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FPGAs are known to permit huge gains in performance and efficiency for suitable applications but still require reduced design efforts
and shorter development cycles for wider adoption. In this work, we compare the resulting performance of two design concepts
that in different ways promise such increased productivity. As common starting point, we employ a kernel-centric design approach,
where computational hotspots in an application are identified and individually accelerated on FPGA. By means of a complex
stereo matching application, we evaluate two fundamentally different design philosophies and approaches for implementing the
required kernels on FPGAs. In the first implementation approach, we designed individually specialized data flow kernels in a spatial
programming language for a Maxeler FPGA platform; in the alternative design approach, we target a vector coprocessor with large
vector lengths, which is implemented as a form of programmable overlay on the application FPGAs of a Convey HC-1. We assess
both approaches in terms of overall system performance, raw kernel performance, and performance relative to invested resources.
After compensating for the effects of the underlying hardware platforms, the specialized dataflow kernels on the Maxeler platform
are around 3x faster than kernels executing on the Convey vector coprocessor. In our concrete scenario, due to trade-offs between
reconfiguration overheads and exposed parallelism, the advantage of specialized dataflow kernels is reduced to around 2.5x.

1. Introduction

In order to achieve the best possible performance for
application acceleration on FPGAs, the entire design process,
from selection of the algorithm of compute patterns and data
structures to customization of operations and their precision,
needs to be considered [1]. However, the usage of FPGAs
is increasingly extending beyond established domains such
as embedded systems and specialized high performance
compute scenarios, where such holistic design paradigm
is established, towards usage scenarios in general-purpose
computing and big data centers [2]. In those scenarios,
where large code bases exist, at least parts of the application
are subject to ongoing changes, and where the impact of
small changes in the algorithm or data representation of
some part of the entire application cannot be easily assessed,
such a comprehensive design method is often infeasible.
Instead, a more pragmatic approach is required, which
we denote as kernel-centric, where individual parts of the
application, identified as computational hotspots and suitable

for acceleration, are translated and offloaded to functionally
equivalent FPGA implementations. This approach is a
known concept in HW/SW codesign [3, 4] and is also widely
employed in the field of GPU acceleration [5, 6]. When we
want to propagate more widespread utilization of FPGA
accelerators with this approach, beneath good performance
of accelerated designs, we necessarily need efficient design
methods for the FPGA kernels.

In this work, we evaluate and compare two very dif-
ferent design philosophies for the implementation of such
kernels on FPGAs. The first method applied is the design of
specific dataflow implementations for each individual kernel
in a spatial programming language, which promises high
productivity while still retaining most of the result quality
that can be achieved by low level design techniques. We
evaluate this method on a Maxeler platform [7], using the
Max] [8] language to specify the kernel designs and targeting
a MAX3424A Vectis [7] accelerator card. The second method
in contrast utilizes for all kernels the same instruction pro-
grammable overlay architecture, a vector coprocessor with



very wide vectors, which is one usage mode of Convey HC-
Is [9] application FPGAs. In this work, the vectorized kernels
executed on this architecture are handwritten assembly code.
With the comparison between the two methods, we primarily
want to assess the resulting performance in order to find
out whether such a quite generic overlay architecture as the
utilized one can performance-wise be a viable solution when
development time is limited. As secondary objective, we also
quantify the actually required development effort and know-
how.

For this comparison, we accelerated an existing stereo
matching algorithm with a kernel-centric acceleration
approach for both design paths. The algorithm offers an inter-
esting mix of parallelization opportunities in some problem
dimensions and dependencies in other dimensions. Because
of the dependency pattern, it cannot be implemented as
single design, which is fully pipelined through all of its
compute stages, like other stereo matchers on FPGAs. In this
algorithm, we identified 10 runtime intense kernel functions
and offloaded them to the target FPGAs. The group of ker-
nels contains straightforward streaming kernels, kernels with
mildly irregular data access patterns, and kernels with the
dependency pattern of a dynamic programming approach.
Through slight generalization of one group of kernels, we
implemented 8 specific dataflow designs to execute those
kernel functions, one of the designs executing an auxil-
iary step that is required to efficiently support the data access
pattern for one pair of functions. On the vector coproc-
essor, the 10 kernel functions are executed by 10 directly
corresponding assembly functions.

In this work, we build closely upon a previous publication,
in which most aspects of the kernel-centric acceleration of
stereo matching with specialized kernels in a spatial pro-
gramming language are presented [11]. Additionally, earlier
work using the vector overlay [12] was heavily modified to
match the functionality and kernel selection on the dataflow
platform.

Beyond the consolidated presentation of both design
paths side by side, the specific contribution of this work is the
in-depth comparison of the two approaches, compensating
for the effects of the two different hardware platforms and
thus allowing assessing the overheads and opportunities of
using overlay architectures on FPGAs in a nontrivial and
practically relevant use case.

The remainder of this paper is structured as follows. In
Section 2, we first outline the general stereo matching task,
before presenting in Section 3 the concrete algorithm we
accelerate. We then introduce in Section 4 the two accelerator
platforms and how they are programmed in this work. Before
the concrete kernel implementations are described side by
side for both platforms in Section 6, we outline the common
acceleration principles and memory management concepts
in Section 5. Comparing both systems in Section 8 requires
some normalization to account for the different hardware
platforms but gives us insights into the trade-offs in runtime,
design effort, and tool runtimes. Section 9 discusses related
work for three aspects of our paper. In Section 10, we conclude
with a careful generalization of the results and outline future
directions.
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2. Introduction to
the Stereo Matching Problem

Stereo matching is the computation of a disparity map from
a pair of stereo images. The disparity specifies at every
position in the image how far the displayed object or feature
appears displaced between the two images due to the different
positions of the two camera lenses. In earlier work, the term
Stereo Correspondence has been used for the same problem
(13, 14]. By inverting the disparity information and scaling it
according to the geometry of the camera system, actual depth
information about the scene is obtained, which is denoted by
Stereo Vision and is probably the most important method for
computer vision.

Applications for computer vision in general and stereo
matching in particular range from automotive and industrial
use cases over robot navigation [15] to 3D movie production
and general 3D data acquisition. Common design goals for
all types of applications are high matching quality and high
processing speed, yet with varying priorities and additional
constraints, for example, on image resolution, on latency or
throughput, or on power and resource limitations.

Most stereo matching algorithms perform so-called dense
stereo matching; that is, they compute a disparity map, con-
taining a disparity value for each pixel. This value represents
how far the object that this pixel belongs to appears shifted
between the left and right stereo image. More formally, a
disparity value d = dq(x, y) for a pixel in the left stereo
image at position (x, y) signifies that the physical feature
displayed by this pixel is believed to be found in the right
stereo image at position (x - d,y). If a corresponding
right disparity image is computed, to be consistent, the
corresponding disparity in the right image, d ;g (x — d, y)
should also contain the same disparity value d, pointing back
to position ([x — d] + d,y) = (x, y). For this definition of
disparity and consistency to be precise, the two images need
to be perfectly horizontally aligned.

As auxiliary metric to compute disparities, many algo-
rithms use a cost value for each pixel at each possible disparity
C(x, y,d), thus forming a three-dimensional cost volume,
where a low cost signifies that it is plausible that this pixel
should have the corresponding disparity.

The general sequence of modern stereo matching
approaches comprises three steps [16]: first, computation of
a matching cost volume, second, an optimization method
which computes a disparity map from the cost volume, and,
third, postprocessing of the disparity map. For computing the
initial cost volume, metrics for local color similarity and for
local structural similarity are commonly employed [10, 17].
To smoothen the cost volume, aggregation techniques can
be employed [13, 18]. Optimization in the simplest form,
often called WTA (winner-takes-all) [17], just selects the
disparity with the lowest cost for each pixel: d(x,y) =
argmin;C(x, y, d). Other approaches like belief propagation
(BP) and graph cuts (GC) seek to combine low matching costs
with properties like low energy of the resulting disparity
map. Beyond generic image augmentation approaches,
postprocessing often involves consistency checks between
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the disparity maps generated for left and right image and
handling of the identified inconsistencies [10, 19].

For many stereo methods, there exist variants which
incorporate more than two input images, typically but not
necessarily captured from a set of cameras placed along one
horizontal line. The additional viewpoints open up additional
opportunities for consistency checks among derived disparity
maps and can particularly help to fill occluded areas, when
they are visible in one of the additional input images.
However, these variants still rely on a good underlying stereo
matching algorithm, like the one utilized as case study here.

3. Stereo Matching Algorithm with
Inherent Parallelism

In our work, we algorithmically follow the stereo matching
implementation published by Mei et al. [10]. It follows the
three basic steps outlined in Section 2, but splitting the
first step of cost computation into two separate phases,
we subdivide it here into a total of four phases. Figurel
gives a high-level overview of the stereo matching sequence.
In the first phase, cost initialization, two similarity met-
rics are applied on the input images to compute for each
pixel and each possible disparity a local cost value, thus
forming the first cost volumes. In the second phase, cost
aggregation, the costs of neighboring pixels of the same
disparity are aggregated in adaptive support regions, which
are determined by color differences and absolute distances.
This smoothes the original cost volumes. In the third phase,
scanline optimization, an energy minimization approach is
mimicked by dynamic programming along 1-dimensional
scanlines. This produces a first pair of disparity maps, but
also another pair of cost volumes that are used in the fourth
phase, disparity refinement. This fourth phase performs a
consistency check between the left and right disparity maps
and applies several local optimizations for pixels which are
not classified consistently.

As the most time-consuming parts and parts where
the accelerated kernel functions are located, we present
some details about the mechanisms of cost aggregation and
scanline optimization and briefly outline the two less time-
consuming steps, cost initialization and disparity refinement,
which are executed on CPU in our work.

3.1 Cost Initialization. The cost initialization following Mei
et al. [10] provides the first cost metric C;(x, y,d) for each
position and disparity based on two individual components.
The first component is called the absolute difference cost C,p,
for a pair of left- and right-image pixels in RGB format. This
cost is defined as the difference of pixel intensities I, averaged
over the three color channels:

Cap (%, y,d)
1 )
= g Z Ileft,i (x’ y) - Iright,i (x -d, y)l .
i=R,G,B

The second component is the census cost C.,, s> cOM-
puted as the Hamming distance of the census transforms of

Cost initialization

Wi
n

Cost aggregation

Scanline optimization

P | P

Disparity refinement

FIGURE 1: High-level overview of the stereo matching algorithm
following [10]. From a pair of stereo images, intermediate cost
volumes are computed, which are used to generate disparity maps
as final result.

a left and corresponding right pixel. The census transform
captures the local structure in a 9 x 7 window around
each pixel. As structural information, it is less sensitive to
variations in lighting between the left and right image.

These two cost components are individually scaled by
an exponential function that also enables the weighting of
outliers and then added up to form the initial cost.

3.2. Cost Aggregation. The idea of cost aggregation is to
reduce the huge amount of noise contained in the local
cost metrics. Instead of simple smoothing, the costs for
each possible disparity are aggregated over a limited area
around each pixel, which likely belongs to the same objects
of the image and thus should have similar disparity values.
Therefore, aggregation areas should track object boundaries
in shape and size as good as possible. However, computing
individual aggregation areas for each pixel and summing up
the costs inside them can be very compute intense. The cross-
based aggregation method utilized here was first proposed
by Zhang et al. [20]. The areas are defined by the length of
four arms for each pixel, two extending to the left and right
and two up and down. Two possible aggregation areas are
now formed by all vertical arms that belong to pixels on the
horizontal arms of each pixel and, respectively, the other way
round as illustrated in Figure 2. Horizontal first aggregation
areas can cover vertical object boundaries better; vertical first
aggregation is more precise for horizontal object boundaries.

For both aggregation areas, the actual aggregation can
be performed in linear time with the help of integral sums.
Pseudocode for the horizontal aggregation step is given
in Algorithm 1. As the outer loop indicates, the step is
performed independently on each disparity d. The first loop
nest computes for each row the running sum of costs from
the row’s first element to the current element. In the second
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Require: V(x, y,d): C;(x, y,d) = input cost
Require: V(x, y, d): Ajepyjpign (%, y» d) = arm lengths

for all d e disparities do
for all y € rows do {compute running sums}
C.0,,d) = C,(0, y,d)
for x = 1 to #columns do
Cy(x, y,d) « Ci(x -1, y,d) +C(x, y,d)
end for
end for

for all x € columns do
@ — A, y,d)
a, < Aright(x’ Y d)

end for
end for
end for

Ensure: V(x, y,d): C,(x, y,d) = aggregated costs of row segment around position (x, y) in disparity d

for all y € rows do {compute row segment costs}

C,(x, y,d) « C(x+a,yd) -Cx—a -

1, y,d)

ALGORITHM I: Horizontal aggregation step. Note: for all: loops are independent; for: loops are ordered.
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FIGURE 2: Illustration of cross-based cost aggregation regions: left
projecting all horizontal arms on the vertical arms of a pixel, right
projecting vertical arms on the horizontal arms of a pixel.

nested loop, for each position (x, y), the difference between
two elements of the running sum is taken, with element
positions defined by the arm lengths at (x, y). This differ-
ence is exactly the sum of costs in the horizontal segment
around (x, y) that is specified by the two arms. In Figure 2,
aggregation for one disparity is illustrated for the topmost and
bottommost rows of the horizontal first aggregation region,
where the horizontally aggregated costs C;, depend on two
elements of running sums C,. Afterwards, in the vertical
aggregation step, vertically running sums (not illustrated in
the figure) are computed and the aggregated costs C, are
computed again as difference between the running costs at
two positions, here at the two positions that are marked with
C,, in the example. Note that the left and upper positions,
from which the respective running sums are taken, are not
part of the aggregation area itself.

A pair of horizontal and vertical aggregation steps forms
one aggregation iteration with the illustrated horizontal first
aggregation region. Following Mei et al. [10], we execute
a total of four such aggregation iterations, the first and

third one using horizontal first regions and the second and
fourth one using vertical first regions. Not mentioned by
Mei et al. [10] is a normalization step after each aggregation
iteration, where the aggregated cost is scaled by the respective
aggregation area. This was already proposed by Zhang et al.
[20], also utilized by Shan et al. [21], and we found it to be
important for the result quality of our implementation.

3.3. Scanline Optimization. The scanline optimization fol-
lows Hirschmiiller’s [19] semiglobal matching strategy.
Global matching would perform 2-dimensional energy min-
imization for the entire image, minimizing the weighted
sum of the energy in the final disparity image and of the
involved matching costs for this disparity image. The scanline
optimization mimics this idea along 1-dimensional lines but
avoids costly minimization steps and instead uses a dynamic
programming approach, where the previous disparity deci-
sions along the scanline are fixed and only the energy trade-
off for the current step is considered. Equation (2) outlines
the basic recursion equation and Algorithm 2 illustrates
pseudocode for one scanline direction. Hence,

C, (x,y,d) = Cx(x, y,d)
+ min [Cv (x -V ¥ — vy,d) ,
Cv(x—vx,y—vy,dil)+P1, (2)
mkinCV (x — VoY =Yy k) + P2] - mkinCV (x -V ¥
—v,k)  (vpv,) €{(x1,0),(0,£1)}.
The scanline cost C, in the equation is computed along a
scanline path that depends on the direction (v,,v,), which

in the pseudocode example is (1,0) to define a scanline
to the right, with accordingly denoted scanline cost C,.
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forall y € rows do

end for

end for

end for
end for

Require: V(x, y,d): C,(x, y,d) = aggregated cost
Ensure: V(x, y,d): C,(x, y,d) = right scanline cost

for all d € disparities do
C,(0,y,d) < C4(0, y,d)

Chnin(0, ¥) < min,C,(0, y, k)
for x = 1 to #columns do
for all d € disparities do

¢ < C(x-1,5.4d)
¢, <Cl(x-1,y,d-1)+P
q—Clx-1,y,d+1)+P
G — Chin(x—1,9)+ P,
Cram < min(G, ¢, ¢, 6)
C,(x, y,d) « Cplx, y,d) + Cpp, - C

Choin(x, ¥) < min, C,(x, , k)

min(x - l’y)

ALGORITHM 2: Scanline optimization step in left to right orientation (denoted as ScanRight). Note: for all: loops are independent; for: loops

are ordered.

The scanline cost depends on the aggregation cost C, and a
term requiring all scanline costs at the previous pixel position
along the scanline path. This previous pixel position is given
by (x = v,, y - v,) in the equation and by (x — 1, y) in the
pseudocode example. This term depending on the previous
position reflects the energy minimization concept, selecting
either the scanline cost from the previous position at the same
disparity or the scanline cost from the previous position at a
neighboring disparity plus a small penalty P, or the minimal
scanline cost of all disparities at the previous position plus a
larger penalty P,. These paths trade off energy components
added by the matching costs with energy components from
the disparity profiles represented by penalties P, and P,. Not
shown in the equation and pseudocode, both penalty values
depend at each specific position on the color differences of
the original images. Finally, for normalization, the minimal
scanline cost at the previous position is subtracted.

Figure 11 serves us mainly to illustrate the compute
and parallelization pattern of our implementations but also
contains a numeric example of scanline computation, here of
a downward scanline. For simplicity, costs are represented as
integer values and with an aggregation cost of 0 for the second
line. Green arrows indicate the minimization paths taken to
compute the scanline costs in the second row depending on
the previous row and the input aggregation costs. These green
arrows reflect the best trade-off between minimization of the
input costs and the scanline energy for any given position.

In the abstract description of stereo matching approaches
in Section 2, the optimization step was described to yield a
disparity map, yet the scanline equation as described here
computes a new cost volume, now incorporating a trade-oft
between raw matching costs and energy of the disparity map.
This is convenient, as now the results of scanline optimization
steps along different directions can simply be combined
by computing the average of different scanline costs. On

the combined scanline costs, now a WTA optimization selects
the actual disparity for each pixel.

We use four directions, up, down, left, and right, as
proposed by Mei et al. [10]. Each scanline by itself produces
some streaking artifacts in the direction of the scanline,
because the penalty values only favor persistence of previ-
ously optimal disparities along the scanline, but not in the
reverse direction. Therefore, it is important not only to utilize
several different scanlines like in [22], but also to have pairs
of reverse scanlines to symmetrically offset the streaking.

3.4. Disparity Refinement. The previous three phases are
executed for both the left and right image, producing one
disparity image for each side. As indicated earlier, their
computed disparity values should match: d(x,y) =
Ayignt(x = diegi(x, ¥), y). Pixels for which this is not the case
are classified as outliers and are treated with the refinement
steps Iterative Region Voting and Proper Interpolation from
Mei et al. [10]. Due to insufficient details given, we skip their
Depth Discontinuity Adjustment step but again perform the
subsequent Subpixel Enhancement step, which aims to reduce
errors caused by the discrete disparity levels.

3.5. Software Implementation. As starting point for our accel-
eration, we use our own software implementation for stereo
matching, which follows these concepts but offers additional
features, such as different, parametrizable cost initialization
metrics (for more metrics, see, e.g., [23]), an adjustable
sequence of aggregation steps, and optional OpenGL visu-
alization of aggregation areas, cost volumes, and cost metric
profiles. The precision of intermediate cost values required for
stable results depends highly on the actual images processed.
In general, quality degradation with reduced precision is
graceful, but in some cases with single-precision floating
point, costs after computing differences in the aggregation



step can falsely get values of 0, leading to artifacts. Thus, we
use in our software implementation double precision and also
require this from the FPGA acceleration. With the settings of
Mei et al. [10], our implementation reaches an accuracy in the
Middlebury benchmark [14] of average 5.73% bad pixels and
we make sure during our acceleration process to still produce
the same results.

4. Utilized FPGA Platforms and
Programming Models

In this section, we introduce the two hardware platforms we
target and outline how they are programmed in this work.
We conclude the section with a brief comparison of the
accelerator resources as used in our experiments.

4.1. Maxeler Platform and Programming Paradigm. The Max-
eler platform we use [7] is illustrated in Figure 3. It comprises
two 6-core (12 threads) Intel Xeon X5650 (Westmere microar-
chitecture) CPUs, running at 2.66 GHz, as host platform and
is equipped with four MAX3424A Vectis PCle accelerator
cards, of which in this work only one is used. Each card
contains a large Xilinx Virtex-6 SX475T [24] FPGA for user
logic, a smaller, non-user-programmable FPGA for the PCle
interface, and 24 GB of local SDRAM memory. This local
memory is called LMem and has to be read or written in
bursts of 384 adjacent bytes. However, in order to come
close to the possible bandwidth of around 30 GB/s (with
memory controllers synthesized at 300 MHz; up to 400 MHz
is supported by the DDR3 DIMMs), several bursts, either
adjacent or with a fixed stride, should be accessed with a
single memory command. For example, commands with only
1 burst each lead to an efficiency of only 11%, whereas with 8
consecutive bursts, an efficiency of 80% is reached. The PCle
interface on the other hand can be used to stream data from or
to host memory and reaches a bandwidth of 2 GB/s. Note that
the memory controller is synthesized by the Maxeler tools
onto the user FPGA alongside the custom logic.

The distinctive feature of the Maxeler systems is their
development environment [8], which allows programming
the FPGAs with a spatial programming language, denoted by
Max] and realized as a Java extension. The kernel functional-
ity implemented on FPGA is integrated with the host (CPU)
part of an application through calls to an API automatically
generated for the specified functionality. The Max/ language
offers much higher abstraction than HDL languages like
VHDL and Verilog, but much finer control on the design
than when generating hardware via HLS. Conceptually, Max]
is built around streams of data, where typically one data
element per cycle is processed in a so-called hardware
kernel. A sequence of operations on one or several streams
is automatically translated into a corresponding compute
pipeline, where pipelining may also happen inside individual
operations, in particular when they utilize DSP blocks. The
streams can be connected to other kernels or to LMem or via
PCle to host memory and the Maxeler toolflow automatically
generates the required buffers and interfaces.
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FIGURE 4: Illustration of the Convey HC-1 platform.

4.2. Convey HC-1 Platform with Vector Processor Overlay. The
Convey HC-1 [9], illustrated in Figure 4, is a dual socket
server system, where one socket is populated with a dual core
Intel Xeon 5138 (Core microarchitecture) CPU, running at
2.13 GHz, while the other socket is connected to a stacked
coprocessor board. The two boards communicate using
the Intel Front-Side Bus (FSB) protocol. Both processing
units have their own dedicated physical memory, which
can be transparently accessed by the other unit through
a common cache-coherent virtual address space, which
distinguishes this platform from the Maxeler system. The
coprocessor consists of multiple, individually programmable
FPGAs. One FPGA implements the infrastructure that is
shared by all coprocessor configurations. These functions
include the physical FSB interface and cache coherency
protocol as well as configuration and execution manage-
ment for user-programmable FPGAs. For implementing the
application-specific functionality, four high-density Xilinx
Virtex-5 LX330 [25] FPGAs are available. Eight memory
controllers are implemented on one distinct Virtex-5 LX150
[25] FPGA per memory controller. Each of them accesses two
DIMMs, which leads to an aggregated bandwidth of close
to 80 GB/s with 16 memory modules. In our system config-
uration, custom-made scatter-gather DIMMs are installed,
which allow accessing memory efficiently in 8-byte data
blocks, while standard modules are designed for 64-byte
block access.

The user FPGAs can be programmed with fully custom,
problem-specific designs, integrated into the rest of the
system by interface libraries written in Verilog. Additionally,
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Convey offers a number of designs, so-called Personalities,
which are developed as programmable accelerators for spe-
cific classes of tasks, such as graph traversal or local string
alignment and, probably with the broadest scope, the so-
called Vector Personality, which we use in this work. Since it
is a programmable architecture on top of the programmable
FPGAs, we consider this an overlay, which comes with
abstraction benefits and overheads which we want to quantify
in this work.

The Vector Personality provides the functionality of a
vector coprocessor that executes programs targeting its vector
instruction set. It comes in two variants, optimized for
single- or double-precision floating point operations; both
also support integer operations, for example, for vectorized
address calculations. According to our application, we use the
double-precision Vector Personality. The vector instructions
are implemented for up to 1024 elements. A total of 64
vector registers are available and each can store such a set
of 1024 elements. Besides the usual element-wise arithmetic
vector operations, the vector instruction set contains memory
instructions that distinguish it from typical SIMD vector
instruction set extensions for general-purpose CPUs. It can
load and store vectors where the elements are individually
indexed and do not need to be aligned in a continuous
memory location.

Convey includes a compiler to target this Vector Person-
ality by annotating source code with pragmas; however, we
found it to be limited to simple array data structures and
simple loop nesting patterns, which often requires significant
code adaptations besides adding the vectorization pragmas.
We fixed many of these shortcomings with the toolflow pro-
posed in [26]; however, for the comparison of architectural
overheads of the overlay, we wanted to achieve the best
possible performance. Therefore, for this work, we designed
all kernels by hand in assembly code, particularly exploiting
on top of the capabilities of the automated toolflow additional
opportunities as vector partitioning, vector register rotation,
and enhanced reuse of partially computed addresses.

4.3. Comparison of FPGA Platforms. Comparing the two
hardware platforms, the Convey HC-1 is a few years older,
with the utilized FPGAs being one generation behind and
the CPUs being two process shrinks (Intel Tick) and one
microarchitectural change (Intel Tock) behind. On the other
hand, when we compare a single Maxeler MAX3424A Vectis
accelerator card to the coprocessor of the Convey HC-1, the
latter incorporates a lot more hardware resources. Table 1
gives an overview of the accelerator hardware as used in
our experiments. Together, the four FPGAs for the HC-1’s
application logic contain almost 3x more LUTs and some
more BRAM resources than the single application FPGA of
the MAX3424A. Similarly, the peak memory bandwidth of
Convey HC-I’s coprocessor is around 2.5x higher than that
of the Maxeler MAX3424A accelerator. This is essentially
achieved by using more memory modules. Additionally,
Convey HC-1's memory controllers are implemented on
dedicated FPGAs, in contrast to the Maxeler MAX3424A
platform, where the memory controller is synthesized along
with the application logic onto the same FPGA. For the

TABLE 1: Hardware resources of the two FPGA platforms as used in
our experiments. “Maxeler MAX3424A memory clock and band-
width depend on user design. **Convey HC-1 access granularity
depends on installed DIMMs.

Platform Maxeler MAX3424A
Application FPGAs 1 x Virtex-6 SX475T

Convey HC-1
4 x Virtex-5 LX330

#6-input LUTs 297600 4 x 207360 = 829440
#36 Kb BRAMs 1064 4 x 288 =1152
#DIMMs 6 16

Memory controllers ~ On user FPGA 8 dedicated FPGAs
Memory clock 300 MHz", variable 300 MHz, fixed
Peak bandwidth 28.8 GB/s” 74.4 GB/s

Min. access size 384 bytes 8 bytes™”

Convey platform, this saves space on the application FPGAs
and avoids timing issues when synthesizing new user designs.
Finally, even though both platforms come closest to their
peak bandwidth with linear access patterns, physically a
much smaller access granularity is supported in the Convey
HC-1 configuration we utilize.

In Section 8, where we assess the effects of the two
different approaches to kernel design, we need to compensate
for the outlined differences of the hardware platforms.

5. Kernel-Centric Acceleration

The general idea of kernel-centric acceleration as followed
here is to identify runtime intense kernels with acceleration
potential and execute them on FPGA and to keep other possi-
bly complex parts of the application with small contributions
to the overall runtimes on CPU. In order to identify the
candidate kernels, we first performed profiling on CPU. The
runtimes of all kernel functions with nonnegligible runtimes,
aggregated over all their invocations when they are executed
more than once, are illustrated in Figures 5 and 6 for a FullHD
input image pair on both CPU platforms. The kernels are
sorted by the time of their first invocation, which reflects the
overall sequence of cost initialization, aggregation, scanline
optimization, and disparity refinement; however, there are
repetition patterns spanning several of those kernels. Based
on this result, we selected the 5 aggregation kernels from
horSum to scale and the 5 scanline kernels from ScanUp
to sumScanlines. They cover 87% of the total program
runtime, which permits by Amdahl’s law a speedup of at most
7.8X.

Since both platforms investigated in this work have
physically distinct accelerator memory, whenever possible,
we want to leave data in this accelerator memory when it
is read or modified by several different kernels or several
invocations of the same kernel. Therefore, beyond the raw
execution times, possible data reuse between the kernels
was considered. In case of our stereo matching implemen-
tation, the selected kernels cover all cost volume related
compute steps of aggregation and scanline optimization,
thus maximizing the reuse potential of data in accelerator
local memory. Based on pure profiling runtimes, the final
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FIGURE 5: Runtimes that different kernels contribute to overall
runtime on Maxeler CPU (denoted by CPU]I) for a FullHD image
pair. Yellow and red bars indicate kernels in aggregation and scanline
phase, respectively.
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FIGURE 6: Runtimes that different kernels contribute to overall
runtime on Convey CPU (denoted by CPU2) for a FullHD image
pair. Yellow and red bars indicate kernels in aggregation and scanline
phase, respectively.

step of scanline optimization, sumScanlines, would be a
less worthwhile acceleration target than, for example, the
computation of census costs, but it reduces the amount of data
to be transferred from accelerator memory to host memory
significantly from four cost volume instances to a single one.

Both utilized target platforms require data to be moved
between CPU and accelerator memory, but in different ways.
The Maxeler platform [7] requires explicit data movement
functionality added to each design by the designer and
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the accelerator memory space is entirely managed by the
developer [8]. The Convey platform [9] provides a shared
memory space and different API functions for allocation on
and movement between physical memory locations. In order
to abstract these differences away from the application side,
we modified and extended the memory manager presented
in [11] for the Maxeler platform. An important feature of
the memory manager, particularly useful during accelerator
kernel development, is to support easy switching between
CPU and accelerator execution of individual kernels with all
required but no unnecessary data movements.

Our means to achieve this was to express at the beginning
of every kernel which data structure it uses, whether it uses
it at the host CPU or the accelerator, and whether it reads
or writes to this data structure. With this information, the
memory manager keeps track of all data locations and initi-
ates all required transfers prior to actual data access. In our
new extended memory manager concept, we applied these
kernel annotations to both the kernels remaining on CPU
and the wrappers for kernels executing on FPGAs. This goes
beyond the modifications required for the methods presented

n [11], where only data usage on FPGAs was indicated.
The extension is however advantageous to the kernel-centric
acceleration concept, because it removes the only high-level
application knowledge required for the previous version,
where transfers from accelerator memory back to CPU had to
be initiated manually, requiring changes for each accelerator
kernel that is enabled or disabled during development.

Listing 1 illustrates some kernel functions using the
memory manager interface. Before they actually use data,
they indicate by calls to the memory manager API how
(mm.reads, mm.writes) and where (locations CPU, ACC)
they are going to use it. When a kernel both reads and
writes data, or when it does not completely overwrite a
structure, so previous data may still exist after writing, this
has to be stated explicitly like in this example for the first
function, using b both as input and as output. The accelerator
kernels (starting with cny for Convey, max for Maxeler)
are mere wrappers and subsequently invoke execution on
the respective accelerator. Due to the shared address space,
the Convey kernel uses the original addresses, whereas the
locations in Maxeler local memory are provided by the
memory manager (mm.getLMem). Just like in [11], a memory
region in Maxeler local memory is allocated lazily before the
first usage of some data structure in this memory.

Listing 2 now illustrates usage of two of those kernels.
First, dynamic arrays are allocated through the memory
manager, per default in host CPU memory. Then, for the
first kernel call on CPU in Line 4, the memory manager
determines at runtime that both arrays are already in the right
location and no movement is required. In this example, the
second kernel, Line 5, is executed on the Maxeler accelerator.
For the data it reads, c_init, accelerator memory is lazily
allocated and data is moved there from host. c_agg on the
other hand is only written to, so it gets allocated in accelerator
memory, but no data is actually moved. Line 6 now performs
another kernel call on the host CPU. c_init was not modified
in accelerator memory, so the memory manager internally
still has it in a shared state and no data needs to be moved.
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(2) mm.reads(CPU, a);
(3) mm.reads(CPU, b);

6) }

(8) mm.reads(ACC, a);

(11}

(13) mm.reads(ACC, a);

(16) }

(1) cpuABtoB(doublex a, doublex b) {
(4) mm.writes(CPU, b);

(5) // CPU kernel code here

(7) cnyAtoB(doublex a, doublex b) {

(9) mm.writes(ACC, b);
(10) callCnyKernel(a, b);

(12) maxAtoB(double* a, doublex b) {

(14) mm.writes(ACC, b);
(15) callMaxKernel (mm.getLMem(a), mm.getLMem (b)) ;

LisTING 1: Different kernel functions using memory manager.

(1) doublex c_ad = (doublex) mm.alloc(size);
(2) doublex c_init = (doublex) mm.alloc(size);
(3) doublex c_agg = (doublex) mm.alloc(size);
(4) cpuABtoB(c_ad, c_init);

(5) maxAtoB(c_init, c_agg);

(6) cpuABtoB(c_init, c_agg);

(1) doublex c_ad = (doublex) mm.alloc(size);
(2) doublex c_init = (doublex) mm.alloc(size);
(3) doublex c_agg = (doublex) mm.alloc(size);
(4) cpuABtoB(c_ad, c_init);

(5) cnyAtoB(c_init, c_agg);

(6) cpuABtoB(c_init, c_agg);

LisTING 2: Code sequence using memory manager with Maxeler
kernel.

c_agg however wasmodified in accelerator memory and on
CPU it will now be read before it is possibly overwritten, so
its data is transferred back by the memory manager.

Listing 3 repeats the same kernel pattern, just with the
accelerated kernel being executed on the Convey platform
instead of Maxeler. This time at the coprocessor kernel call
in Line 5 no more memory is allocated since host CPU and
accelerator share the same memory space. For the input data
c_init, a similar data transfer is initiated as on the Maxeler
platform, just using a different API with different arguments
internally. For the output data c_agg, again no physical data
transfer is required. For this purpose, the Convey API con-
tains a migrate_virtual function which does not actually
move any data but just lets the affected shared memory area
point now to the physical accelerator memory. This function
comes in two flavors, one that touches all affected memory
pages to update internal state such as the TLB (Translation
Lookaside Buffer) and the other one without this touching.
The version with page touching guarantees the fastest raw
execution time of subsequently executed accelerator kernels
and thus is important for the later evaluation of kernel
acceleration. On the other hand, we found the no-touch
version in combination with allocation on host to yield the
fastest overall matching performance, because it partially
overlaps the page touching effort with actual computation.

LisTING 3: Code sequence using memory manager with Convey
kernel.

It is even slightly faster than the alternative direct allocation
as accelerator memory, even though the latter would require
additional a priori knowledge about the first usage location
of a data structure. Therefore, we measure and evaluate both
versions in our experimental section.

These examples conclude this section on the selection of
kernels for acceleration and the concepts and infrastructure
to support memory management for both platforms through
a common interface.

6. Kernel Designs for Two FPGA Platforms

In this section, we present the compute and data access
patterns of the identified time-consuming kernels and outline
their parallelization opportunities, taking dependencies and
data locality into account. Subsequently, we discuss the
compute and memory access and data reuse patterns we
implemented on the two accelerator platforms. The kernels
for the Maxeler platform [8] are designed with a flexible
amount of parallelism, which is specified by an unrolling
factor f, prior to synthesis. The actually utilized amount of
parallelism, typically low two-digit numbers, is limited either
by resource or timing limitations during synthesis (HorDiff
and scanline kernels) or by the known limits of the memory
interface to feed the compute pipeline (all other kernels).
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(1) void horSum(double xin, double xout) {

2) long slice = height » width;

3) for(int d=0; d<=maxD; d++) {

(4) for(int y=0; y<height; y++) {

(5) out [dxslice + y*width] = in[d*slice + y*width];

(6) for(x=1; x<width; x++) {

(7) out [drslice + y*width + x] =

(8) out [d*xslice + yxwidth + x-1] + in[d*slice +y
*width + x] ;

9) }

(10) }

an) }

(12) }

L1STING 4: Horizontal integral sums.

For details of the synthesis results and bandwidth modeling,
please refer to [11]. In order to hide feedback latencies in some
kernels, in addition to this explicitly utilized parallelism, we
also loop through different groups of work items in different
clock cycles. For the Convey vector coprocessor [9], the
desired amount of parallelism to be expressed by our kernel
implementations is given by the size of the vector registers
with up to 1024 elements. It internally contains 32 parallel
function pipes and additionally makes use of further elements
for latency hiding. We present for each kernel the designs
for both platforms side by side to emphasize similarities and
differences. We outline the designs of the first kernel in some
detail whereas for the other kernels we restrict ourselves to
noteworthy aspects.

6.1. Aggregation Kernels. The cost aggregation involves five
different kernels: horizontal integral sums and differences,
vertical integral sums and differences, and scaling. All aggre-
gation steps are independent for each different disparity value
and also for at least one of the image dimensions.

For the Maxeler platform, the independent image dimen-
sion suffices to support the required parallelism and latency
hiding, so we restrict ourselves to unrolling in this dimension.
The work of Shan et al. [21] suggests that utilizing disparity
level parallelism in addition to image dimension parallelism
might allow saving BRAM resources at the cost of additional
logic utilization, which we did not investigate further for our
kernels.

On the Convey platform, small image sizes do not suffice
to fill the available vectors size. With vector partitioning,
vectors can work on several groups of data, separated by so-
called partition offsets. For the aggregation kernels, we use
this feature to exploit both parallelism in image dimensions
inside each partition and parallelism in disparity dimensions
by multiple vector partitions.

6.1.1. Horizontal Integral Sums. After Section 3 already pre-
sented simplified pseudocode for the horizontal aggregation
step, Listing 4 presents the corresponding function with the
actual indexing used in our software implementation. There

are dependencies along the rows, but we can parallelize
computation by vertical unrolling, that is, computing several
rows in parallel, and additionally work on independent
disparity dimensions for Convey vector partitions.

Figure 7 illustrates the computation pattern implemented
on the Maxeler platform. The product of unrolling factor f,
and feedback latency [ determines the number of rows that
are in flight at the same time as one common block. The
latency is given by estimates from the Maxeler tools, whereas
f,, is limited either by bandwidth estimations or by synthesis
results. More than f,, * [, rows in the same block are possible
but require larger buffers and provide no further advantages.
After an entire block of rows is computed, the next block of
rows, not shown in the illustration, is started. Finally, also not
illustrated, after one entire image (a slice of the cost volume)
is finished, computation continues with the next disparity. In
this description, the presented compute pattern now governs
the required memory access pattern; however, in practice
both are closely codesigned.

In memory, elements are arranged in row-major order,
which means that entire rows are stored in continuous
memory locations one after the other, because LMem uses
the same data layout as the host application to allow for the
memory management outlined in Section 5. Thus, each burst
of 384 bytes reads 48 subsequent double values from each
row. Figure 8 illustrates the way data is read from LMem
with an appropriate memory command generator. We see
that, inside each block, between memory access and compute
step, the data needs to be reordered from horizontal to
vertical order. This is relatively easy to do with the MaxJ
concept of stream offsets; however, the actual design may
need considerable amounts of BRAM. Additional simpler,
nonreordering buffers are required to keep the memory and
compute pipelines fed.

The implementation for the Convey vector coprocessor,
as indicated in the introduction to this section, not only uses
the same unrolling into the independent image dimension,
here vertically, but additionally can work on more than one
disparity dimension in different vector partitions. Figure 9
illustrates this pattern with 4 partitions and 256 rows covered
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FIGURE 7: Illustration of compute order for horizontal sums on
Maxeler. Here, an unrolling factor f, = 2 and a feedback latency
I; are illustrated.
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FIGURE 8: Illustration of memory access pattern for horizontal
sums on Maxeler. Each burst spans 48 elements; every command
generates access for an entire block of data. Inside each block, data
needs to be reordered for the compute pattern.

by each partition. The innermost loop runs horizontally
inside the rows to reuse the vector register containing the
previous integral sum as one of the two inputs for the next
step. Before entering this innermost loop, for each group of
rows, the number of partitions and size of the partitions are
computed based on remaining dimensions and two offsets
are written into configuration registers. One is the row
offset between two consecutive vector elements inside each
partition, and the other one is the image slice offset between
two consecutive disparity levels in the cost volume. Vector
load and store instructions use these offsets to determine
the memory addresses of each vector element and, in this
loop profiting from the small access granularity of the scatter-
gather RAM, only access the specified vector elements in
memory.

6.1.2. Vertical Integral Sums. The vertical integral sum kernel
(VerSum) is orthogonal to the HorSum kernel and con-
tains vertical dependencies. Consequently, we now unroll
computation horizontally for the implementations on both
platforms.

Our Maxeler compute kernel combines the same com-
bination of unrolling and feedback latency hiding as the
HorSum kernel illustrated in Figure 7, just horizontally. When
we buffer entire rows instead of blocks inside each row, the
compute pattern exactly fits the data layout in memory, so
we can use a linear memory access pattern instead of a
customized memory command generator.

1
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0 I I I I I I I I
1 || Parallelism is exposed Vector spans 4
— inside each vector partitions with
2 . S
different disparities
g and 256 rows each
4
5
55

Latency is hidden by
pipelining inside each vector

FIGURE 9: Illustration of compute order for horizontal sums on
Convey vector coprocessor. Here, 4 partitions with 256 elements
each are illustrated.

Similarly, the Convey VerSum vector kernel contains the
same features, vector partitioning and data reuse in the
innermost loop, as the HorSum kernel, but with vectors
in horizontal image dimensions. Now the memory access
inside each vector partition is continuous, which is beneficial
for effective memory performance. In the vector processor
instruction set, the only difference is that the element stride
is now set to the element size of 8 bytes.

6.1.3. Horizontal Differences. After the computation of the
horizontal integral sums (HorSum) follows the step of com-
puting horizontal differences (HorDiff). For each pixel, a
left and a right arm length are required, which define the
two positions in the integral cost rows to access, before the
corresponding cost values are subtracted from each other.
So in this kernel we have data dependent memory access,
however, only with bounded offsets from a given position,
which are limited by the maximal arm lengths. There are no
dependencies in this kernel, so both horizontal and vertical
unrolling are possible.

Since this kernel does not contain feedback, latency
hiding as used on the Maxeler platform for the integral sum
kernels is not needed here. With the burst-oriented Maxeler
memory interface, we need to have the window of possibly
required integral cost data available in local buffers. This
seems straightforward when unrolling horizontally, since
neighboring pixels in one row require largely overlapping
areas of possible input values defined by the arms. Figure 10
illustrates the use of multiplexers for the selection of the
position specified by right arms for an unrolling factor f,, of
4 and with possible values for the arm length of 0 to 4 (in
practice we use a length of up to 34 as proposed in [10]).

Figure 10 illustrates that the overlapping of the possible
access windows makes the buffer very space efficient, in the
example actually using only 8 registers to buffer the possible
inputs for 4 parallel access operations with 5 different input
options each. However, even though resource utilization
would permit it, the synthesis tools were not able to route such
a design with more than f,, = 8 anywhere near 100 MHz.
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FIGURE 10: Illustration of right arm part of HorDiff for a maximum
arm length of 5 (multiplexer size) and an unrolling factor f, of 4.

The illustration in Figure 10 may give an intuitive idea that
the high number of overlapping signal routes to the different
multiplexers causes this problem.

As an alternative, we tried vertical unrolling like in the
previous kernel. Here, in addition to the resource consump-
tion of reordering between row oriented memory access and
column oriented compute step, for each parallel row a bufter
for the possibly accessed input elements needs to be instanti-
ated. With this approach, unrolling was limited by resource
consumption after synthesis. Therefore, specifically for this
kernel, in our final Maxeler design, we combined horizontal
and vertical unrolling, achieving the largest synthesizable
design with overall parallelism of 16 through horizontal and
vertical unrolling factors f,;, = 4and f,, = 4.

On the Convey vector processor platform, conceptually
the vector registers might provide a similar line buffer for
input cost values selected by arms. However, the instruction
set does not support any form of parallel access to specific
indexed elements of the vector, so this is not possible. Instead,
we resort to computing the address of each element of
the horizontal integral sums which needs to be accessed
by adding the arm length value to each respective base
address. Then, these addresses are used for indexed vector
load operations, which are however less efficient than the
access with regular strides as outlined for the previous kernel.

We again use multiple vector partitions covering sev-
eral disparity values in each computation step for efficient
utilization of the vector size with small images. Since there
is no dependency of the two inner loops, the parallelism
in each partition can be provided either by horizontal or
by vertical vectors. After implementing and measuring both
alternatives, we use vertical unrolling to form the vectors.
When forming horizontal vectors, several loads of input
cost values inside a vector load may point to the same
location. This works functionally correctly but apparently
causes additional latencies in the memory interface.

6.1.4. Vertical Differences. Similar to the HorDiff kernel,
the computation of vertical differences (VerDiff) does not
contain any dependencies. On the Maxeler platform, hori-
zontal unrolling does not suffer from the routing and timing
difficulties of the HorDiff kernel, because now selection of
arm positions is realized independently for each column.
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Thus, we can restrict unrolling to the horizontal dimension
here and still reach unrolling values up to f, = 24. On
Convey, we again use vector partitioning and this time unroll
the vectors horizontally, following the data access pattern of
the vertical summation and again avoiding indexed vector
loads to contain several instances of the same address.

6.1.5. Scaling. Finally, in the scaling kernel (Scale), each
aggregated value is scaled (i.e., divided by the size of its
specific aggregation region). It is a straightforward streaming
kernel without dependencies and on both platforms can
be readily unrolled horizontally, following a linear memory
access pattern. On the other hand, the division of double-
precision floating point values is neither easy nor efficient
to implement on the Maxeler platform and not supported
in the vector instruction set of the Convey coprocessor.
Fortunately, there are only a fixed number of discrete sizes A,
that any aggregation region can have, so we can precompute
the inverse values 1/A, and replace division operations
by multiplications with the inverse values. On the Maxeler
platform, those precomputed factors are stored in BRAM and
looked up locally. For each parallel function pipe, a separate
block of BRAM is instantiated. Due to the indexed access
pattern, the Convey vector coprocessor again cannot use the
vector registers to hold those values but instead reads them
with indexed vector loads from memory. Again, lookups to
the same address impair performance, so on this platform we
replicate the block of lookup values in memory and use the
vector indices to distribute lookups to different blocks.

6.2. Scanline Kernels. In contrast to the aggregation, the scan-
line optimization is not independent for different disparity
values. On the contrary, for the computation of the scanline
costs of a new pixel, the minimal scanline costs of the previous
pixel over all disparities need to be known. On the other hand,
we also have a dependency along the scanlines, such that
unrolling can only be performed orthogonally to the scanline
direction.

6.2.1. Vertical Scanlines. On the Maxeler platform, we
implemented a common vertical scanline compute kernel
(ScanVer), suitable for both ScanUp and ScanDown kernels
of the host application, switching between both modes by
configuring the accompanying memory command generator
for different access directions. Figure 11 illustrates the depen-
dency pattern for downward scanline computation and how
it can be unrolled horizontally, here with boxes of size 4.
All yellow boxes are required as inputs to compute the red
boxes. The aggregation costs are read in the required pattern
as inputs, as well as the color difference information (not
illustrated in the figure) needed to determine the penalty
values for each row (boxes P, and P,). The resulting scanline
costs are written out to LMem, but for an entire disparity
range also buffered locally in BRAM for reuse in the next
row. Therefore, computation is performed in blocks, but not
in entire rows, as this would require excessive buffer space or
additional readbacks.

In our actual Maxeler implementation, due to the burst
size of the LMem interface, actual data blocks of 48 horizontal



International Journal of Reconfigurable Computing

_|Aggregation cost Cy Scanline cost C, 4
6 6 =0

8 Yy
0L L T 1 -
R ] ming(C, 4)
1 i o[ T1
) 7 7
f=o— LHEEE 3

F1Gure 11: lllustration of downward scanline compute pattern with
blocks of width 4 indicating the unrolling potential in x-dimension.
Arrows indicate dependencies; for the computation of the red boxes
(scanline cost is computed; minimum is updated), data from all
yellow boxes is required. Paths are chosen either as previous scanline
cost at the same disparity without any penalty (red box) or as
previous scanline cost at neighboring disparity plus penalty P,
(boxes next to red box) or as global minimum of previous line plus
penalty P, (outer boxes).

elements are loaded from memory and computed in 48/ f,
cycles before proceeding to the next line. Since the previous
minimum from step 0 is required to update the minimum for
step 1, we reordered the datapath for the recursion of (2) to
have a deeper pipeline for the computation of the individual
scanline costs and a simple comparison for the selection of
the current minimal scanline value. Nevertheless, similar to
the integral sum kernels, we incur a feedback latency I of
four cycles, which for the block size of 48 limits the possible
unrolling in space with unrolling factor f, to 12 (I; * f, =
48). We also tried larger block sizes to obtain more possible
compute throughput, but the resulting large designs failed to
meet timing.

On the Convey vector processor platform, we imple-
mented two individual assembly kernels for ScanUp and
ScanDown to save unnecessary selection instructions for the
direction, but both implementations have identical struc-
tures. According to the dependence pattern, vectors cover
entire rows or parts of rows, depending on image sizes. In
contrast to the aggregation kernels, vector partitioning into
different disparity dimensions is not possible.

The compute order looks very similar to the one illus-
trated for Maxeler in Figure 11, just with much larger blocks
formed by the vectors. On this platform, the scanline costs
of the previous line cannot all be buffered for the next line,
so they are read back at every iteration of the vertical loop.
However, only one disparity block needs to be read for every
newly computed block; the other two are reused from the
previous iteration of the innermost loop, the disparity loop.
For example, in Figurell, the yellow block with scanline
cost 3 was newly read for the current compute step; the
other two yellow scanline costs are reused, which is done
efficiently by using the vector register rotation feature of the
vector instruction set. Also, our code makes heavy use of
vector mask generation and vector element selection to find
the different possible scanline paths inside one single vector,
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which can be used by the vector internal streaming of the
coprocessor to skip masked-out elements.

6.2.2. Horizontal Scanlines. On Maxeler, for horizontal scan-
lines (ScanLeft and ScanRight), the orthogonal unrolling
concept from vertical scanlines with buffering the entire
previous scanline costs was not applicable due to prohibitive
BRAM requirements. This is because bursts were still aligned
horizontally, but unrolling would have to be done vertically
and additionally the buffers would have to cover all disparity
dimensions. Therefore, we decided to implement an auxiliary
turn kernel (Turn) that reads cost arrays in row-major data
layout and writes them back to LMem in column-major data
layout, or vice versa. Now we can execute horizontal scanlines
by a sequence of turning input aggregation data, applying
vertical scanlines and turning scanline result data back. The
overhead of this turning step gets mitigated, because both
horizontal scan kernels use the same turned input data by
utilizing the ScanUp and ScanDown variants of the vertical
scan kernels.

The Turn kernel uses 48 BRAM blocks which data is
written to and read from with a diagonally shifted addressing
scheme, which provides the flexibility that either an entire
row or column of 48 values can be accessed. The size of blocks
to be turned has to match at least the 48 elements per burst
from the LMem interface, so in contrast to all other kernels
we implemented this with a fixed unrolling factor f,, of 48.

On the Convey coprocessor platform, the finer grained
access capabilities of the memory interface allow direct
implementation of the horizontal scanline kernels without
prior turning. The kernel structure is very similar to the
vertical one, just using row strides between the vertically
unrolled vector elements as for the HorSum and HorDiff
kernels.

6.2.3. Average over Scanline Directions. After computing the
costs along all scanline directions, the final scanline costs
for each position and disparity are computed by averaging
the values of all directions. On both platforms, the resulting
ScanAvg kernel is a straightforward streaming kernel with
one linear output and four linear input streams. As outlined in
Section 5, its particular value for the overall implementation
lies in the reduction of output data size that has to be
transferred back from accelerator memory to host memory.

This concludes the part of this section covering ker-
nel designs for both platforms. On the Convey platform,
the kernels were directly integrated into a heterogeneous
executable by filling empty proxy kernels with the proper
signature compiled by the Convey compiler with the actual
assembly code providing the described functionality. On the
Maxeler platform, the kernels defined in the Max] language
are synthesized to kernel specific FPGA dataflow designs
which is summarized in the following subsection.

6.3. Synthesis and Integration. As indicated, most Maxeler
dataflow kernel designs are parametrizable at synthesis time
with an unrolling factor f,, which is often constrained by
several rules. It must be a whole number divisor of burst
sizes; the product of f, and feedback latency /; must not
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exceed burst or block sizes. The Turn kernel has a fixed size
for the diagonal buffer addressing scheme. The practically
possible unrolling factors are further constrained by resource
utilization and our decision to aim for a clock frequency of
at least 100 MHz for the datapath. We furthermore analyzed
the bandwidth requirements and did not investigate unrolling
factors which would exceed those by much. The first data
column of Table 2 summarizes the final unrolling factors
utilized for individual kernels. Out of eight individual kernels,
six were able to reach or exceed the bandwidth limit. Details
of this analysis can be found in [11].

Anticipating some performance results from Section 8, in
the aggregation phase, there is a high overhead for reconfig-
uring the FPGAs with different kernels in the sequence these
kernels are utilized. Thus, for the five aggregation kernels
that are repeated in different cycles during the application,
we created a common design implementing all of their func-
tionality in the same FPGA configuration and thus saving
the reconfiguration overhead. We had some headroom for
this integration, because not all of the individual kernels hit
resource limitations, but still we had to decrease the unrolling
factors. The final integrated aggregation design was chosen
as the optimal trade-off between unrolling and achievable
timing and runs at 130 MHz. The second data column of
Table 2 summarizes the decreased unrolling factors. For the
scanline phase, no integrated design was found that increased
overall performance, not even for small images. In this phase,
less reconfigurations are required, so the overhead that can be
saved is much smaller. On the other hand, severe reductions
of the unrolling factors were required to get routable designs.

In Table 3, we finally summarize the resource usage of all
used dataflow kernel designs. The table highlights that the
individual kernels do not hit hard limits in resource con-
sumption; however, for HorDiff and Scan, no larger design
with valid unrolling factor could successfully be synthesized.
The critical resources of all kernels are either logic slices or
BRAMs.

7. Experimental Setup

In this section, we first present the setup and notation for the
evaluated systems and their configurations. We then discuss
the generation and selection of our input data.

71. Evaluated Systems. After implementing and testing all
described kernels on both accelerators, we integrated them
into our stereo matching application and tested it in a total of
six different configurations.

(1) CPUL The entire execution is performed on the Intel
Xeon X5650 CPU with Westmere microarchitecture,
running at 2.66 GHz, as host CPU of the Maxeler
platform [7].

(2) CPU2. The entire execution is performed on the Intel
Xeon 5138 CPU with the older Core microarchitec-
ture, running at only 2.13 GHz, as host CPU of the
Convey platform [9].

(3) MaxKern. The first accelerated configuration executes
the individual, maximally unrolled dataflow kernels
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TaBLE 2: Unrolling factors f,, of synthesized kernels. Asterisks ()
mark unrolling that suffices to reach bandwidth limits. MaxKern
denotes individual kernels; MaxFused denotes the integrated aggre-
gation design; for the scanline phase, the same individual kernels are
used.

Design MaxKern MaxFused
HorSum,, 24" 12
VerSum,, 24" 12
Scale,, 24" 12
HorDiff, 16 4
VerDiff,, 24" 12
Turn,g 48" —
Scan,, 12 —
SAvg,, 12" —

TABLE 3: Resource utilization of the implemented kernels, critical
resource highlighted.

Design Logic LUTs Primary FFs  DSP  BRAM
Available 297600 297600 297600 2016 2128
HorSum,,  27% 19% 23% 1% 39%
VerSum,, 30% 21% 25% 0% 18%
Scale,, 23% 15% 19% 6% 22%
HorDiff, 38% 27% 33% 1% 48%
VerDiff,, 47% 40% 42% 1% 23%
MaxFused  63% 50% 57% 8% 77%
Turn,g 32% 23% 27% 3% 29%
Scan,, 53% 42% 46% 1% 31%
SAvg,, 35% 25% 30% 0% 23%

on the Maxeler accelerator card. This design point
guarantees the highest raw kernel performance but
induces considerable configuration overheads, in par-
ticular during the aggregation phase. The parts of
the application that are not accelerated are executed
on CPUI and the memory manager presented in
Section 5 handles transfers between host and acceler-
ator memory.

(4) MaxFused. The second configuration using Max-
eler accelerator card uses the integrated aggregation
design, containing five kernels with reduced paral-
lelism. The remainder of the execution is identical to
MaxKern, including utilization of individual kernels
for the scanline phase. This configuration saves a lot
of reconfiguration overhead during the aggregation
phase in exchange for reduced raw kernel perfor-
mance.

(5) CnyVecTouch. On the Convey platform, the host parts
of the application are executed on the slower CPU2
and the accelerated kernels are executed on the vector
processor overlay on the FPGA accelerator. Thus,
no bitstream reconfigurations are required during
application runtime, but only the much smaller kernel
code executed on the coprocessor is changed in
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the different matching phases. As coprocessor mem-
ory interleaving mode, we use a 31-31 interleaving
mode, which maps memory addresses to the indi-
vidual memory banks in a way that allows near-
peak throughput for most possible stride patterns.
For our tests, we set up the 24 GB of physical host
memory and 16 GB of physical accelerator memory
with a windowed memory mode with a12 GB window
of mapped coprocessor memory, 12 GB of pure host
memory, and 4GB of pure coprocessor memory.
As suggested in Section 5, when no actual data has
to be transferred, we use two different strategies to
migrate allocated memory areas between the distinct
physical memory locations. Here, with the first one,
all involved pages are touched on the new location to
guarantee the best raw kernel performance.

(6) CnyVecNt. With the second strategy, no-touch, the
migration step is much faster and overall matching
performance is a bit higher, at the cost of some
increased kernel runtimes. All other settings are
identical to CnyVecTouch.

7.2. Input Data. Conceptually, all accelerated configurations
profit from larger image sizes and higher maximal disparity
values, as parallelism and pipelining can be exploited better
and overheads are amortized better by longer computation
times, whereas smaller sizes may help the pure host execution
by better caching opportunities. Beyond this general rule of
thumb, there are different characteristics specific to either
the Maxeler or the Convey accelerator platform. On Maxeler,
all LMem access types need to be 384 bytes aligned, so in
practice we pad all data structures and memory access to fit
these requirements. This padding is an overhead that does
not occur for multiple-of-384 dimensions. On the Convey
platform, for the best performance, it is important to fill the
1024 vector elements. This is trivially the case for multiple-
0f-1024 dimensions but in the aggregation phase can also be
achieved by nicely fitting vector partitions, for example, for
horizontal sums with height 256 and multiple-of-4 disparities
as in our earlier illustration in Figure 9. Additionally, more
subtle effects occur when the image sizes interfere with
the memory interleaving mode which defines distribution
of memory space to different memory bank. However, the
mentioned 31-31 interleaving mode makes our experiments
relatively robust in this regard.

To summarize, absolute and relative performance sig-
nificantly depend on the input dimensions for our stereo
matching systems. We therefore decided to perform our mea-
surements with a series of different input dimensions and to
use standardized real-world image sizes or screen resolutions,
regardless of their suitability for either architecture. In order
to generate the input images, we scaled image pairs from the
Middlebury benchmark set [14] to the desired resolution with
cubic scaling in Gimp. The number of disparity steps to inves-
tigate is scaled according to the scaling factor of image width.
This is important, because, with a too low limit to the possible
disparities, matching artifacts occur, which lead to dispropor-
tionally longer runtimes of the disparity refinement step.
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We created two test series, one starting from the Tsukuba
image pair, which has a low ratio of maximal disparity to
image width, and one starting from the Cones image pair,
which has a high ratio of maximal disparity to image width.
Tables 4 and 5 show the two series of input dimensions
we investigated. We scaled the two image pairs to different
commonly used sizes with pixel ratios between 5:4 (SXGA)
and 64:35 (EGA), most of them at 4:3 like the original
Tsukuba pair. We selected the set of sizes in a way that the
number of pixels between two consecutive sizes increases
by factors between 1.08 (from UXGA to FullHD) and 1.46
(from SXGA to UXGA) and the number of elements in a
cost volume increases by factors between 1.29 (from UXGA
and FullHD) and 1.82 (from SXGA to UXGA). This series
is currently limited by two aspects. Firstly, a maximal line
width of 1920 is synthesized in one of our Maxeler kernels.
Secondly, for larger input dimensions, total memory usage
starts to become an issue. On the Maxeler platform, with our
current implementation of the memory manager, the 24 GB
of accelerator memory put a hard limit to the maximal input
dimensions. On the Convey platform, we were able to execute
tests with larger input dimensions, but performance was
impaired by the Linux kernel starting to swap data between
main memory and hard disk.

8. Evaluation and Comparisons

We first present overall system performance for both plat-
forms. For the main comparison between the approaches of
specialized kernels and the reusable vector processor overlay,
we focus on the raw kernel performance with both methods
and abstract the underlying hardware away as far as possible.
Finally, we give some estimates of the design efforts for both
approaches.

8.1. Stereo Matching System Performance. Our first charts
present speedups for the execution of the entire stereo
matching process for different image sizes compared to pure
host execution. For the two respective image series, Figures
12 and 13 show the speedups of the four configurations
with accelerators, MaxKern, MaxFused, CnyVecTouch, and
CnyVecNt, compared to the host execution on the faster
CPUIL. Since the host components of the two Cny Vec versions
are executed on CPU2, we also exemplarily include Figure 14,
where CPU2 is used as baseline for speedups of the low-
disparity test series. Host CPU agnostic speedups of the
CnyVec versions should be somewhere in between the values
from Figures 12 and 14.

For both test series, we see that both CnyVec configura-
tions on the Convey HC-1 [9] can achieve speedups, already
at small image sizes which do not fully fill the vector registers.
512 x 384 is the first image size, where CnyVec achieves little
speedups over CPUI The speedups increase slightly with
increasing image sizes but show some variations for specific
sizes fitting vector register sizes or memory interface a bit
better or worse. At 1280 x 1024 x 171 CnyVecNt reaches a peak
speedup of 1.9x over CPUI. With the slower CPU2 as baseline,
the speedups are around 3x.
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TaBLE 4: Dimensions of low-disparity image series.
. . . Pixels Vol
Name Width  Height Disp. x10°] elem6s.
[x10°]
Tsukuba 384 288 16 0.1 1.77
HVGA 480 320 20 0.15 3.07
Macintosh LC 512 384 22 0.20 4.33
EGA 640 350 27 0.22 6.05
VGA 640 480 33 0.31 8.29
WVGA 768 480 32 0.37 11.80
SVGA 800 600 34 0.48 16.32
DVGA 960 640 40 0.61 24.58
XGA 1024 768 43 0.79 33.82
XGA+ 1152 864 48 1.00 4778
SXGA 1280 1024 54 1.31 70.78
UXGA 1600 1200 67 1.92 128.64
FullHD 1920 1080 80 2.07 165.89
TXGA 1920 1400 80 2.69 215.04
TABLE 5: Dimensions of high-disparity image series.
, . . Pixels Vol.
Name Width  Height  Disp. (x10°] elem:.
[x10°]
Cones 450 375 60 0.17 10.13
Macintosh LC 512 384 68 0.20 13.37
EGA 640 350 85 0.22 19.04
VGA 640 480 85 0.31 26.11
WVGA 768 480 102 0.37 37.60
SVGA 800 600 107 0.48 51.36
DVGA 960 640 128 0.61 78.64
XGA 1024 768 137 0.79 107.74
XGA+ 1152 864 154 1.00 153.28
SXGA 1280 1024 171 1.31 224.13

On the Maxeler platform [7], the MaxFused configuration
with a common design for all aggregation kernels persistently
outperforms the MaxKern configuration, with its individual,
maximally parallel aggregation kernels. However, for small
image sizes, MaxFused is still slower than CPUI and both
CnyVec configurations. In the low-disparity test series, it takes
the lead over all other designs for the first time at 960 x 640
x 40. In this test series, its speedup peaks at 1920 x 1400 x
80 with 2.4x compared to CPUL. MaxFused profits from the
higher disparities of the second test series, achieving a first
speedup over CPUI already at 512 x 384 x 68 and a peak
speedup of 2.8x at 1280 x 1024 x 171.

Figure 15 displays some additional details of the under-
lying data for CPUI and the respective faster versions for
both accelerators, now showing absolute execution times and
subdividing them into aggregation phase, scanline phase,
and all remaining parts of the application. We see that, in
the aggregation phase, only MaxFused outperforms CPUI
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FIGURE 12: Low-disparity image series. Speedups of accelerated
configurations compared to faster CPUIL. CnyVec versions are at
disadvantage because their host parts run on slower CPU2.
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FIGURE 13: High-disparity image series. Speedups of accelerated
configurations compared to faster CPUIL. CnyVec versions are at
disadvantage because their host parts run on slower CPU2.

by a small margin. However, execution of this phase on
the accelerator has the additional benefit that, afterwards,
intermediate results are already in accelerator memory for
the following scanline phase. During this scanline phase, now
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FIGURE 14: Low-disparity image series. Speedups of accelerated
configurations compared to slower CPU2. Max versions have an
additional advantage because their host parts run on the faster
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both accelerators achieve significant speedups compared to
CPULI. During the execution phases remaining on the respec-
tive host, CnyVecNt notably loses some of its earlier speedups
compared to CPUI, because its host code is executed on the
slower CPU2.

8.2. Platform Overheads. All further comparisons are only
performed with regard to the faster CPUI. We proceed with
the analysis of the two accelerated phases, in this subsection
on the basis of results from 1920 x 1400 x 80, and compare
CPUI to all accelerated designs. Figure 16 breaks down the
total execution time of the aggregation phase, splitting the
entire yellow blocks from Figure 15 into individual compo-
nents. The first component is the raw execution time of the
five described aggregation kernels, still summed up together.
We see that this raw kernel execution time is significantly
reduced on all accelerator platforms and configurations
compared to CPUI, down from 47s to between 15s and
24s on the accelerators, with the design with the highest
parallelism, MaxKern, executing fastest.

The next component is the total time of all data transfers
between host and accelerator memory, which are initiated
through our memory manager. For pure CPU execution, nat-
urally no such transfers are needed. Here, we see that part of
the lower execution times observed on the Maxeler platform
in comparison to the Convey platform are caused by lower
transfer times, either because of faster physical interconnec-
tion or because of the overhead incurred for the realization of
the shared memory space on Convey. Masking some of this
overhead in the CnyVecNt configuration overcompensates for
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the increased raw kernel runtimes compared to Cny VecTouch.
As third component, we summarized the time spent outside
the five kernels selected for acceleration. In the aggregation
phase, this Host Setup time includes, for example, the time
to initialize the aggregation regions needed for scaling. This
phase is notably slower on the Convey platform again because
of the slower host CPU2.
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The fourth component, reconfiguration times, only
occurs on the Maxeler platform. We see that, for the
MaxFused design, this overhead is negligible as only one
reconfiguration is performed, whereas for the individual
aggregation kernels in MaxKern, it more than eats up the
additional speedups achieved in raw kernel execution times.
As final component, we measured the time spent in platform
specific allocation and free API calls on Convey, which turns
out to be relatively minor in the two configurations observed.

Figure 17 displays the same components for the scanline
phase. In this phase, both Maxeler configurations execute
the identical designs and thus perform identically. Due to
higher computational intensity and higher data reuse, all
accelerator platforms in all configurations reduce the raw
kernel execution times much more than in the aggregation
phase. Compared to its kernel execution times, CnyVecTouch
incurs a huge overhead for data transfers, which CnyVecNt
can again partially mask during kernel execution. Compared
to the CPU execution times, these overheads are smaller than
during the aggregation phase, thus allowing considerable
overall speedups.

8.3. Kernel Performance. In order to compare the kernel
specific dataflow design approach with the vector processor
overlay in regard to their suitability for kernel-centric accel-
eration, we now look at individual kernel execution times and
disregard the platform overheads discussed in the previous
subsection. Figures 18 and 19 show the raw kernel execution
times of the aggregation and scanline phases, again for the
largest image pair, now separated into individual kernels, but
summing up the execution times of all invocations of the
same kernel to be comparable to the previous plots.

We again compare the faster CPUI with all accelerated
versions for completeness; however, we do not consider the
data of CnyVecNt very relevant when it comes to assessing the
potential of the vector overlay approach, since here the raw
kernel execution times are just increased due to the partial
masking of transfer overhead, which is to be excluded in this
comparison anyway. Therefore, we focus on Cny VecTouch for
the evaluation of the overlay architecture. For the specialized
dataflow designs, on the other hand, we consider both design
points, since both the existence and the absence of design
trade-offs due to reconfiguration overheads can represent
relevant real-world scenarios.

For the aggregation kernels in Figure 18, we see quite
diverse results, with either MaxKern or CnyVecTouch achiev-
ing the best kernel runtimes. Furthermore, we see an unex-
pected artifact for HorSum, where MaxFused in spite of less
compute parallelism is faster than MaxKern. Presumably
both kernels are limited by effective memory bandwidth,
with MaxFused generating a slightly more favorable memory
access pattern. The HorDiff kernel, in turn, was already
projected to be compute bound for the MaxKern. The
MaxFused design with four times less compute parallelism is
around 4x slower, supporting this assumption. The VerSum
and scale kernels seem to have become compute bound for
the MaxFused design, showing smaller slowdowns compared
to MaxKern.
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A detailed discussion on the underlying effects for the
comparison of dataflow and vectorized kernels needs to
take into account the achieved compute parallelism, memory
reuse properties as outlined in Section 6, bandwidth require-
ments, and the impact of memory access patterns on the
achieved bandwidths. Also, during our optimizations of the
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vector overlay kernels, we saw that performance cannot be
easily modeled as a function of compute throughput or of
effective memory bandwidth but also depends on latencies
and sequence of dependent instructions. Thus, detailed attri-
bution of certain results to possibly dominating performance
factors would be mostly a speculation without additional
measurements. However, the effects of sensitivity to latencies
and those of different arithmetic intensities caused by data
reuse and design of operations are attributable to the kernel
design paradigm and thus form the actual subject of our
comparison. On the other hand, effects of different amounts
of available compute resources and memory bandwidths
distort this comparison. Thus, in the following subsection, we
try to extract the former design effects by compensating for
the latter hardware effects. However, first we proceed with the
comparison of kernel performance.

Comparing the runtimes of scanline kernels in Figure 19,
we see a more homogeneous result pattern, with the most
notable observations being the difference in CPU perfor-
mance in horizontal and vertical directions and that the spe-
cialized kernels dominate for the actual scanline computation
whereas the vector overlay takes the lead for the subsequent
summation step.

In our concrete stereo matching application, the various
kernels do have their individual, well defined contributions
to the overall runtime. However, when comparing the two
design methods in regard to their general suitability for
kernel-centric acceleration, we want to abstract from these
individual kernel weights and just profit from the variety
of compute and data-usage patterns represented by different
kernels. Thus, we consolidate these results into a single

19

metric, the geometric mean of individual kernel speedup
factors that each approach achieves over the reference CPU
execution. We denote this metric as Kernel-Ratio, analogical
to the similarly computed SPECRatio. This metric has the
nice property that the choice of reference platform does not
impact relative ratio between the two other platforms.

Table 6 summarizes those Kernel-Ratios for three acceler-
ated designs with reference to CPUI for the geometric mean
of all input sizes and individually for the largest problem size
tested, SXGA with high disparity. The reference invariance of
the Kernel-Ratios metric allows directly deriving additional
ratios between the platforms in the list. So, considering the
comparison of the two kernel design approaches, for all
image sizes, the Kernel-Ratios of MaxKern with reference to
CnyVecTouch are computed as MaxKern/CnyVecTouch =
6.59/5.80 = 1.14. Similarly, for SXGA high-disparity test, it is
computed as MaxKern/CnyVecTouch = 9.53/8.37 = 1.18.

The results, when comparing the Kernel-Ratios of the two
specialized dataflow kernel approaches on Maxeler with the
vector overlay on Convey, are surprising. In the geometric
mean, the specialized kernels are just marginally faster than
the vector overlay. When trading off parallelism for the
integration of several specialized kernels in MaxFused, the
specialized kernels are even slightly slower than the overlay,
for all image dimensions with MaxKern/CnyVecTouch =
5.20/5.80 = 0.90 and for high-disparity SXGA with
MaxKern/CnyVecTouch = 7.76/8.37 = 0.93. However,
as indicated above, these numbers do abstract away the
data transfer and reconfiguration overheads but still contain
the mismatch in available compute resources and memory
bandwidths.

8.4. Hardware-Normalized Kernel-Ratio. We try to extract
the effects of different kernel design approaches on the two
platforms by compensating for the effects of underlying
hardware. For this, we need metrics to compare the hardware
platforms and approach this by looking at compute resources
and memory bandwidth. When we compare basic compute
resources in terms of 6-input LUTs, which are common to
Virtex-5 and Virtex-6 FPGAs, we can observe a ratio of
Maxeler to Convey hardware of 297600/829440 = 0.359.
Similarly, the ratio of theoretical peak memory bandwidth
can be computed as (28.8 GB/s)/(74.4GB/s) = 0.387.
Now for somewhat sophisticated compensation of hardware
configurations, we would like to offset each observed kernel
speedup with one of those factors, depending on whether
the kernel is compute or bandwidth bound. However, since
the factors are roughly similar, we just average those two
ratios to 0.373. We multiply Maxeler to Convey Kernel-
Ratios by the inverse of the combined hardware ratio in
order to normalize performance to comparable hardware
platform characteristics. This leads to a metric we denote
as Normalized Kernel-Ratio and present in Table 7. We can
summarize these results as central contribution of this work
as follows:

In a diverse set of compute kernels with data paral-
lelism, specialized dataflow kernel implementations
on FPGAs are around 3x more efficient in terms of
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TABLE 6: Kernel-Ratios (geometric mean of all kernel speedups)
relative to CPULI for the SXGA image with high disparity and for
the geometric mean over all sizes.

Architecture All sizes SXGA-high
MaxKern 6.59 9.86
MaxFused 5.20 7.76
CnyVecTouch 5.80 8.37

TaBLE 7: Normalized Kernel-Ratios (geometric mean of all kernel
speedups, normalized with regard to compute resources and band-
widths) relative to CnyVecTouch.

Architecture All sizes SXGA-high
MaxKern 3.04 3.16
MaxFused 2.41 2.48

performance than a reusable vector processor overlay
implemented on comparable hardware. In a concrete
scenario, due to trade-offs between reconfiguration
overheads and exposed parallelism, this advantage
shrinks to around 2.5x.

After this bold statement, we need to discuss the circum-
stances and limitations that govern the general applicability of
these results. First of all, the utilized method of normalizing
for different hardware platforms by a single compensation
factor depends on the similar ratios of compute resources
and bandwidths. Once those differ considerably, such scaling
needs to be done on a per-kernel basis after an analysis
whether compute or bandwidth would be the limiting factor.
For the dataflow kernels, the foundations for such work are
present in [11], but for the vector overlay, the performance
bounds are hard to quantify since all our kernels are actually
constrained by a combination of computation, latencies, and
bandwidth. Also, after migration from one hardware platform
to the other, the performance bounds can be different,
requiring a more elaborate compensation step.

Secondly, we need to discuss aspects of memory band-
width. The peak bandwidth data we utilized for our normal-
ization already incorporates two aspects from our practical
results. On the Maxeler platform, the memory controller
is part of the synthesized FPGA design. The theoretical
bandwidth maximum can be achieved with the memory
controller clocked at 400 MHz. Due to difficulties to meet the
timing of this controller after synthesis, we targeted 300 MHz
in our experiments and the peak bandwidth value used in
our calculation reflects this. On the Convey platform, the
memory controllers are implemented in separate FPGAs and
their design is fixed, running at 300 MHz. As reported, we
utilize a 31-31 interleaving scheme, which maximizes actual
performance in our measurements but technically reduces
peak bandwidth to 31/32 of the physical interface capabilities,
which we also included in our numbers.

The practically realizable bandwidths of both memory
interfaces depend, beyond those peak numbers, on additional
influence factors, like burst sizes, strides, and granularity,
which are hard to quantify without extensive tests on both
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platforms. However, we can qualitatively state that the effi-
cient support for element-wise vector memory operations, in
particular indexed ones, of the vector overlay depends on the
capability to access individual 8-byte blocks enabled by the
scatter-gather RAM modules of the Convey platform we use.
So we need to constrain our Normalized Kernel-Ratio results
for this design approach with the following:

The vector processor overlay requires a memory
interface with sufficiently fine access granularity in
order to achieve the indicated performance efficiency.

Thirdly, we want to discuss the compute resources. Our
scaling method depends on the implicit assumption that
performance scales linearly with available hardware. When
it comes to parallel execution units that operate on unrolled
data and are implemented primarily with LUTs, this assump-
tion makes sense. However, other aspects of resource usage
often do not scale linearly with compute throughput. On the
one hand, some parts of the designs remain constant, for
example, in our experiments, the control logic of the dataflow
kernels and the scalar processing units of the vector overlay.
On the other hand, resource demands of some components
grow more than linearly with increased unrolling factors,
for example, those of some data reordering buffers or input
selection multiplexers.

Also, the FPGAs of the two utilized platforms have differ-
ent ratios of additional resources as BRAMs and DSP blocks
to LUTs, which the scaling in terms of raw logic resources
neglects. In particular, as seen in Table 3, the current designs
of several of our dataflow kernels rely on the high ratio
of BRAMs to LUTs on Maxeler platform’s Virtex-6 SX475T
FPGA, which is #36Kb-blocks/#LUTs = 1064/297600 =
1/280. On the Virtex-5 LX330 FPGAs of the Convey platform,
this ratio is lower: #36Kb-blocks/#LUTs = 288/207360 =
1/720. However, again as a qualitative statement from our
design experience of the dataflow kernels, many of the BRAM
resources are directly dedicated to buffering or reordering
kernel inputs, outputs, and intermediate results in order
to properly utilize the burst-oriented memory interface of
the Maxeler platform. So, the second addendum to our
Normalized Kernel-Ratio result now states the following
more precisely for the other design approach:

Dataflow kernels can achieve the indicated perfor-
mance efficiency even with a burst-oriented memory
interface but require FPGAs with a sufficiently high
ratio of BRAMs to LUTs for this.

Finally, we need to discuss clock frequencies and low-level
optimization. Our dataflow kernels are generated with the
Maxeler design flow, which enhances design productivity by
transparently applying a number of best-practice decisions,
for example, to pipelining or organization of buffers. Many
of these can be modified manually, but in our designs such
optimizations were mostly performed demand driven, in
response to specific timing or resource problems. In order to
relax the need for deep pipelining and along with it the need
to very carefully optimize the balancing of pipeline stages and
their physical layout, most compute paths of our dataflow
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kernels run at modest 100-130 MHz. For the much more
widely distributed and reused vector overlay on the Convey
platform, on the other hand, common sense and anecdotal
evidence suggest that a huge amount of effort and expertise
was invested into low-level optimizations. Consequently, this
design runs at 300 MHz, which has a large impact on the
performance we measured and compared in this work. We do
consider this difference as characteristic for the relationship
between reusable and problem-specific designs and as such
not as a weakness of the comparison but nevertheless want to
state this in a third addendum to our overall findings:

Our comparison premises that much more manual
low-level optimization effort is put into a reusable
overlay design than into problem-specific dataflow
kernels.

8.5. Estimates on Design Efforts. As final step of our com-
parison, we want to present some empirical data about our
experienced productivity when performing kernel-centric
acceleration with two different design philosophies and
targets. As we did not systematically track the design process
and many factors which are hard to quantify impact the
perceived productivity, these results need to be contemplated
with at least a grain of salt. The design and implementation
results presented in this work were done in several disjunct
phases and with different levels of experience gained from
other projects.

Overall we would describe the dataflow kernel design
process as two phases, the first starting with some limited
amount of experience in dataflow kernel design with the
Maxeler toolflow, spanning the equivalent of 8-10 full-time
developer weeks for conceptualization of kernels and their
unrolling patterns, implementation, and many stand-alone
tests in simulation, along with early synthesis results to get
a feeling of the resource usage characteristics. The second
phase, conducted with much additional background of the
Maxeler platform, took another 6-8 weeks with focus on
integration, synthesis, and optimization.

This phase was in practice prolonged by the process of
waiting for synthesis results, which we tried to exclude from
the above reported time span, because it to some degree
depends on the amount of parallel synthesis resources and
to some degree can be covered organizationally, for example,
by running synthesis overnight. As an illustrative number,
the total tool runtime for the final design of MaxFused was
reported as 22 hours, 5 mins, 11 secs. Within this time, for the
place and route step, a total of 11 different cost tables were
explored, with four parallel instances running concurrently.
Another special challenge was posed by one kernel instance,
where the Maxeler simulation tool was not able to reproduce
a memory interface related error actually encountered in
hardware.

The design of the vector coprocessor kernels was also
performed in two major phases. An equivalent of 4-6 full-
time developer weeks was spent for first concepts and pro-
totypical implementations with no preliminary knowledge of
the concrete vector ISA, but with some general background in
assembly programming. With a lot more experience with the
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architecture, another 6-8 weeks was spent for the final kernel
designs and optimizations, including a considerable fraction
of the time that was spent in exploring performance impacts
of memory settings and data transfer patterns triggered
through our memory manager. On this platform, assembly of
a kernel design and integration into an executable was com-
pleted within seconds, allowing for much faster optimization
iterations. A special challenge was posed by repeated crashes
of the accelerator hardware that occurred when using the
debugger for the vector coprocessor.

We summarize our subjective characterization of the
design process as follows:

Designing specialized dataflow kernels with Max-
eler’s spatial programming language and design flow
requires some more time and some more expertise
than developing assembly code for a vector processor,
but not a whole lot. However, the time-consuming
synthesis can add some tedious waiting to the process.

9. Related Work

We discuss related work in three different fields. First, we
give an overview of other approaches for stereo matching on
FPGAs, then we discuss the field of kernel-centric accelera-
tion, and we finally present other approaches to design and
evaluate overlay architectures.

Apart from our own previous work in [11, 12], stereo
matching on FPGAs has been tackled with codesign of
algorithm and hardware, typically implementing the entire
processing pipeline without off-chip memory access. Differ-
ent algorithmic approaches have been explored with different
design goals in mind. For example, Tippetts et al. [15] present
a complete stereo matching system with less than 10,000 LUTs
and 30 BRAMs, at much lower result quality, but robust with
respect to uncalibrated and unrectified images. Apart from
simple pre- and postprocessing steps, their approach employs
an intensity profile shape matching algorithm, which directly
works on row-local intensity data.

The FPGA implementations with the highest matching
accuracy reflect more of the matching patterns utilized in
this work. Shan et al. [21] implemented a slightly modified
variant of the presented cost aggregation for adaptive support
regions on FPGAs. By aggregating only once and in a fixed
order, first vertically and then horizontally, they are able to
stream the required data only through on-chip buffers. Wang
et al. [22] try to follow the algorithm of Mei et al. [10] in
their FPGA implementation more closely. In addition to the
aggregation technique of Shan et al. [21], they propose a
reduced scanline optimization which runs in three downward
directions, following the order the data is generated in in
the previous aggregation stage. Both implementations try to
exploit parallelism both in the spatial domain of the images,
working on several rows at once, and in the disparity domain
of the cost volume, working on several disparity images at
once.

Jin and Maruyama [27, 28] use a similar single-pass
aggregation phase and winner-takes-all disparity selection
and combine it with a voting scheme, denoted as fast locally
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consistent (FLC) [29], which is more sophisticated than the
one utilized in the postprocessing step we employ. Between
these two phases, intermediate disparity results are actually
buffered off chip, but requiring much less bandwidth, since
no volume data is stored.

These implementations come quite close to our results
in terms of matching quality, with Wang et al. [22] reaching
an average of 6.17% bad pixels and Jin and Maruyama [28]
only 5.86% bad pixels. They are somewhat more limited
in problem dimensions than our approach of working on
blocks of memory, with Jin and Maruyama [27, 28] projecting
a design that supports our largest test inputs to exceed
the LUT and BRAM resources of their and our current
hardware platform, but suitable for large Virtex-7 FPGAs.
In terms of performance, these codesigned implementations
are orders of magnitude faster than our implementation, by
executing less computation steps on volume data and by
integrating the compute pipelines more tightly. Therefore,
these approaches are superior when algorithmic trade-offs
can be made, whereas our approach is justified, when exact
reproduction of results or a simpler, structured design process
is required.

Such a kernel-centric design approach is also coming
along with the OpenCL-to-FPGA design flows, which are
gaining traction, from academic initiatives [30] to FPGA
vendor toolchains [31, 32]. Even though so far the actual
synthesis of FPGA designs from OpenCL kernels was the
focus of this research, a defining feature of the OpenCL
approach is the distinction between data-parallel kernels that
are to be executed on parallel resources and a host part of the
application. This host code may run on a server CPU like in
our work or in [31] or on a CPU inside SoC implemented on
FPGA as in [30]. Our memory management interface could
be seen as easier, more abstract alternative to a subset of
the OpenCL runtime feature set. But just like we used our
interface to abstract away the underlying data transfer APIs
implemented on the Maxeler and Convey platforms [8, 9], we
could also add support for a target platform that internally
uses the OpenCL API functionality through our interface.

FPGA overlays or architecture templates for such overlays
have been researched as means to enable faster or easier
manual design, faster synthesis or compilation toolflows,
and faster reconfiguration on top of a reusable overlay.
Coole and Stitt propose intermediate fabrics (IFs) [33], an
overlay architecture of coarse grained compute resources
and configurable interconnection implemented on top of an
FPGA. Different IFs are designed first manually [33, 34], later
also automatically based on OpenCL [35], to each support
a group of kernels with similar compute demands. Their
coarse grained abstraction allows orders of magnitude faster
synthesis and reconfiguration than for the underlying FPGA
fabric. Depending on the set of investigated kernels, the
degree of specialization, and the reconfiguration properties,
the authors report area overheads from 1.4x [33] over 1.8x [35]
to 4.4x [34] for the overlay and assume identical clock speeds
for overlay and specialized designs.

In the area of instruction programmable FPGA overlays,
active academic research on vector processors [36, 37] is
going on in the area of embedded computing devices as
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throughput-optimized alternatives to scalar soft processors.
Ovtcharov et al. [38] add the concept of GPU-like multi-
threading to hide latencies of functional units and memory
access by pipelining the execution of different threads. As
proposed by Kingyens and Steffan [39] and brought forward
by Convey with CHOMP [40] as successor to the vector
processor utilized in this work, such a GPU-like architecture
may be a promising architecture template for acceleration
of server- and datacenter-scale computing tasks. From the
programmers perspective, it offers more transparent ways
to exploit parallelism in multiple dimensions than with the
vector partitioning approach we had to specify explicitly.
From an architectural point of view, this may come at higher
resource consumption, for example, for address calculations.
On the other hand, the improved latency hiding promises
higher performance. To the best of our knowledge, there are
no published performance results for these architectures, in
particular not in comparison to custom datapaths.

10. Conclusion

In this work, we have compared two design approaches
for kernel-centric acceleration, specialized dataflow kernels
versus an instruction programmed vector processor on FPGA
with the example of a stereo matching application. We have
shown that, given comparable FPGA and memory resources,
the specialized dataflow kernels promise around 3x more
performance than kernels executing on a fixed vector overlay,
and we have analyzed three important preconditions for
this result: (1) the vector processor needs a sufficiently fine
grained memory interface, (2) the dataflow kernels need
FPGA architectures with sufficient BRAMs for local buffers,
and (3) a reusable overlay typically receives more low-level
optimization than specialized kernels with a much more
narrow usage scope. We have also elaborated that, in our
concrete scenario, due to trade-offs between reconfiguration
overheads and exposed parallelism, the advantage of special-
ized dataflow kernels is reduced to around 2.5x.

Looking forward, it will be interesting to extend such
an analysis to other presynthesized or customizable overlay
architectures, following GPU-like SIMT execution patterns
or implementing CGRA structures on FPGA. Also, a careful
analysis of whether and where the spatial programming
language paradigm or the utilized toolflow might add inef-
ficiencies could help to contextualize our results.

We have motivated the kernel-centric acceleration
approach used in this work with productivity considerations
and by the desire to precisely retain the desired application
behavior while using FPGA resources for acceleration. Our
overview of the design process hints that both the dataflow
and the vector ISA abstraction may help for this process,
but synthesis times are still an issue for specialized dataflow
kernels. The similarly kernel-centric OpenCL design flows
that currently gain traction in the FPGA community promise
even more abstraction, possibly along with reduced control
over the designs, and speed up the synthesis process by
reusing the memory and PCle interface as fully mapped and
routed components on the FPGA. Thus, they will represent
another interesting design approach to compare to.
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The analysis of data transfer and platform overheads
when looking at the entire application underlines that the
current trend of tighter integration of FPGAs, as well as other
accelerators like GPUs, into the same SoC with CPUs and a
shared memory subsystem may turn out to be very valuable
for kernel-centric acceleration approaches.
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