
Research Article
Resetting Your Password Is Vulnerable: A Security Study of
Common SMS-Based Authentication in IoT Device

Dong Wang ,1 Xiaosong Zhang ,1 Jiang Ming,2 Ting Chen,1

Chao Wang ,3 and Weina Niu 1,4

1University of Electronic Science and Technology of China, China
2The University of Texas at Arlington, USA
3ADLab of Venustech, China
4College of Cybersecurity, Sichuan University, China

Correspondence should be addressed to Xiaosong Zhang; johnsonzxs@uestc.edu.cn

Received 8 March 2018; Revised 28 May 2018; Accepted 4 June 2018; Published 4 July 2018

Academic Editor: Ximeng Liu

Copyright © 2018 Dong Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Firmware vulnerability is an important target for IoT attacks, but it is challenging, because firmware may be publicly unavailable or
encrypted with an unknown key. We present in this paper an attack on Short Message Service (SMS for short) authentication code
which aims at gaining the control of IoT devices without firmware analysis.The key idea is based on the observation that IoT device
usually has an official application (app for short) used to control itself. Customer needs to register an account before using this app,
phone numbers are usually suggested to be the account name, and most of these apps have a common feature, called Reset Your
Password, that uses an SMS authentication code sent to customer phone to authenticate the customer when he forgot his password.
We found that an attacker can perform brute-force attack on this SMS authentication code automatically by overcoming several
challenges, then he can steal the account to gain the control of IoT devices. In our research, we have implemented a prototype tool,
called SACIntruder, to enable performing such brute-force attack test on IoT devices automatically.We evaluated it and successfully
found 12 zero-day vulnerabilities including smart lock, sharing car, smart watch, smart router, etc.We also discussed how to prevent
this attack.

1. Introduction

The Internet of Things (IoT for short) paradigm is one of
the most thrilling innovations of the recent years. Growing
interest has spurred the commoditization ofmany devices for
personal use, such as smart home devices, smart wearable
devices, and smart car [1, 2]. The figure of online capable
devices increased 31% from 2016 to 8.4 billion in 2017. Experts
estimate that the IoTwill consist of about 30 billion objects by
2020. It is also estimated that the global market value of IoT
will reach $7.1 trillion by 2020 [3].

For an IoT device, it usually consists of three components,
an electronically augmented hardware device that reports its
status and processes user commands, a mobile device that
is used to receive status and send commands, a cloud that
is used to exchange messages between the hardware device
and mobile device. When a customer deploys his device,
he will (1) install the device, (2) download the official app

and install it on his smart phone, (3) register an account via
the app, (4) pair the device with his smart phone via the
app, (5) start to control his device via the app. Usually, the
device can be controlled remotely via the app. So, if there are
vulnerabilities in the device, an attacker can also control it
remotely.While prior works on IoT focused on cryptographic
protocols analysis [4–6], limited work has studied on security
vulnerabilities of implementation.

In this paper, we study the common SMS-based authen-
tication that is used in IoT devices. We observed that many
IoT devices support a common feature, called Reset Your
Password, designed for a customer to change his account
password if he forgets it. To authenticate the customer, IoT
cloud will send an authentication code to customer phone
that is registered as the account name via SMS. These SMS
messages share the same structure, [sender] [text with authen-
tication code] [expiration] (e.g., Panasonic: Your verification

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 7849065, 15 pages
https://doi.org/10.1155/2018/7849065

http://orcid.org/0000-0002-5141-9296
http://orcid.org/0000-0001-9886-1412
http://orcid.org/0000-0002-1372-2366
http://orcid.org/0000-0002-3235-3463
https://doi.org/10.1155/2018/7849065

2 Wireless Communications and Mobile Computing

code is 3895, validity period is 5 minutes). SMS authentication
code is usually a 4-digital or 6-digital number, here is 3895.
Ideally, the code is just known by the IoT cloud and the
device owner, so anyone who can present the code will be
considered as the real device owner. After analyzing several
IoT devices, we found this SMS-based authentication of Reset
Your Password may be vulnerable. An attacker can perform
brute-force attack via mutating the SMS code in password
reset message and reset IoT account password, because the
search space of the digital SMS code is very small.

However, there is a big challenge: cryptographically con-
sistent message (Section 3). If we modify the SMS code in
a password reset message, it will become cryptographically
inconsistent because themessagemay contain a signature, and
this will cause the message being discarded by IoT cloud. We
found that we can treat IoT app as a black box and control its
execution, then we can reuse the app code to generate cryp-
tographically consistent messages when we mutate the SMS
code.We also addressed several other challenges that prevent
us performing the attack test automatically. We proposed the
design of our prototype tool (Section 4) SACIntruder; it can
be used to check whether a IoT device is vulnerable to the
SMS-based authentication automatically. We implemented
our tool and used it to find 12 zero-day vulnerabilities. For
instance, we found a vulnerable smart lock and an attacker
can enter into a victim’s house without authorization. We
also found a vulnerable car and an attacker can drive it
away.

In short, we make the following major contributions:

(i) To the best of our knowledge, it is the first secu-
rity study about the SMS-based authentication in
IoT device, and we found it may be vulnerable.
An attacker can perform brute-force test on SMS
code to gain the control of IoT devices without any
interaction of victims.

(ii) We designed a tool SACIntruder that can automati-
cally perform brute-force attack test to check whether
an IoT device is vulnerable to SMS code. Our tool
addressed the big challenge about cryptographically
consistent message generation and other several chal-
lenges such as UI identifying, parameter identifying,
and time expiration.

(iii) We implemented our tool and evaluated it on IoT
devices including smart lock, sharing car, smart
watch, and smart router, and it found 12 zero-day
vulnerabilities automatically. We already reported all
of them to the CNCERT/CC [7] to help vendors to fix
them, and they all have been fixed now.

The remainder of this article is structured as follows.
In Section 2, we introduce the background knowledge of
IoT security. Then, we use a home app as an example case
study to understand our problem and present the overview
of SACIntruder in Section 3. We present the detailed design
in Section 4 and evaluate it in Section 5. We discuss how to
prevent this attack with the goal of security and usability in
Section 6. The survey of related work in Section 7 is followed
by our conclusion in Section 8.

2. Background

Traditional embedded devices are offline, and they can be
controlled just physically. In contrast, many IoT devices are
online and can be accessed via the Internet. So, an attacker
can gain the control of these devices remotely, if there
are security flaws. The loose protection and pervasiveness
of vulnerabilities [8, 9] make these devices very weak to
attackers. For instance, there are more than 90 reports about
independent IoT attack incidents from 2014 to 2016 [10].

For IoT attacks, firmware is always an important target,
because security vulnerability in firmware usually can bypass
all limitations such as the accessibility of the underlying sys-
tem, and an attacker can find a large number of vulnerabilities
by analyzing firmware because it contains all critical codes.
In 2017, F-Secure security researcher analyzed the firmware
of a Foscam IP camera and found 18 zero-day vulnerabilities
including insecure default credentials, command injection,
stack-based buffer overflow, etc. There are some works about
detecting vulnerabilities in firmware, some utilize symbolic
execution [11, 12] to detect flaws automatically, while others
construct an emulation runtime for dynamic analysis [13–15].
However, firmware acquisition is a big challenge for detecting
vulnerabilities via firmware analysis, because not every device
firmware is publicly available. Even if available, it may be
encrypted with an unknown cryptographic algorithm or data
key. In addition, firmware is usually a compressed archived
file, it is unable to decompress it without the knowledge of
the archived file format.Thediverse architectures of hardware
chipset is another challenge for firmware analysis, because
different chipset has different memory layout and instruction
set.

Many IoT devices can be controlled by a customer
through the official apps with his IoT account (e.g., a smart
lock that enables its owner to open or close the door
remotely). So, if an attacker can compromise the account,
he can gain the control of the device via the app. There are
somemethods for cracking an account. Password Brute-force
attack [16] is a traditional account attack by trying all possible
passwords. After analyzing a lot of IoT apps, we observed that
most IoT accounts have the same password strategy: at least
6 characters and each character can be A-Z, a-z, and 0-9. So,
the size of password search space will be (26 + 26 + 10)6 = 56
billion, it will take quite a long time to test every possible
password. Cross-Site Scripting [17] (XSS for short) andCross-
Site Request Forgery (XSRF for short) [18] can also be used
to take over an account, but they are special for browser
and most IoT apps are not built on a browser. So, XSS and
XSRF rarely impact IoT account. Phishing [19] is another
important method to steal an account, an attacker runs an
evil website that is very similar to the target website and
guides a victim to access it and input his credential. However,
IoT customers are typically guided to install apps from the
vendor cloud or the official app store by the device manual.
Therefore, it is challenging for a phishing attacker to inject
the download of IoT apps to get the victim credential. Man in
the Middle [20] (MitM for short) attack is another common
way to steal a user account. The recent work, Password Reset
MitM [21] (PRMitM for short) attack, exploits the similarity

Wireless Communications and Mobile Computing 3

GET /ci/user/getVerifyCode?uid=-1&phone=1383815∗∗∗∗

&imei= HTTP/1.1

Host: ∗ ∗ ∗.∗ ∗ ∗house.com.cn

Connection: Keep-Alive

Accept-Encoding: gzip

User-Agent: okhttp/3.3.1

Box 1: Messages of the password reset for a home app. App Request for a SMS authentication code.

{ "code":200,"msg":"","result":{ "session id":"f7b532

83-3c20-400d-b0ee-76a171036414","code -1":-

1,"error code":"0" } }

Box 2: Messages of the password reset for a home app. Cloud Response for the SMS authentication code.

POST /ci/user/fgt/pwd?password=e10adc3949ba59abbe56

e057f20F883e&code=7496&phone=1383815∗∗∗∗&sign=d3db1

a89d68cd72cbd2 a3fcbf9822876 HTTP/1.1

Cookie: JSESSIONID=f7b53283-3c20-400d-b0ee-76a17103

6414

Content-Length: 0

Host: ∗ ∗ ∗.∗ ∗ ∗house.com.cn

Connection: Keep-Alive

Accept-Encoding: gzip

User-Agent: okhttp/3.3.1

Box 3: Messages of the password reset for a home app. App Request for password reset.

{ "code":0,"msg":"reset success" }

Box 4: Messages of the password reset for a home app. Cloud Response for password reset.

of the registration and password reset processes to launch a
MitM attack to popular websites and mobile apps. However,
PRMitM relies on victim’s interaction heavily to retrieve
everything that is essential for password reset. So, the success
of PRMitM attack relies on several strong assumptions.
First, it requires that the victim registers an account or
inputs his mobile phone and SMS authentication code to the
compromised website. Second, it assumes that many victims
will ignore the details of the password reset message but just
copy the SMS code into the compromised website. Third, an
attacker has to analyze target website to get the knowledge of
every challenge.The attack will not happen if any of the above
assumptions does not meet.

As stated early, the search space of the SMS code used in
Reset Your Password is very small and we can perform brute-
force attack on it. Once our mutation meets the right value
before the time expiration, we can reset the password of IoT
device account. In contrast to our previous work [22], we
have presented a new UI model, a new approach to identify

parameters and an approach to reduce unnecessary requests.
So, we can find new vulnerabilities that cannot be found via
our previous work.

3. Overview

Thegoal of this work is to understand the SMS authentication
of Reset Your Password in IoT devices and automatically
identify whether a device is vulnerable. In this paper, we
focus on IoT apps in Android platform that is the most
popular mobile platform in the world [23]. We first use
a running example to discuss our problem in Section 3.1;
we discuss the major challenge in Section 3.2 and other
implementation challenges in Section 3.3 and then give an
overview of SACIntruder in Section 3.4.

3.1. A Running Example of Password Reset. To understand
our problem better, we select an android IoT app that is
designed to control smart home devices. Boxes 1–4 illustrate

4 Wireless Communications and Mobile Computing

the messages used for the whole progress of the password
reset.

When a customer wants to reset his IoT account pass-
word, he will be guided by app UI to send a message to the
cloud for an SMS code, then the cloud will generate a code,
send it to customer phone, and respond with amessage to the
app. Boxes 1 and 2 present a pair of messages about request
and response. In theory, there is no limitation for themessage
format between the app and cloud. After analyzing a lot of
apps, we found that most of them are built on Hypertext
Transfer Protocol (HTTP for short) [24]. One possible reason
may be that Representational state transfer (REST for short)
[25] is popular in the development domain, and REST uses
HTTP as its low-layer transport protocol. The Uniform
Resource Locator (URL for short) [26] of REST usually has
full meaning. In the running example, getVerifyCode and
phone=1383815∗∗∗∗ mean requesting the cloud to send an
authentication code to 1383815∗∗∗∗.

After receiving the SMS authentication code, customer
inputs the code and new password and clicks a UI component
to send a message containing the code and password to
the cloud, then the cloud verifies them to replace the old
password, at last responds with a message to the app. Box 3
presents a password reset request message, it contains four
key parameters, three of them (password, code, phone) are
mapped to user inputs, while sign cannot be mapped to any
input. Moreover, sign is usually generated by a cryptographic
algorithm with arguments including password, code, phone
and other app-specific data. It is easy to modify the code,
but sign will prevent us from doing this. Because if we
modify it, we must update sign, or the message will be
cryptographically inconsistent and the cloud will discard it.
Besides the cryptographically consistent message generation,
several implementation challenges also need to be addressed,
we discuss them in the following sections. Box 4 presents
a password reset response message for successful password
reset.

In addition, some IoT apps only support to login the
account with SMS authentication code, the customer never
owns a password. He will request an SMS code every time
when he wants to login the account. This type of login can
be classified as a special password reset that contains no new
password. So, we can support these apps using the same
brute-force attack method.

3.2. Cryptographically Consistent Message Generation. The
SMS code in Reset Your Password is a digital number with
small search space, it is easy for the brute-force attack.
But many IoT apps use at least one cryptographic strategy
to protect messages, some chose signature to ensure the
integerity [27], while others chose encryption to ensure the
confidentiality [28]. IoT cloud will check the confidential
or integrity of a message. If not valid, discard the message.
We must find an approach to generate cryptographically
consistent messages while mutating the code.

A straightforward method is to extract the cryptographic
algorithm from the app and then reimplement it in the
outside of IoT apps. Some program analysis technologies
such as symbolic execution [29–31] and taint analysis [32, 33]

can be applied to do this. These technologies can analyze a
program to determine what inputs cause each part of the
program by monitoring the execution of every instruction
and its referenced data, so they are widely studied to explore
the internal status of a program. They work well for many
program logic, except the cryptographic algorithm because
of the well-known challenge named path explosion [34, 35]:
the number of feasible logic paths in a program grows
exponentially with an increase in program size and can even
be infinite in the case of programs with unbounded loop
iterations. Unfortunately, loop iterations are very common
in the cryptographic algorithm. IoT apps are commercial
software, they usually contain complex logic and developers
prefer to deploy some protections to enhance the security. In
addition, packer is widely used to protect an app by develop-
ers, it contains code obfuscation [36], resource encryption,
antidebugging, antiemulation, etc. So, it is very expensive for
program analysis to extract the cryptographic algorithm from
IoT apps because of these protections.

Based on the fact that nowadays most apps use a standard
cryptographic algorithm for encryption and signature, Zuo
[37] utilizes API hooking to extract the cryptographic
algorithm. He hooks 61 well-defined cryptographic APIs
in Android SDK to intercept their arguments and return
values, then reconstructs the control flow and data flow
based on the API hooking log, and reexecutes them out of
the app. After analyzing a lot of IoT apps, we find that this
method lacks flexibility, because it just supports well-defined
cryptographic APIs. In our running example, the signature is
generated as signflMessageDigest.getInstance(''MD5'').dgest(
Base64.encodeToString(''...password=e10adc3949ba59abbe56
e057f20f8 83ecode=7496phone=1383815∗∗∗∗...'')). Obviously,
getInstance and dgest will be logged as they are well-known
and being hooked, but the arguments will not be logged as
encodeToString is not well-known and not being hooked.
So, the data flow will be interrupted and the cryptographic
algorithm for generating sign cannot be reconstructed from
the API hooking log. In addition, private cryptographic
algorithm is also not supported by this method.

In fact, our final goal is the output, not the code of the
cryptographic algorithm. If we treat the whole IoT app as a
cryptographic algorithm, user input as the arguments, the
output as the password reset message, then we can utilize
UI automation [38] to input every possible SMS code and
request password reset, app will execute its code to calculate
the sign. So, we can generate a cryptographically consistent
message without extracting the cryptographic algorithm.
Moreover, this approach is independent on the cryptographic
algorithm, so it does not have the drawbacks of program
analysis and API hooking, it can support complex app logic,
code obfuscation, private cryptographic algorithm and so on.
Based on UI automation, we can generate cryptographically
consistentmessages whenmutating the SMS code, but we still
need to address several other implementation challenges for
performing brute-force attack test automatically.

3.3. ImplementationChallenges and Solutions. There are three
implementation challenges for utilizing UI automation to
perform brute-force attack on SMS code automatically: (1)

Wireless Communications and Mobile Computing 5

identifying password reset UI, (2) identifying interesting
parameter, (3) time expiration on the SMS authentication
code, and (4) unnecessary brute-force requests. We must
address all of them.

Identifying Password Reset UI. Before we can use UI automa-
tion to input phone, SMS code, new password to drive the
app to generate the password reset message, we need to
identify the password reset UI firstly. Unfortunately, there
is no straightforward information to declare where is the
password reset UI. We analyzed a lot of apps and found that
most of password reset UI contain the common feature: (1)
an editable UI component with a default description like
input your phone number for guiding users to input phone,
(2) an editable UI component with a default description like
input SMS code for guiding users to input SMS code, (3) an
editable UI component with a default description like input
new password for guiding users to input password, and (4)
a clickable button with a default description like confirm for
guiding users to submit request. This is because developers
usually need human-friendly text information to guide users
to input password reset parameters in the right component.
So, we can enumerate everyUI of an IoT app and checkwhich
one contains this common feature to identify the password
reset UI. In addition, some apps divide the logic of password
reset into several parts, so they will use more than one UI
to guide users to input all parameters. We can analyze a set
of sequential UI to identify the root of password reset UI.
Details about identifying password reset UI are presented in
Section 4.1.

Identifying Interesting Parameters. Usually, there are more
than four parameters in password reset message. But inter-
esting instances are phone, code, password, sign, we need to
identify them. Messages based on REST usually encodes a
parameter as a key-value in the URL or as JSON/XML in
the content [39, 40]. If the parameter key name is well-
known, such as verifyCode and password used in our running
example, it is easy to identify them by regular expression
matching. But different apps can use different key names,
checkCode, vCode, ck are also acceptable for the SMS code,
so it is challenging to identify them automatically. However,
the input of IoT apps is controlled by us via UI automation, so
we can use two different values for a parameter and analyze
the two corresponding messages to identify the parameter
(e.g., in our running example, we input code1 and code2 for
the code, we can find both values in the messages and infer
the key name for SMS code is code). Details about identifying
interesting parameters are presented in Section 4.2.

Time Expiration. IoT clouds always assign an expiration limit
(varies from 2 ∼ 30 minutes) on the SMS code. The brute-
force test must be as fast as it can, or the authentication code
will become unusable before being mutated to the right one.
If the password reset message is not encrypted or contains
no signature, we can mutate code based upon a captured
message directly and send mutated messages to the cloud at
a fast speed. Or we move to use UI automation to generate
cryptographically consistent messages. In fact, the speed of

UI automation is very slow, if we serially mutate the code and
request the cloud in a real-time environment, we will meet
the expiration. However, we can use an offline environment
to record all request messages and then replay all of them to
the cloud via a high-performance computer. Because these
requestmessages contain all possible values for the SMS code,
so the password will be reset successfully. Details about time
expiration are presented in Section 4.3.

Unnecessary Requests. During the attempts of password
reset with mutated codes, if the account password is reset
successfully, we can discard the rest of messages to reduce
unnecessary requests. But the response contents are diverse,
there are no standards and documents for whether the
password reset response is successful or not.Weobserved that
the response usually contains a status message such as your
code is invalid or too many unsuccessful attempts. Different
messages have a different length, this will make the length of
the whole response message different. So, we canmonitor the
response length. If it is changed, it means a new status, such
as success of password reset or being blocked by the cloud.Then
we try to login the account with the predefined password, if
success and we discard the rest messages, if failure and we
infer this IoT device account is not vulnerable.

By addressing above challenges, we can use UI automa-
tion to generate cryptographically consistent message while
mutating the code to all possible values. In addition, if
there is no signature or encryption in password reset mes-
sage, we can directly mutate the code based on a cap-
tured password reset message to perform brute-force attack
test.

3.4. SACIntruder. To check whether a given IoT device is
vulnerable to the SMS-base authentication, we design a tool
named SACIntruder, to automatically perform brute-force
attack on the SMS code. The only knowledge we need is the
phone number that is used to register as the device account.
PMitM [21] presented a method about how to get victim’s
phone, and how to get the phone is beyond the scope of this
paper. Moreover, IoT app may choose a binary protocol to
build a request message. We only focus on HTTP protocol
here, because we observed that a large number of Android
apps use REST API that is built on the HTTP. We consider
HTTPS as HTTP, because HTTPS uses SSL as its lower
transport protocol and we can use a self-signed certificate to
bypass HTTPS.

The whole progress of our brute-force attack supported
by SACIntruder is presented in Figure 1. There are four steps:
(1) SACIntruder starts every activity of an IoT app to identify
password reset UI. (2) SACIntruder drives the app to input
victim phone and request for SMS code, then it replaces the
victim phone with a test phone via message interception, this
replacement will prevent the cloud send a code to the victim
at the very beginning. (3) SACIntruder drives the app to input
parameters for password reset and request the cloud, then
it identifies interesting parameter. If the message contains
encryption or signature, it will stop forwarding the following
message to the cloud, and continue driving the app to input
all possible SMS code and save all messages into a database.

6 Wireless Communications and Mobile Computing

IoT Cloud

Give a code to mobile_victim

IoT App

Password reset with {mobile_victim,code0000}

Reset faile

Give a code to mobile_test

Code sentCode sent

Password reset with {mobile_victim,code0000}

Reset faile

Password reset with {mobile_victim,codeNNNN}

Reset faile

Password reset with {mobile_victim,code9999} Give a code to mobile_victim

Code sent

Password reset with {mobile_victim, code0000 }

Reset okReset ok

SACIntruder

Password reset with {mobile_victim, codeNNNN }
Password reset with {mobile_victim, code9999 }

Figure 1: Password reset via brute-force attack to SMS authentication code: code0000 is a SMS authentication code whose value is 0000 and
codeNNNN is an instance of all possible SMS authentication code whose value ranges from 0000 to 9999.

(4) At last, SACIntruder begins to replay the message for SMS
code, and all messages for password reset to the cloud. If the
account is vulnerable, its password will be reset successfully.

An overview of SACIntruder is presented in Figure 2: its
inputs are an IoT app and a victim phone and the output
is whether the IoT app is vulnerable. There are three key
components:

(i) MessageGenerator using UI automation to control
the execution of IoT app, it performs static analysis
and dynamic analysis to identify UI and drives app to
generate cryptographically consistent messages.

(ii) ParameterIdentifier using different inputs to identify
parameters in the password reset message, it contains
a network proxy to intercept the communication
between the app and cloud. It cannot input data to
the app, so it communicates with MessageGenerator
to achieve this goal.

(iii) RecordReplayer uses a database to record all pass-
word reset messages and replay them to the cloud
parallelly at last; it is running on a high-performance
computer for fast speed.

4. Detailed Design

In this section, we present the detailed design of the three
key components of SACIntruder. We first describe how
doesMessageGenerator generate a password reset message in

Section 4.1, then explain how does ParameterIdentifier iden-
tify interesting parameters in Section 4.2, and then present
how does RecordReplyer bypass the time expiration on SMS
code in Section 4.3.

4.1. Password Reset Request Message Generation. Message-
Generator is responsible for password message generation, it
utilizes UI automation to control the execution of IoT apps.
First, it runs the app and identifies the password reset UI
by enumerating every activity and checking the common
feature in Section 3.3. As stated previously, there are two
password reset UI models. Figure 3 is the classic UI model,
named Single-stage Password Reset, because all parameters are
inputted in a singleUI.AndFigure 4 is anothermodel, named
Multistage Password Reset, because all parameters are divided
into two or three groups and inputted in several UI. Then,
MessageGenerator enters the right UI, inputs parameters, and
triggers request to generate password reset messages.

4.1.1. Single-Stage Password Reset RequestMessage Generation.
For the Single-stage Password Reset, all UI elements used to
receive these parameters are defined in an activity. First, we
identify theUI via analyzing every activity independently and
then input every parameter to this activity to drive the app to
generate password reset messages.

Static Method to Identify UI. In Android, every activity must
be declared in a file named AndroidManifext.xml that can be

Wireless Communications and Mobile Computing 7

RecordReplayer

PacketGenerator

cloud

apk

phone
number

Deassemble
&analyzer

AndroidM
anifest.xml

Layout.xml

String.xml &analyzer
Uiautomator

Android_phone

Recorder

Replayer

∗.smali
ADB

WIFI

deviceInternet

Internet

database

ParameterIde
ntifier

Figure 2: An overview of SACIntruder.

Reset your password

Input your phone number

Input sms code

Input new password

Repert new password

GetCode

Confirm

Return To Login

Figure 3: Single-stage password reset UI model.

8 Wireless Communications and Mobile Computing

Reset your password

Input your phone number

Confirm

Return To Login

Reset your password

Confirm

Return To Login

Input sms code

Reset your password

Confirm

Return To Login

Input new password

Input new password

Figure 4: Multistage password reset UI model.

extracted from the app binary file. Some other works such as
AppsPlayground, SMV-Hunter, and Gui Ripping [41–43] use
this manifest to start dynamic UI exploration. But dynamic
exploration is usually slow, so we first use static method.
For an activity, all UI elements (e.g., Buton, ImageButon,
CheckBox) are defined in a layout, and the activity uses
setContentView to load the layout. In theory, a layout can be
a standalone file or a piece of codes about dynamic layout
generation. After analyzing a lot of apps, we found that most
apps use a standalone file. So, we analyze the layout file of an
activity to infer whether it is the right UI via checking the
common human-friendly information.

Because an activity loads its layout by calling API setCon-
tentView, we need to analyze the code of an activity to get its
layout. The source code of an IoT app is always not available,
but it is not a problem. Because Android app is very similar
to the Java archive, it is very easy to disassemble the app.
We can use apktool [44] to disassemble the app. Every part
of the app can be extracted to basic elements, such as string
pool files, code files for every class, layout files, image files
and so on. In these elements, a file named public.xml is very
important, because the disassembled code of an activity will
not use a name to reference its layout but an integer number
that is defined in this file. Another file named strings.xml is
also important, because the human-friendly information in
password reset UI are usually defined here. There are in total
five major steps in order to identify the right UI via static
method:

(i) Disassemble an IoT app with apktool. If the app is not
protected by a packer [45], we can get every part of the
app. Otherwise, we can only get a subset of all parts,
and we will move to dynamic method.

(ii) Get the name list of all activities from the manifest.
Again, every activity must be declared in this file.
If the app contains a password reset activity, we can
analyze every activity to find it out. In addition, we
get the package name of the app from the manifest,
combine package name and activity name to generate
the full name of the activity code file. The output of
this step is an array of activityFullname.

(iii) Find the layout via disassembled code of every
activity. The entry point of an activity is a callback
function named onCreate. We scan the disassembled
code of every activity’s onCreate procedure to get
the referenced layout. Again, the layout in the disas-
sembled code has been converted to an integer. The
output of this step is an array of (activityFullname,
layoutInteger).

(iv) Get the layout filename via public.xml; Android uses
this file to map the integer to a name. The output of
this step is an array of (activityFulname, layoutName).

(v) Analyze the referenced layout file to infer whether it is
the password reset activity. A layout file is an XML file
that contains every UI element definition with type
name and default value. Figure 3 is a typical Single-
stage Password Reset UI that contains three input
elements, two submit elements, and some human-
friendly strings. If the layout file contains elements
definition like this, we can infer it is the right UI. The
output this step is activityFullname.

Dynamic Method to Identify UI. If an IoT app is protected by
a packer, the real code and layout will be hidden from static
analysis except for the manifest. But manifest just contains
names of all activities, we cannot get the layout referenced by
an activity from it. So, we move to dynamic method.

In Android, every running activity is managed by the
activity manager. All activities are maintained via a stack, and
they are arranged in the order according to the time when
each activity is opened and only the top activity in the stack
is painted on the screen [46]. To paint the screen, activity
manager keeps a screen layout that contains the top activity
and other UI elements such as system virtual home key.
Moreover, Android allows dumping the layout of the current
screen to support debugging. So, we can run every activity of
an app and dump the current screen layout to get the layout of
the running activity without regarding the packer or dynamic
layout loading. There are in total four major steps in order to
identify the right UI via dynamic method:

(i) Get all activity names from the manifest. This step is
the same as the previous static method.

Wireless Communications and Mobile Computing 9

(ii) Start every activity of the IoT app. This will bring an
activity to the top in the system activity stack. We use
an Android phone and turn its debugging support on,
then we use command am start package/activity to
start an activity.

(iii) Dump the current screen layout. There is an android
shell command named uiautomator [47] that is
designed for dumping layout of the current screen.
We use it to dump the layout and save it as a file in the
phone, thenwe use AndroidDebug Bridge [48] (ADB
for short) command to download the layout file from
the phone.

(iv) Analyze the layout to infer whether it is the password
reset UI. Unlike traditional standalone layout, screen
layout already loaded the values of associated strings
that are defined in another file. Another difference is
it may contain someUI elements which do not belong
to the app such as the status bar on the top of current
screen or a popup window. To reduce the noise, we
first exclude these elements, and then we check the
common feature used in the static method. If found,
we infer this activity is the password reset UI.

Contrast to the previous static method, dynamic method
is much slower, because it runs the app and uses debug
interface to get the key information. But it is very useful
when the app is protected by a packer [45], or the app is
implemented to load the activity layout dynamically via code.

Generate Password Reset Message. After identifying the pass-
word reset UI, we can use UI automation to input parameters
for driving the app to generate a password reset message.The
method is straightforward: enumerating parameter elements
in the layout, inputting data and clicking the submit button
to generate the message. Some apps contain one password
elements, while two password elements for some other apps.
It is easy to identify this difference, because the two elements
for password are very similar based on their description text.

To capture the messages, we can useWireshark, tcpdump
and libpcap [49, 50]. However, we just focus on the appli-
cation layer content that is consumed by the app and the
cloud. We found that Android supports WIFI proxy that
means all HTTP/HTTPS requests from app can be redirected
to the WIFI proxy. Meanwhile, there are plenty of open-
source HTTP proxy servers, we can utilize them to analyze
the content of the HTTP layer. So, we use the WIFI proxy
of Android and HTTP proxy server to capture the generated
message.

4.1.2. Multistage Password Reset Request Message Generation.
Many IoT apps use Single-stage Password Reset, but some
apps useMultistage Password Reset. We directly use dynamic
analysis to identify this password reset UI, because we cannot
infer it by analyzing a single activity. Then we input parame-
ters to drive the app to generate password reset message.

Identify the UI. A sample ofMultistage Password Reset model
is presented in Figure 4. There are three activities, the first
one just receives the phone number, if it is confirmed, the

app will switch to next one and an SMS code request message
will be sent to the cloud; the second one receives the SMS
authentication code, if confirmed, the app will switch to next
one; the third one receives the password, if confirmed, the
password reset message will be sent to the cloud.

It is challenging to recognize this type of password reset
UI, because every single activity does not contain sufficient
information. But it is obvious that if there are some sequential
activities in the app, and every one of these activities contains
a different part of the whole parameters for password reset,
we can infer it is the right UI. So, we use a state machine:

(i) First, we define a 3-bit-vector, the first bit means the
presence of a phone number UI element, the second
bit means the presence of an SMS code, the third bit
means the presence of a password. And we define
four states: s0 is the initial state, s1 means that phone
number has been met, s2means that phone and SMS
code have beenmet, and s3 is the final state thatmeans
all parameters have been met.

(ii) Second, we run every activity and dump the current
screen layout. Then we check the presence of phone
number, SMS code, and password, and change the
state according to the current state.

(iii) Third, if we reach the s3, we infer the activity that
changes the state to s1 is the password reset UI.

Generate Password Reset Message. Here we use the same
method used in the Single-stage Password Reset model to
generate the messages and capture them. The only difference
is we need to input parameters in several UI, because each UI
just receives a part.

4.2. Identifying Interesting Parameter in Password Reset Mes-
sage. Usually, there are more than four parameters in the
password reset message. But we are just interested in phone,
code, password, sign. We need a principled approach to parse
the request message and identify our interesting parameters.

4.2.1. Parsing Parameters in RequestMessage. Again, we focus
on IoT app built on REST [51] that uses HTTP as its transport
protocol. According to theHTTP protocol specification, each
request message consists of (1) a request line (e.g., GET
/ci/user/getVerify Code?uid=-1&phone=1383815∗∗∗∗&imei=
HTTP/1.1), (2) extra request-headers (e.g., Host: ∗ ∗ ∗. ∗
∗∗house.com.cn), (3) an empty line, and (4) optional message
body. There are two main methods for HTTP request, GET
and POST. For a GET request, it can host a small piece of
data in the URL. For a POST request, it can host a lot of data
in the message body. And both methods are popular in IoT
apps.

According to the URL specification [52], data can be
encoded as a k-v block in the URL parameters. The first k-v
is connected to the base URL via symbol ''?'', k-v is connected
via the symbol ''='', and each k-v pair is concatenated via ''&''.
To parse these parameters, we first parse the path segment
via scanning the reserved path symbol ''?'' to get the first
k-v (uid=-1 in our running example). Then we use ''&'' to
parse more k-v (phone=1383815∗∗∗∗ and imei=). It is quite

10 Wireless Communications and Mobile Computing

straightforward to index the parameter name and its value,
and we store them in a pair (name, value).

Parameters can also be in the message body when the
method is POST. There is no limitation on the format of
the body, because requester can specify its format type via a
Content-Type request header. But the best practice of REST
development suggests developers to use JSON and XML
as the format for message body and we only parse these
two popular formats. JSON and XML have a hierarchy tree
structure, which means that each value can be tracked by the
path from the root of the tree. And we still store them in a
pair (name, value).

4.2.2. Identifying Interesting Parameter with Different Input
Value. After parsing parameters, we need to know whether a
parameter is interesting, such as the signature.We do not care
those uninteresting parameters (e.g., app version and mobile
version), because they are irrelevant to the procedure logic of
password reset and we just keep their original values. There
are four interesting parameters: phone, code, password, sign.
For the phone number, it is used in SMS code requestmessage
and password reset request message. SMS code is the most
important parameter; we want to mutate it to all possible
values. Signature is a hidden parameter that is automatically
generated by the app logic. If signature or encryption is
found, we utilize UI automation to drive the app to generate
cryptographically consistent messages.

The values of these parameters are from the user input in
the password reset UI, and we can control the input value via
UI automation. So, we change the input value of a UI element
with different values, then we analyze the generatedmessages
to locate the two different input values. By this way, we infer
the interesting parameters without the knowledge of their key
name:

(i) For the phone, we input two different phone numbers,
same code, and same password in the password reset
UI. Then we trigger the UI to send the password
reset message and parse these two messages. If a
parameter with the same key contains both different
input values, we infer the parameter is the phone
number. For our running example in Boxes 1–4, we
use two inputs (phone1, password, code) and (phone2,
password, code) to drive the app to generate two
messages. In the following analysis, we can find a
parameter whose key name is phone contains our two
different values (phone1, phone2). So we get the phone
parameter without any knowledge about its key name.

(ii) For the code, we input two different SMS codes, same
phone number, and same password.Thenwe infer the
SMS code like the phone number.

(iii) For the sign, we input two different SMS codes, same
phone number, and same password. Unlike the SMS
code, we do not have any input value for signature,
so we do not know what should be searched in
the two messages. Cryptographic algorithms have a
desirable property named avalanche effect [53], it
means that a little difference in the inputs will cause a
dramatic difference in the outputs. Signature is built

on a cryptographic algorithm, and we can use this
common property to infer the sign. We parse these
two messages, if we find a parameter that has a very
high score of difference in its two values, we infer it is
the sign. We use Euclidean distance [54] as the score
and we also use this method to check whether the
whole message is encrypted.

4.3. Time Expiration Bypass. We utilize UI automation to
generate cryptographically consistent messages and support
all types of algorithm including private versions. But it is
very slow for UI automation, because every password reset
request will indeed (1) get parameters from the UI elements
and check validation, (2) perform encryption or signature, (3)
create a newTCP connection to the cloud, (4) build anHTTP
request message containing the data from step2, (5) send
the message to the cloud, (6) wait for the response message
and parse it, and (7) synch of UI events. In addition, for an
Android phone, capability for computing and networking is
very limited. So, if we directly use UI automation to drive the
app to perform brute-force on the SMS authentication code,
we will fail because of time expiration of the SMS code.

After analyzing a lot of IoT apps, we found that we can use
an offline-style method, the core idea is that we just drive the
app to generate all messages in an offline environment and
replay all of them in an online environment:

(i) Intercept the SMS code request message from the
IoT app and record it, replace the phone number by
another one used for experimentation, forward the
modified message to the cloud, receive the response
message and record it, at last forward the response
to the app. Then the app can send password reset
message.

(ii) Intercept the password reset request message from
the IoT app, forward it to the cloud if it is the
first one, receive the response and record it, forward
the response to the app. In the following requests,
we will not forward the requests to the cloud and
use the recorded response message to emulate the
cloud response. In this way, we generate all password
reset messages in an offline environment without
communication to the cloud.

(iii) After all possible messages have been generated, we
perform the brute-force test. First, we replay the
recorded SMS code request message to the cloud to
generate an SMS code for the real phone number.
Second, we replay all password reset messages to
the cloud. We use socket pool and thread pool to
maximize the speed. And we monitor the response
length, if it is changed, we stop replaying and use the
predefined password to try account login. If success-
ful, we infer the IoT device account is vulnerable.

5. Evaluation

We have implemented SACIntruder based on several open-
source tools, our message generation is built on uiautomator

Wireless Communications and Mobile Computing 11

Table 1: Summary of IoT Apps under testing.

Type Vendor AndroidApp UI Model
Watch ToyCloud com.watch∗ ∗ ∗.www Single-stage Password Reset
Lock Panasonic com.∗ ∗ ∗.digitallock Single-stage Password Reset
SharingCar Panda com.∗ ∗ ∗.usecar Single-stage SMS Login
SharingCar win-sky com.∗ ∗ ∗.drivevi Single-stage SMS Login
Router ximo com.∗ ∗ ∗.router Single-stage Password Reset
HomeGate HuiJu com.∗ ∗ ∗.devices Single-stage Password Reset
Robot lejurobot com.∗.zelos Multi-stage password Reset
Car Cmera DUDU com.∗ ∗ ∗.∗ ∗ ∗.laucher Single-stage Password Reset
HomeGate BroadLink com.∗ ∗ ∗.rmt Multi-stage password Reset
Car DasAuto com.∗ ∗ ∗.faw.vw.∗ ∗ ∗ Multi-stage password Reset
IP Camera uniview com.∗ ∗ ∗.ezview Multi-stage password Reset
Car DongFeng com.∗ ∗ ∗.windlink Single-stage Password Reset

Table 2: Summary of discovered vulnerabilities.

AndroidApp CNVD Public
com.watch∗ ∗ ∗.www CNVD-2017-02059 Yes
com.∗ ∗ ∗.digitallock CNVD-2017-03908 Yes
com.∗ ∗ ∗.usecar CNVD-2017-04583 Yes
com.∗ ∗ ∗.drivevi CNVD-2017-06343 Yes
com.∗ ∗ ∗.router CNVD-2017-15081 Yes
com.∗ ∗ ∗.devices CNVD-2017-03909 Yes
com.∗.zelos CNVD-2017-01003 Yes
com.∗ ∗ ∗.∗ ∗ ∗.laucher CNVD-2017-09696 Yes
com.∗ ∗ ∗.rmt CNVD-2017-12023 Yes
com.∗ ∗ ∗.faw.vw.∗ ∗ ∗ CNVD-2017-25143 Yes
com.∗ ∗ ∗.ezview CNVD-2017-12075 Yes
com.∗ ∗ ∗.windlink CNVD-2017-15147 Yes

[55] andmitmproxy [56], our RecordReplayer deploys SQLite
[57] as its persistent data storage. And we wrote python code
to drive UI automation and intercept messages, we wrote C
code to replay recorded messages.

5.1. Experiment Setup

IoT Devices. We selected 12 representative IoT devices from
different categories, including car, sharing car, robot, smart
lock, smartwatch and smart router, etc. All these devices
have an official Android app used to manage them. The
detailed specifications of these IoT apps are described in
Table 1. In particular, we summarize app information and
theirUImodel.There are three types ofUImodel, Single-stage
Password Reset, Single-stage SMS Login, Multistage Password
Reset. Single-stage SMS Login can be considered as a special
type of Single-stage Password Reset.

Testing Environment. Our IoT UI automation runs on an
Ubuntu 12.04 PC with Intel Core i7 quad-core 3.6 GHz CPU
with 16G RAM, a wireless router TP-LINK TL-WAR1200L
1200M and an Android phone OnePlus. Both the phone and
PC are connected to the same wireless router, theWIFI proxy
of the OnePlus is configured to the PC. We did not test IoT

account of other customers, we register an account with our
experimental phone to simulate the victim account. During
our testing, the SMS authentication code will be sent to our
phone, but we never use it and we just perform brute-force
on the SMS authentication code.

5.2. Evaluation Result. We found the official apps of these
devices are vulnerable to the brute-force attack on SMS code,
an attacker can steal the accounts of these devices to control
them remotely. As shown in Table 2, we found 12 zero-
day vulnerabilities, the third column indicates whether the
vulnerability can be indexed publicly in the China National
Vulnerability Database [58](CNVD for short). Again, all vul-
nerabilities we founded have been reported to CNCERT/CC
[7] to help the vendor fix them.

There are 8 vulnerabilities about Single-stage Password
Reset and Login, and six of them are about password reset.
There are other 4 vulnerabilities about multistage password
Reset. Our tool supports both single-stage UI model and
multistage UI model.

5.3. Case Studies. CNVD-2017-03908 is a password reset
vulnerability about a smart lock that belongs to Panasonic.

12 Wireless Communications and Mobile Computing

First, our tool finds that the app uses Single-stage Password
Resetmodel. Second, it drives the app to generate a password
message. Third, it finds that there are no encryption and
signature in the message, so it mutates the SMS code in
the message directly on a computer that is faster than a
smartphone. Fourth, the tool sends mutated messages to the
cloud to reset password successfully. An attacker can use this
vulnerability to steal the victim account, then he can open
victim’s door to do anything. Panasonic has fixed this issue
now.

CNVD-2017-04583 is a login vulnerability about a shar-
ing car that belongs to a company that owns many cars and
leases them to the customers. First, our tool drives the app
to generate a password message. Second, it finds that the
message has a signature, it cannot directly mutate the SMS
code. Third, it uses UI automation to drive the app to try
all possible code to generate password messages and record
them to a database. At last, it replays all messages to the
cloud to generate a login token and forwards the token to the
application. As a result, an attacker can use the car sharing
service in victim’s name. It has been fixed now.

CNVD-2017-15147 is a password reset vulnerability
about a car intelligent interconnected system that can
send commands to the Electronic Control Unit (ECU for
short) to open/close door, window and Car-Carrying Air-
Conditioning. The app also uses Single-stage Password Reset
model, and the SMS code parameter uses a strange key name
checknum, not traditional ∗∗∗code. Our tool can find it
because we use different input values to infer parameter. An
attacker can utilize this vulnerability to drive a car away. It has
been fixed now.

CNVD-2017-12023 is a password reset vulnerability
about a smart home controller that can control a lot of devices
provided by broadlink, the app uses multistage password
reset model. Our tool first finds the right UI by analyzing
several sequential activities and drives the app to generate a
password resetmessages.Then our tool finds that themessage
is encrypted via inputting different values, so it uses UI
automation to generate all password messages and record
them to a database. At last, it replays all messages to the
cloud to reset password successfully. An attacker can use this
vulnerability to control home devices. It has been fixed now.

6. Discussions

Possible Countermeasures to Prevent This Attack. This paper
shows that Reset Your Password of IoT apps may be vul-
nerable, because an attacker can brute-force attack SMS
authentication code to crack IoT device user account without
any victim’s interaction. The core insights are (1) the search
space of SMS code used in the password reset is much smaller
than password, (2) the cloud does not limit the number
of attempt for account management. Frequency limitations,
such as IP-based strategy and Account-based strategy, may
pose some problems. If an attacker and legal customers are
behind the same NAT [59] gateway, IP-based strategy will
block legal customers to access to their devices. Account-
based strategy will block the device owner to access the
device, if an attacker performs brute-force on his account.

The best protection is to deploy CAPTCHA [59] in password
reset message, because our method relies on pregeneration
of all password reset messages containing every possible SMS
code. To balance security and usability, we can just activate
CAPTCHAwhen the number of unsuccessful attempts meets
a threshold.

Can SACIntruder Works on iOS. SACIntruder can also be
implemented on iOS, because the core insights are (1)
Reset Your Password is a feature at application level, it is
independent on the low-layer smartphone operating system.
(2) Human-friendly information, such as ''input your phone''
in Reset Your Password UI, is designed to guide user to input
easily. We can use this to identify the UI, no matter the app
is running on Android or iOS. (3) SMS authentication code
is also independent on the low-layer smartphone operating
system. It is usually a 4-digital or 6-digital number. Its
search space is small. The major difference in these two
platforms is UI automation, because it is dependent on the
low-layer smartphone operating system. On Android, we can
use uiautomator to control third apps. But we cannot do this
on iOS because of its app sandbox, we need a jailbroken
iphone to bypass this limitation. Then we can write our code
to control the whole iOS, such as capturing the screen to
identify UI via image processing and inputting data to third
apps.

Limitations. Our paper just focuses on HTTP/HTTPS pro-
tocols because of the popularity of REST. But there is no
limitation for IoT apps, they can use any protocol even private
version based on binary format. Our tool SACIntruder uses
theWIFI proxy ofAndroid phone to help packet interception,
so an IoT app can detect theWIFI proxy to prevent the packet
interception.

7. Related Work

Vulnerability Discovery in Embedded/IoT Device. Costin [60]
used static analysis to analyze more than 30000 firmware
images to find bugs including XSS, hardcoded private key-
pairs and back-door. Cui and Stolfo [61] found more than
500000 publicly accessible devices containing default cre-
dentials via Internet scanning. Cui and Costello [62] found
that remote firmware update functionality can be exploited
by attackers to insert malware. Davidson [11] used KLEE
symbolic execution engine to detect memory vulnerabilities
in open-source firmware. Li [63] ported the QEMU emulator
to detect vulnerabilities in SoC. Zaddach [42] combined
emulator and a real device to detect vulnerabilities. Chen [13]
ported QEMU to run the Linux-based firmware to detect
vulnerabilities on a large scale. Wang [64] designed a fuzz
framework RPFuzzer by sending normal network packets
and monitor CPU and system logs to detect vulnerabilities in
routers. Costin [14] analyzed the management web interface
in devices to detect vulnerabilities. Chen [65] designed a
fuzzing framework named IoTFuzzer that uses the rich
protocol information in IoT official app to guard fuzzing. In
contrast to these works, our paper focuses on vulnerability on
the IoT account. If the account is vulnerable, an attacker can
use the account to control device via the account.

Wireless Communications and Mobile Computing 13

Account Security. SQL injection, XSS, CSRF, and logic fault
are usually being used to hack an account. Halfond [66]
presented an extensive review of the different types of SQL
injection attacks. Vogt [67] tracked the flow of sensitive
information inside the web browser to prevent XSS. Barth
[68] performed an experimentation aboutCSRF vulnerability
in 283945 advertisements and presented a new variation on
CSRF attacks. Dalton [69] presented a novel methodology
based on Dynamic Information Flow Tracking to mitigate
authentication and access control vulnerabilities. Pellegrino
[70] used a black-box methodology to detect logic flaws
in web applications based on automatic identification of
a number of behavioral patterns. Wang [71] performed a
security analysis of cashier-as-a-service based web stores
and found several logic flaws that can allow an attacker
to buy an item at an arbitrarily low price. Gelernter [21]
presented the password reset MitM attack that exploits the
similarity of the registration and password reset processes,
this attack can be used to take over user accounts. Zuo [37]
performed password brute-forcing via automatic forgery of
cryptographically consistent request message, it hooked stan-
dard cryptographical API to get knowledge of algorithms.
Contrast to these works, our paper focuses on the SMS
authentication code for account management, an attacker
can perform brute-force attacking on the code to steal IoT
account without any interaction of victim.

Mobile App Analysis. Monkey [72] is a testing tool for
dynamic exploring the app UI automatically. Machiry [73]
proposed a system named Dynodroid for generating rel-
evant inputs to unmodified Android apps. Rastogi [41]
proposed a framework that automates the analysis of Android
application, it integrated multiple components comprising
different detection and automatic exploration techniques.
Anand, Mirzaei and Zuo applied symbolic execution [74–76]
to perform more systematic dynamic analysis, so they can
retrieve more internal knowledge but heavy overhead. Cui
[77] proposed a tool named Discoverer for automatic pro-
tocol reverse engineering from network traces. Beddoe [78]
maintained a protocol informatics project, it is very useful
for protocol reverse engineering. Our paper is particularly by
Monkey and protocol informatics project, we use UI testing
tool to explore the UI component and input test data, we use
different input values to identify interesting parameters.

8. Conclusion

We have performed the first security study of Reset Your
Password that is popular in IoT device account and found it
may be vulnerable because of the SMS-based authentication.
We have presented the design, implementation, and eval-
uation of SACIntruder, a tool that is able to automatically
perform brute-force attack on SMS code to test whether
an IoT account is vulnerable. We have tested SACIntruder
with representative IoT devices from different categories,
including car, sharing car, robot, smart lock, smart watch,
and smart router and found 12 zero-day vulnerabilities.
We reported all vulnerabilities to CNCERT/CC to help the
vendor to fix them, and all of them have been fixed now.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request. The
vulnerabilities found in this paper can be accessed in the
CNVD.

Disclosure

A conference version of this paper was presented at the
RESEC 2018.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported in part by the Science and
Technology Project of State Grid Corporation of China,
National Natural Science Foundation of China (Grant no.
61572115), and National Key Research and Development Plan
(2017YFB0802900), and Project 2117H14243A and Sichuan
Province Research and Technology Supporting Plan, China.

References

[1] Google. Android wear, 2018.
[2] G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, and D. Wag-

ner, “Smart locks: Lessons for securing commodity internet of
things devices,” in Proceedings of the 11th ACM Asia Conference
on Computer and Communications Security, ASIA CCS 2016, pp.
461–472, Xi’an, China, June 2016.

[3] C.-L. Hsu and J. C.-C. Lin, “An empirical examination of
consumer adoption of Internet of Things services: Network
externalities and concern for information privacy perspectives,”
Computers in Human Behavior, vol. 62, pp. 516–527, 2016.

[4] J.-Y. Lee, W.-C. Lin, and Y.-H. Huang, “A lightweight authenti-
cation protocol for Internet ofThings,” in Proceedings of the 3rd
International Symposium on Next-Generation Electronics, ISNE
2014, twn, May 2014.

[5] C. Doukas, I. Maglogiannis, V. Koufi, F. Malamateniou, and
G. Vassilacopoulos, “Enabling data protection through PKI
encryption in IoT m-Health devices,” in Proceedings of the 12th
IEEE International Conference on BioInformatics and BioEngi-
neering, BIBE 2012, pp. 25–29, November 2012.

[6] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance
evaluation of Attribute-Based Encryption: toward data privacy
in the IoT,” in Proceedings of the proceedings of the 2014 1st IEEE
International Conference on Communications (ICC ’14), pp. 725–
730, Sydney, Australia, June 2014.

[7] CNCERT/CC,National computer network emergency response
technical team/coordination center of china, 2018.

[8] Lucian Constantin, Hackers found 47 new vulnerabilities in 23
iot devices at def con. CSO, 2016.

[9] Chris Brook, Travel Routers, Nas Devices among Easily Hacked
iot Devices, 2017.

[10] N. Zhang, S. Demetriou, M. Xianghang et al., “Understanding
iot security through the data crystal ball:Where we are now and
where we are going to be,” https://arxiv.org/abs/1703.09809.

https://arxiv.org/abs/1703.09809

14 Wireless Communications and Mobile Computing

[11] D.Davidson,M. Benjamin, T. Ristenpart, and J. Somesh, “Fie on
firmware: Finding vulnerabilities in embedded systems using
symbolic execution,” in Proceedings of the In USENIX Security
Symposium, pp. 463–478, 2013.

[12] G.Hernandez, F. Fowze,D. Tian, T. Yavuz, andK. R. Butler, “Fir-
mUSB,” in Proceedings of the the 2017 ACM SIGSAC Conference,
pp. 2245–2262, Dallas, Texas, USA, October 2017.

[13] D. D. Chen, M. Egele, M. Woo, and D. Brumley, “Towards
Automated Dynamic Analysis for Linux-based Embedded
Firmware,” in Proceedings of the Network andDistributed System
Security Symposium, San Diego, CA.

[14] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic
firmware analysis at scale: A case study on embedded web
interfaces,” in Proceedings of the 11th ACM Asia Conference on
Computer and Communications Security, ASIA CCS 2016, pp.
437–448, chn, June 2016.

[15] devttyS0. Embedded device hacking, 2017.
[16] L. R. Knudsen and M. J. Robshaw, “Brute Force Attacks,” in

The Block Cipher Companion, Information Security and Cryp-
tography, pp. 95–108, Springer, Berlin, Heidelberg, 2011.

[17] K. Spett, Cross-Site Scripting, vol. 1, SPI Labs, 2005.
[18] J. Burns, Cross site request forgery. An introduction to a common

web application weakness, Information Security Partners, 2005.
[19] M. Wu, R. C. Miller, and S. L. Garfinkel, “Do security toolbars

actually prevent phishing attacks?” in Proceedings of the CHI
2006: Conference on Human Factors in Computing Systems, pp.
601–610, can, April 2006.

[20] N. Asokan, V. Niemi, and K. Nyberg, “Man-in-the-middle in
tunnelled authentication protocols,” in Security protocols, vol.
3364 of Lecture Notes in Comput. Sci., pp. 28–48, Springer,
Berlin, 2005.

[21] N. Gelernter, S. Kalma, B. Magnezi, and H. Porcilan, “The
Password Reset MitM Attack,” in Proceedings of the 2017 IEEE
Symposium on Security and Privacy, SP 2017, pp. 251–267, May
2017.

[22] D. Wang, J. Ming, T. Chen, X. Zhang, and C. Wang, “Cracking
IoT Device User Account via Brute-force Attack to SMS
Authentication Code,” in Proceedings of the the First Workshop,
pp. 57–60, Incheon, Republic of Korea, June 2018.

[23] Google. Android, the world’s most popular mobile platform,
2012.

[24] R. Fielding, J. Gettys, J. Mogul et al., “Hypertext Transfer
Protocol – HTTP/1.1,” RFC Editor RFC2616, 1999.

[25] R. Battle and E. Benson, “Bridging the semantic Web and Web
2.0withRepresentational State Transfer (REST),” Journal ofWeb
Semantics: Science, Services and Agents on the World Wide Web,
vol. 6, no. 1, pp. 61–69, 2008.

[26] A. Warshavsky, A. Fiske, B. Cinarkaya, and R. Guest, “System,
method and computer program product for performing one
or more actions utilizing a uniform resource locator,” The US
Patent, vol. 8, pp. 990-144, 2015.

[27] S. G. Stubblebine and V. D. Gligor, “On message integrity in
cryptographic protocols,” in Proceedings of the Proceedings 1992
IEEE Computer Society Symposium on Research in Security and
Privacy, pp. 85–104, May 1992.

[28] W. Chung-Ping and C-C. Jay Kuo, “Fast encryption methods
for audiovisual data confidentiality,” in Proceedings of the In
Multimedia Systems andApplications III, vol. 4209, pp. 284–296,
2001.

[29] M.Aizatulin, A.D.Gordon, and J. Jan, “Extracting and verifying
cryptographicmodels fromCprotocol code by symbolic execu-
tion,” in Proceedings of the 18th ACM Conference on Computer

and Communications Security, CCS’11, pp. 331–340, October
2011.

[30] M. Boreale, “Symbolic trace analysis of cryptographic proto-
cols,” in Automata, languages and programming, vol. 2076 of
Lecture Notes in Comput. Sci., pp. 667–681, Springer, Berlin,
2001.

[31] R. Corin and F. A. Manzano, “Efficient symbolic execution for
analysing cryptographic protocol implementations,” in Engi-
neering Secure Software and Systems, vol. 6542 of Lecture Notes
in Computer Science, pp. 58–72, Springer, Berlin, Germany, 2011.

[32] F. Gröbert, C. Willems, and T. Holz, “Automated Identification
of Cryptographic Primitives in Binary Programs,” in Recent
Advances in Intrusion Detection, vol. 6961 of Lecture Notes in
Computer Science, pp. 41–60, Springer, Berlin, Heidelberg, 2011.

[33] D. Evans and D. Larochelle, “Improving security using extensi-
ble lightweight static analysis,” IEEE Software, vol. 19, no. 1, pp.
42–51, 2002.

[34] C. R. Ramakrishnan and J. Rehof, “Attacking path explosion in
constraint-based test generation,” in Proceedings of the nterna-
tional Conference on Tools and Algorithms for the Construction
and Analysis of Systems, 366, 351 pages, Springer.

[35] C. Cadar and K. Sen, “Symbolic execution for software testing:
Three decades later,” Communications of the ACM, vol. 56, no.
2, pp. 82–90, 2013.

[36] I. You and K. Yim, “Malware obfuscation techniques: a brief
survey,” in Proceedings of the 5th International Conference on
Broadband Wireless Computing, Communication and Applica-
tions (BWCCA ’10), IEEE, pp. 297–300, November 2010.

[37] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic Forgery
of Cryptographically Consistent Messages to Identify Security
Vulnerabilities in Mobile Services,” in Proceedings of the Net-
work and Distributed System Security Symposium, San Diego,
CA, 2016.

[38] S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govin-
dan, “PUMA: Programmable UI-automation for large-scale
dynamic analysis of mobile apps,” in Proceedings of the 12th
Annual International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys 2014, pp. 204–217, usa, June 2014.

[39] D. Crockford, “The application/json Media Type for JavaScript
Object Notation (JSON),” RFC Editor RFC4627, 2006.

[40] T. Bray, J. Paoli, and Michael Sperberg-McQueen. C., “Exten-
sible markup language (xml),”World Wide Web Journal, vol. 4,
no. 2, pp. 27–66, 1997.

[41] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: automatic
security analysis of smartphone applications,” in Proceedings of
the 3rd ACM Conference on Data and Application Security and
Privacy (CODASPY ’13), pp. 209–220, ACM, February 2013.

[42] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L.
Khan, “SMV-HUNTER: Large Scale, Automated Detection of
SSL/TLS Man-in-the-Middle Vulnerabilities in Android Apps,”
in Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA, 2014.

[43] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping:
Reverse engineering of graphical user interfaces for testing,”
in Proceedings of the 10th Working Conference on Reverse
Engineering, WCRE 2003, pp. 260–269, November 2003.

[44] R. Winsniewski, Android–apktool: A tool for reverse engineering
android apk files, 2012.

[45] Y. Zhang, X. Luo, and H. Yin, “DexHunter: Toward extracting
hidden code from packed android applications,” in Proceedings
of the European Symposium on Research in Computer Security,
pp. 293–311, 2015.

Wireless Communications and Mobile Computing 15

[46] C. Hu and I. Neamtiu, “Automating GUI testing for android
applications,” in Proceedings of the 6th International Workshop
on Automation of Software Test, AST 2011, Co-located with ICSE
2011, pp. 77–83, May 2011.

[47] S. Gunasekaran and V. Bargavi, “Survey on automation testing
tools formobile applications,” International Journal of Advanced
Engineering Research and Science, vol. 2, no. 11, pp. 2349–6495,
2015.

[48] Android Developers. Android debug bridge, 2014.
[49] E. H.Weigle, “High-speed and high-fidelity system andmethod

for collecting network traffic,”TheUS Patent, vol. 7, pp. 783-739,
2010.

[50] A. Orebaugh, G. Ramirez, and J. Beale, Wireshark & Ethereal
network protocol analyzer toolkit, Elsevier, 2006.

[51] L. Richardson and S. Ruby, RESTful web services, O’Reilly
Media, Inc., 2008.

[52] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform
Resource Locators (URL),” RFC Editor RFC1738, 1994.

[53] S. Ramanujam and M. Karuppiah, “Designing an algorithm
with high avalanche effect,” IJCSNS International Journal of
Computer Science andNetwork Security, vol. 11, no. 1, pp. 106–111,
2011.

[54] P.-E. Danielsson, “Euclidean distance mapping,” Computer
Graphics and Image Processing, vol. 14, no. 3, pp. 227–248, 1980.

[55] Xiaocong, Python wrapper of android uiautomator testing
framework, 2014.

[56] mitmproxy. An interactive tls-capable intercepting http proxy,
2016.

[57] S. Parkes, Sqlite: An embeddable sql database engine, 2011.
[58] CNCERT/CC. China national vulnerability database, 2018.
[59] G. Tsirtsis and P. Srisuresh, “Network Address Translation -

Protocol Translation (NAT-PT),” RFC Editor RFC2766, 2000.
[60] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S.

Antipolis, “A large-scale analysis of the security of embedded
firmwares,” in Proceedings of the In USENIX Security Sympo-
sium, pp. 95–110, 2014.

[61] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity
of embedded network devices: Results of a wide-area scan,” in
Proceedings of the 26th Annual Computer Security Applications
Conference, ACSAC 2010, pp. 97–106, December 2010.

[62] A. Cui, M. Costello, and J. S. Stolfo, “When firmware mod-
ifications attack: A case study of embedded exploitation,” in
Proceedings of the NDSS, 2013.

[63] H. Li, D. Tong, K. Huang, and X. Cheng, “FEMU: A firmware-
based emulation framework for SoC verification,” in
Proceedings of the 8th IEEE/ACM International Conference
on Hardware/Software-Co-Design and System Synthesis,
CODES+ISSS 2010, pp. 257–266, usa, October 2010.

[64] Z. Wang, Y. Zhang, and Q. Liu, “RPFuzzer: A framework for
discovering router protocols vulnerabilities based on fuzzing,”
KSII Transactions on Internet and Information Systems, vol. 7,
no. 8, pp. 1989–2009, 2013.

[65] J. Chen, W. Diao, Q. Zhao et al., Iotfuzzer: Discovering memory
corruptions in iot through app-based fuzzing, 2018.

[66] W. G. Halfond and A. Orso, “A classification of sql-injection
attacks and countermeasures,” in Proceedings of the IEEE Inter-
national Symposium on Secure Software Engineering, vol. 1 of
IEEE, pp. 13–15, 2006.

[67] V. Philipp, F. Nentwich, N. Jovanovic, E. Kirda, K. Christopher,
and V. Giovanni, “Cross site scripting prevention with dynamic

data tainting and static analysis,” inProceedings of theNDSS, vol.
2007, p. 12, 2007.

[68] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses
for cross-site request forgery,” in Proceedings of the 15th ACM
conference on Computer and Communications Security, CCS’08,
pp. 75–87, usa, October 2008.

[69] D.Michael, C. Kozyrakis, andN. Zeldovich,Nemesis: Preventing
authentication & access control vulnerabilities in web appli-
cations, 2009.

[70] G. Pellegrino and D. Balzarotti, “Toward Black-Box Detection
of Logic Flaws in Web Applications,” in Proceedings of the
Network andDistributed SystemSecurity Symposium, SanDiego,
CA, 2014.

[71] R. Wang, S. Chen, X. Wang, and S. Qadeer, “How to shop for
free online security analysis of cashier-as-a-service based web
stores,” in Proceedings of the 2011 IEEE Symposium on Security
and Privacy, SP 2011, pp. 465–480, May 2011.

[72] Android Developers. Ui/application exerciser monkey, 2012.
[73] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: an input

generation system for android apps,” in Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineer-
ing (FSE ’13), pp. 224–234, ACM, August 2013.

[74] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in Proceedings of the 20th
ACM SIGSOFT International Symposium on the Foundations of
Software Engineering, FSE 2012, November 2012.

[75] Z. Chaoshun and L. Zhiqiang, “Smartgen: Exposing server
urls of mobile apps with selective symbolic execution,” in In
Proceedings of the 26th International Conference on World Wide
Web, pp. 867–876, International World Wide Web Conferences
Steering Committee, 2017.

[76] N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R.
Mahmood, “Testing android apps through symbolic execution,”
ACM SIGSOFT Software Engineering Notes, vol. 37, no. 6, p. 1,
2012.

[77] C. Weidong, K. Jayanthkumar, and J. H. Wang, “Discoverer:
Automatic protocol reverse engineering from network traces,”
in In USENIX Security Symposium, p. 14, 1, 2007.

[78] B. Marshall,The Protocol Informatics Project, 2004.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

