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Abstract. Most surface-blending methods are able to blend surfaces with tangent con-
tinuity. However, curvature continuity has become increasingly important in geomet-
ric modelling and its applications, such as computer animation, computer-aided design

and virtual reality. In this paper, we present a method which is able to achieve 2C
continuity based on the use of partial differential equations (PDE). A sixth order par-
tial differential equation with one vector-valued parameter is introduced to produce
such blending surfaces. Since computational efficiency is crucial for interactive com-
puter graphics applications, we have developed a unified closed form (analytical)
method for the resolution of this sixth order PDE. Therefore blending surfaces of up to

2C smoothness can be generated in real time.
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1   Introduction

Surface blending is an important topic of surface modelling. There has been a great deal of
effort devoted to this topic leading to the development of a number of surface blending
methods. A comprehensive survey on existing blending methods for parametric surfaces
was made by Vida et al. [20].

The rolling-ball blends, probably the most popular and classic surface blending method,
generate blending surfaces with a moving ball. Depending on whether the radius of the ball
changes or not, such blending method is classified as constant-radius blending [18], [10], [4]
and variable-radius blending [11], [12], [16]. The main advantage of rolling-ball blending is
that, since it is defined by a simple physical motion, the shape is generated in an intuitive
manner. It is also attractive from the modelling point of view that the spine, the trimlines,
the assignment and the profile are automatically generated. However, the surface swept by
the moving ball is of a high algebraic degree, even in relatively simple cases.

Blends with cyclides were also investigated by some researchers [1], [2], [3], [19]. Cy-
clides can be regarded as generalisations of the torus and can be described by implicit quar-
tic equations or in parametric form using trigonometrical parameterisation or rational
biquadratic Bézier equations. When used for blending, the required cyclide pieces can be
easily constructed by identifying circles on them, especially if these lie on the planes of
symmetry. Cyclides are normally used in simple blends, such as where a cylinder obliquely
meets a plane.
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Surface blending with the solution to a partial differential equation is also an effective
method. This method was first proposed by Bloor and Wilson [5]. In the reported literature,
however, the PDE based approach has only been used to construct a C1 continuous blending
surface. Another challenge is how to solve a PDE efficiently without compromising the
geometric accuracy. Due to the difficulty of obtaining an analytical solution, various nu-
merical methods are developed and used as mainstream solutions, which are inevitably very
slow. Cheng [9] proposed a finite difference method and carried out the blending between
two cylinders, and between a cylinder and a cone.  Li et al. developed a boundary penalty
finite element method for surface blending [13], [14], [15].  In addition to these, collocation
method [6] and finite element method [8] were developed for free form surface generation.
Finite difference method was also applied to solve dynamic PDEs for cloth simulation [21],
[24]. Although they are effective in finding the solutions to the PDEs, solving a large set of
linear algebra equations is generally very time-consuming. As a result, these numerical
methods are unsuitable for the graphics applications requiring high computational effi-
ciency. In order to generate surfaces faster, Bloor and Wilson developed a pseudospectral
method [7]. However, this method has been found not accurate enough for certain applica-
tions [27].

The vector-valued parameter in a PDE has a strong influence on the shape of the gener-
ated blending surfaces.  In order to provide designers with more shape control options, You
and Zhang proposed a more general fourth order partial differential equation. It has three
vector-valued parameters and covers all existing fourth order partial differential equations
used for surface generation [22], [26]. Zhang and You also discussed the impact of the or-
ders of the PDEs used for free form surface creation [25].

All the above-mentioned partial differential equations are of the fourth order which can
only cope with positional and tangential boundary conditions. Therefore, they can only
guarantee tangential continuity. In practical engineering design, however, blending surfaces
with curvature continuity are required in many situations. For example, high-speed cams
without curvature continuity can cause harmful impact. Due to the importance of this issue,
the curvature continuity of blending surfaces has also attracted substantial attention. Pegna
and Wolter [17] presented the Linkage Curve theorem for the design of curvature continu-
ous blending surfaces.  However, since the blending with curvature continuity is much more
difficult to achieve than that with tangential continuity, rapid generation of curvature con-
tinuous blending surfaces remains an open research issue.

Blending based on PDEs has unique advantages over the conventional approaches, be-
cause curvature continuity can be readily incorporated into the boundary conditions of the
PDEs. In this paper, we will introduce a sixth order partial differential equation to accom-

modate the requirement of 2C  continuity. Unlike other (numerical) resolution methods
reported in the literature, we will develop a unified closed form solution (analytical solu-
tion) to the PDE, which is able to produce a blending surface interactively.
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2 Partial Differential Equation and Closed Form Solution

It is known that a fourth order partial differential equation can meet both positional and
tangential boundary conditions. To satisfy the curvature boundary conditions, a sixth order
PDE has to be used. Using the operator defined in (3), the following sixth order partial dif-
ferential equation in a vector form can be applied for this purpose
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where [ ]Tzyx aaa     =a  is a vector-valued shape parameter, and [ ]Tzyx     =x  is a vector-

form positional function.
An arbitrary 3D surface can be represented with the solution to PDE (1) subject to posi-

tion, tangent and curvature boundary conditions:
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where )6 , ,2 ,1(  )( �=iviG  represent the vector-valued functions which describes the

position, tangent and curvature on the boundaries.
The blending surface generated with the solution to PDE (1) subject to boundary condi-

tions (2) will guarantee curvature continuity. In fact, boundary conditions (2) are stronger
than those of curvature continuity. Therefore, we here call the blending surfaces defined

with boundary conditions (2) 2C  continuous blending surfaces.
PDE (1) under boundary conditions (2) can be solved with various numerical methods,

such as the above mentioned finite element method, finite difference method, and colloca-
tion method as well as the weighted residual method [23]. Considering the importance of
computational efficiency in interactive computer graphics, we will in this paper develop a
unified closed form solution of PDE (1).

To facilitate the description, let us define a vector operator whose two operands are two
column vectors, which produces a new column vector whose each element is the product of
the corresponding elements of the two column vectors, i.e.

[ ] [ ] [ ]Tzzyyxx
T

zyx
T

zyx tstststttsss             ==st                      (3)

Then decomposing the functions (2) into basic functions which are not in a polynomial
form, boundary conditions (2) can be rewritten as follows
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where ) , ,2 ,1  6; , 2, 1,(  Iijji �� ==a  are known vector-valued coefficients, and

) , ,2 ,1(  )( Iivi �=g  are basic functions in a vector form.

Assuming that all ) , ,2 ,1(  )( Iivi �=g  can be expressed in the following forms (if some

)(vig  cannot be expressed in this way, they can be transformed into Fourier series to satisfy

the requirements), then we have
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Corresponding to the basic functions, we can construct in the following a unified closed

form solution of PDE (1) subject to boundary conditions (4) with the method of variable
separation
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Substituting (6) into PDE (1), the form of function )(uif  can be determined. Depending

on the values of )6 ,4 ,2(  =kkib , )(uif  has three different equations. Here we take the x

component as an example to present its equation.
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where xib  is the coefficient before the parametric variable v  in the basic functions )(vig .

The unknown constants in equations. (7), (8) and (9) can be determined by substituting
them into (6), then substituting (6) into boundary conditions (4).

3 Application Examples

In order to demonstrate the application of the above closed form solution in surface blend-
ing, in this section, we will create blending surfaces of three blending examples.

The first example is to blend an elliptic cylinder and a sphere which is used to explain the
application of closed form solution (9). Suppose that the boundary conditions for this
blending task have the forms of
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Taking the x  component as an example and comparing (10) with (4) and (5), we have
vvg x cos)(1 =  and ,16121 −== xx bb  141 =xb . Therefore, the closed form solution of PDE

(1) for the x  component is
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Fig. 1.  Blending between an elliptic cylinder and a sphere

Substituting (11) into boundary conditions (10), all the unknown constants in (11) can be
determined. With this closed form solution, we obtain the blending surfaces given in Fig. 1a
and 1b. Figure 1a is the same as 1b except that three different colours are used to distinguish
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the three surface patches. As the position, tangent and curvature continuities are all guaran-
teed at the boundary curves, as expected it looks very smooth (Figure 1b).

The second example is to blend a circular cylinder and a plane at a specified straight line.
Its main aim is to demonstrate the application of the closed form solution (7) in surface
blending. The boundary conditions for this blending problem are
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Fig. 2. Blending between a circular cylinder and a plane at a specified straight line

For the x  component, we have 1)(1 =vg , vvg =)(2  and vvg cos)(3 = . Therefore, the

closed form solution of PDE (1) for the x  component takes the following form
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In the same way as above, all the unknown constants in closed form solution (13) can be
determined by substituting it into boundary conditions (12). The blending surface generated
with (13) is depicted in Fig. 2a and 2b, which are from different viewing angles of the same
blending surface.

The final example is to blend an elliptic cylinder and a plane at a specified curve. The
boundary conditions for this blending task can be written as follows
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The basic functions for the x  component given by the above boundary conditions are

dvvg x cosh)(1 =  and vvg x cos)(2 = . For )(1 vg x , 2
21 dbx = , 4

41 dbx = , 6
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Therefore, the closed form solution of PDE (1) for the x  component is
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Substituting (15) into boundary conditions (14) and determining all its unknown con-
stants, we obtain the blending surface shown in Figure 3a and 3b. These two images are the
same blending surface viewed from different viewing angles.

The last two examples are complex. The blending surface connects a closed curve of a
circular/elliptic cylinder to an open curve (line/curve segment). The blending surface con-
structed using the partial differential equation smoothly merges from a closed shape at one
end to an open shape at the other. We have not found similar blending surfaces in existing
literature. They suggest that our method based on the solution of a PDE have ability to gen-
erate complex blending surfaces.

Because the solution is analytical, the developed closed form method is computationally
very efficient. We have timed the process of determining the unknown constants in the

98 J.J. Zhang and L. You



closed form solutions and found the process took less than 610−  of a second on a 800 MHz
PC for all three blending tasks, no problem for interactive computer graphics applications.

      
                 a                                                              b

Fig. 3. Blending between an elliptic cylinder and a plane at a specified curve

4 Conclusions

Surface blending with 2C  continuity has been investigated in this paper. Different from the
existing blending methods considering curvature continuity, we introduced a sixth order
partial differential equation which provides enough degrees of freedom to accommodate
curvature boundary conditions.

Since the computational speed is an important factor in interactive computer graphics ap-
plications, we developed a unified closed form resolution method. Depending on the differ-
ential properties of the boundary functions, the closed form solution of the PDE has three
different forms.

By applying the developed closed form solution, we have given three examples to illus-

trate the use of our method. They are the 2C  continuous blending between an elliptic cylin-
der and a sphere, between a circular cylinder and a plane at a specified straight line, and
between an elliptic cylinder and a plane at a given curve. These examples demonstrate the
application of the three forms of the PDE solutions in surface blending (7), (8), (9), respec-
tively. It is found that the developed blending method can tackle complex blending prob-
lems, some of which have not been seen in the literature. In addition, this method is com-
putationally very fast, good enough for interactive applications.
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