

𝑥𝑓 (𝑘 + 1) = (𝐴𝑓 + Δ𝐴𝑓 (𝑘)) 𝑥𝑓 (𝑘)
+ (𝐵𝑓 + Δ𝐵𝑓 (𝑘)) 𝑦𝐺 (𝑘) ,

𝑧𝑓 (𝑘) = 𝐶𝑓𝑥𝑓 (𝑘) ,
(5)

where 𝑥𝑓(𝑘) ∈ R𝑛 is the filter’s state; 𝑧𝑓(𝑘) ∈ R𝑚 is the
estimate of 𝑧(𝑘); 𝐴𝑓, 𝐵𝑓, and 𝐶𝑓 are filter gain parameters
to be determined later. Further, the matrices Δ𝐴𝑓(𝑘) andΔ𝐵𝑓(𝑘) represent the fluctuations in the filter gains and are
assumed to satisfy the following structures:

Δ𝐴𝑓 (𝑘) = 𝑀𝑎Δ (𝑘)𝑁𝑎,
Δ𝐵𝑓 (𝑘) = 𝑀𝑏Δ (𝑘)𝑁𝑏, (6)

where𝑀𝑎,𝑀𝑏,𝑁𝑎, and𝑁𝑏 are known constant matrices with
appropriate dimensions; Δ(𝑘) is an unknown time-varying
matrix function satisfying Δ𝑇(𝑘)Δ(𝑘) ≤ 𝐼.

In order to derive the augmented filtering system, we
rewrite the discrete-time system (1) and the output signal as
follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴𝑑𝑥 (𝑘 − 𝜏 (𝑘)) + 𝐵𝑤 (𝑘) ,
𝑧 (𝑘) = 𝐿𝑥 (𝑘) , (7)
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where 𝐴 = [ 𝐴 0
𝐼(𝑁−1)×(𝑁−1) 0 ], 𝐵 = [ 𝐵 0

0(𝑁−1)×1 0 ], 𝐴𝑑 = [ 𝐴𝑑 0
𝐼(𝑁−1)×(𝑁−1) 0

],
and 𝐿 = [𝐿 01×(𝑁−1)] .

By defining a new augmented state vector as 𝜂(𝑘) =
[𝑥𝑇(𝑘) 𝑥𝑇𝑓(𝑘)]𝑇 and the estimation error as 𝑒(𝑘) = 𝑧(𝑘) −𝑧𝑓(𝑘), the augmented filtering system and the corresponding
error system can be formulated as

𝜂 (𝑘 + 1) = 𝐴𝜂 (𝑘) + 𝐴𝑑𝜂 (𝑘 − 𝜏 (𝑘)) + 𝐵𝑤 (𝑘)
+ 𝑁∑
𝑖=1

(𝜎𝑖 (𝑘) − 𝜎𝑖) [𝐴 𝑖𝜂 (𝑘) + 𝐵𝑖𝑤 (𝑘)] , (8)

𝑒 (𝑘) = 𝐿̃𝜂 (𝑘) , (9)

where

𝐴 = [ 𝐴 0
(𝐵𝑓 + Δ𝐵𝑓 (𝑘)) 𝐺𝐶𝐹 𝐴𝑓 + Δ𝐴𝑓 (𝑘)] ,

𝐴𝑑 = [𝐴𝑑 0
0 0]

𝐵 = [ 𝐵
(𝐵𝑓 + Δ𝐵𝑓 (𝑘)) 𝐺𝐷 𝐽] ,

𝐿̃ = [𝐿 −𝐶𝑓] ,
𝐴 𝑖 = [ 0 0

(𝐵𝑓 + Δ𝐵𝑓 (𝑘)) 𝐺𝐶𝐹𝑖 0] ,

𝐵𝑖 = [ 0
(𝐵𝑓 + Δ𝐵𝑓 (𝑘)) 𝐺𝐷 𝐽𝑖] ,

𝐹 = 𝑁∑
𝑖=1

𝜎𝑖𝐹𝑖,

𝐽 = 𝑁∑
𝑖=1

𝜎𝑖𝐽𝑖.

(10)

In order to derive the main results in the forthcoming
section, we need the following assumption, definitions, and
lemmas.

Assumption 1. The disturbance input vector 𝑤(𝑘) is time-
varying and satisfies ∑N

𝑘=0 𝑤𝑇(𝑘)𝑤(𝑘) ≤ 𝛿, where 𝛿 > 0.
Definition 2 (see [16]). The augmented filtering system
(8) is stochastically finite-time bounded with respect to(𝑐1, 𝑐2,M,N, 𝛿), where 0 < 𝑐1 < 𝑐2 andM is a positive definite
matrix, if E{𝜂𝑇(𝑘1)M𝜂(𝑘1)} ≤ 𝑐1 󳨐⇒ E{𝜂𝑇(𝑘2)M𝜂(𝑘2)} < 𝑐2,∀ 𝑘1 ∈ {−𝜏2, −𝜏2 + 1, . . . , 0}, 𝑘2 = {1, 2, . . . ,N} holds for any
non-zero 𝑤(𝑘) satisfying Assumption 1.

Definition 3 (see [26]). The augmented filtering system (8) is(Q,S,R) − 𝛾 dissipative with respect to (𝑐1, 𝑐2,M,N, 𝛾, 𝛿),
where 0 < 𝑐1 < 𝑐2, 𝛾 > 0 and M is a positive definite

matrix, and if the system is stochastically finite-time bounded
with respect to (𝑐1, 𝑐2,M,N, 𝛿) and under the zero initial
condition, the output 𝑧(𝑘) satisfies

N∑
𝑘=0

[𝑒𝑇 (𝑘)Q𝑒 (𝑘) + 2𝑒𝑇 (𝑘)S𝑤 (𝑘) + 𝑤𝑇 (𝑘)R𝑤 (𝑘)]

≥ 𝛾 N∑
𝑘=0

𝑤𝑇 (𝑘) 𝑤 (𝑘) ,
(11)

for any non-zero 𝑤(𝑘) satisfying Assumption 1, where Q,S
and R are real constant matrices in which Q and R are
symmetric. Also, for convenience, we assume thatQ ≤ 0, then
we can have −Q = (Q1/2)2.
Lemma 4 (see [16]). For givenmatrices𝐴,𝑄 = 𝑄𝑇 and 𝑃 > 0,
the inequality 𝐴𝑇𝑃𝐴 − 𝑄 < 0 holds if and only if there exists a
matrix 𝑌 such that

[−𝑄 𝐴𝑇𝑌𝑇
∗ 𝑃 − 𝑌 − 𝑌𝑇] < 0. (12)

Lemma 5 (see [9]). For any two matrices 𝑋 and 𝑌 with
appropriate dimensions,𝑋𝑇𝑌+𝑌𝑇𝑋 ≤ 𝜖𝑋𝑇𝑋+𝜖−1𝑌𝑇𝑌 holds
for any scalar 𝜖 > 0.
Lemma 6 (see [12]). For any symmetric constant matrix 𝑍 ≥0 ∈ R𝑛×𝑛 and two positive integers 𝜏1 and 𝜏2 satisfying𝜏1 ≤ 𝜏2, the condition −∑𝑘−𝜏1+1

𝑖=𝑘−𝜏2
𝜂𝑇(𝑖)𝑍𝜂(𝑖) ≤ −(1/(𝜏2 −

𝜏1)) ∑𝑘−𝜏1+1

𝑖=𝑘−𝜏2
𝜂𝑇(𝑖)𝑍∑𝑘−𝜏1+1

𝑖=𝑘−𝜏2
𝜂(𝑖) holds.

3. Main Results

This section pays attention to solve the problem of robust
finite-time nonfragile filter design for the discrete-time sys-
tem (1) by employing the LMI approach. For this purpose,
first, the stochastic finite-time boundedness of the discrete-
time system (1) for knownfilter gainswithout any fluctuations
is discussed. Second, the finite-time (Q,S,R) − 𝛾 dissipative
performance of the system (1) is analyzed.Third, by taking the
filter gain fluctuations into account, the result is extended to
obtain the desired finite-time nonfragile reliable filter for the
considered system. Precisely, all the aforementioned results
are investigated for the system (1) by means of the augmented
filtering system (8).

3.1. Stochastic Finite-Time Boundedness Analysis. By con-
structing a suitable Lyapunov-Krasovskii functional, a new
set of sufficient conditions is obtained to ensure the stochastic
finite-time boundedness of the augmented filtering system
(8).

Theorem 7. Let Assumption 1 hold, 𝜇 ≥ 1, 𝜎𝑖 (𝑖 = 1, 2, . . . , 𝑁)
and let 𝑐1 > 0 be given scalars and M be a positive
definite matrix. 
en, the augmented filtering system (8) is
stochastically finite-time bounded subject to (𝑐1, 𝑐2,M,N, 𝛿),
if there exist a scalar 𝑐2 > 0 and symmetric matrices 𝑃 > 0,𝑄1 > 0,𝑄2 > 0,𝑄3 > 0, 𝑅1 > 0, 𝑅2 > 0 such that the following
matrix inequalities hold:
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[Ω𝑖,𝑗]8×8 = [[Ω]7×7 Ω𝑇
1𝑃∗ −𝑃 ] < 0, (13)

𝜓1𝑐1 + 𝜆𝑊𝛿 < 𝜆𝑃𝑐2𝜇−𝑘, (14)

𝜆𝑃 ≤ 𝑃 ≤ 𝜆𝑃,
0 < 𝑄1 < 𝜆𝑄1 ,
0 < 𝑄2 < 𝜆𝑄2 ,
0 < 𝑄3 < 𝜆𝑄3 ,
0 < 𝑅1 < 𝜆𝑅1 ,
0 < 𝑅2 < 𝜆𝑅2 ,

(15)

whereΩ1,1 = −𝜇𝑃 + 𝑄1 + 𝑄2 + 𝑄3 + (𝜏1 − 1)𝑅1 + (𝜏2 − 1)𝑅2 +(𝜏2 − 𝜏1)𝑄3, Ω2,2 = −𝑄1, Ω3,3 = −𝑄2, Ω4,4 = −𝑄3, Ω5,5 =−(1/(𝜏1 − 1))𝑅1, Ω6,6 = −(1/(𝜏2 − 1))𝑅2, Ω7,7 = −𝑊, Ω1 =
[𝐴 + ∑𝑁

𝑖=1√𝜎𝑖𝐴 𝑖 𝐴𝑑 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
4

𝐵 + ∑𝑁
𝑖=1√𝜎𝑖𝐵𝑖], and 𝜓1 =

𝜆𝑃+𝜆𝑄1𝜏1+(𝜆𝑄2 +𝜆𝑄3)𝜏2+𝜆𝑅1((𝜏1)(𝜏1−1)/2) + 𝜆𝑅2((𝜏2)(𝜏2−1)/2) + 𝜆𝑄3((𝜏2 − 𝜏1)(𝜏2 + 𝜏1 − 1)/2).
Proof. Consider the Lyapunov-Krasovskii functional for the
augmented filtering system (8) in the following form:

𝑉 (𝑘) = 3∑
𝑎=1

𝑉𝑎 (𝑘) , (16)

where
𝑉1 (𝑘) = 𝜂𝑇 (𝑘) 𝑃𝜂 (𝑘) ,
𝑉2 (𝑘) = 𝑘−1∑

𝑠=𝑘−𝜏1

𝜂𝑇 (𝑠) 𝑄1𝜂 (𝑠) + 𝑘−1∑
𝑠=𝑘−𝜏2

𝜂𝑇 (𝑠) 𝑄2𝜂 (𝑠)

+ 𝑘−1∑
𝑠=𝑘−𝜏(𝑘)

𝜂𝑇 (𝑠) 𝑄3𝜂 (𝑠) ,

𝑉3 (𝑘) = −1∑
𝑠=−𝜏1+1

𝑘−1∑
𝑗=𝑘+𝑠

𝜂𝑇 (𝑗) 𝑅1𝜂 (𝑗)

+ −1∑
𝑠=−𝜏2+1

𝑘−1∑
𝑗=𝑘+𝑠

𝜂𝑇 (𝑗) 𝑅2𝜂 (𝑗)

+ −𝜏1∑
𝑠=−𝜏2+1

𝑘−1∑
𝑗=𝑘+𝑠

𝜂𝑇 (𝑗)𝑄3𝜂 (𝑗) .

(17)

Computing the forward differences of 𝑉𝑎(𝑘) (𝑎 = 1, 2, 3)
along the solution of augmented filtering system (8) and
taking the mathematical expectation, we can get

E {Δ𝑉1 (𝑘)} = E
{{{

[𝐴𝜂 (𝑘) + 𝐴𝑑𝜂 (𝑘 − 𝜏 (𝑘))

+ 𝐵𝑤 (𝑘) + 𝑁∑
𝑖=1

(𝜎𝑖 (𝑘) − 𝜎𝑖) [𝐴 𝑖𝜂 (𝑘) + 𝐵𝑖𝑤 (𝑘)]]
𝑇

⋅ 𝑃 × [𝐴𝜂 (𝑘) + 𝐴𝑑𝜂 (𝑘 − 𝜏 (𝑘)) + 𝐵𝑤 (𝑘)

+ 𝑁∑
𝑖=1

(𝜎𝑖 (𝑘) − 𝜎𝑖) [𝐴 𝑖𝜂 (𝑘) + 𝐵𝑖𝑤 (𝑘)]] − 𝜂𝑇 (𝑘)

⋅ 𝑃𝜂 (𝑘)}}}
,

(18)

E {Δ𝑉2 (𝑘)} = E
{{{

𝜂𝑇 (𝑘) (𝑄1 + 𝑄2 + 𝑄3) 𝜂 (𝑘)
− 𝜂𝑇 (𝑘 − 𝜏1) 𝑄1𝜂 (𝑘 − 𝜏1) − 𝜂𝑇 (𝑘 − 𝜏2) 𝑄2𝜂 (𝑘
− 𝜏2) − 𝜂𝑇 (𝑘 − 𝜏 (𝑘)) 𝑄3𝜂 (𝑘 − 𝜏 (𝑘))
+ 𝑘−𝜏1∑
𝑠=𝑘+1−𝜏2

𝜂𝑇 (𝑠) 𝑄3𝜂 (𝑠)}}}
,

(19)

E {Δ𝑉3 (𝑘)} = E
{{{

(𝜏1 − 1) 𝜂𝑇 (𝑘) 𝑅1𝜂 (𝑘) + (𝜏2 − 1)
⋅ 𝜂𝑇 (𝑘) 𝑅2𝜂 (𝑘) + (𝜏2 − 𝜏1) 𝜂𝑇 (𝑘) 𝑄3𝜂 (𝑘)
− 𝑘−1∑
𝑗=𝑘−𝜏1+1

𝜂𝑇 (𝑗) 𝑅1𝜂 (𝑗) − 𝑘−1∑
𝑗=𝑘−𝜏2+1

𝜂𝑇 (𝑗) 𝑅2𝜂 (𝑗)

− 𝑘−𝜏1∑
𝑗=𝑘−𝜏2+1

𝜂𝑇 (𝑗)𝑄3𝜂 (𝑗)}}}
.

(20)

Now, applying Lemma 6 to the summation terms in (20), we
can have

− 𝑘−1∑
𝑗=𝑘−𝜏1+1

𝜂𝑇 (𝑗) 𝑅1𝜂 (𝑗)

≤ − 1𝜏1 − 1
𝑘−1∑

𝑗=𝑘−𝜏1+1

𝜂𝑇 (𝑗) 𝑅1 𝑘−1∑
𝑗=𝑘−𝜏1+1

𝜂 (𝑗) ,
(21)

− 𝑘−1∑
𝑗=𝑘−𝜏2+1

𝜂𝑇 (𝑗) 𝑅2𝜂 (𝑗)

≤ − 1𝜏2 − 1
𝑘−1∑

𝑗=𝑘−𝜏2+1

𝜂𝑇 (𝑗) 𝑅2 𝑘−1∑
𝑗=𝑘−𝜏2+1

𝜂 (𝑗) .
(22)

Then, it follows from (18) to (22) that

E {Δ𝑉 (𝑘) − 𝑤𝑇 (𝑘)𝑊𝑤 (𝑘)}
≤ E {𝜉𝑇 (𝑘) [[Ω]7×7 + Ω𝑇

1𝑃Ω1] 𝜉 (𝑘)} , (23)
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where 𝜉𝑇(𝑘) = [𝜂𝑇(𝑘) 𝜂𝑇(𝑘 − 𝜏1) 𝜂𝑇(𝑘 − 𝜏2) 𝜂𝑇(𝑘 −𝜏(𝑘)) ∑𝑘−1
𝑗=𝑘−𝜏1+1

𝜂𝑇(𝑗) ∑𝑘−1
𝑗=𝑘−𝜏2+1

𝜂𝑇(𝑗) 𝑤𝑇(𝑘)], and the ele-
ments of [Ω]7×7 andΩ1 are defined in the theorem statement.

By applying Lemma 2.3 in [16] to the matrix terms in the
right-hand side of (23), we can obtain the matrix term in (13).
If the matrix inequality in (13) holds, it is obvious that

E {Δ𝑉 (𝑘) − (𝜇 − 1)𝑉 (𝑘) − 𝑤𝑇 (𝑘)𝑊𝑤 (𝑘)} ≤ 0
E {𝑉 (𝑘 + 1) − 𝑉 (𝑘)}

≤ (𝜇 − 1)E {𝑉 (𝑘)} + E {𝑤𝑇 (𝑘)𝑊𝑤 (𝑘)}
< (𝜇 − 1)E {𝑉 (𝑘)} + 𝜆𝑊E {𝑤𝑇 (𝑘) 𝑤 (𝑘)} .

(24)

Thus, we can get E{𝑉(𝑘+1)} < 𝜇E{𝑉(𝑘)}+𝜆𝑊E{𝑤𝑇(𝑘)𝑤(𝑘)}.
Further, if 𝜇 ≥ 1, it follows from Assumption 1 that

E {𝑉 (𝑘)} ≤ 𝜇𝑘E {𝑉 (0)}
+ 𝜆𝑊E{𝑘−1∑

𝑛=0

𝜇𝑘−𝑛−1𝑤𝑇 (𝑘) 𝑤 (𝑘)}
≤ 𝜇𝑘E {𝑉 (0)} + 𝜇𝑘𝜆𝑊𝛿.

(25)

Moreover, from (16), we can also get

E {𝑉 (0)} = 𝜂𝑇 (0) 𝑃𝜂 (0) + −1∑
𝑠=−𝜏1

𝜂𝑇 (𝑠) 𝑄1𝜂 (𝑠)

+ −1∑
𝑠=−𝜏2

𝜂𝑇 (𝑠) 𝑄2𝜂 (𝑠)

+ −1∑
𝑠=−𝜏(0)

𝜂𝑇 (𝑠) 𝑄3𝜂 (𝑠)

+ −1∑
𝑠=−𝜏1+1

−1∑
𝑗=𝑠

𝜂𝑇 (𝑗) 𝑅1𝜂 (𝑗)

+ −1∑
𝑠=−𝜏2+1

−1∑
𝑗=𝑠

𝜂𝑇 (𝑗) 𝑅2𝜂 (𝑗)

+ −𝜏1∑
𝑠=−𝜏2+1

−1∑
𝑗=𝑠

𝜂𝑇 (𝑗) 𝑄3𝜂 (𝑗) .

(26)

Let 𝑃 = M−1/2𝑃M−1/2, 𝑄1 = M−1/2𝑄1M−1/2, 𝑄2 =
M−1/2𝑄2M−1/2, 𝑄3 = M−1/2𝑄3M−1/2, 𝑅1 = M−1/2𝑅1M−1/2,
and 𝑅2 = M−1/2𝑅2M−1/2. Then, we can have

E {𝑉 (0)} = E {𝜂𝑇 (0)M1/2𝑃M1/2𝜂 (0)}
+ E{ −1∑

𝑠=−𝜏1

𝜂𝑇 (𝑠)M1/2𝑄1M1/2𝜂 (𝑠)}

+ E{ −1∑
𝑠=−𝜏2

𝜂𝑇 (𝑠)M1/2𝑄2M1/2𝜂 (𝑠)}

+ E{ −1∑
𝑠=−𝜏(0)

𝜂𝑇 (𝑠)M1/2𝑄3M1/2𝜂 (𝑠)}

+ E
{{{

−1∑
𝑠=−𝜏1+1

−1∑
𝑗=𝑠

𝜂𝑇 (𝑗)M1/2𝑅1M1/2𝜂 (𝑗)}}}
+ E

{{{
−1∑

𝑠=−𝜏2+1

−1∑
𝑗=𝑠

𝜂𝑇 (𝑗)M1/2𝑅2M1/2𝜂 (𝑗)}}}
+ E

{{{
−𝜏1∑

𝑠=−𝜏2+1

−1∑
𝑗=𝑠

𝜂𝑇 (𝑗)M1/2𝑄3M1/2𝜂 (𝑗)}}}
≤ [𝜆𝑃

+ 𝜆𝑄1𝜏1 + (𝜆𝑄2 + 𝜆𝑄3) 𝜏2 + 𝜆𝑅1 (𝜏1) (𝜏1 − 1)
2

+ 𝜆𝑅2 (𝜏2) (𝜏2 − 1)
2 + 𝜆𝑄3 (𝜏2 − 𝜏1) (𝜏2 + 𝜏1 − 1)

2 ]
⋅ 𝑐1 ≤ 𝜓1𝑐1.

(27)

On the other hand, it follows from (16) that
E{𝑉(𝑘)} ≥ E{𝜂𝑇(𝑘)𝑃𝜂(𝑘)} ≥ E{𝜂𝑇(𝑘)M1/2𝑃M1/2𝜂(𝑘)} ≥
𝜆𝑃E{𝜂𝑇(𝑘)M𝜂(𝑘)}. Then, it is easy to obtain that
E{𝜂𝑇(𝑘)M𝜂(𝑘)} < (1/𝜆𝑃)(𝜓1𝑐1 + 𝜆𝑊𝛿)𝜇𝑘. From inequal-
ity (14), it is clear that E{𝜂𝑇(𝑘)M𝜂(𝑘)} < 𝑐2 for all𝑘 = {1, 2, . . . ,N}. Hence, according to Definition 3, the
augmented filtering system (8) is finite-time bounded with
respect to (𝑐1, 𝑐2,M,N, 𝛿), which completes the proof.

3.2. Dissipativity-Based Stochastic Finite-Time Boundedness
Analysis. To increase the robustness of the obtained results
inTheorem 7, the dissipative performance index is taken into
account in the following theorem.

Theorem 8. Let Assumption 1 hold. For given scalars 𝜇 ≥ 1,𝜎𝑖 (𝑖 = 1, 2, . . . , 𝑁), 𝛾 > 0, 𝑐1 > 0, and positive definite
matrix M, the augmented filtering system (8) is stochastically
finite-time bounded and (Q,S,R) − 𝛾 dissipative with respect
to (𝑐1, 𝑐2,M,N, 𝛿, 𝛾) if there exist a constant 𝑐2 > 0 and
symmetric matrices 𝑃 > 0, 𝑄1 > 0, 𝑄2 > 0, 𝑄3 > 0, 𝑅1 > 0,𝑅2 > 0 such that the followingmatrix inequalities together with
(15) are satisfied:

[Ω̂𝑖,𝑗]9×9 = [[[
[

[Ω̂]
7×7

Ω̂𝑇
1𝑃 𝐿̃𝑇√−𝑄

∗ −𝑃 0
∗ ∗ −𝐼

]]]
]

< 0, (28)

𝜓1𝑐1 + 𝜆R𝛿 < 𝜆𝑃𝑐2𝜇−𝑘, (29)

where Ω̂1,7 = −𝐿̃𝑇S, Ω̂7,7 = −R + 𝛾𝐼 and the rest of elements
of [Ω̂]7×7 are the same as of [Ω]7×7 defined in 
eorem 7.
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Proof. To discuss the dissipativity of the system (8), we
consider the following performance index:

𝐽 = E{ N∑
𝑘=0

[𝑒𝑇 (𝑘)Q𝑒 (𝑘) + 2𝑒𝑇 (𝑘)S𝑤 (𝑘)

+ 𝑤𝑇 (𝑘) [R − 𝛾𝐼]𝑤 (𝑘)]} .
(30)

Following the similar steps carried out in the proof of
Theorem 7, it is easy to get thatE{Δ𝑉(𝑘)−(𝜇−1)𝑉(𝑘)−𝐽} ≤ 0.
Thus, E{𝑉(𝑘 + 1)} < E{𝜇𝑉(𝑘) + 𝑒𝑇(𝑘)Q𝑒(𝑘) + 2𝑒𝑇(𝑘)S𝑤(𝑘) +𝑤𝑇(𝑘)[R − 𝛾𝐼]𝑤(𝑘)}. Further, if 𝜇 ≥ 1, it follows that

E {𝑉 (𝑘)} ≤ E{𝜇𝑘𝑉 (0) + 𝑘−1∑
𝑛=0

𝜇𝑘−𝑛−1𝑒𝑇 (𝑘)Q𝑒 (𝑘)

+ 2𝑘−1∑
𝑛=0

𝜇𝑘−𝑛−1𝑒𝑇 (𝑘)S𝑤 (𝑘)

+ 𝑘−1∑
𝑛=0

𝜇𝑘−𝑛−1𝑤𝑇 (𝑘) [R − 𝛾𝐼]𝑤 (𝑘)} .

(31)

At the same time, under zero initial condition and 𝑉(𝑘) ≥ 0,∀𝑘 = 1, 2, . . . ,N, we can have

E{𝛾𝑘−1∑
𝑛=0

𝜇𝑘−𝑛−1𝑤𝑇 (𝑘) 𝑤 (𝑘)}

≤ E{𝑘−1∑
𝑛=0

𝜇𝑘−𝑛−1𝑒𝑇 (𝑘)Q𝑒 (𝑘)

+ 2𝑘−1∑
𝑛=0

𝜇𝑘−𝑛−1𝑒𝑇 (𝑘)S𝑤 (𝑘)

+ 𝑘−1∑
𝑛=0

𝜇𝑘−𝑛−1𝑤𝑇 (𝑘)R𝑤 (𝑘)} .

(32)

This implies that

E{𝛾 N∑
𝑘=0

𝑤𝑇 (𝑘) 𝑤 (𝑘)} ≤ E{ N∑
𝑘=0

𝑒𝑇 (𝑘)Q𝑒 (𝑘)

+ 2 N∑
𝑘=0

𝑒𝑇 (𝑘)S𝑤 (𝑘) + N∑
𝑘=0

𝑤𝑇 (𝑘)R𝑤 (𝑘)} .
(33)

Then, from (33), the inequality in Definition 3 can be easily
obtained. Hence, it can be concluded that the augmented
filtering system (8) is stochastically finite-time bounded and(Q,S,R) − 𝛾 dissipative. This completes the proof of the
theorem.

3.3. Dissipativity-Based Finite-Time Nonfragile Reliable Filter
Design. In this subsection, we design a finite-time nonfragile
reliable filter in the form of (5) for the discrete-time system
(1) according to the conditions established in the previous
section.

Theorem 9. Consider the discrete-time system (1). Let
Assumption 1 hold, 𝜇 ≥ 1, 𝜎𝑖 (𝑖 = 1, 2, . . . , 𝑁), 𝛾 > 0, 𝑐1 > 0 be
given constants, and Q ≤ 0, S, R = R𝑇, M > 0 be known
matrices. If there exist positive scalars 𝑐2, 𝜖1, 𝜖2, 𝜖3, symmetric
matrices 𝑃𝑖 > 0 (𝑖 = 1, 2, 3), 𝑄1𝑗 > 0, 𝑄2𝑗 > 0, 𝑄3𝑗 > 0,𝑅1𝑗 > 0, 𝑅2𝑗 > 0 (𝑗 = 1, 2), and any matrices 𝑌, 𝐴𝐹, 𝐵𝐹,𝐶𝐹 with appropriate dimensions such that the following LMI
together with (29) holds:

Φ̂

=

[[[[[[[[[[[[[[
[

[Φ]16×16 𝜖2Φ1 Φ𝑇
2 Φ𝑇

3 𝜖1Φ4 𝜖3Φ5 Φ𝑇
6∗ −𝜖2𝐼 0 0 0 0 0

∗ ∗ −𝜖2𝐼 0 0 0 0
∗ ∗ ∗ −𝜖1𝐼 0 0 0
∗ ∗ ∗ ∗ −𝜖1𝐼 0 0
∗ ∗ ∗ ∗ ∗ −𝜖3𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜖3𝐼

]]]]]]]]]]]]]]
]

< 0,

(34)

where Φ1,1 = −𝑃1 + 𝑄11 + 𝑄21 + 𝑄31 + (𝜏1 − 1)𝑅11 +
(𝜏2 − 1)𝑅21 + (𝜏2 − 𝜏1)𝑄31, Φ1,2 = −𝑃2, Φ1,13 = −𝐿𝑇S,
Φ1,14 = 𝐴𝑇𝑌𝑇1 + 𝐹𝑇𝐶𝑇𝐺𝑇𝐵𝑇𝐹 + ∑𝑁

𝑖=1√𝜎𝑖 𝐹𝑇𝑖 𝐶𝑇𝐺𝑇𝐵𝑇𝐹,Φ1,15 = 𝐴𝑇𝑌𝑇3 + 𝐹𝑇𝐶𝑇𝐺𝑇𝐵𝑇𝐹 + ∑𝑁
𝑖=1√𝜎𝑖 𝐹𝑇𝑖 𝐶𝑇𝐺𝑇𝐵𝑇𝐹,Φ1,16 = 𝐿𝑇√−Q, Φ2,2 = −𝑃3 + 𝑄12 + 𝑄22 + 𝑄32 + (𝜏1 −1)𝑅12 + (𝜏2 − 1)𝑅22 + (𝜏2 − 𝜏1)𝑄32,Φ2,13 = 𝐶𝑇𝐹S,Φ2,14 = −𝐴𝑇𝐹,Ω2,15 = −𝐴𝑇𝐹, Φ2,16 = −𝐶𝑇𝐹√−Q, Φ3,3 = −𝑄11, Φ4,4 = −𝑄12,Φ5,5 = −𝑄21, Φ6,6 = −𝑄22, Φ7,7 = −𝑄31, Φ7,14 = 𝐴𝑇𝑑𝑌𝑇1 ,Φ7,15 = 𝐴𝑇𝑑𝑌𝑇3 , Φ8,8 = −𝑄32, Φ9,9 = −(1/(𝜏1 − 1))𝑅11,Φ10,10 = −(1/(𝜏1 − 1))𝑅12, Φ11,11 = −(1/(𝜏2 − 1))𝑅21,Φ12,12 = −(1/(𝜏2 − 1))𝑅22, Φ13,13 = −R + 𝛾𝐼,

Φ13,14 = 𝐵𝑇𝑌𝑇1 + 𝐽𝑇𝐷𝑇𝐺𝑇𝐵𝑇𝐹 + ∑𝑁
𝑖=1√𝜎𝑖 𝐽𝑇𝑖 𝐷𝑇𝐺𝑇𝐵𝑇𝐹,Φ13,15 = 𝐵𝑇𝑌𝑇3 + 𝐽𝑇𝐷𝑇𝐺𝑇𝐵𝑇𝐹 + ∑𝑁
𝑖=1√𝜎𝑖 𝐽𝑇𝑖 𝐷𝑇𝐺𝑇𝐵𝑇𝐹,Φ14,14 = 𝑃1 − 𝑌1 − 𝑌𝑇1 , Φ14,15 = 𝑃2 − 𝑌2 − 𝑌𝑇3 ,Φ15,15 = 𝑃3 − 𝑌2 − 𝑌𝑇2 , Φ16,16 = −𝐼, Φ1 =

[𝐹𝑇𝐶𝑇𝐺𝑇𝑁𝑇
𝑏 + ∑𝑁

𝑖=1√𝜎𝑖 𝐹𝑇𝑖 𝐶𝑇𝐺𝑇𝑁𝑇
𝑏 0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

15
]𝑇, Φ2 =

[0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
13

𝑀𝑇
𝑏 𝑌𝑇2 + ∑𝑁

𝑖=1√𝜎𝑖𝑀𝑇
𝑏 𝑌𝑇2 𝑀𝑇

𝑏 𝑌𝑇2 +
∑𝑁
𝑖=1√𝜎𝑖𝑀𝑇

𝑏 𝑌𝑇2 0], Φ3 = [0 𝑀𝑇
𝑎𝑌𝑇2 0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

14
],

Φ4 = [0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
13

𝑁𝑇
𝑎 𝑁𝑇

𝑎 0]𝑇, Φ5 =

[0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
12

𝐽𝑇𝐷𝑇𝐺𝑇𝑁𝑇
𝑏 +∑𝑁

𝑖=1√𝜎𝑖 𝐽𝑇𝑖 𝐷𝑇𝐺𝑇𝑁𝑇
𝑏 0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

3

]𝑇,
Φ6 = [0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

13

𝑀𝑇
𝑏 𝑌𝑇2 + ∑𝑁

𝑖=1√𝜎𝑖𝑀𝑇
𝑏 𝑌𝑇2 𝑀𝑇

𝑏 𝑌𝑇2 +
∑𝑁
𝑖=1√𝜎𝑖𝑀𝑇

𝑏 𝑌𝑇2 0], then there exists a filter (5) such
that the discrete-time system (1) is stochastically finite-time
bounded and (Q,S,R) − 𝛾 dissipative with respect to(𝑐1, 𝑐2,M,N, 𝛿, 𝛾). Furthermore, if the above said matrix
inequalities have feasible solutions, the filter gains in (5) can
be obtained by 𝐴𝑓 = 𝑌−12 𝐴𝐹, 𝐵𝑓 = 𝑌−12 𝐵𝐹, and 𝐶𝑓 = 𝐶𝐹.
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Proof. For convenience, define the matrices as follows: 𝑃 =[ 𝑃1 𝑃2∗ 𝑃3
], 𝑌 = [ 𝑌1 𝑌2𝑌3 𝑌2

], 𝑄1 = diag{𝑄11, 𝑄12}, 𝑄2 =
diag{𝑄21, 𝑄22},𝑄3 = diag{𝑄31, 𝑄32}, 𝑅1 = diag{𝑅11, 𝑅12}, and𝑅2 = diag{𝑅11, 𝑅12}. Letting 𝐴𝐹 = 𝑌2𝐴𝑓, 𝐵𝐹 = 𝑌2𝐵𝑓, and𝐶𝐹 = 𝐶𝑓, using Lemma 4 and the partitionmatrices𝑃𝑖 and𝑄𝑖
in (28) togetherwith the parameter uncertainties definition in
(6), we can get

Φ̂ = [Φ]16×16 + Φ𝑇
3Δ (𝑘)Φ4 + Φ𝑇

4Δ𝑇 (𝑘)Φ3

+ Φ𝑇
2Δ (𝑘)Φ1 + Φ𝑇

1Δ𝑇 (𝑘)Φ2 + Φ𝑇
6Δ (𝑘)Φ5

+ Φ𝑇
5Δ𝑇 (𝑘)Φ6,

(35)

where the elements of [Φ]16×16,Φ1,Φ2,Φ3,Φ4,Φ5, andΦ6 are
defined in (34). By applying Lemma 5, the matrix expression
in (35) can be written as

Φ̂ = [Φ]16×16 + 𝜖−11 Φ𝑇
3Φ3 + 𝜖1Φ4Φ𝑇

4 + 𝜖−12 Φ𝑇
2Φ2

+ 𝜖2Φ1Φ𝑇
1 + 𝜖−13 Φ𝑇

6Φ6 + 𝜖3Φ5Φ𝑇
5 .

(36)

The expression in (36) can be equivalently observed as the
matrix term in (34). Therefore, if the LMI in (34) together
with (29) holds, the discrete-time system (1) with filter of the
form (5) is stochastically finite-time bounded and (Q,S,R)−𝛾 dissipative. This completes the proof.

Suppose that there is no time-varying delay term in the
discrete-time system (1); then the augmented filtering system
(8) and the corresponding error system (9) can be rewritten
as

𝜂 (𝑘 + 1) = 𝐴𝜂 (𝑘) + 𝐵𝑤 (𝑘)
+ 𝑁∑
𝑖=1

(𝜎𝑖 (𝑘) − 𝜎𝑖) [𝐴 𝑖𝜂 (𝑘) + 𝐵𝑖𝑤 (𝑘)] ,
𝑒 (𝑘) = 𝐿̃𝜂 (𝑘) .

(37)

Corollary 10. Consider the discrete-time system (37). Let
Assumption 1 hold, 𝜇 ≥ 1, 𝜎𝑖 (𝑖 = 1, 2, . . . , 𝑁), 𝛾 > 0, 𝑐1 > 0
be given constants, and Q ≤ 0, S,R = R𝑇,M > 0 be known
matrices. If there exist positive scalars 𝑐2, 𝜖1, 𝜖2, 𝜖3, symmetric
matrices 𝑃𝑖 > 0 (𝑖 = 1, 2, 3), and any matrices 𝑌, 𝐴𝐹, 𝐵𝐹,𝐶𝐹 with appropriate dimensions such that the following LMI
together with (29) holds:

[[[[[[[[[[[[[[
[

[Φ]
6×6

𝜖2Φ1 Φ𝑇
2 Φ𝑇

3 𝜖1Φ4 𝜖3Φ5 Φ𝑇
6∗ −𝜖2𝐼 0 0 0 0 0

∗ ∗ −𝜖2𝐼 0 0 0 0
∗ ∗ ∗ −𝜖1𝐼 0 0 0
∗ ∗ ∗ ∗ −𝜖1𝐼 0 0
∗ ∗ ∗ ∗ ∗ −𝜖3𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜖3𝐼

]]]]]]]]]]]]]]
]

< 0, (38)

where Φ1,1 = −𝑃1, Φ1,2 = −𝑃2, Φ1,3 = −𝐿𝑇S,
Φ1,4 = 𝐴𝑇𝑌𝑇1 + 𝐹𝑇𝐶𝑇𝐺𝑇𝐵𝑇𝐹 + ∑𝑁

𝑖=1√𝜎𝑖 𝐹𝑇𝑖 𝐶𝑇𝐺𝑇𝐵𝑇𝐹,

Φ1,5 = 𝐴𝑇𝑌𝑇3 + 𝐹𝑇𝐶𝑇𝐺𝑇𝐵𝑇𝐹 + ∑𝑁
𝑖=1√𝜎𝑖𝐹𝑇𝑖 𝐶𝑇𝐺𝑇𝐵𝑇𝐹,Φ1,6 = 𝐿𝑇√−Q, Φ2,2 = −𝑃3, Φ2,3 = 𝐶𝑇𝐹S, Φ2,4 = −𝐴𝑇𝐹,Ω2,5 = −𝐴𝑇𝐹, Φ2,6 = −𝐶𝑇𝐹√−Q, Φ3,3 = −R + 𝛾𝐼,

Φ3,4 = 𝐵𝑇𝑌𝑇1 + 𝐽𝑇𝐷𝑇𝐺𝑇𝐵𝑇𝐹 + ∑𝑁
𝑖=1√𝜎𝑖 𝐽𝑇𝑖 𝐷𝑇𝐺𝑇𝐵𝑇𝐹, Φ3,5 =

𝐵𝑇𝑌𝑇3 +𝐽𝑇𝐷𝑇𝐺𝑇𝐵𝑇𝐹+∑𝑁
𝑖=1√𝜎𝑖𝐽𝑇𝑖 𝐷𝑇𝐺𝑇𝐵𝑇𝐹,Φ4,4 = 𝑃1−𝑌1−𝑌𝑇1 ,Φ4,5 = 𝑃2 − 𝑌2 − 𝑌𝑇3 , Φ5,5 = 𝑃3 − 𝑌2 − 𝑌𝑇2 , Φ6,6 = −𝐼, Φ1

= [𝐹𝑇𝐶𝑇𝐺𝑇𝑁𝑇
𝑏 + ∑𝑁

𝑖=1√𝜎𝑖 𝐹𝑇𝑖 𝐶𝑇𝐺𝑇𝑁𝑇
𝑏 0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

5
]𝑇,

Φ2 = [0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
3

𝑀𝑇
𝑏 𝑌𝑇2 + ∑𝑁

𝑖=1√𝜎𝑖𝑀𝑇
𝑏 𝑌𝑇2 𝑀𝑇

𝑏 𝑌𝑇2 +
∑𝑁
𝑖=1√𝜎𝑖𝑀𝑇

𝑏 𝑌𝑇2 0], Φ3 = [0 𝑀𝑇
𝑎𝑌𝑇2 0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

4
],

Φ4 = [0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
3

𝑁𝑇
𝑎 𝑁𝑇

𝑎 0]𝑇, Φ5 =

[ 0 0 𝐽𝑇𝐷𝑇𝐺𝑇𝑁𝑇
𝑏 + ∑𝑁

𝑖=1√𝜎𝑖 𝐽𝑇𝑖 𝐷𝑇𝐺𝑇𝑁𝑇
𝑏 0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

3
]𝑇,

Φ6 = [0 . . . 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
3

𝑀𝑇
𝑏 𝑌𝑇2 + ∑𝑁

𝑖=1√𝜎𝑖𝑀𝑇
𝑏 𝑌𝑇2 𝑀𝑇

𝑏 𝑌𝑇2 +
∑𝑁
𝑖=1√𝜎𝑖𝑀𝑇

𝑏 𝑌𝑇2 0], then, there exists a filter (5) such that
the discrete-time system (37) is stochastically finite-time
bounded and (Q,S,R) − 𝛾 dissipative with respect to(𝑐1, 𝑐2,M,N, 𝛿, 𝛾). Moreover, the filter gains in (5) can be
computed by 𝐴𝑓 = 𝑌−12 𝐴𝐹, 𝐵𝑓 = 𝑌−12 𝐵𝐹, and 𝐶𝑓 = 𝐶𝐹.
Proof. The proof of this corollary is similar to that of
Theorem 9 and thus it is omitted here.

Remark 11. It is noted that the construction of Lyapunov-
Krasovskii functional plays a constructive role in reducing
the conservatism of the developed results. Moreover, the
complex Lyapunov-Krasovskii functional withmultiple sum-
mation terms can bring more number of decision variables
to the LMI. Also, when the number of decision variable
increases, the computational complexity also increases. So,
there should be a trade-off between the summation terms
in the construction of Lyapunov-Krasovskii functional and
the LMI constraints. However, in this article we have chosen
an appropriate LKF of the form (16) without using any free
weightingmatrix technique,which results in less conservative
conditions.

Remark 12. It should be mentioned that the fragility is an
important factor in the design of controllers due to the
uncertainty and disturbances in control systems. Due to the
occurrence of uncertainties, most of the controllers proposed
in the existing literature are sensitive to small inaccuracies in
their implementation. To overcome these facts, the controller
should be designed in such a way that it is insensitive or
nonfragile to its own parameter uncertainties. Moreover,
dissipativity is an effective concept in designing the feedback
controllers for linear and nonlinear systems. Specifically, in
Definition 3, if we take Q = −𝐼, S = 0, and R =𝛾2𝐼, then it corresponds to the finite-time 𝐻∞ performance
index and it minimizes the closed-loop impact of an external
perturbation; when Q = 0,S = 𝐼, andR = 𝛾𝐼, we can obtain
the finite-time filter with passivity performance index and use
it to measure the excess or shortage of passivity of the system;
if Q = −𝛾−1𝜃𝐼, S = (1 − 𝜃)𝐼, and R = 𝛾𝐼, we can have the
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finite-time filter with mixed 𝐻∞ and passivity performance
index, where 𝜃 ∈ [0, 1] is the weight parameter which deals
with the trade-off between the performances of 𝐻∞ and
passivity concepts. Also,Theorem 8 provides a filter such that
the closed-loop system is not only finite-time bounded, but
also (Q,S,R)−𝛾 dissipative. Moreover, the proposed filter is
more general, which includes𝐻∞ performance, passivity and
mixed𝐻∞ and passivity as its special cases.

4. Numerical Simulations

In this section, two numerical examples are presented to
show the effectiveness of the proposed filter design technique.
Specifically, the first example validates the efficiency of finite-
time nonfragile reliable filter design proposed in Theorem 9
and the second example presents a comparison result to
illustrate the conservativeness of the proposed method with
the existing ones.

Example 1. Let us consider the discrete-time system (1) and
filter system (5) with parameters as follows:

𝐴 = [ 0.2 0.05
−0.02 0.3 ] ,

𝐵 = [ 0.1
−0.2] ,

𝐴𝑑 = [−0.1 0
0 0.1] ,

𝐶1 = [1 0] ,
𝐶2 = [0 1] ,
𝐷1 = 0.4,
𝐷2 = 0.3,
𝐿 = [0 1] .

(39)

The uncertain matrices are taken as𝑀𝑎 = [0.1 0.1]𝑇 , 𝑀𝑏 =
[0.1 0.1] , 𝑁𝑎 = [0.1 0.1]𝑇, and 𝑁𝑏 = [0.1 0.1] . Also, the
lower bound of the time-varying delay 𝜏(𝑘) is chosen as 𝜏1 = 2
and the sensor fault matrix 𝐺 is assumed as 0.7𝐼. The other
parameters are chosen as 𝜇 = 1.01, 𝛾 = 0.95, 𝑐1 = 0.1,M = 𝐼,
N = 30, and 𝛿 = 0.5. Now, by solving the LMIs obtained
inTheorem 9 with the aid of MATLAB LMI control toolbox,
the maximum allowable upper bound of 𝜏(𝑘) is obtained as𝜏2 = 6 and the corresponding filter gain parameters are

𝐴𝑓 = [ 0.0434 −0.0066
−0.0519 0.1374 ] ,

𝐵𝑓 = [−0.02710.0698 ] ,
𝐶𝑓 = [0.1368 −0.6206] .

(40)

Furthermore, to demonstrate the effectiveness of the filtering
performance, the initial conditions for the considered system
and the filter are set to be [−0.3 0.1]𝑇 and [0 0]𝑇,
respectively. Moreover, the disturbance signal is taken as𝑤(𝑘) = 0.05 exp(−0.1𝑘) sin(𝑘). Based on the filter parameters
mentioned above, the simulation results are presented in
Figure 1. To be more specific, Figures 1(a) and 1(b) show
the actual state responses and the designed filter state
responses, respectively.Thefiltering error signal 𝑒(𝑘) is shown
in Figure 1(c). The trajectories of the system output signal
and its estimation are shown in Figure 1(d), wherein the
effectiveness of the proposed filter design is clearly exhibited.
Moreover, the time history of 𝜂𝑇(𝑘)M𝜂(𝑘) is depicted in
Figure 1(e). From these simulations, it can be concluded
that the considered discrete-time system with time-varying
delay (1) is stochastically finite-time bounded with respect to(0.1, 45.1135, 𝐼, 30, 0.5) under the proposed dissipative-based
filter (5) even in the presence of sensor failures and gain
fluctuations.

Example 2. Consider the modified continuous stirred tank
reactor (CSTR) system as in [8, 34], where the production
of cyclopentanol (B) from cyclopentadiene (A) is considered.
The complete reaction is given as follows: Cyclopentadiene
(A) 󳨀→ Cyclopentanol (B) 󳨀→ Cyclopentanediol (C), and 2
Cyclopentadiene (A) 󳨀→ Dicyclopentadiene (D). By assum-
ing constant density and an ideal residence time distribution
within the reactor, the balance equations can be described in
the following form:

𝑑𝐶𝐴𝑑𝑡 = 𝑉̇𝑉𝑅 (𝐶𝐴0 − 𝐶𝐴) − 𝑘1𝐶𝐴 − 𝑘3𝐶2𝐴,
𝑑𝐶𝐵𝑑𝑡 = − 𝑉̇𝑉𝑅𝐶𝐵 + 𝑘1𝐶𝐴 − 𝑘2𝐶𝐵,
𝑑𝜗𝑑𝑡 = 𝑉̇𝑉𝑅 (𝜗0 − 𝜗) + 𝑘𝑤𝐴𝑅𝜁𝐶𝑝𝑉𝑅 (𝜗𝐾 − 𝜗)

− 𝑘1𝐶𝐴Δ𝐻𝐴𝐵
𝑅 + 𝑘2𝐶𝐵Δ𝐻𝐵𝐶

𝑅 + 𝑘3𝐶2𝐴Δ𝐻𝐴𝐷
𝑅𝜁𝐶𝑝 ,

(41)

where𝐶𝐴 denotes the concentration of educt𝐴;𝐶𝐵 represents
the concentration of the desired product𝐵within the reactor;𝜗 is the reactor temperature. The rate components 𝑘1, 𝑘2, and𝑘3 depend exponentially on the reactor temperature 𝜗 via
Arrhenius law given by 𝑘𝑖(𝜗) = 𝑘0𝑖 exp(−𝐸𝐴𝑖/𝑅𝜗) (𝑖 = 1, 2, 3).
Let us assume that the first and second rate components are
equal for the reaction system; that is, 𝑘1 = 𝑘2. Further, the
values for model parameters are defined as 𝑘01 = 𝑘02 =1.287×1012ℎ−1, 𝑘03 = 9.043×109𝑙/𝑚𝑜𝑙ℎ−1, 𝐸𝐴1/𝑅 = 𝐸𝐴2/𝑅 =9758.3𝐾, 𝐸𝐴3/𝑅 = 8560.0𝐾, Δ𝐻𝐴𝐵

𝑅 = 4.2𝑘𝐽/𝑚𝑜𝑙, Δ𝐻𝐵𝐶
𝑅 =−11𝑘𝐽/𝑚𝑜𝑙, Δ𝐻𝐴𝐷

𝑅 = −41.85𝑘𝐽/𝑚𝑜𝑙, 𝐶𝑃 = 3.01𝑘𝐽/𝑘𝑔𝐾,𝐴𝑅 = 0.215𝑚2, 𝑉 = 10.01, 𝜗0 = 403.15𝐾, 𝑘𝑤 =4032𝑘𝐽/ℎ𝑚2𝐾. Now, linearizing the balance equations (41) at
the operating point, we can obtain the state-space model in
the following form:

𝑥̇ (𝑡) = 𝐴𝑝𝑥 (𝑡) + 𝐵𝑝𝑢 (𝑡) , (42)
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Figure 1: Simulation results of Example 1.
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where 𝑥 = [ 𝑥1𝑥2
𝑥3

] = [ 𝐶𝐴−𝐶𝐴𝑠𝐶𝐵−𝐶𝐵𝑠
𝜗−𝜗𝑠

], 𝑢 = [ 𝑢1𝑢2 ] = [ 𝑉̇−𝑉̇𝑠
𝐶𝐴0−𝐶𝐴0𝑠

], and the
matrices 𝐴𝑝 and 𝐵𝑝 are given by

𝐴𝑝 = [[
[
−86.0962 0 4.2077
50.6146 −69.4446 −0.9974
172.2263 197.9985 −65.5149

]]
]

,

𝐵𝑝 = [[
[

0.3861 18.83
−0.0899 0
−0.4136 0

]]
]

.
(43)

The steady-state values of the main operating point of the
reactor are given by 𝐶𝐴𝑠 = 1.235𝑚𝑜𝑙/𝑙, 𝐶𝐵𝑠 = 0.9𝑚𝑜𝑙/𝑙,𝜗𝑠 = 407.29𝐾, 𝑉̇/𝑉𝑅 = 18.83ℎ−1, 𝐶𝐴0𝑠 = 5.1𝑚𝑜𝑙/𝑙. It should
be noted that the control input can be treated as the unknown
input signal in the state estimation problem. According to
this point, the discrete-time state representation of (42) with
the sampling period 𝑇0 = 1min can be represented by the
following:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤 (𝑘) , (44)

where

𝐴 = [[
[
0.2747 0.0345 0.0206
0.2323 0.3152 0.0033
1.2566 1.1042 0.3671

]]
]

,

𝐵 = [[
[
1
1
1
]]
]

.
(45)

The product concentration 𝐶𝐵 may be needed in practice
and the signal processing approaches are used to estimate
the concentration. By deploying two sensors for measuring
the concentration of educt 𝐴 and the reactor temperature,
the product concentration 𝐶𝐵 is estimated. Hence, 𝐶1 =[1 0 0] , 𝐶2 = [0 0 1] , 𝐷1 = 0.3, 𝐷2 = 0.2, and 𝐿 =[0 1 0] . Let the unknown input signal 𝑤(𝑘) lie in the
interval [−1, 1] and assume that the signal is transmitted if
one of the following conditions is satisfied: ‖𝑦𝑝(𝑘) − 𝑦last,𝑝‖ ≥𝛿𝑦,𝑝, 𝑘−𝑘last,𝑝 > 𝜃𝑘,𝑝, where𝑦last,𝑝 is the last transmitted signal
of the𝑝th sensor at time instant 𝑘last,𝑝 and 𝛿𝑦,𝑝 and 𝜃𝑘,𝑝 are the
magnitude and time threshold values, respectively.Moreover,
it is also assumed that there is no packet dropouts and set𝛿𝑦,1 = 0.1, 𝛿𝑦,2 = 0.2, 𝜃𝑘,1 = 𝜃𝑘,2 = 1. From this setting,
it is seen that 𝑁1 = 𝑁2 = 2. Further, choose the values of
the transmission probabilities as 𝛽1,0 = 0.69, 𝛽1,1 = 0.31,
𝛽2,0 = 0.44, and 𝛽2,1 = 0.56. It should be mentioned that
based on the method proposed in [8], the minimum value
of 𝛾 is 1.9069, and while using the proposed filter design in
this paper, the minimum value of 𝛾 is 1.6686, which reveals
that the proposed filter design technique in this paper is better
than that in [8].

Furthermore, for the simulation purposes, we choose𝜇 = 1.01, N = 30, M = 𝐼, 𝑐1 = 0.4, and 𝛿 =

0.5. Then, by Corollary 10, the optimal value of 𝑐2 can be
calculated as 838.1240. By solving the LMI-based conditions
in Corollary 10, the filter gain parameters are obtained as

𝐴𝑓 = [[
[
−0.1688 0.3499 0.0052
0.1143 0.2637 0.0314
0.5853 0.6015 0.8656

]]
]

,

𝐵𝑓 = [[
[
−1.5324 0.1289
−2.1702 0.2194
−6.7899 −0.5094

]]
]

,

𝐶𝑓 = [−0.0430 −0.2360 −0.1018] .

(46)

Based on these values, the state responses of the discrete-
time system (44) with the proposed nonfragile reliable filter
are plotted in Figure 2(a) and the associated filter state
responses are presented in Figure 2(b). The system output
signal together with its estimation is given in Figure 2(c),
respectively. Furthermore, it can be viewed from Figure 2(d)
that under the chosen initial condition and the obtained filter
parameters, the state responses of the corresponding aug-
mented filtering system satisfy the condition 𝜂𝑇(𝑘)M𝜂(𝑘) <𝑐2 = 838.1240. Then, it directly follows that the discrete-time
system (44) is stochastically finite-time bounded with respect
to (0.4, 838.1240, 𝐼, 30, 0.5).
5. Conclusion

In this paper, the problem of dissipative-based finite-time
robust filter design has been discussed for a class of WSNs
which is described by discrete-time systems with time-
varying delay. More precisely, a reliable nonfragile filter has
been designed such that the augmented filtering system
is stochastically finite-time bounded and (Q,S,R) − 𝛾
dissipative. In this connection, a set of sufficient conditions in
terms of LMIs has been developed for obtaining the desired
nonfragile reliable filter for the system under consideration,
wherein the filter gain parameters have been obtained by
solving the developed LMIs. Finally, two numerical examples
including CSTR model have been presented to demonstrate
the effectiveness of the proposed filter design.The problem of
finite-time dissipative-based filtering for nonlinear stochastic
system with actuator saturation is an untreated topic which
will be the future work.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.



12 Complexity

−3
−2
−1

0
1
2
3
4
5
6

x(k)
x(k)
x(k)

5 10 15 20 25 30 35 40 45 500
Time (k)

(a) Trajectories of system states

−15

−10

−5

0

5

10

xf(k)
xf(k)
xf(k)

5 10 15 20 25 30 35 40 45 500
Time (k)

(b) Trajectories of filtering states

−1

−0.5

0

0.5

1

1.5

2

z(k)
zf (k)

5 10 15 20 25 30 35 40 45 500
Time (k)

(c) Trajectories of output signals

＝2=838.1240

0
100
200
300
400
500
600
700
800
900


T
(k

)ℳ

(k

)

5 10 15 20 25 30 35 40 45 500
Time (k)

(d) Time history of 𝜂𝑇(𝑘)M𝜂(𝑘)

Figure 2: Simulation results of Example 2.
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