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Abstract. Montgomery multiplication is used to speed up modular
multiplications involved in public-key cryptosystems. However, it re-
quires conversion of parameters into N-residue representation. These
additional pre-computations can be costly for low resource devices like
smart cards. In this paper, we propose a new, more efficient method,
suitable for smart card implementations of most of public-key cryptosys-
tems. Our approach essentially consists in modifying the representation
of the key and the algorithm embedded in smart card in order to take
advantage of the Montgomery multiplication properties.
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1 Introduction

Almost all public-key cryptosystems embedded in low resource devices, such as
smart cards and PDAs, require an efficient implementation of modular
multiplication.

One of the best methods of modular multiplication is due to P.L. Montgomery
[1]. It consists in replacing division by an arbitrary number with division by a
fixed-number, which can be chosen to be a power of 2 for efficiency reasons.
Montgomery multiplication requires pre-computation of a constant to change the
representation of the operands. This pre-computation requires time and memory
space and must be performed each time the cryptosystem is computed. We will
see how most of the public-key cryptosystems can be implemented on a smart
card using Montgomery multiplication without this drawback.

The paper is organized as follows. In Section 2, we recall the basics about
Montgomery multiplication. In Sections 3 and 4 we propose a method for RSA
and CRT RSA implementations using Montgomery multiplication. In Section 5,
we adapt the method to GQ2 algorithm [6] which results in an improvement of
up to 50 % in execution time compared to the classical methods. Lastly, we look
at ECDSA signature [7] in Section 6.

2 Montgomery Multiplication

Throughout the rest of the paper, we use - to denote classical multiplication and
* to denote Montgomery multiplication.
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Let b be the length of the machine word (typically b = 2* with k = 8,16
or 32). Let X,Y and N be three integers of length n : X = (xy,—1...70)p, Y =
(Yn—1---Yo)»- We denote by R the value b™.

For N odd, the Montgomery multiplication of X and Y modulo N is de-
fined by:

X*YmodN=X-Y-R 'mod N .

It can be computed by applying the following algorithm shown in [3]:

Algorithm 2.1. Montgomery multiplication
InpUT: X,Y,N,Rand N' = —N "' mod b
OurpUT: X -Y - R * mod N

1. A<—0
2. For i from 0 to n — 1 do
(a) u + (a0 + x; - yo)N' mod b
(b) A—(A+zi-y+u-N)/b
3. fA>Nthen A— A— N
4. Return(A)

Let us denote by * the Montgomery exponentiation defined by:
X*mod N =X°-R'"™“mod N . (1)

As it can be deduced from Relation (), classical modular exponentiation can be
computed using Montgomery exponentiation. First, we have to change the rep-
resentation of the operand, then carry out the Montgomery exponentiation and

finally correct its output to obtain the expected result. This can be summarized
by:

X¢mod N = [(X * R?)*] «x 1 mod N ,
or by the following algorithm taken from [3]:

Algorithm 2.2. Modular Exponentiation using Montgomery Multiplication
InrPUT: X,e, N, R
OuTpPUT: X° mod N

1. X — X *R?mod N
A+~ Rmod N
3. Forifromn—1to1ldo
(a) A— Ax Amod N
(b) Ife; =1 then A — A% X mod N
4. A+ Ax1mod N
5. Return(A)

N
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The value X = X - Rmod N = X % R2 mod N is called the Montgomery
representation of X. To obtain this representation, the value R? mod N must be
computed. In order to do this, one can use Montgomery multiplication and the
following proposition:

Proposition 1. Let R and N be two integers with N odd, then we have:
R?mod N = (2- R)*°%lF mod N .
Proof.

(2- R)*logz[R] — 9log2[R] | plog2[R] | pl—log2[R] 11,04 N
= 2092lR] . R mod N
= R-Rmod N
= R*mod N . 0

As a consequence of Proposition 1, the pre-computation of R? mod N requires
logs[R] Montgomery multiplications. As R equals b™, for public-key cryptosys-
tems using large parameters n (like RSA), this can be a problem in terms of
time or memory on low cost devices.

On smart cards for instance, initialization of the parameters can take more
time than the Montgomery multiplication itself. One reason is that initialization
is made by software, whereas Montgomery multiplication is made by hardware.
Another reason is the clock frequency: dedicated hardware for Montgomery mul-
tiplication has higher clock frequency than classical CPU.

In the next section, we introduce a new method of computing RSA signatures
with Montgomery multiplications without the pre-computation of R? mod N.

3 RSA

3.1 Classical Method for RSA

The RSA cryptosystem [4] uses a public modulus N, product of two large prime
numbers p and ¢, a public exponent e co-prime with ¢(N) = (p—1)-(¢—1) and
a private exponent d, inverse of e modulo ¢(N).

To sign a message M using Montgomery multiplication, one can apply the
following algorithm:

Algorithm 3.1. RSA using Montgomery multiplication
INpUT: M,d, N, R
OutpUT: M? mod N

){<—R2m0dN

M «— M * X mod N
S — M** mod N

S «— S*1mod N
Return(S)

G W=
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3.2 Our New Method for RSA

Let us assume that the public exponent e is known (as it is often the case). We
give in the following a new way of computing a RSA signature:

Algorithm 3.2. Optimized RSA using Montgomery multiplication

InpuT: M,d, e, N
OuTpPUT: M® mod N

S — 1*(¢=Y mod N
S «— M %S mod N
S« S**mod N

. Return(S)

e e

Before arguing the correctness of Algorithm .21 let us notice that:
1D mod N =171 R"**! mod N = R> “mod N .
So, after the first step of Algorithm [B.Z] we have:
S=R>“modN .
And from the second step, we obtain:

S=Mx%Smod N=MxR>°mod N
=M -R*>° R 'mod N
=M -R'""°mod N .

Finally, using Fermat’s little theorem in the last step:

S = 5*"mod N = (M - R'=¢)* mod N
= M4 RO R4 mod N
=M% R'"* mod N
= M%mod N .

Algorithm B:Z] works for every e, but is especially interesting when e is small
(typically 216 + 1).

Even if the total of Montgomery multiplications in Algorithm [3.T] and in
Algorithm B2]is not very different, the execution time of the second one will be
faster in a smart card context. Indeed, the initialization step of operands takes
more time than the Montgomery multiplication itself. This is a consequence of
the smart card architecture, where Montgomery multiplication uses dedicated
hardware.
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4 CRT RSA
4.1 Traditional Method for CRT RSA

When the values p and g are available, one usually applies the Chinese Remainder
Theorem and the Garner’s algorithm [5] to improve performance of RSA signa-
ture. In the so-called CRT mode, RSA involves the 5 parameters p, g, dp, dg, A,
where d, =d mod p — 1,d; = dmod ¢ — 1 and A =p~! mod q.

The CRT RSA signature of a message M using Montgomery multiplication
is given by:

Algorithm 4.1. CRT RSA using Montgomery multiplication

INPUT: Mp ,dp,dq,A R
OuTpPuT: M* mod N

){<—R2m0dp

M — M * X mod p
Sy« M*% mod p
Sp<—S§*1modp
X < R” mod ¢

M — M * X mod ¢
Sq « M4 mod ¢
Sq < S¢*1mod ¢
)~(<—R2modp

10 A«—Ax X modp_
11. S~ [(Sq—Sp)*Amodp]|-p+ S,
12. Return(S)

© 0N W

4.2 Our New Method for CRT RSA

We assume that the public exponent e is available. Moreover, we recall that
every message M can be written M; - R + M.

If we store in the smart card the value A, instead of A itself, we obtain an
optimized CRT RSA implementation using Montgomery multiplication:

Algorithm 4.2. Optimized CRT RSA using Montgomery multiplication
INpPUT: M, p, ,dp,dq,A e
OuTPUT: M* mod N

X —1*¢=2) mod p

Sp — (M1 + Mo+ 1) mod p

Sp — Sp *X mod p

Sp — S ? mod p

X — 17(e-2) mod ¢

Sq — (M1 4+ Mo * 1) mod ¢

Sq < S¢ * X mod ¢

Sq — S;d“ mod q _

S — [(Sqg—Sp)* Amod p ].p+ Sp
Return S

COX N W
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After the first step of the algorithm, we have:
X =12 modp=R°modp .
Then, the second step gives:
S, =M+ My*1modp=M; +My-R *modp .
Hence, at the third step we have:

S, X mod p =S, * R*°mod p
=(M;+My-R™Y)-R*>°-R ' modp
= (M; + My-R™') - R*° mod p
= (M;-R+ M) R °modp
=M R “modp .

Thus, Montgomery exponentiation (step 4) gives:

S;d” mod p = (M - R*=¢)*% mod p
= (M- R )% . R4 mod p
= Mdp . R(l_e)dp . Rl_dp modp
=M% . R'=¢ mod p
=M% modp .

For the same reason, we have:
S;d“ mod q = ((My + My = 1) % 1(672))*da 1m0d ¢.
By definition of A, we obtain a correct CRT RSA signature.

This CRT RSA implementation using Montgomery multiplication is opti-
mized for smart cards.

5 GQ2

5.1 Description

GQ2 [0] is a zero-knowledge algorithm whose security is equivalent to the fac-
torization problem. It can be converted to a signature scheme.

Like RSA, GQ2 uses a public modulus N, product of two large primes p and
q. The parameters of the public key are N and two small numbers, g; = 3 and
g2 = 5. The parameters of the private key are two numbers @1 and Q2 (lower
than N), verifying the formula: @?'? - ¢g? = 1 mod N .
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Let us recall in the following the GQ2 authentication protocol.

Algorithm 5.1. GQ2 authentication of a prover by a verifier

INPUT: N, Q1,Q2 )
OUTPUT: Success or failure

—_

G L

the

2 mod

The prover generates a random number 7 and sends the commitment W=r°
N to the verifier.

The verifier sends a 2-byte challenge d = d1]|d2.

The prover computes the response D =7 - Q‘lil . 32 mod N.

The verifier computes W’ = D512 . gfdl . ngQ mod N.

The verifier returns ”Success” if W’ = W, ”"Failure” otherwise.

The GQ2 protocol is faster than RSA due to the small length (2x8 bits) of
exponents involved in modular exponentiation. That is why, if Montgomery

multiplication is used, computation of the value R?> mod N is very inconvenient:
a big part of execution time of the algorithm will be employed for this.

5.2 Our New Method for GQ2

To

optimize GQ2 algorithm, we propose to store the values Q; and Q5 in the

non-volatile memory of the smart card. This can be performed once, during
personalization step of the card, in factory.

The modified GQ2 algorithm executed by the card is:

Algorithm 5.2. GQ2 authentication with Montgomery multiplication

INPUT: N, Q1,Q2 )
OUTPUT: Success or failure

CURs W N

. The prover generates a random number r and sends the commitment W=r

*512 *

1 mod N to the verifier.

. The verifier sends a 2-byte challenge d=d1||d2.

< wd < wd
The prover computes the response D = r % Ql* Lk Qg* ? %1 mod N.
2d;

. The verifier computes W’ = D*2 . g2%1 . g242 mod N.
. The verifier returns ”Success” if W’ = W, "Failure” otherwise.

The computed commitment is equal to:

W =7r*12 %1 mod N

=12 RYP12 4 1 mod N

_ ,,,512 . R17512 . Rfl mod N
512 p—=512 o4 N
= R Y2 mod N .

|
S

So the random used during the rest of the algorithm is 7 - R~! mod N.
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The computed response is equal to:

D=rx Ql*dl * Q;dz * 1 mod N
=r: Q~1*d1 : Qg*dz -R™3mod N
=" 0, RT3 RV od N
=r- Qldl . Q2d2 R od N
=r - (Q1R)" - (Q2- R)* - R™'""~% mod N
=r-Q"-R".Qp -R™ R~ "% mod N
zr-Q‘fl- 32-R—1 mod N
zr-R_l-Qill- gz mod N .

So the response is valid according to the random used by the card.

This method allows a big improvement compared to the classical method. For
example, if the bit-length of the modulus N is 1024, computation of the value
R? mod N requires 10 Montgomery multiplications whereas the computation of
D involves between 16 and 32 Montgomery multiplications. So this method for
GQ2 algorithm decreases execution time of more than 50% compared to classsical
use of Montgomery multiplication.

6 ECDSA Signature

6.1 Description

Elliptic Curves Digital Signature Algorithm [7] produces short signatures and
S0, are suitable for smart card. The precedent technique can still be applied in
order to improve the time of calculation.

In the following, we only consider the case of elliptic curves over prime fields.
Let (E) be the elliptic curve over a finite field of prime characteristic p defined
by:

y? = 2% + ax +b with a,b € GF(p) .

Let G = (z¢, ya) be a point of (E) of order n prime. The ECDSA private key is
an integer d such that d € [0,n — 1]. The corresponding public key is the point
Q= (zq,yq) =d x G.

The ECDSA signature algorithm is:

Algorithm 6.1. ECDSA signature

INnpuT: M, (E),G,d,n
OUTPUT: 7, 8

Generate a random number k, such that k € [1,n — 1].
Compute the elliptic curve point k X G = (zk, y)-

Set r = z;, mod n.

Compute s = k1 (SHA-1(M) + d - r) mod n.
Return(r, s).

e
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6.2 First Method

ECDSA involves modular computation over GF(p) for computation of the scalar
multiplication described in step 2 of algorithm, but computation over GF'(n) for
the rest of the algorithm. For clarity reasons, when Montgomery multiplications
are executed modulo p (resp. n), we use notations #, (resp. #,) and R, (resp.
R,).

Let (E) be the image of (F) using Montgomery representation. It is defined
by:

7% =7+ (a.Rp) #p & + (b.R,) .

To configure the smart card for ECDSA signature scheme, we need to replace
G = (zg,yc) by G = (Za,9c) = (z¢.Rp mod p,yg.Rp mod p) and d by d =
d- R, mod N . This rewritten in Montgomery representation is performed once,
on a computer, and the modified parameters are stored in the smart card during
the personalization phase.

The new ECDSA signature scheme using Montgomery arithmetic is the fol-
lowing:

Algorithm 6.2. ECDSA signature using Montgomery multiplication
INnpuT: M, (E),G,d,n
OUTPUT: 7, 8

Generate a random number k, such that k € [1,n — 1].

Compute k1 = k *, 1.

Compute the elliptic curve point k x G = (£, i) = (2 - R, mod p, yx - R, mod p).
Compute r = @, *p 1.

Compute r = r mod n.

Compute s = k‘f(_l) s (SHA-1(M) + d %, r) mod n.

Return(r, ).

RN o e

This algorithm computes a correct ECDSA signature of message M using
only Montgomery multiplications. The correctness of the computation is due to:

s = kf(fl) %, (SHA=1(M) 4 d %, ) mod n
= k' R? , (SHA-1(M) + d *,, 7) mod n
= k' Ry, - (SHA-1(M) + d %, 7) mod n
= (k-Rn)"'- R, - (SHA-1(M) 4 d *,, ) mod n
= k' (SHA-1(M) + d *,, 7) mod n
= k' (SHA-1 (M) +d -7 R;') mod n
=k ' (SHA-1 QM) +d- R, -7 - R,;') mod n
=k ! (SHA-1(M) 4+ d-7) mod n .
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The value r satisfies the following equalities:

r =2 *p 1 mod p
:fk-R;Imodp
:axk-Rp-R;Imodp

=T -
6.3 Second Method

Algorithm can also be computed by using the notion of Montgomery inverse
introduced by B. Kaliski. The Montgomery inverse of an element a is defined
by:

a—at=a"' R, modn.

B. Kaliski proposed an efficient binary algorithm [8] to compute this inverse.
Using this algorithm and the parameters (E), G and d, the ECDSA signature
scheme can be optimized for Montgomery multiplication in the following way:

Algorithm 6.3. ECDSA signature using Montgomery multiplication and Kaliski

inverse L
INnpuT: M, (E),G,d,n
OUTPUT: 7, 8

Generate a random number k, such that k € [1,n — 1].

Compute the elliptic curve point k x G = (2, ¥x) = (xx - Rp mod p, yx - R, mod p).
Compute r = & *p 1.

Compute r =1 mod n. ~

Compute s = k' %, (SHA-1(M) + d #, r) mod n.

Return(r, ).

S otk W=

This algorithm computes a correct ECDSA signature of a message M using
only Montgomery multiplications. The correctness of the computation is due to:

s=k! %, (SHA-1(M) 4 d %, r) mod n
= k™' R, %, (SHA-1(M) + d *,, 7) mod n
= k™' R,.R; ' (SHA-1(M) 4 d %, ) mod n
=k '(SHA-1(M) +d - R, *,, 7) mod n
=k '(SHA-1(M) +d- R, -7~ R;') mod n
=k !(SHA-1(M) +d-7) mod n .

7 Conclusion
We have proposed new ways of using Montgomery multiplication to improve the

performance of cryptographic algorithms when they have to be implemented on
smart cards.
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Our approach comprises two interlocking parts. The first part uses a Mont-
gomery representation to store the private parameters in the smart card. This
representation can be computed externally, during the personalization phase of
the card, where resource limitations are not a problem. The second part modifies
the cryptographic algorithms in order to use a Montgomery representation of the
private parameters. This method improves the execution time of the underlying
algorithm. For example, a GQ2 authentication is twice as fast compared to the
traditional approach. The method is different from those proposed in [9] because
the result returned by the card is correct without modifying the protocols. The
verifier doesn’t need to know how the computation was made.

We have seen that this method can be applied to RSA, GQ2 and ECDSA
signature, but it can also be applied for others public-key crypto-systems like
ECDSA verification or Feige-Fiat-Shamir [10] for example.

Acknowledgements. We would like to thank Emmanuel Prouff for many fruit-
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