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Highlights / eTOC Blurb 
● Mice made navigational decisions based on accumulating pulsatile visual cues 
● The bulk of neural activity in visual cortices was sequential and beyond-sensory 
● Accumulated pulse-counts modulated sensory (cue) responses, suggesting feedback 
● A feedback-loop neural circuit explains behavioral deviations from Weber’s Law 

In a task where navigation was informed by accumulated pulsatile visual evidence, neural 
activity in visual cortices predominantly coded for cognitive variables across multiple 
timescales, including outside of a visual processing context. Even sensory responses to 
visual pulses were amplitude-modulated by accumulated pulse counts and other variables, 
inspiring a multiplicative feedback-loop circuit hypothesis that in turn explained behavioral 
deviations from Weber-Fechner Law. 
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Summary 

Studies of perceptual decision-making have often assumed that the main role of sensory 
cortices is to provide sensory input to downstream processes that accumulate and drive 
behavioral decisions. We performed a systematic comparison of neural activity in primary 
visual (V1) to secondary visual and retrosplenial cortices, as mice performed a task where 
they should accumulate pulsatile visual cues through time to inform a navigational 
decision. Even in V1, only a small fraction of neurons had sensory-like responses to cues. 
Instead, in all areas neurons were sequentially active, and contained information ranging 
from sensory to cognitive, including cue timings, evidence, place/time, decision and reward 
outcome. Per-cue sensory responses were amplitude-modulated by various cognitive 
quantities, notably accumulated evidence. This inspired a multiplicative feedback-loop 
circuit hypothesis that proposes a more intricate role of sensory areas in the accumulation 
process, and furthermore explains a surprising observation that perceptual discrimination 
deviates from Weber-Fechner Law. 
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Introduction 

As sensory information about the world is often noisy and/or ambiguous, an evidence 
accumulation process is thought to be fundamental to perceptual decision-making, and 
requires working memory for maintenance and updating of the accumulated information. 
Neural circuits that perform this are incompletely known, but canonically hypothesized to 
involve multiple stages—sensory detection, accumulation, categorization, action 
selection—chained together in a predominantly feedforward manner  (Gold and Shadlen 
2007; Brody and Hanks 2016; Caballero, Humphries, and Gurney 2018) . A substantial body 
of work seeks possible mappings of these conceptual stages to brain regions. In the 
neocortex, sensory areas are obvious candidates for the earliest (detection) stage, but have 
received relatively little attention in regards to other possible contributions.  

The BRAIN COGS collaboration  (“BRAIN Circuits Of coGnitive Systems,” n.d.)  aims to 
understand the neural underpinnings of such decision-making behaviors from a 
whole-brain perspective, using the highly tractable mouse model system for which we have 
developed a navigation-based visual evidence accumulation task (“Accumulating-Towers” 
task, see  (Lucas Pinto et al. 2018) ). In the present work, we performed a thorough 
characterization of neural population activity in layers 2/3 and 5 of six early cortical areas, 
including the primary visual cortex (V1), secondary visual areas, and retrosplenial cortex. 
Unexpectedly, only a small part of neural activity in the visual areas was correlated with the 
momentary visual stimulus. Instead we observed prevalent coding of long timescale and 
cognitive/internal information, with differences only in degree compared to the 
retrosplenial cortex, a region thought to be involved in episodic memory, learning, and 
navigation  (Mitchell et al. 2018; Vann, Aggleton, and Maguire 2009) . Our �indings for the 
visual cortices also had similarities to related studies of the posterior parietal cortex (PPC), 
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which is thought to be involved in sensorimotor transformations, navigation and 
decision-making  (Lyamzin and Benucci 2018) . 

We discovered the predominant form of neural dynamics in all areas and layers to be the 
sequential activation of cells. This resembles place cells in the hippocampus  (Moser, Kropff, 
and Moser 2008) , and place preferences have been reported by others in V1  (Saleem et al. 
2018) . However, most cells were preferentially active on either right- or left-choice trials, a 
phenomenon previously reported in the PPC  (Harvey, Coen, and Tank 2012; Morcos and 
Harvey 2016) . In fact, in all areas the activity levels of sequentially active cells contained 
further information about the accumulated evidence, behavioral choice, and reward 
outcome, including all these quantities from the past trial. These phenomena continued 
throughout the inter-trial-interval, despite the absence of a visual context. Even in V1, only 
a small fraction (5-10%) of all active cells exhibited sensory-like responses that were 
time-locked to individual visual cues. Remarkably, in all areas the per-cue amplitudes of 
these responses were also modulated by evidence, place/time, choice, and reward outcome.  

Our �indings of decision-related, non-sensory responses in sensory areas, as well as 
non-sensory modulations of sensory responses, invite the revisiting of two broad strokes of 
the canonical picture of decision-making based on accumulated evidence: the feedforward 
nature of the �irst stages, and the functional modularity of the involved brain regions 
(Siegel, Buschman, and Miller 2015; Michelson, Pillow, and Seidemann 2017) . Top-down 
feedback is a candidate explanation for choice-related effects in sensory responses  (Britten 
et al. 1996; Romo et al. 2003; Nienborg and Cumming 2009; Yang et al. 2016; Bondy, 
Haefner, and Cumming 2018; Wimmer et al. 2015; Haefner, Berkes, and Fiser 2016) . 
Inspired by our neural observations that the amplitudes of sensory responses depended on 
accumulated counts, we proposed a multiplicative feedback-loop circuit model where 
accumulator feedback acts as a dynamic gain on the sensory input. Interestingly, this model 
could explain an unexpected psychophysical effect in pulse-based evidence accumulation 
tasks  (Scott et al. 2015; Lucas Pinto et al. 2018) , where the perceptual accuracy of animals 
deviated from the Weber-Fechner Law  (Fechner 1966; Gallistel and Gelman 2000) . For a 
�ixed ratio of right-to-left counts, the Weber-Fechner Law states that discrimination of the 
difference should not depend on total counts. However, we found that the psychophysical 
data only followed this law at high total counts, with a transition between accuracy regimes 
that was best predicted by the feedback-loop model compared to models without feedback. 
Our results thus suggest that a behaviorally important feature of the accumulation process 
may be a gradual ampli�ication of the per-pulse sensory responses, as re�lected in neural 
activity in as early as V1. 

Results 

We used cellular-resolution two-photon imaging to record from six posterior cortical 
regions of 11 mice trained in the Accumulating-Towers task ( Fig. 1 A–C). These mice were 
from transgenic lines that express the calcium-sensitive �luorescent indicator GCaMP6f in 
cortical excitatory neurons (Methods), and prior to behavioral training underwent surgical 
implantation of an optical cranial window centered over either the right or left parietal 
cortex. The mice then participated in previously detailed behavioral shaping  (Lucas Pinto et 
al. 2018)  and neural imaging procedures as summarized below. 
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Mice were trained in a head-�ixed virtual reality system  (Dombeck et al. 2010)  to navigate 
in a T-maze. As they ran down the stem of the maze, a series of transient (200ms), randomly 
located tower-shaped cues ( Fig. 1 B) appeared along the right and left walls of the cue 
region corridor (length cm; see Methods), followed by a delay region where no00Lcue ≈ 2  
cues appeared. The locations of cues were drawn randomly per trial, with 
Poisson-distributed mean counts of 7.7 on the majority and 2.3 on the minority side, and 
mice were rewarded for turning down the arm corresponding to the side with more cues. 
As mice control the virtual viewing angle , cues could appear at a variety of angles θ  ϕcue  
( Fig. 1 C). We accounted for this in all relevant data analyses, as well as conducted control 
experiments in which  was restricted to be exactly zero from the beginning of the trial upθ  
to midway in the delay period (referred to as -controlled experiments; see Methods). Inθ  
agreement with previous work  (Lucas Pinto et al. 2018) , all mice in this study exhibited 
characteristic psychometric curves and utilized multiple pieces of evidence to make 
decisions, with a moderate primacy effect ( Fig. 1 E-F). For �ixed total numbers of cues on the 
right (#R) and left (#L) sides, there was no degradation of performance with increasing 
effective length of the delay period ( Fig. 1 G). This is compatible with a negligible effect of 
memory leakage with time, as observed also in rats performing evidence-accumulation 
tasks  (Brunton, Botvinick, and Brody 2013; Scott et al. 2015) .  

For each mouse, we �irst identi�ied the locations of the visual areas ( Fig. 1 D; Methods) using 
one-photon wide�ield imaging and a retinotopic visual stimulation protocol  (Zhuang et al. 
2017) . Then, while the mice performed the task, we used two-photon imaging to record 
from  �ields of view in either layers 2/3 or 5 from one of six areas ( Table S1 ,00μm 00μm5 × 5  
Table S2 ): the primary visual cortex (V1), secondary visual areas (AM, PM, MMA, MMP; as 
in  (Zhuang et al. 2017) ), and retrosplenial cortex (RSC). From referencing the retinotopic 
map to skull landmarks (Methods), areas AM and MMA in our functionally de�ined imaging 
sites may coincide substantially with the stereotactically de�ined coordinates of posterior 
parietal cortex (PPC) in related studies  (Harvey, Coen, and Tank 2012; Morcos and Harvey 
2016; Runyan et al. 2017; Goard et al. 2016; Hwang et al. 2017) , and may also be 
functionally similar to PPC as noted in  (Minderer, Brown, and Harvey 2019) . After 
correction for rigid brain motion, regions of interest representing putative single neurons 
were extracted using a semi-customized (Methods) demixing and deconvolution procedure 
(Pnevmatikakis et al. 2016) . The �luorescence-to-baseline ratio  was used as anF F  Δ /  
estimator of neural activity, and only cells with  transients per trial were selected for.1≥ 0  
analysis. In total, we analyzed 10,481 cells from 145 imaging sessions. 
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Figure 1 .   Two-photon calcium imaging of multiple cortical areas during a navigation-based 
evidence accumulation task.   (A)  Layout of the virtual T-maze in an example left-rewarded trial. 
  (B)  Example snapshot of the cue region corridor from a mouse’s point of view when facing straight 
down the maze. Two cues on the right and left sides can be seen, closer and further from the mouse 
in that order.   (C)  Illustration of the virtual viewing angle . The visual angle  of a given cue isθ  ϕcue  
measured relative to  and to the center of the cue. The y spatial coordinate points straight downθ  
the stem of the maze, and the x coordinate is transverse.  is the velocity of the mouse in the virtualv→  
world.   (D)  Average visual �ield sign map (  mice) and visual area boundaries, with all recordedn = 5  
areas labeled. The visual �ield sign is -1 (dark blue) where the cortical layout is a mirror image and 
+1 (dark red) where it follows a non-inverted layout of the physical world.   (E)  Sigmoid curve �its to 
psychometric data for how frequently mice turned right for a given difference in right vs. left cue 
counts, .   (F)  Logistic regression weights for predicting the mice’s choice given theR−#L  Δ ≡ #  
evidence  in three spatial bins of the cue region. Error bars: 95% C.I. across bootstrapΔ  
experiments.   (G)  Performance vs. effective duration of the delay period, which is the distance from 
the last cue to the end of the T-maze stem. Data were pooled over all #R + #L for statistical power, 
but analyses that account for this yield the same result  (Lucas Pinto et al. 2018) . Error bars: 95% 
C.I.  

 

Neural populations in all recorded areas contain a variety of present and past 
task-related information from sensory to internal/cognitive 

In evidence-accumulation tasks, the visual areas are often assumed to perform basic 
sensory processing that provides necessary input to—but are not otherwise involved 
in—accumulation and decision formation  (Nienborg and Cumming 2009; Wimmer et al. 
2015; Haefner, Berkes, and Fiser 2016) . We investigated whether such a division of function 
is actually re�lected in the neural activity of these areas, by asking if they contained 
information about various task-related quantities. 

The bulk of neural activity in all areas and layers followed choice-speci�ic sequences of 
activation previously reported in PPC  (Harvey, Coen, and Tank 2012; Morcos and Harvey 
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2016) . Individual neurons were active for short time intervals ( Fig. 2 C) that within a trial 
were staggered in time across the population, with  of cells preferentially active in5%~ 7  
either right- or left-choice trials ( Fig. 2 A;  Fig. S2 A-C for -control experiments). Thisθ  
structure of activity was highly consistent across trials as well as similar for primary vs. 
secondary visual areas:  of cells were active in speci�ic place/time locations ( Fig.0%~ 9  
S1 A), and these cells were active in  of preferred-choice trials. RSC differed in having0%~ 6  
a more uniform spacing in between peak activity locations across cells ( Fig. 2 B; ,0p ≤ 1 4−  
K-S test), and cells being less reliably active in preferred-choice trials ( ;  Fig. S1 B). In5%~ 4  
all cases, cells with ipsilateral- vs. contralateral-choice preferences were intermixed in the 
same brain hemisphere ( Fig. S1 E). Signals could also be identi�ied in all areas/layers that 
seemed explicitly sensory, in that 5-10% (~2% in RSC) of cells responded in a time-locked 
manner to individual cues (“cue-locked” cells, discussed in the next sections). As most of 
these cells responded to a preferred laterality of cues, they also had choice speci�icity due to 
the correlation between choice and stimulus (red-highlighted rows in  Fig. 2 A). Apart from 
the above quantitative details that differed mostly between the visual areas and RSC, the 
overall form of neural activity was similar across areas and layers, and resembled previous 
�indings for PPC. 

6 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/568766doi: bioRxiv preprint first posted online Mar. 6, 2019; 

https://paperpile.com/c/iWsc3p/DiMo+lJAk
http://dx.doi.org/10.1101/568766


3/5/2019 Neural Correlates of Cognition in Primary Visual versus Neighboring Posterior Cortices during Visual Evidence-Accumulation-based Navig…

https://docs.google.com/document/d/1I8pei0gMCKvZG3ZW9HRb8td4FdjLgyzJmCYHepYzr6w/edit?ts=5bb21579# 7/84

 

Figure 2 .   Neural activity in all areas/layers were qualitatively similar, and followed 
choice-specific sequences of activation throughout the trial.   (A)  Normalized and trial-averaged 
activity of cells (rows), for single example imaging sessions in the six recorded areas (

 cells respectively). Cells were divided into left-/right-choice06, 22, 23, 48, 32, 9n = 1 1 1 1 1 8  
preferring populations, and sorted by the location of peak activity in correct preferred-choice trials. 
Cue-locked cells were separately sorted (red bars). Error trials were excluded in this analysis. 
 (B)  Rank of sorted cells vs. the location of peak activity, excluding cue-locked cells. Data were 
pooled across sessions for a given area (colors) and layer (top vs. bottom plots).   (C)  Duration of 
�iring �ields vs. location of peak activities. The �iring �ield is de�ined as the span of time-points with 
activity at least half the height of the peak (above baseline) in trial-averaged data. Data were pooled 
across sessions for a given area/layer. Line: Mean across cells. Bands: S.E.M. 

 

Although the majority of cells had striking temporal preferences and could be described as 
responding to cues or a particular place/time in the trial, the magnitudes of these 
responses differed depending on other behavioral contexts, only one of which is choice. 
Even if the subset of neurons that are active in different time periods may be very different, 
these context-dependent changes in activity could be coordinated across the neuronal 
population to encode information stably through time. To quantify such population-level 
information, we trained a separate support vector machine (SVM) per time-point in the 
trial to linearly decode a given behavioral quantity  from the  vector ofX F F  Δ /  
simultaneously recorded neurons (neural population state; see Methods). As discussed 
below,  is either the evidence de�ined as accumulated counts of contralateral (ipsilateral)X  
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cues, choice, or reward outcome, and the following show that all areas/layers contain 
information beyond that which is purely sensory. 

For evidence decoding, we excluded explicitly sensory a.k.a. cue-locked cells from the 
neural population state, and dissociated count information from choice by only using trials 
of the same choice laterality (e.g. contralateral-choice trials for decoding contralateral 
counts).  Fig. 3 A-B shows the correlation between the actual counts and the value predicted 
from neural activity in various areas/layers, with timepoints colored when this is 
signi�icantly better than chance (cross-validated and corrected for multiple comparisons, 
see Methods;  Fig. S2 D for -control experiments). In all areas and layers, this correlationθ  
was high throughout the cue period and gradually decayed in the delay period, but 
intriguingly rose again in the inter-trial-interval (ITI). In fact, during the cue period 
information about evidence in the  previous  trial remained strongly present, at levels 
comparable to evidence in the present trial (right vs. left plots of  Fig. 3 A-B).  

Analogously, we decoded choice independently of cue/evidence information by excluding 
cells that were cue-locked or had activity that depended on  for a �ixed choiceR L  Δ = # − #  
(Methods).  Fig. 3 C shows that in all areas, choice classi�ication accuracy rose throughout 
the cue period. This could re�lect the behavioral �inding that mice accumulated evidence 
over an extended period ( Fig. 1 F), i.e. during which the eventual choice should not be fully 
predictable. Visual scene differences in right- vs. left-choice trials did not account for all of 
the choice decoding accuracy (see Discussion). This is explicitly so in control experiments 
where we eliminated scene differences by enforcing the view angle  to be zero up toθ  
midway in the delay period ( Fig. S2 E,I-J), as well as in analyses where we weighted the data 
to have the same  distribution for both choice categories ( Fig. 3 D, see Methods). Choiceθ  
information also persisted throughout the ITI when there was no visual input.  

Lastly, we used the same method to decode reward outcomes while controlling for choice. 
Outcome decoding accuracies were high in all areas/layers starting from the end of the 
trial, and persisting well into the next trial ( Fig. 3 E;  Fig. S2 F for -control experiments). Inθ  
sum, information about evidence, choice, and reward outcome were signi�icantly present in 
all areas and layers, albeit more weakly in V1. This includes past-trial records of all these 
variables particularly during the ITI and cue period, with the strongest signals in the most 
medial areas, RSC and MMP.  
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Figure 3 .   Neural populations in all areas/layers contained information about evidence, choice 
and trial reward outcome, including from the past trial.    (A)  Correlation between actual and 
predicted number of contralateral cues from neural population states vs. time, in various areas 
(lines) and layers (columns), averaged across cross-validation test sets and across mice. 
Time-points are colored if the decoding correlation is signi�icantly different from chance 
(permutation test;  corrected for multiple comparisons).   (B)  Same as  (A)  but for.1 0p < 1 × 1 4−  
ipsilateral cues ( ).   (C)  Same as  (A) , but for the accuracy of classifying choice (.1 0p < 7 × 1 5−

).   (D)  Same as  (C) , but controlling for view angle by equalizing  distributions across.5 0p < 1 × 1 4− θ  
choice (Methods; ). Ambiguous time-bins are where  is near-perfectly correlated.1 0p < 8 × 1 5− θ  
with choice.   (E)  As in  (C) , but for decoding whether the mouse received a reward. ( )..7 0p < 1 × 1 4−  
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Pulses of evidence evoke transient, time-locked responses in all recorded areas 

In searching for sensory responses, we indeed found neurons in all areas/layers that had 
activities clearly time-locked to the pulsatile cues (examples in  Fig. 4 A-B). In trials with 
sparse occurrences of preferred-side cues, the activities of these cells tended to return to 
baseline following a fairly stereotyped impulse response. Individually they thus seemed to 
code only information about momentary cues, although as a population they can form a 
more persistent stimulus memory  (Goldman 2009; Scott et al. 2017; Miri et al. 2011) . 
Interestingly, the amplitudes of these cells’ responses seemed to be variable in a structured 
way, both across time in a trial, as well as across trials where the mouse made right vs. left 
choices (columns in  Fig. 4 A-B). We wanted to know if these �luctuations also encoded 
task-relevant information. 

For a given cell, we estimated the amplitude of its response to each cue  by modeling thei  
cell’s activity as a time series of non-negative amplitudes  convolved with an impulseAi  
response function ( Fig. 4 C). The latter was de�ined by lag, rise-time and fall-time 
parameters that were �it to each cell, but were the same for all cues for that cell 
(deconvolving calcium dynamics; see Methods). For a subset of neurons, this impulse 
response model resulted in excellent �its when the model included only primary responses 
to either right- or left-side cues (e.g.  Fig. 4 D). In much rarer instances, adding a secondary 
response to the opposite-side cues resulted in a signi�icantly better �it (e.g.  Fig. 4 F). We 
de�ined cells to be cue-locked if the primary-response model yielded a much better �it to 
the data than a permutation test (discounting for the number of parameters by using AIC C 
as goodness-of-�it, see Methods and  (Hurvich and Tsai 1989) ). For these cells, the 
trial-averaged activity predicted by the impulse response model ( Fig. 4 G, magenta) was 
signi�icantly and substantially larger than the residuals of the �its, which had negligible 
magnitudes and time-structure ( Fig. 4 G, black). This indicates that there were no large 
unaccounted-for components, particularly those with long timescales such as a systematic 
rise in baseline activity.  

Signi�icantly cue-locked cells comprised a small fraction of the overall neural activity, but 
were nevertheless present in all areas/layers and exhibited some progression of response 
timescales from V1 to other areas. About 5-10% of cells in visual areas were signi�icantly 
cue-locked, compared to  in RSC ( Fig. 4 H;   Fig. S4 B for -control experiments). Of%~ 2 θ  
these, only  had secondary responses that were moreover much less signi�icantly%~ 5  
time-locked ( Fig. 4 F); most cells responded to only contralateral cues ( Fig. S3 A). The onset 
of the half-maximum response was  after each pulse ( Fig. 4 I), and the response00ms~ 2  
full-width-at-half-max (FWHM) was  but increased from V1 to secondary visual00ms~ 1  
areas to RSC ( Fig. 4 J; -control experiments  Fig. S4 C). The impulse response model thusθ  
identi�ied cells that, on a cue-by-cue basis, follow what one might expect of purely 
visual-sensory responses, up to amplitude changes that we next discuss. 
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Figure 4 .   Pulses of evidence evoke transient, time-locked responses that are well described by 
an impulse response model.     (A)  Trial-by-trial activity (rows) vs. time of an example 
right-cue-locked cell, aligned in time to the end of the cue period (dashed line). Onset times of left 
(right) cues in each trial are shown as red (blue) dots.   (B)  Same as  (A) , but for an  atypical 
right-cue-locked cell that has some left-cue-locked responses.   (C)  Depiction of the impulse 
response model.   (D)  Prediction of the impulse response model for the cell in  (A)  in one example 
trial. This cell had no signi�icant secondary (left-cue) responses.   (E)  Same as  (D)  but for the cell 
in  (B) . The model prediction is the sum of primary (right-cue) and secondary (left-cue) 
responses.   (F)  Distribution of cue-locking signi�icance for cells with a signi�icant primary response 
(above 5 standard deviations compared to cues-shuf�led �its).   (G)  Trial-averaged impulse response 
model prediction vs. location in the cue region (purple), compared to the residual (data minus 
model prediction, black).  was normalized to the mean prediction per cell. The modelF F  Δ /  
prediction rises gradually from baseline at the beginning of the cue period due to nonzero lags in 
response onsets. Line: Mean across cells. Band: 95% C.I.   (H)  Percent of signi�icantly cue-locked 
cells in various areas/layers. Chance: . Error bars: 95% C.I.   (I)  Distribution (kernel%3 × 10−5  
density estimate) of the half-maximum onset time of the primary response, for cells in various 
areas. Data were pooled across layers (inter-layer differences not signi�icant). Error bars: S.E.M. 
Stars: signi�icant differences in means (Wilcoxon rank-sum test).   (J)  As in  (I)  but for the 
full-width-at-half-max. Statistical tests use data pooled across layers. Means are signi�icantly 
different across layers for all areas except V1 and RSC (Wilcoxon rank-sum test). 
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Cue-locked responses are amplitude-modulated by present and past cognitive 
quantities in all recorded areas 

Studies of perceptual decision-making have shown that the animal’s upcoming choice 
affects the activity of stimulus-selective neurons in a variety of areas  (Britten et al. 1996; 
Nienborg and Cumming 2009) . We analogously looked for such effects (and more) while 
accounting for the highly dynamical nature of stimuli in our task, focusing on the 
primary-response amplitudes  of cue-locked cells. Importantly, the impulse responseA }{ i  
model deconvolves responses to individual cues, so  may be conceptualized as aAi  
multiplicative gain factor at the instant of the  cue. In observations like  Fig. 4 A-B, theseith  
amplitudes appear to systematically depend on time as well as choice. This may indicate 
coding of place/time and choice as we have found for non-cue-locked cells, but may also 
arise indirectly from correlations with other behavioral variables. Most obviously, there 
may be a receptive �ield given by the visual angle of the cue ( ,  Fig. 1 C), as well as ϕcue  
modulations due to running speed  (Niell and Stryker 2010; Saleem et al. 2013)  and 
navigational location  (Saleem et al. 2018) . A graded dependence on cue counts is another 
candidate explanation, as cue counts rise during the trial. An effective count dependence 
may also be due to stimulus-speci�ic adaptation (SSA;  (Ulanovsky, Las, and Nelken 2003; 
Sobotka and Ringo 1994) ) or enhancement  (Vinken, Vogels, and Op de Beeck 2017; Kaneko, 
Fu, and Stryker 2017) . 

Given limited data statistics, we only compared a small set of six conceptually distinct 
hypotheses involving the above factors. All six models assume the amplitudes to be drawn 
from a Gamma distribution, with mean given by an angular receptive �ield shape that is 
scaled by other effects as follows (summarized in  Table S3 ; see Methods). The baseline 
hypothesis is the angular-receptive-�ield-only model. Next, the “ ” model additionally v  
depends on running speed. The remaining four models all include  and speed ϕcue  
parameters, but multiplied by dependencies on different factors that can explain 
time-dependent trends. The “SSA” model parameterizes adaptation/enhancement with 
exponential time-recovery in between cues. The “ ” model depends on the spatial locationy  
of the cue. The “ ” model has location and speed dependencies indexed by choice.C  
Lastly, the “ ” model has cue-count dependence ( , , or ). This selection of # R  # L  # R L  Δ = # − #  
models allows us to ask if cue-locked responses are suf�iciently explained by previously 
known effects, or if after accounting for such there are still effects related to the 
accumulation process, such as choice or cue-count dependence. 

We constructed the amplitude model prediction as the AIC C -likelihood-weighted average of 
the above models, which accounts for when two or more are comparably good  (Volinsky et 
al. 1999) . As illustrative examples,  Fig. 5 A shows how the amplitudes of two simultaneously 
recorded cue-locked cells in area AM depended on various factors and compared to model 
predictions. There are clear differences in predictions for right- vs. left-choice trials that can 
also be seen in the raw amplitude data (2 nd -4 th  columns of  Fig. 5 A;  Fig. S4 A for -controlledθ  
experiments). Although both cells responded preferentially to right-side cues, they had 
oppositely signed choice modulation effects, de�ined as the difference between amplitude 
model predictions on contralateral- vs. ipsilateral-choice trials (Methods).  Fig. 5 B shows 
another example cell that had no signi�icant dependence on choice, but instead on the 
accumulated evidence . These three cells are typical of how angular receptive �ield andΔ  
running speed effects were often insuf�icient to explain choice- and count-dependent 
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trends. The dominantly choice-dependent and not count-dependent predictions for cells A 
and B ( Fig. 5 A) and conversely for cell C ( Fig. 5 B) are also exemplary of how large fractions 
of cells strongly preferred one model over the other (relative likelihoods in  Fig. S3 B-C). 

To summarize the prevalence and composition of effects, we selected the best model per 
cell using AIC C , defaulting in ambiguous cases to already-known effects 
(angular-receptive-�ield-only or speed model, in that order). In all areas and layers, 0%> 9  
of cue-locked cells exhibited some form of amplitude modulations beyond angular 
receptive �ield effects ( Fig. 5 C;  Fig. S4 E for -controlled experiments). Overall,  ofθ %36+4

4−  
cells were best explained by SSA while  favored either choice or cue-counts models,%50+4

4−  
with non-signi�icant differences across layers (  and  respectively, z-test)..11  p = 0 .09  p = 0  
There were also no signi�icant inter-area differences in proportions of cells that preferred 
SSA, choice, or cue-counts models, except marginally for the choice model in layer 5 of V1 
vs. PM ( , z-test). While there is likely a continuum of cells including those with.048  p = 0  
mixed effects, most cells fall into approximate categories with SSA, choice- or count-related 
modulations, with remarkably little difference in composition across areas and layers. 

Cells in the two largest categories, SSA and choice, had qualitatively different population 
statistics for how their cue-response amplitudes depended on place/time in the trial. Most 
cells ( ) that favored the SSA model corresponded to a phenotype with decreased%93+3

4−  
responses to subsequent cues. Adaptation effects were weakest in V1 and stronger in 
secondary visual areas and RSC ( Fig. 5 D, but see  Fig. S4 F for -controlled experiments),θ  
although the  recovery timescale had no signi�icant inter-area differences except for.8s  ~ 0  
PM vs. RSC ( Fig. S3 E, , Wilcoxon rank-sum test). In contrast, cue-locked cells with.027  p = 0  
both choice laterality preferences were intermixed in all areas and layers ( Fig. S3 F-G; θ
-controlled experiments  Fig. S4 D). Both subpopulations of positively and negatively 
modulated cells exhibit gradually increasing effects vs. place/time ( Fig. 5 E,  Fig. S3 I).  

As the above are reminiscent of the array of effects we have described for non-cue-locked 
cells, we wondered if long-timescale choice and reward information could similarly be 
decoded from cue-response amplitudes. We de�ined the neural population state as the 
vector of amplitudes in response to contralateral cues only, and otherwise applied the same 
methods as for  Fig. 3 .  Fig. 5 F shows that choice could be decoded from cue-locked 
amplitudes as expected from  Fig. 5 E, but that the choice in the previous trial could also be 
decoded, mostly in the medial areas ( Fig. 5 H-top). Reward outcomes in both present and 
past trials could reliably be decoded in all areas ( Fig. 5 G,H-bottom). During the cue region, 
there is an apparent ability to predict the upcoming reward ( Fig. 5 G-left), which likely 
corresponds to count-related amplitude modulations (“ ” model in  Fig. 5 C). Outcome #  
decoding accuracies could be as high as that for non-cue-locked cells ( Fig. 3 C-E), in datasets 
with just 5-15 cue-locked cells (70-80% accuracies,  Fig. S3 J). Therefore, far from being 
purely sensory responses, the amplitudes of cue-locked cells instead re�lected present- and 
past-trial information just like the rest of the neuronal population. 
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Figure 5 .   Cue-locked cell amplitudes are modulated by visual angle, speed, location, cue 
frequency, counts, and choice.    (A)   Response amplitudes of two example right-cue-locked cells 
(rows) vs. various behavioral variables (columns). Data are marked in blue (red) according to the 
upcoming right (left) choice, and model predictions are shown separately for right- vs. left-choice 
trials (lines). Cue counts are slightly jittered for visualization. The data in the rightmost three 
columns were restricted to a subset where angular receptive �ield effects are small, corresponding 
to the shaded area in the leftmost plots.   (B)  Same as  (A)  but for a signi�icantly -modulatedΔ  
neuron.   (C)  Percentages of cells that favor various amplitude modulation models. Error bars: 95% 
C.I. for sum over the indicated models; the remaining fraction are cells that favor the 
angular-receptive-�ield-only model.   (D)  Distribution (kernel density estimate) of 
adaptation/enhancement factors for cells that favor the SSA model. A factor of 1 corresponds to no 
adaptation, while for other values the subsequent response is scaled by this amount with 
exponential recovery towards 1. Error bars: S.E.M. Stars: signi�icant differences in means (Wilcoxon 
rank-sum test).   (E)  Choice modulation strength vs. place/time, for contralateral-cue-locked cells 
only (ipsilateral-cue-locked cells in  Fig. S3 I). Lines: mean across cells in a given area. Bands: std. dev. 
of data pooled across all areas/layers. Both mean and std. dev. are shown separately for cells with 
positive vs. negative modulations.   (F)  Cross-validated accuracy of decoding the upcoming (left half) 
and past-trial (right half) choice from cue-response amplitudes. Solid lines: means across datasets 
for which this was signi�icant, by area. Bands: S.E.M. by area. Dashed lines: 95% interval for data 
pooled across areas.   (G)  Like  (F)  but for decoding reward outcome.   (H)  Percents of imaging 
sessions that had signi�icant choice (top plot) and reward (bottom plot) decoding accuracy. Error 
bars: 95% C.I. Differences in means (Wilcoxon rank-sum test) for upcoming-choice decoding are 
signi�icant only for V1 vs. secondary visual areas and vs. RSC, and for past-choice decoding only for 
V1 vs. RSC. Differences for upcoming-reward decoding are not signi�icant, and for past-reward are 
signi�icant only for V1 vs. RSC. 

 

Cue-locked amplitude modulations motivate a multiplicative feedback-loop 
circuit model  

We hypothesize that the cue-locked sensory responses in visual areas provide momentary 
cue information that drives an accumulation process, which ultimately drives choice. If this 
is true, modulations of cue-response amplitudes by variables such as evidence and choice 
( Fig. 5 C) may predict speci�ic perceptual biases in decision making. We note that 
relationships between sensory responses and choice can arise in a purely feedforward 
circuit structure  (Shadlen et al. 1996) , because the sensory neural responses have a causal 
role in producing the behavioral choice. However, as previously argued this should result in 
similar timecourses of neural and behavioral �luctuations  (Nienborg and Cumming 2009) ; 
instead, we observed contrasting timecourses: as each trial evolved, there was a slow 
increase  in time in choice modulations of cue-locked responses ( Fig. 5 E-F;  Fig. S3 I), which 
was opposite to the behaviorally-assessed  decrease  in time in how sensory evidence 
�luctuations in�luenced the mice’s choice ( Fig. 1 F). Additionally, a feedforward structure 
predicts that positive �luctuations in right- (left)-preferring cue-locked neurons should 
produce rightwards (leftwards) �luctuations in choice. Instead, we observed that about half 
of the cue-locked cells were modulated by choice in a manner opposite to their cue-side 
preference ( Fig. S3 F-G). Both of these observations argue against a purely feedforward 
structure and thus support the existence of feedback in�luences on sensory responses 
(Wimmer et al. 2015; Nienborg and Cumming 2009; Haefner, Berkes, and Fiser 2016) .  
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We therefore propose that feedback projections from a downstream pulse accumulator 
induce choice- and pulse-count-modulations of cue-locked sensory responses. We used a 
simpli�ied dynamical systems model to ask what behavioral consequences would be 
predicted by such feedback. The model we considered has separate accumulators for the 
right and left stimulus streams, as psychophysical analyses suggest that there are two 
near-independent accumulators which are then compared to form the behavioral 
decision  (Scott et al. 2015; Brunton, Botvinick, and Brody 2013) . We thus describe below a 
model for a right-side-speci�ic accumulator given by a single scalar variable ; identical(t)ar  
results hold for a left-accumulator .(t)al  

Based on neural and behavioral �indings, we made a few simplifying assumptions that 
allowed the model dynamics to be solved for analytically (details in Methods). The sensory 
units are described by an -dimensional activity vector , all of which receive the same nr (t)  r→  
time-varying input stimulus, . Because psychophysical performance depended on total(t)  R  
accumulated pulse counts but not on the duration of the pulse stream ( Fig. 1 G;  (Scott et al. 
2015; Brunton, Botvinick, and Brody 2013; Lucas Pinto et al. 2018) ), we assumed that the 
accumulator  performs leak-free integration of its input. At each point in time, we tookar  
the input to the accumulator  to be a weighted sum of the activities of the  sensoryar  nr  
units. Thus , where  is the vector of input (feedforward) weights. Aa (t) dt (t)  d r / = r→ · w→  w→  
central feature of our model is that  feeds back as a dynamic,  multiplicative  gain(t)ar  
control on the input to sensory units. By this we mean that the sensory responses (t)  r→

follow the input drive  plus a multiplicative factor:(t)  R  

         ( 1 )(t) (t) 1 (t) u]  r→ = R × [
→

+ ar →  

Here  speci�ies the accumulator feedback weights for each sensory unit, and  is the  u→  1
→

 nr
-dimensional vector with 1 for each coordinate. Note that, inspired by the transience of 
cue-locked neural responses, we have assumed in  Eq. 1  that the sensory unit activities (t)  r→  
instantaneously follow their input.  

As illustrated in  Fig. 6 A, this feedback-loop model can produce increasing/decreasing 
sensory responses depending on whether the feedback weight  for the  sensory unit isui ith  
positive or negative. Because the accumulator-modulated sensory activity is again fed 
forward into the accumulator, the circuit compounds the effect of the stimulus and can 
produce exponentially increasing accumulator values. In sum, the accumulator dynamics 
are given by 

         ( 2 )a (t) dt (t) (t) 1 (t) a (t) u   d r / = r→ · w→ = R
→

· w→ + R r
→· w→  

The solution to this is (Methods): 

   ( 3 )(t) ar = u·w→ →
1·w
→ →

e −1[ u·w N (t)→ →
R ]   

where N (t) R(t) dt   R ≡ ∫  

This is in contrast to a purely feedforward version ( ), which would result in pure u→ → 0  
integration: 

    ( 4 )(t)  N (t)  ar = 1
→

· w→ R  
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 Note that the lack of a leak term in  Eqs. 3  and  4 , and the multiplicative nature of the 
feedback in  Eq. 3 , means that when the input drive  then , i.e. the(t)  R = 0 a (t) dt  d r / = 0  
accumulators are stable. In fact, a feature of  Eqs. 3  and  4  is that the accumulator value does 
not depend explicitly on time, only on the cumulative stimulus input up to that time, (t)NR  
for arbitrary . The intuition for pulsatile stimuli is that all changes to the sensory and(t)  R  
accumulator states are gated by the stimulus drive, so the entire system only changes state 
when there is a pulse and is not sensitive to the time interval between pulses. Consequently, 
psychophysical predictions of these two models, and comparisons between them, depend 
only on the net stimulus  at the end of a trial, and not otherwise on trial duration. InNR  
contrast to multiplicative feedback, it is also possible to achieve time-independent 
integration in an architecture with additive feedback, so long as there is also an 
appropriately tuned amount of accumulator leak  (Seung 1996) . However, in such circuits 
the accumulator continues to drive sensory units (de�ined as those that directly receive 
stimulus input) even in the absence of stimuli  (Wimmer et al. 2015; Seung 1996) . For 
pulsatile stimuli, this predicts changes in baseline sensory-unit activities in between pulses 
that do not match our observations of cue-locked cells ( Fig. 4 A-B,G). A multiplicative 
architecture, where sensory responses are scaled ( Eq. 1 ) by an accumulator that depends 
on only the cumulative stimulus ( Eq. 3 ), is thus consistent with both neural and behavioral 
features that we set out to model. 

Our feedback-loop model makes predictions about two properties of sensory unit activities 
that are compatible with observed trends in the amplitudes of cue-locked cells. First, 
sensory unit activities in response to pulsatile stimuli have heights linearly related to the 
accumulator contents ( Eq. 1 ). To focus speci�ically on possible dependencies on 
accumulated counts, we �irst excluded cue-locked cells with responses consistent with 
stimulus-speci�ic adaptation (SSA;  Fig. 5 C), and restricted the data to the last-cue response 
in a trial (restricted to the last third of the cue period, to minimize differences correlated 
with place/time). We asked whether the last-cue response amplitude  A  also depended on 
cue count  N , independently of choice and view angle effects (as shown in  Fig. 5 ). We thus 
linearly regressed the last-cue response amplitude  vs. cue counts , controlling forA N  
choice by performing this separately in right- vs. left-choice trials, then averaging the 

 slope across choice (Methods). Within a given choice category, we also controlledA dN  d /  
for view angle  by weighting trials so that the  distribution is the same acrossθ θ  
cue-counts (Methods). We found two comparably sized subpopulations with signi�icantly 
positive or negative  slopes ( Fig. 6 C, cyan and green entries;  Fig. S4 G for -controlledA dN  d / θ  
experiments). In the model, these two subpopulations would correspond to 
positively-modulated ( ) and negatively-modulated ( ) sensory unitsui > 0  ui < 0  
respectively. For cells with signi�icantly nonzero slopes vs. a permutation test (Methods), 
Fig. 6 D shows that the count modulation effect size is large and fairly consistent across 
cells, resulting in a factor of  change in amplitudes over the behaviorally encountered ~ 3  
range of cue counts . The second prediction of the feedback-loop model is that the FanoN  
factor, , should increase (decrease) with  for positively-(A) ar(A) mean(A)  F ≡ v / N  
(negatively-)modulated sensory units (Methods; illustrated in  Fig. S5 A-B). Although other 
mechanisms can also produce non-constant Fano factors, a linear regression model of (A)F  
vs.  (Methods) indeed showed a compatible prevalence of positive (negative) Fano-factorN  
slopes for the two subpopulations of cells with signi�icantly positive (negative) A dN  d /  
slopes ( Fig. 6 E, top vs. bottom, effect size in  Fig. 6 F;  Fig. S4 H for -controlled experiments).θ  
In these ways, the feedback-loop model predicts cue-count dependencies for sensory unit 
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activities that qualitatively match observations for cue-locked cells. This is in contrast to 
purely feedforward architectures ( Fig. 6 B; see  Eq. 4 ), where sensory responses have no(t)  r→  
systematic count dependence (Methods). 

 

Figure 6 .   A multiplicative feedback-loop circuit explains cue-locked cell amplitude modulations 
vs. counts.     (A)  Left: Schematic of the feedback-loop circuit model of a right-stimulus-stream 
accumulator. Dice indicate locations where additive/multiplicative noise may arise. Right: 
Single-trial illustration of time traces for dynamics at the sensory vs. accumulator stages of the 
model, for a given right-stimulus stream (bottom).   (B)  As in  (A) , but for a purely feedforward 
model.   (C)  Distribution of choice-averaged slope ( ) for the linear regression model ofA dN  d /  
amplitude  vs. number of preferred-side cues . Cells with signi�icant slopes vs. a permutationA N  
test are highlighted in color (excluding cells compatible with SSA, dashed histogram).   (D) 
Choice-averaged amplitude at the end of the cue region vs. the total number of preferred-side cues. 
To account for cell-speci�ic activity rates, this is normalized to the average across counts per cell. 
Only cells with signi�icant cue-count slopes as highlighted in  (C)  were included. Line: averages 
across cells with positive vs. negative slopes. Band: std. dev. across cells. Data were pooled across 
areas and layers.   (E)  Distribution of slopes from linear regression of the Fano factor vs. 
preferred-side cue counts, separately for positively and negatively modulated cells as in  (C) . Cells 
with signi�icant Fano factor slopes vs. a permutation test are highlighted in color.   (F)  Fano factor at 
the end of the cue region vs. total number of preferred-side cues, normalized to the average across 
counts per cell. Only cells with signi�icant cue-count as well as Fano-factor slopes as highlighted in 
(E)  were included. According to the model, non-monotonic trends are possible for negatively 
count-modulated cells only (see Methods for derivation). Line: averages across cells with positive 
vs. negative  slopes. Band: std. dev. across cells.A dN  d /  
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A multiplicative feedback-loop architecture best explains asymptotic 
Weber-Fechner scaling in psychophysical performance 

Because a multiplicative feedback-loop circuit hypothesis can explain count-modulation of 
cue responses in the neural data, we wondered if it could also explain psychophysical 
features of pulsatile accumulation tasks. For otherwise identical models, the presence vs. 
absence of accumulator feedback on sensory units predicts two different mathematical 
forms ( Eq. 3  vs.  Eq. 4 ) for how left and right accumulator values depend on the input 
stimulus, and consequently potential differences in the accuracy of comparing the two 
accumulators to produce a choice. We compared which of the feedforward versus feedback 
forms best �its two sets of behavioral data: the full Accumulating-Towers dataset  (Lucas 
Pinto et al. 2018) , as well as data from rats performing a pulse-based visual accumulation 
task with no navigational requirements  (Scott et al. 2015) . For all these data, where the 
behavior has little dependence on time or trial history  (Lucas Pinto et al. 2018; Scott et al. 
2015)  , the fraction of correct trials is only a function of the numbers of cues  on theNmaj  
majority and  on the minority side. Two long-standing theories predict qualitativelyNmin  
different trends for this function, yet neither fully matches the data. As described below, our 
feedback model yields a better �it than either of these famous theories.  

First, evidence accumulation is often modeled as an integration process, for which the 
central limit theorem of statistics states that performance should improve vs. total counts 
( Fig. S5 C;  (Scott et al. 2015) ). Second, the psychophysical Weber-Fechner Law contrastingly 
postulates that discriminability depends only on the ratio , i.e. performanceN  Nmin/ maj  
should be constant vs. total pulse counts  ( Fig. S5 D;  (Fechner 1966) ). In N tot = Nmaj + Nmin  
both mouse and rat data ( Fig. 7 A), we intriguingly observed both types of trends. For 

 performance increased with  as qualitatively predicted—but turns outN  Nmin/ maj = 0 N tot  
not  to be fully explained by—the central limit theorem. In contrast, for N .4  Nmin/ maj = 0  
there was little dependence of performance on , consistent with Weber-Fechner Law.N tot   

The above theories each assume that one dominant source of stochasticity drives the 
psychophysical performance of the accumulator circuit. For the integrator (“ intg ”) model 
subject to the central limit theorem, this source is a per-pulse sensory noise that is 
independent across pulses. For pure Weber-Fechner scaling to apply (“ webr ” model), 
independent per-pulse sensory noise should be negligible compared to a memory-level 
noise  (Gallistel and Gelman 2000) . To account for the data deviating from both these 
theories, we hypothesized that the accumulator circuit instead mixes effects from multiple 
signi�icant sources of stochasticity. In total, we considered the effects of per-pulse sensory 
noise, slow modulatory noise that multiplies the sensory response, noise associated with 
comparing accumulators, and an evidence-independent lapse rate . The criticalplapse  
comparison here was then between two models that each had all these sources of 
stochasticity, but differed in whether there was accumulator-feedback onto the sensory 
units (“ fdbk ” model,  Eq. 3 ), or if the circuit was purely feedforward (“ ffwd ” model,  Eq. 4 ). 

In the following, we summarize the setup of the  fdbk  and  ffwd  models, with details in the 
Methods. For both models, the effect of sensory noise is to replace the true integrated 
stimulus in  Eqs. 3  and  4   with a Gaussian distribution. Together with a model-speci�ic 
modulatory noise on sensory unit responses (described below), this leads to a distribution 
of possible values for the accumulator state in response to a given stimulus. We model noise 
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in the operation of comparing right-side ( ) to left-side ( ) accumulators as the decisionar al  
variable ( ) being additionally Gaussian-distributed around . This decision variablec −aar l  
predicts that the subject will make a choice to the right with probability , up to a(c )P > 0  
fraction of lapse trials where the subject instead makes a random choice. The difference in 
the modulatory noise source between models, is that for the  fdbk  model we hypothesized 
that the accumulator feedback is noisy, or equivalently that the feedback weight is 
stochastic per trial. This is in contrast to the  ffwd  model, where we hypothesized a 
non-speci�ic source of slow gain �luctuations, equivalent to scaling the accumulator value 
with a stochastic variable per trial. 

Fig. 7 B illustrates how the predicted perceptual performance of the above models depend 
on total cue counts , for a �ixed ratio  and identical noise+  N tot = Nmin Nmaj N .5  Nmin/ maj = 0  
parameters. Both  ffwd  and  fdbk  models predict a transition between a regime at low counts 
where sensory and accumulator-comparison noise have strong effects, seen in the rising 
trend of the performance curve, and a Weber-Fechner regime at high counts where 
performance saturates at less than the lapse rate because modulatory noise dominates 
(formally shown in the Methods). The distinction between these models is in how the  fdbk 
model reduces to simple integration with no modulatory noise at low counts, and thus 
predicts a steeper rise in performance vs. counts than the  ffwd  model, where modulatory 
noise is always at play. At high counts, both model predictions converge and exhibit 
Weber-Fechner scaling. 

These four accumulator models have free parameters that specify the distributions of 
various noise sources, which we estimated by maximizing model likelihoods with respect to 
the behavioral data (Methods). The  fdbk  model best �itted the pooled data for both mice 
( Fig. 7 C) and rats ( Fig. 7 D). We were unable to distinguish between models for most 
individual mice due to small sample sizes, particularly in parameter regions of high .N tot  
However, the  larger rat datasets conclusively favored models with Weber-Fechner0~ 1 ×  
scaling ( ffwd  or  fdbk ) for all individuals, with all but one rat favoring the  fdbk  model. 
Overall, the behavior is poorly explained by exclusively integration noise or Weber-Fechner 
scaling, instead favoring models that involve a mixture of noise effects.  

As discussed, the difference between the  ffwd  and  fdbk  models is in how quickly 
Weber-Fechner scaling starts to dominate with increasing .  Fig. 7 E shows the pooledN tot  
mouse data compared to predictions of the four models, where the  fdbk  model differs from 
the  ffwd  model in predicting a more constant asymptotic trend. For rats the  fdbk  model 
matches a slightly non-monotonic performance trend ( Fig. 7 F), which is mathematically 
impossible for any of the other models. A circuit architecture with feedback modulations of 
sensory responses thus best explains the behavioral data, as well as being the only model 
considered here that explains count dependence of cue-locked amplitudes. 
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Figure 7 .   A multiplicative feedback-loop circuit best explains asymptotic Weber-Fechner 
scaling in perceptual performance, compared to models without feedback.     (A)  Behavioral 
performance (percent of correct trials) vs. total cue counts, for two �ixed ratios of minority over 
majority cue counts. Data were pooled across mice (rats). Points are joined by lines to guide the eye. 
Error bars: 95% C.I.   (B)  Illustration of perceptual performance for circuit architectures described 
in the text, with  and the same parameters for all noise distributions ( , N .5  Nmin/ maj = 0 σ1 = 1

, , , ; where relevant). The  webr  model predicts constantμu = 0 .5σu = 0 σc = 1 .15plapse = 0  
performance.   (C)  AIC C  likelihood ratios for models relative to the  fdbk  model, which best �its the 
pooled mouse data.   (D)  As in  (C) , but for rat behavioral data.   (E)  Pooled mouse data as in  (D) , 
compared to model predictions (lines) for the four models in  (A) .   (F)  As in  (E) , but for rat data vs. 
model predictions. 

Discussion 

Psychophysics-motivated evidence accumulation models  (Ratcliff and McKoon 2008; Stone 
1960; Bogacz et al. 2006)  have long guided research into how such algorithms may map 
onto neural activity and areas in the brain. A complementary, bottom-up approach starts 
from data-driven observations and formulates hypotheses based on the structure of the 
observations (cf.  (Shadlen et al. 1996; Wimmer et al. 2015) ). In this direction and as part of 
a broader project  (“BRAIN Circuits Of coGnitive Systems,” n.d.) , we exploited the mouse 
model system to systematically record from and characterize neural activity in layers 2/3 
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and 5 of six posterior cortical areas during a task involving temporal accumulation of visual 
evidence. While similar breadths of survey have been made in nonhuman primates 
performing perceptual decision-making tasks  (Siegel, Buschman, and Miller 2015; de 
Lafuente and Romo 2006) , our work differs in the examination of and �indings for the 
earliest cortical areas, starting from V1 (but see  (Hernández et al. 2010) ).  

To �irst order, the visual cortical hierarchy is thought to process sensory data in order to 
extract increasingly abstract visual features, although recent work has shown this 
processing to be modi�iable by motor feedback, temporal statistics, learned associations, 
and attentional control  (Roelfsema and de Lange 2016; Gilbert and Sigman 2007; Kimura 
2012; Gavornik and Bear 2014; Keller and Mrsic-Flogel 2018; Glickfeld and Olsen 2017; 
Niell and Stryker 2010; Saleem et al. 2013; Shuler and Bear 2006; Fiser et al. 2016; Haefner, 
Berkes, and Fiser 2016; T. S. Lee and Mumford 2003; Zhang et al. 2014; Saleem et al. 2018; 
Makino and Komiyama 2015; Keller, Bonhoeffer, and Hübener 2012; Poort et al. 2015; Li, 
Piëch, and Gilbert 2004; Stănişor et al. 2013; Petreanu et al. 2012; Romo et al. 2002; Luna et 
al. 2005; Nienborg, Cohen, and Cumming 2012; Yang et al. 2016; Britten et al. 1996) . Still, 
despite such an encroachment on cognitive operations historically ascribed to higher-order 
areas, few of these studies have concerned perceptual decision-making behaviors, and it is 
unclear how well they will extrapolate to the latter. One generally prevalent idea is that the 
information being processed should still be visual in some way, whether via input from the 
retina, associations that link visual responses to other events, or visual-feature predictions 
from other parts of the brain. Our �indings did not fully follow this prescription, but instead 
showed novel deviations from a vision-related nature. For example, there was substantial 
coding for evidence (a cognitive variable not directly tied to the current visual scene) 
during the cue period, which then declined in the delay period down to chance levels by the 
end of the trial. Remarkably, evidence information strongly “resurfaced” in all areas during 
the inter-trial-interval (ITI;  Fig. 3 A-B), despite a lack of  visual correlates or indeed any 
visual input at all during this period. In fact, there was a large and distinct subset of cells 
(~25%, see  Fig. 2 ) that coded for multiple abstract quantities like evidence, choice, and 
reward during the ITI ( Fig. 3 ). Another trial-context-related effect was the factor of ~2 
higher accuracy for decoding contralateral ( Fig. 3 A) vs. ipsilateral ( Fig. 3 B) evidence in the 
cue period, whereas in the ITI both were comparable and there was, if anything, higher 
accuracy for decoding the difference  ( Fig. S1 J). These phenomena hint at thereR L  Δ = # − #  
being possibly two different mechanisms and functions for evidence information during vs. 
after the trial. They are the most obvious but not the only surprising discovery. 

Overall in our data, activity in visual cortex predominantly re�lected abstract variables that 
had no direct correspondences to the current visual stimulus.  of active cells had0%≤ 1  
responses time-locked to the visual cues. The remaining ~90% were sequentially active in 
place/time, with population activity patterns encoding present as well as past-trial 
information about evidence, choice, and reward outcome. Although the proportion of 
cue-locked responses may have been higher had the visual cues been speci�ically tuned to 
retinotopic and other (e.g. spatial/temporal frequency) preferences of the recorded areas, 
our �indings nevertheless revealed a rich set of beyond-visual phenomena that pervaded 
the visual cortices---if anything, despite a lack of optimized visual drive. Inter-area 
differences were also mostly in degree when comparing V1 to secondary visual areas and 
even the retrosplenial cortex, although the smaller physical extent of secondary visual areas 
meant that more of the cortical retinotopic space was included in our recordings. Our 
�indings of predominantly beyond-sensory responses in visual cortices are qualitatively 
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different from the strongly stimulus-driven responses in sensory cortices reported in other 
sensorimotor transformation tasks   (Goard et al. 2016; Pho et al. 2018; Runyan et al. 2017) . 

Although psychophysical models often conceptualize perceptual decision-making as a 
feedforward process with detection, accumulation, and categorization stages, the neural 
data here show no clear mapping between neural responses and such a feedforward set of 
stages. Instead, “downstream” quantities, such as choice and accrued evidence, strongly 
in�luenced neural activity in regions as early as V1, including the amplitudes of sensory-like 
responses (cf.  (Nienborg and Cumming 2009) ). These neural observations inspired us to 
propose an alternative multiplicative feedback-loop circuit model. This mathematical model 
turned out to better predict the psychophysical performance of mice and rats performing 
pulsatile evidence-accumulation tasks, compared to previous feedforward models. We thus 
explore below some thoughts on how our �indings may �it into more complex and 
non-feedforward pictures of neural circuits that underlie the Accumulating-Towers 
behavior. 

The accumulation process may be distributed and include a beyond-sensory role 
for the visual cortices 

One prominent feature in all of our data is the presence of evidence-related signals 
throughout the behaviorally indicated accumulation period ( Fig. 3 A-B). These signals have 
previously been reported in a variety of brain areas downstream of V1 (reviewed in  (Brody 
and Hanks 2016) ), yet perturbation studies have tended not to match expectations for an 
accumulation circuit (but see  (Brody and Hanks 2016; Yartsev et al. 2018) ). In fact, 
speci�ically for the Accumulating-Towers task, a separate optogenetic perturbation study 
showed that bilateral inactivation of  any  dorsal cortical site had behavioral effects, the 
details of which differed across areas  (L. Pinto et al. 2018) . In that study, temporally-speci�ic 
inactivations induced surprisingly heterogeneous changes in the weighting of evidence vs. 
place/time, such that even for V1 there was no clear correspondence to its expected 
function as (only) a source of momentary sensory input. A possible explanation for these 
neurophysiological and perturbation �indings is that the accumulation process is highly 
distributed, with many brain regions—including sensory cortices—contributing in 
overlapping but not entirely redundant ways.  

One speci�ic proposal for distributed architectures argues that working memory is not a 
separate and dedicated subsystem of the brain, but rather that all cortical circuits can 
accumulate information, over timescales that follow a roughly hierarchical progression 
across brain regions  (Hasson, Chen, and Honey 2015; Chaudhuri et al. 2015; Christophel et 
al. 2017; Sreenivasan, Vytlacil, and D’Esposito 2014) . Compatible with these theories, 
progressing from V1 to secondary visual areas to RSC we observed increasing timescales of 
cue-locked responses ( Fig. 4 I-J), increasing strengths of stimulus-speci�ic adaptation ( Fig. 
5 D), and increasing measures of past-trial information ( Fig. 3 ,  Fig. 5 H). Our results are also 
compatible with other experimental observations of increasing timescales along a cortical 
hierarchy  (Murray et al. 2014; Runyan et al. 2017; Dotson et al. 2018; Schmolesky et al. 
1998) , and furthermore show that even regions as early as V1 contain across-trial 
information about choice, reward, and sensory history, as previously reported in 
frontoparietal areas  (Morcos and Harvey 2016; Scott et al. 2017; Akrami et al. 2018) . A 
gradual increase in timescales across brain areas suggest that each area may contribute 
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incrementally to the persistence of information, and if so, our data support that this process 
also includes the visual cortices. 

Spatial and decision-related variables as well as visuomotor feedback may all 
drive choice-specific sequences of neuronal activation 

As animals navigate, place cells in the hippocampus are thought to form a cognitive 
representation of space by virtue of different subsets of cells being active in different 
locations in the environment  (Moser, Kropff, and Moser 2008) . This kind of phenomenon in 
fact describes the bulk of neural activity in all our data. While place preferences have 
previously been reported for V1 in non-decision-making contexts  (Saleem et al. 2018; Fiser 
et al. 2016) , our data more closely resemble observations of PPC in a decision-making 
context  (Harvey, Coen, and Tank 2012; Morcos and Harvey 2016; Krumin et al. 2018) . In 
particular, as mice ran down the T-maze these place-like cells formed sequential activation 
patterns that differentiated into one of two choice-speci�ic sequences.  (Krumin et al. 2018) 
noted that this could be explained by individual cells having �iring �ields parameterized 
predominantly by two spatial factors, the  location along the maze and the view angle ,y θ  
with small but nonzero gains from including choice as a third factor. Such an ambiguity 
between  and choice as descriptions arises because mice execute their navigational choiceθ  
by controlling , so the two variables are necessarily correlated. Our �indings areθ  
compatible with  (Krumin et al. 2018)  in that after accounting for , choice decodingθ  
accuracy from neural activity was small albeit signi�icant ( Fig. 3 C vs.  Fig. 3 D). Interestingly 
however, as discussed below, control experiments where  was not a factor instead showedθ  
substantial choice-related effects ( Fig. S2 ,  Fig. S4 ). In a delayed match-to-sample paradigm, 
others have also reported sequential neural activity in the posterior cortex that depended 
on more than visual/spatial factors, in particular a different sequence for each sample 
stimulus, despite the latter having no visual or spatial correlates during the delay period 
(Lu and Tank 2018) . 

Why might neural activity depend on view angle ? There are at least three possibleθ  
interpretations. First,  determines the visual environment shown to the mouse ( Fig.θ  
1 B-C). For visual cortical activity, we do expect differences in visual scene to have 
signi�icant effects, such as angular receptive �ields for cue responses ( Fig. 5 A-B). Second, in 
navigation  is also one of the necessary coordinates  for representing the animal’sθ x, , )  ( y θ  
location in space, which the brain is thought to keep track of internally as well as to correct 
with sensory input  (Moser, Kropff, and Moser 2008) . The prevalent dependence of neural 
activity on  may thus re�lect computations that support spatial cognition, performedy, )  ( θ  
by an interactive loop between visual and navigational subsystems of the brain. Third, θ  
and the eventual choice  may together be signatures of a latent decision variable thatC  
drives navigational actions. In tasks like ours, mice appear to continuously execute 
navigational decisions, as inferred from tendencies in how they turn towards the target 
T-maze arm fairly early on in the trial  (Lucas Pinto et al. 2018; Krumin et al. 2018; Morcos 
and Harvey 2016; Sanders and Kepecs 2012) . This suggests that an underlying decision 
variable may be correlated on a roughly timepoint-by-timepoint basis with the navigational 
outcome that it drives, i.e. both  and . One important distinction between theseθ C  
behavioral readouts is that  is sampled continuously whereas  is only known at the endθ C  
of the trial. If neural activity re�lects a decision variable that continuously drives behavior, it 
can thus be better correlated with the time series  than the eventual choice , as theθ C  
latter can only be assumed to be constant (no changes of mind) and binary in value. In this 

24 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/568766doi: bioRxiv preprint first posted online Mar. 6, 2019; 

https://paperpile.com/c/iWsc3p/5k4S
https://paperpile.com/c/iWsc3p/2MVu+BEpL
https://paperpile.com/c/iWsc3p/2MVu+BEpL
https://paperpile.com/c/iWsc3p/DiMo+lJAk+IdFO
https://paperpile.com/c/iWsc3p/IdFO
https://paperpile.com/c/iWsc3p/IdFO
https://paperpile.com/c/iWsc3p/6HuO
https://paperpile.com/c/iWsc3p/5k4S
https://paperpile.com/c/iWsc3p/Qj6T+IdFO+lJAk+XWad
https://paperpile.com/c/iWsc3p/Qj6T+IdFO+lJAk+XWad
http://dx.doi.org/10.1101/568766


3/5/2019 Neural Correlates of Cognition in Primary Visual versus Neighboring Posterior Cortices during Visual Evidence-Accumulation-based Navig…

https://docs.google.com/document/d/1I8pei0gMCKvZG3ZW9HRb8td4FdjLgyzJmCYHepYzr6w/edit?ts=5bb21579# 25/84

way, a dependence on a latent decision variable can also explain the observed dependencies 
of neural activity on both  and to a lesser but nonzero extent .θ C   

The multiple interpretations above are all a question of whether  dependencies originateθ  
from the visual sensory input, an internally maintained spatial representation, or a 
behavior-driving decision variable related to choice. It would in fact be intriguing for all 
three factors to be present in the activity of the same neural population, as they span 
distinct types of information all of which are fundamental for navigation: “where does 
sensory input say I am”, “where does spatial tracking estimate I am”, and “where do I decide 
I want to go”. However, because internally generated variables can only be  approximately 
correlated to behavioral readouts, whereas we have precise information about visual input 
changes as parameterized by , there is an intrinsic and unavoidable difference in theθ  
power of any test for these different natures of dependencies.  

We directly eliminated these kinds of ambiguities via control experiments where  wasθ  
restricted to be zero up to midway in the delay region. Rather than a reduced dependence 
on choice, we still saw clear choice-speci�ic sequences ( Fig. S2 A-C), and choice decoding 
accuracies similar in strength and timecourse to when  was  not  controlled for in the mainθ  
experiments ( Fig. S2 E vs.  Fig. 3 C). This favors a decision-variable origin for choice-related 
effects; however, the three factors are not mutually exclusive. We think it likely in the main 
experiment that all of these cooperate to explain the neural data.  

Information relevant to navigation, sensory evidence, decision, and task history 
may be widely broadcast including to early sensory areas 

In a related evidence-accumulation study,  (Morcos and Harvey 2016)  described 
long-timescale information as re�lected in the structure of neural state transition 
probabilities in PPC, resulting in a diversity of neural population activity patterns that only 
partially decreased towards the end of the trial. Adopting their analysis, we observed 
qualitatively similar neural state transition structures not only in areas closest to PPC (AM 
and MMA), but in fact in all recorded areas ( Fig. S7 ). Our main analyses indicate that this 
diversity of neural states in all areas corresponds to the coding of multiple task-related 
variables and their history. Our observations of widespread task-relevant information in six 
pre-selected areas agrees qualitatively with a recent assay of neural coding across the 
posterior cortex in a vision-based locomotion task  (Minderer, Brown, and Harvey 2019) . In 
the latter, mice were rewarded for maintaining a straight trajectory based on optic �low 
feedback, and neural activity in most of the posterior cortex re�lected all of the behaviorally 
relevant variables (locomotion velocity of the mice, optic �low velocity, and task history). 
Our work, using a cognitive task that requires accumulation of evidence for 
decision-making, substantially extends the observations of  (Minderer, Brown, and Harvey 
2019) , to now show that the types of information widely represented in posterior cortices 
can extend far beyond vision and locomotion (functions intimately related to each other), to 
much more abstract quantities related to cognition such as accumulated evidence, choice, 
and reward outcome. 

Theories of predictive processing as a canonical cortical computation  (Keller and 
Mrsic-Flogel 2018)  offer a conceptual framework for why a variety of task-related 
information should be widespread in the cortex. These models have two general 
ingredients that pertain to our observations. The �irst is that inter-area communication 
occurs in the form of predictions transmitted from one area to another. For example, 
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place-like cells in V1 may re�lect predictions for place-related visual features of the T-maze. 
The second is that top-down inputs modulate locally represented information. This can 
serve gating functions such as visual attention, as well as implement computations for 
perceptual inference  (Helmholtz, n.d.) . For example, evidence/choice/reward-modulations 
of cue response amplitudes could re�lect a combination of raw sensory input with an 
internal model (“prior”) of the world, forming an experience-guided percept. The 
prevalence of such phenomena in our data may thus be conceptually related to components 
proposed by predictive processing models of cortical function.  

Although essentially any behaviorally relevant factor may parameterize predictions 
transmitted to the visual cortices, predictive processing models are speci�ic in that these 
predictions should still be  about  visual features. However, we also reported phenomena 
that have no obvious relationships to vision, most obviously, sequential neural activity 
during the ITI where mice experienced a dark environment ( Fig. 2 ). This could correspond 
to abstract information like time until the next trial (cf. reward timing in  (Shuler and Bear 
2006) ), but our results go beyond this in showing that ITI activity furthermore encodes 
evidence, choice, and reward outcome ( Fig. 3 ), with evidence being more of the differenced 
form  than during the cue period ( Fig. 3 A-B vs.  Fig. S1 H). These types ofR L  Δ = # − #  
information are suggestively those necessary for task learning, and we speculate that their 
concurrent presence in a local neuronal population may engage plasticity mechanisms 
beyond the scope of this work. Neural dynamics during the ITI could alternatively (or 
additionally) serve to maintain this information over long timescales, e.g. for use in the next 
trial. It is interesting that early sensory cortices may exhibit memory-like functions for 
cognitive variables, despite these having at most highly abstract relationships to the 
immediate sensory stimuli. All in all, our observations point to a rich set of cognitive 
in�luences that include but are not fully accounted for by predictive visual processing 
operations.  

Multiplexing of information may utilize orthogonal directions of neural codes 

Many previous studies of choice probability (CP) in evidence accumulation have reported 
positive correlations between CP and the stimulus selectivity of cells  (Britten et al. 1996; 
Celebrini and Newsome 1994; Cohen and Newsome 2009; Dodd et al. 2001; Law and Gold 
2009; Nienborg and Cumming 2014; Price and Born 2010; Kumano, Suda, and Uka 2016; 
Sasaki and Uka 2009; Gu, Angelaki, and DeAngelis 2014) . Translated to our task, this means 
that neurons that responded selectively to right stimuli tended to have increased �iring 
rates when the animal will make a choice to the right. Our data deviates in that highly 
contralateral-cue-selective neurons can instead be divided into two near-equally sized 
subpopulations with positive choice modulation (analogous to CP > 0.5) and negative 
choice modulation (CP < 0.5) respectively ( Fig. S3 F-G; negative modulations are marginally 
more prevalent). In a closely related analysis, there are near-equal numbers of cue-locked 
cells with amplitudes positively vs. negatively modulated by accumulated counts ( Fig. 6 C). 
As two simultaneously recorded cells that respond to the  same  visual cue can be  oppositely 
modulated ( Fig. 5 A), these phenomena are not expected from accounts of spatial- or 
feature/object-based attention in visual processing ( (Cohen and Maunsell 2014; Treue 
2014) ; but see  (Snyder, Yu, and Smith 2018) ). However, our observations are compatible 
with mixed choice- and sensory-selectivity neural coding reported in other perceptual 
decision-making experiments  (Raposo, Kaufman, and Churchland 2014) . 
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If choice- and count-modulations of cue response amplitudes originate from some form of 
accumulator feedback, our proposed feedback-loop ( fdbk ) circuit model suggests an 
interesting possibility. Intuitively, if comparable proportions of sensory units are positively 
vs. negatively modulated by feedback, the opposite signs of these modulations can cancel 
out when sensory unit activities are summed as input to the accumulator. In the model,  w→  
are feedforward weights (“synapses”) of sensory units onto the accumulator, and  are u→  
feedback weights of the accumulator onto sensory units. The condition for cancellation is 

, which reduces the accumulator dynamics ( Eq. 2 ) to simple integration: u→· w→ = 0  
. Therefore even with strong feedback connections ( ), thea (t) dt (t) 1  d r / = R

→
· w→ u ∣  ∣ i ≫ 0  

feedback-loop circuit can still be functionally equivalent to pure integration. 

The possibility for modulatory effects to cancel out is more general than our feedback-loop 
model. For a population of neurons,  can be thought of as a (linear) readout/coding axis w→  
for e.g. sensory information. If the neuronal activities are also modulated along another axis 

, e.g. by choice, then similarly  is a coding axis for choice. The coding of these two types u→  u→  
of information will not interfere with each other if these axes are orthogonal, , in u→· w→ = 0  
the sense that choice modulations cancel out when neural activities are projected onto the 
sensory coding axis. Similar arguments have been made for how motor preparatory activity 
and feedback do not interfere with motor output  (Kaufman et al. 2014; Stavisky et al. 
2017) , as well as how attentional-state signals can easily be detangled from visual stimulus 
information  (Snyder, Yu, and Smith 2018) , and may hint at a general design principle of that 
allows non-destructive multiplexing of information in the same neuronal population.  

Accumulation may include an amplification process for the sensory signal 

Focusing on putatively sensory responses, we found that ~50% of cue-locked cells had 
amplitudes that depended on choice or accumulated counts in a way that was 
distinguishable from stimulus-speci�ic adaptation or enhancement (SSA). These responses 
had two features that were not explainable by a simple model of SSA. First, comparable 
proportions were best explained by dependence on counts on either the contralateral side, 
ipsilateral side, or the difference of the two sides ( Fig. S3 I; cf.  (Scott et al. 2017) ). For (say) 
right-cue-locked cells,  or  dependencies cannot be explained by SSA. Second, theL  # Δ  
remaining time-independent  dependencies also cannot be explained by SSA, unless SSAR  #  
has an in�initely long timescale. However, this would require some additional prescription 
for “resetting” the adaptation factor e.g. at the start of each trial, because otherwise 
amplitudes would continue to decrease/increase throughout the ~1 hour long session. 
Thus while 36% of cue-locked cells gradually adapted to repeated stimuli as might be 
explained by single-cell mechanisms like fatigue  (Grill-Spector, Henson, and Martin 2006) , 
another 50% showed potentially interesting accumulator-related modulations. 

The above observation led us to propose the  fdbk  circuit model, where feedback from an 
accumulator acted as a dynamic gain on sensory responses and thus qualitatively explained 
count-modulations of cue-response amplitudes. Noise that could arise in multiple 
components of such a circuit furthermore explained how the psychophysical data deviated 
from the Weber-Fechner Law at low counts. It has previously been argued that (pure) 
Weber-Fechner scaling indicates that memory-level noise must dominate over that 
associated with individual items  (Gallistel and Gelman 2000) . Instead, we have found in 
pulsatile evidence accumulation tasks that the behavioral data and  fdbk  model both suggest 
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that multiple signi�icant sources of noise are at play, corresponding to different regimes of 
high vs. low counts. 

The  fdbk  model described the effective structure of the computational circuit, but did not 
depend on implementation details like anatomical location. Both the sensory and 
integration stages could in fact be present within a local neuronal network, since our 
recordings contained cells with sensory-like responses to cues intermingled with others 
that contain long-timescale information about accumulated evidence. The biological 
implementation of multiplicative feedback may be an input-output property of individual 
neurons  (Peña and Konishi 2001; Silver 2010) , which for pulsatile inputs may be a 
threshold-linear as opposed to truly multiplicative operation. Alternatively, multiplication 
can be a network computation, for example involving an intermediate population of 
inhibitory neurons  (Olsen et al. 2012; Atallah et al. 2012; Wilson et al. 2012; Zhang et al. 
2014; Fu et al. 2014; Pi et al. 2013; S. Lee et al. 2013; S.-H. Lee et al. 2012) . Future 
experiments will be of interest to establish whether such a circuit structure exists and has a 
causal role. 

To summarize, we have performed a detailed assay of neural phenomena in V1 vs. 
neighboring posterior cortices, with an aim of better understanding this most basic yet 
under-explored node of brain areas involved in perceptual decision-making. One 
long-standing postulated function of the visual cortical hierarchy is to generate invariant 
visual representations  (DiCarlo, Zoccolan, and Rust 2012) , e.g. for the visual cues regardless 
of viewing perspective or placement in the T-maze. On the other hand, predictive 
processing theories propose that visual processing intricately incorporates beyond-sensory 
information in a continuous loop of hypothesis formation and checking  (Keller and 
Mrsic-Flogel 2018) . Rather than invariant and mostly visual responses, we discovered the 
bulk of neural activity—even responses to cues—to be strongly in�luenced by navigational, 
decision-making, and task history variables. Some features of our data are also not fully 
predicted by predictive processing models. As the visual cues are randomly located per 
trial, at most their general statistics may be predicted using these cognitive variables, and 
curiously there was sustained information about the latter even outside of a visual 
processing context, i.e. the inter-trial-interval. To close the scienti�ic-method loop, our 
observation of count-modulation of cue-response amplitudes inspired an alternative model 
of the accumulation process, where input sensory signals are dynamically ampli�ied by the 
accumulated counts. While this multiplicative feedback-loop architecture results in 
suboptimal perceptual discrimination compared to simple integration ( Fig. 7 B), it may 
re�lect other behavioral and engineering pressures that brains have evolved to handle. For 
example, ampli�ication may be important for selecting a tiny relevant signal out of a 
massive amount of sensory data regarding the world, and perhaps also out of a massive 
amount of other neural activity in the brain itself. 
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STAR Methods 

Experimental Model and Subject Details 

All procedures were approved by the Institutional Animal Care and Use Committee at 
Princeton University and were performed in accordance with the Guide for the Care and 
Use of Laboratory Animals  (National Research Council et al. 2011) . We used 11 mice for the 
main experiments (+4 mice for control experiments), aged 2-16 months of both genders, 
and from three transgenic strains that express the calcium-sensitive �luorescent indicator 
GCamp6f  (Chen et al. 2013)  in excitatory neurons of the neocortex: 

• 6 (+2 control) mice (6 male, 2 female):  Thy1-GCaMP6f 
[C57BL/6J-Tg(Thy1-GCaMP6f)GP5.3Dkim/J, Jackson Laboratories, stock # 028280] 
(Dana et al. 2014) . Abbreviated as “Thy1 GP5.3” mice. 

• 5 (+1 control) mice (3 male, 3 female):  Triple transgenic crosses expressing GCaMP6f 
under the CaMKII  promoter, from the following two lines: Ai93-D; CaMKII -tTAα α  
[IgS5 tm93.1(tetO−GCaMP6f)Hze  Tg(Camk2atTA) 1Mmay/J, Jackson Laboratories, stock #024108] 
(Madisen et al. 2015); Emx1-IRES-Cre [B6.129S2-Emx1 tm1(cre)Krj /J, Jackson Laboratories, 
stock #005628]  (Gorski et al. 2002) . Abbreviated as “Ai93-Emx1” mice. 

• 1 mouse (control experiments; female) :  quadruple transgenic cross expressing 
GCaMP6f in the cytoplasm and the mCherry protein in the nucleus. both 
Cre-dependent, from the three lines: Ai93-D; CaMKII -tTA, Emx1-IRES-Cre,α  
and Rosa26 LSL H2B mCherry [B6;129S-Gt(ROSA)26Sor tm1.1Ksvo /J, Jackson 
Laboratories, stock #023139]. 

Mice were randomly assigned such that there were about the same numbers of either 
gender and various transgenic lines in each group (main vs. control experiments). 

Method Details 

 
Optical window implantation surgery 

Young adult mice (2-3 months of age) underwent aseptic stereotaxic surgery to implant an 
optical cranial window and a custom lightweight titanium headplate (∼1g, CAD design �iles 
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available at  https://github.com/sakoay/AccumTowersTools.git ) under iso�lurane 
anesthesia (2.5% for induction, 1-1.5% for maintenance). Mice received one pre-operative 
dose of meloxicam subcutaneously for analgesia (1 mg/kg) and another one 24 h later, as 
well as peri-operative intraperitoneal injection of sterile saline (0.5cc, body-temperature) 
to maintain hydration and dexamethasone (2–5 mg/kg) in order to reduce brain swelling. 
Body temperature was maintained throughout the procedure using a homeothermic 
control system (Harvard Apparatus). After asepsis, the skull was exposed and the 
periosteum removed using sterile cotton swabs. The brain hemisphere for the implant was 
selected by roughly pre-screening the site for lesser vasculature while the cranium was 
maintained in a translucent state under a drop of saline. The skull was then dried and 
leveled using a stereotaxic alignment indicator. The coordinates 2mm caudal, 1.7mm±  
lateral to bregma was marked by scoring a ‘V’ with a sterile insulin syringe and then 
touching a surgical pen to the fringes, allowing the ink to run down the mark. After 
re-wetting the skull under a drop of saline, a photo of the marked stereotactic location 
relative to the super�icial vasculature was acquired for later comparison to functionally 
de�ined visual areas (later section).  

A 5mm diameter craniotomy was made using a pneumatic drill (Midwest Carbide Bur No. 
1/4, part number 389201) roughly centered around the above marked location, typically 
spanning the parietal bone on the anterior-posterior sides and partly crossing over the 
superior sagittal sinus vein. The skull was irrigated with saline throughout this procedure 
to reduce heating, and the drilled groove was occasionally measured against a reference 
5mm diameter steel ring to ensure that the inner edge of the groove was no smaller than 
the outer circumference of the ring. The cranial window implant consisted of a 5mm 
diameter round #1 thickness glass coverslip (Warner Instruments) bonded to a steel ring 
(0.5mm thickness, 5mm diameter, SS316 ring, Ziggy’s Tubes and Wires, Inc.) using a 
UV-curing optical adhesive (NOA 81, Norlund Products). The implant was lowered 
glass-side-down into the craniotomy using a custom stereotaxic holder with magnetic 
prongs (block and rod magnets from K&J Magnetics), leaving about 50-300  of the steelmμ  
ring above the surface of the skull. This served to keep the brain tissue under some 
pressure, improving stability for imaging, as well as made the imaging plane a little more 
level. Care was taken to not cut off circulation to the sinus vein, and therefore the 
inclination of the implant had to mostly follow that of the skull. The steel ring was glued to 
the skull with cyanoacrylate adhesive (3M Vetbond), which was precisely applied using an 
insulin syringe with a cut-off tip (i.e. removing the taper). Lastly, the cut �laps of the skin 
were sealed to the sides of the skull using cyanoacrylate adhesive, exposing an area 
spanning the parietal bone of both hemispheres plus part of the inter-parietal and frontal 
cranial bones. Shallow divots were drilled over the surface of the exposed cranium in order 
to roughen it for better adhesion, and a titanium headplate was attached using dental 
cement (Metabond, Parkell). The inclination of the skull is about  from horizontal, and0°2  
the inclination of the headplate was kept around - . This is a compromise between an°7 0°1  
increased dif�iculty for mice to behave in the head-�ixed virtual reality (VR) system when 
the headplate (and by extension their head) is too highly inclined, and the dif�iculty of 
imaging from the preparation due to clearance issues when the optical window is too highly 
inclined relative to the headplate.  
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Behavioral task and training 

After at least three and typically �ive or more days of post-operative recovery, mice were 
started on a water restriction and the Accumulating-Towers training protocol previously 
described in  (Lucas Pinto et al. 2018)  and summarized here. Mice received 1-2mL of water 
per day, and in case of clinical signs of dehydration or body mass falling below 80% of the 
pre-operative value received supplemental water and edible treats until recovered. All mice 
were group housed, extensively handled and allowed to socialize in an enclosed enriched 
environment outside of experimental sessions before being returned to the vivarium at the 
end of each day. Behavioral training occurred either in dedicated training rigs or similar 
microscope-equipped setups. Mice were head-�ixed so that they could comfortably sit or 
move on an 8-inch Styrofoam® ball suspended by compressed air, and ball movements 
were measured with optical �low sensors connected to an Arduino Due running custom 
code to transform ball rotations into virtual-world velocity. The VR environment was 
projected onto a custom-built Styrofoam® toroidal screen with visual �ield spanning 

 horizontal and  vertical, using a DLP projector with refresh rates of either70°~ 2 0°  ~ 8  
85Hz or 120Hz and RGB color balance of 0, 0.4 and 0.5 respectively. This virtual 
environment was generated by a computer running the Matlab (Mathworks) based 
software ViRMEn  (Aronov and Tank 2014) , plus custom code that controlled the T-maze 
structure per trial as well as the progression of mice through the shaping procedure. 

For historical reasons, 3/11 mice were trained on mazes that were longer (30cm pre-cue 
region + 250cm cue region + 100-150cm delay region) than the rest of the cohort (30cm 
pre-cue region + 200cm cue region + 100cm delay region). The structure of the task was 
otherwise the same, and we included this data because this difference in lengths was not 
large and none of our results depended on this detail. In VR, as the mouse navigated down 
the stem of the maze, tall, high-contrast visual cues ( Fig. 1 B) appeared along either wall of 
the cue region when the mouse arrived within 10cm of a predetermined cue location. These 
locations were drawn randomly per trial according to a spatial Poisson process with 12cm 
refractory period between consecutive cues on the same wall side. Cues were made to 
disappear after 200ms, although they may fall outside of the �ield of view sooner depending 
on the running trajectory of the mouse. Following the notation of  (Brunton, Botvinick, and 
Brody 2013) , the task dif�iculty was set by , where  ( ) is theog(ρ ρ ) .2  γ ≡ l maj/ min = 1 ρmaj ρmin  
mean density of majority (minority) cues. This corresponded to a mean number of 
majority:minority cues being 8.5:2.5 for the 250cm cue region maze and 7.7:2.3 for the 
200cm cue region maze. Mice were rewarded with  of a sweet liquid reward (10%μL4  
diluted condensed milk, or 15% sucrose) for turning down the arm on the side with the 
majority number of cues. The volume of this reward was increased for some mice (e.g. with 
larger body masses and therefore greater physiological requirements) as well as towards 
the end of the session in order to encourage sustained high performance. Correct trials 
were followed by an ITI of 3s in duration, the �irst second of which the VR display remained 
on but frozen in place, and the remaining time of which the display was blacked out. Error 
trials were followed by a loud sound in lieu of a reward and an addition 9s time-out period 
in the dark. Trial durations were ~11s not counting an additional 9s time-out for error 
trials, with the cue region corresponding to ~3.5s.  

To discourage a tendency of mice to systematically prefer to turn to one side, we used a 
de-biasing algorithm that adjusts the probabilities of sampling right- vs. left-rewarded trials 
as described in detail in  (Lucas Pinto et al. 2018) . If overall performance fell below 55% as 
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calculated over a 40-trial running window, animals were transitioned to an easy 10-trial 
block of a maze with cues only on one side to increase motivation; this was sometimes also 
triggered manually by the experimenter. These trials formed a small fraction ( ) of the%  ~ 8  
entire dataset and were included in the analyses in order to maintain, insofar as possible, 
temporal continuity of the data. Behavioral training and imaging sessions lasted for around 
1 to 1.5 hours, during which mice typically completed 150-250 trials. Per session, we 
computed the percent of correct choices using a sliding window of 100 trials (or the 
maximum number of trials in that session, in highly atypical cases where this fell below), 
and included the dataset for analysis if the maximum performance was .5%≥ 6  

 

View-angle-restricted control experiments 

We trained 4 mice on a control task where the view angle was restricted to be exactly zero 
in just the cue region (n = 2 mice, 17 sessions), or in the cue region as well as half of the 
delay region (n = 2 mice, 8 sessions). For the latter variant, the delay region was extended 
from being 100cm to 170cm long, so that mice had a suf�icient amount of time in order to 
execute turns into the T-maze arm. In the restricted region, only the forward/backward 
component of the spherical treadmill rotation (corresponding to pitch) is used for 
advancing the position of the mouse in the virtual world, i.e.  and . In thex dt  d / ≡ 0 θ dt  d / ≡ 0  
unrestricted region, the same rules as in the main experiment  (Lucas Pinto et al. 2018)  are 
used to translate treadmill rotations into ,  and  velocities, except that  isx y θ θ dt  d /  
controlled to smoothly deviate from zero using an exponential �ilter. Speci�ically, the �irst 
time the mouse enters the unrestricted region, a view angle velocity gain factor  isγθ  
initialized to 0 and then updated at every subsequent behavioral iteration using the rule 

. The smoothing factor that we found to be adequate for mice to control1−α) γγθ ← α + ( θ  
the virtual world without overly jerky or slow response times is , where T (125ms)  α = δ / Tδ  
is the treadmill motion sampling interval in milliseconds. Although this paradigm by 
construction eliminated variations in the visual scene, particularly in where the visual cues 
appeared, it also removed the visual feedback that encouraged mice to maintain mostly 
forward movements of the treadmill, analogous to when a human tries to walk down a 
corridor in the dark. Mice tended to generate larger lateral rotations of the treadmill during 
the view angle restricted region than in the main, unrestricted experiment ( Fig. S2 H), which 
necessitated the above-mentioned exponential smoothing to avoid a sudden panning of the 
visual scene when control was returned to the mice at the end of the restricted region. This 
control task was also signi�icantly more dif�icult for mice to learn and perform, likely 
because it added a reaction time component to the motor requirements. We attempted to 
alleviate this by lengthening the delay region and consequently the amount of time the mice 
could take to turn into the T-maze arms, but that in turn competes with aversive effects of 
longer trial durations. Nevertheless, we managed to obtain a reasonable dataset using this 
control task that we consider to be complementary to our data-analysis-based control of 
visual angle effects for the main experiment. We lowered the required performance level 
for inclusion in analysis to being  correct trials computed using the same 0%≥ 6 00≥ 1
-consecutive trials window. 
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Functional identification of visual areas using widefield imaging 

We adapted methods described in  (Garrett et al. 2014; Kalatsky and Stryker 2003; Zhuang 
et al. 2017)  to functionally delineate the primary and secondary visual areas using 
wide�ield imaging of calcium activity paired with presentation of retinotopic stimuli to 
awake and passively running mice. We used custom-built, tandem-lens wide�ield 
macroscopes to image GCamp6f �luorescence through the optical cranial window implant of 
the mice that participated in this study. A back-to-back objective system  (Ratzlaff and 
Grinvald 1991)  using a combination of either 0.63x, 1x or 1.6x objectives (Leica M-series) 
was connected through a large �ilter box holding a dichroic mirror and emission �ilter. 
One-photon excitation was provided using a blue (470nm) LED (Luxeon star) through this 
light path, and the returning green �luorescence passed through the dichroic beamsplitter 
and was bandpass-�iltered at 525 nm (Semrock) before reaching a sCMOS camera 
(Qimaging, or Hamamatsu). The camera was rotated such that the superior sagittal sinus 
vein of the mice was parallel to one axis of the square imaging area, which facilitated 
across-mice registration. The LED was driven by a stabilized power supply and delivered 
about 2-2.5mW/cm 2  of power at the focal plane, while the camera was con�igured for 
20-30Hz frame rate and about 5-10µm spatial resolution. To provide software control of the 
illumination, one rig utilized a mechanical shutter system (Thorlabs) while in the other rig 
the LED was connected to a MOSFET circuit controlled by custom-written code running on 
an Arduino Due. The whole system was mounted on custom gantries compatible with our 
treadmill-based mouse head-�ixation system. Visual stimuli were displayed on either a 32" 
AMVA LED monitor (BenQ BL3200PT), or the same custom Styrofoam® toroidal screen as 
used for the VR rigs. In both cases, the screen was placed to span most of the visual 
hemi�ield on the side contralateral to the mouse’s optical window implant. When using the 
monitor, the plane of the screen was oriented so as to be roughly centered and 
perpendicular to the pupil of the mouse’s eye, i.e. at a  angle from the anterior-posterior0°  3  
body axis. Due to having to compensate for the inclination of the optical implant, the 
relative tilt from vertical of the screen was not well-controlled to better than .0°~ 2  
However, the method for extracting visual area boundaries is highly insensitive to exact 
placements of the stimulus, as explained below. The space between the headplate and the 
objective was covered using a custom made cone of opaque material with a soft rubber 
balloon interface to prevent light from the screen from entering into the imaging system.  

The software used to generate the retinotopic stimuli and coordinate the stimulus with the 
wide�ield imaging acquisition was a customized version of the ISI package ( (Juavinett et al. 
2017) ; from  https://sites.google.com/site/iannauhaus/home/matlab-code ) and utilized 
the Psychophysics Toolbox  (Brainard 1997) . As in  (Zhuang et al. 2017) , mice were 
presented with a  wide bar with a full-contrast checkerboard texture (  squares)0°2 5°2  
that inverted in polarity at 12 Hz, and drifted slowly ( /s) across the extent of the screen°9  
in either of four cardinal directions. Each sweep direction was repeated 15 times, totaling 
four consecutive blocks with a pause in between (induced by the time taken to compute 
and cache the stimulus pattern). Each block began and ended with 5 seconds each of a 
delay period where the screen was blanked to gray (50% contrast). The camera was set to 
continuously acquire a movie of the �luorescence signal throughout the experiment, while 
the blue LED was controlled by the software to turn on right before the pre-stimulus delay 
and turn off right after the post-stimulus delay per block. This bright period in the acquired 
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�luorescence movie was later during analysis used to synchronize the timing of the stimulus 
(recorded at the rate of the screen refresh intervals) to the the frames of the movie. Unlike 
previous work, the imaging plane was focused on the surface of the brain such that the 
super�icial vasculature remained in sharp contrast. After correction for rigid brain motion 
(next section; this was negligible in most preparations), the time-averaged �luorescence 
image was preprocessed using a custom algorithm to identify locations that corresponded 
to vasculature. This utilized the fact that vasculature both reduced the illumination 
intensity and absorbed some of the �luorescence of the  underlying neural tissue, and thus 
appeared as pixels that were much darker than the median intensity in a disk of 
surrounding pixels. The distribution of pixel over median intensity ratio (using the entire 
image) was used to estimate a threshold for marking a given pixel as vasculature, i.e. if this 
ratio was two or more standard deviations below the mode of the distribution. For pixels in 
the middle of large vasculature, this threshold was not very ef�icient because the median 
intensity of surrounding pixels was similarly low. The algorithm was thus iteratively 
applied 5 times, with the median computed using only pixels that had not been marked as 
vasculature in the previous iteration, which gradually corrects the threshold bias even for 
vasculature of highly disparate sizes ranging from the sinus vein to  pixel wide≥ 1  
tributaries. The size of the disk was also chosen adaptively such that no more than 50% of 
the pixels within the disk consist of vasculature-marked pixels. The premise behind this 
algorithm is that the spatial scale over which the cortical retinotopy varies is suf�iciently 
larger than the dimensions of the super�icial vasculature (mostly  in diameter away0μm≤ 1  
from the midline). We preferred this as being more well-controlled way of subtracting 
visible vasculature effects, compared to previous prescriptions (which do not work well for 
low signal-to-noise samples) of de-focusing the vasculature by placing the imaging plane 
0.5-1mm below the surface of the brain. 

Retinotopic maps were computed similarly to  (Kalatsky and Stryker 2003) , with some 
customization that improved the robustness of the algorithms for preparations with low 
signal-to-noise ratios (SNR) such as the Thy1 transgenic mice. First, the baseline 
�luorescence per pixel was estimated using the average intensity in the pre-stimulus and 
post-stimulus delay periods for the different sweep-direction blocks. To account for 
possible bleaching of the sample over time, an exponential function was �it to these baseline 
measurement samples vs. time. An approximate  was then calculated per pixel usingF F  Δ /  
the predicted baseline from the exponential �it, and the Fourier �irst harmonic phase and 
power of this time series data was computed for each sweep-direction block. When 
expressed in units of the stimulus bar angle (either azimuthal or altitudinal) relative to the 
assumed center of gaze of the mouse, this phase of the response corresponds to the 
retinotopic preference, up to a lag induced by the delayed and negative hemodynamic 
response. The hemodynamic lag should be the same for both forward and backward sweeps 
of the stimulus while in contrast the retinotopic response phase reverses together with the 
reversal of the stimulus, and can in principle be subtracted from the desired retinotopy 
using this linear relationship. In practice we noticed that mice tended to have asymmetries 
in the strengths of neural responses to forward vs. backward sweeps, which in low-SNR 
scenarios lead to a much poorer phase estimate in one of these directions. Reasoning that 
the hemodynamic lag should vary fairly smoothly across the cortical tissue (excluding 
explicitly identi�ied vasculature locations), we estimated this lag using only pixels for which 
the �irst harmonic power in forward vs. backward sweeps differed by at most 40% from the 
average power. For the remaining pixels, the median lag in a disk of surrounding pixels was 
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assumed. The retinotopy of a given pixel was then calculated as the average response phase 
after removing this lag from both forward/backward measurements. 

Boundaries between the primary and secondary visual areas were detected using a 
gradient-inversion-based algorithm described in  (Garrett et al. 2014)  and for which 
Matlab-based code was publically available. We again made some changes to improve the 
stability of this algorithm for samples with a diverse range of SNR values. The azimuthal 
and altitudinal retinotopy maps obtained above were �irst corrected for the explicitly 
identi�ied vasculature locations by replacing the values in those pixels by the 
2D-Gaussian-weighted average ( ) value of neighboring pixels, excluding other5μm  σ = 2  
vasculature-marked pixels. This interpolation was repeated until no unresolved pixels 
remained. These maps were then smoothed by applying the same 2D-Gaussian-weighted 
average, and their spatial gradients computed using a noise-robust estimation 
method ( http://www.holoborodko.com/pavel/image-processing/edge-detection/ ). This 
information was combined into a single visual �ield sign (VFS) map, which is de�ined as 
being +1 if the cortical retinotopy follows the layout of the physical world, or -1 if the 
cortical layout is a mirror image of the physical world. The VFS of a given pixel was 
calculated as the sine of the angle between the two gradient vectors, and the rest of the 
procedure follows closely  (Garrett et al. 2014) . In brief, the VFS map was thresholded to 
identify pixels that were above +1.5 or  below -1.5 standard deviations of zero, and a series 
of morphological image processing operations were performed to identify suf�iciently large 
contiguous areas of either sign. Adjoining areas with identical sign were resolved by 
detecting when the visual �ield coverage exceeded 1.1 (1 being full coverage), e.g. V1 and 
area AM both of which had VFS = -1. This de�ined the visual area boundaries on a 
per-mouse basis. For illustration purposes only, the average VFS map across mice ( Fig. 1 D) 
was computed by �irst registering together individual maps using a rigid motion correction 
algorithm. The area boundary detection algorithm was re-run on this average VFS map to 
produce the borders shown on that �igure. 

In order to compare the location of the above functionally de�ined visual areas to previous 
studies that de�ined regions by their position relative to skull landmarks, we used the photo 
of the marked location 2mm caudal, 1.7mm lateral of bregma relative to the surface 
vasculature of the brain as previously explained (optical window implantation methods). 
This location was manually annotated relative to the shadow of vasculature visible in the 
retinotopic maps, and corresponded approximately to the anteromedial corner of the 
secondary visual area AM. 

 

Two-photon cellular-resolution imaging during VR-based behavior 

The custom virtual reality plus two-photon scanning microscopy rig used in these 
experiments follow a design previously described in  (Dombeck et al. 2010) . The 
microscope was designed to minimally obscure the  horizontal and  vertical70°~ 2 0°  ~ 8  
span of the toroidal VR screen, and also to isolate the collection of �luorescence photons 
from the brain from the VR visual display by enclosing the light path in a light-proofed 
aluminum shell except for the access required for the objective lens and laser light entry. 
Two-photon illumination was provided by a Ti:Sapphire laser (Chameleon Vision II, 
Coherent) operating at 920nm wavelength (940nm for the one mouse with nuclearly 
expressed mCherry protein), and �luorescence signals were acquired using a 40x 0.8 NA 
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objective (Nikon) and GaAsP PMTs (Hamamatsu) after passing through a bandpass �ilter 
(542/50, Semrock). The amount of laser power at the objective used ranged from 0mW~ 4  
for super�icial cortical layers to no more than 150mW for the deepest acquired samples (

). About 1.5 times more power was used for imaging the Thy1 strains of mice00−550μm5  
than those with Ai93-D lineage. Prior to imaging, the region between the base of the 
objective lens and the headplate was shielded from external sources of light using a black 
rubber tube cut from a black latex balloon. This rubber tube was permanently glued to a 
silicone ring (Krazy Glue) and the ring itself removably attached to the titanium headplate 
with silicone elastomer (Body Double, Smooth On Inc.) prior to each imaging session. The 
diameter of the rubber tube matched that of the objective lens close to the silicone ring and 
later widened so as to �it loosely over the entire objective lens assembly, allowing for 
�lexible vertical and to some extent horizontal movements of the sample relative to the 
imaging focal plane. Horizontal scans of the laser were performed using a resonant 
galvanometer (Thorlabs), resulting in a frame acquisition rate of 30Hz and con�igured for a 
�ield of view of approximately  (  pixels) in size. Microscope control00 00μm5 × 5 12 125 × 5  
and image acquisition were performed using the ScanImage software (2015 versions and 
beyond;  (Pologruto, Sabatini, and Svoboda 2003) ). 

A single �ield of view at a �ixed cortical depth and location relative to the functional visual 
area maps was continuously imaged throughout the 1-1.5 hour behavioral session. This was 
identi�ied by �irst focusing the two-photon microscope close to the surface of the brain 
(layer 1), where the shadow of vasculature could be clearly seen and matched to those in 
the wide�ield retinotopic map. This vasculature pattern was thus used to locate a 
two-photon imaging �ield of view (FOV) within a visual area (or retrosplenial cortex) of 
interest, and then the imaging plane is lowered to the desired depth below the dura. Due to 
this two-photon FOV being comparable to or even larger in size than the extent of any one 
secondary visual area, there can be some ambiguity that we do not claim to resolve when 
labeling neural data as being approximately from one of the four secondary visual areas. 
Nevertheless, there is a  fairly robust distinction between V1, secondary visual areas, and 
retrosplenial cortex (RSC). We identi�ied imaging depths as corresponding to layer 2/3 vs. 
layer 5 based on the typical diameter of neurons at a �ixed zoom, which was visibly larger 
for layer 5 and also with much fewer horizontal processes. This corresponded 
approximately to a depth of  for layer 5, and it is likely that much of our recordings50um  ≥ 3  
originate from layer 5a due to reduced visibility at high depths. Layer 4 appeared very 
sparsely labeled for the transgenic mouse lines that we utilized, but there can be some 
ambiguity that we do not resolve regarding the presence of layer 4 neurons in either 
category of data labeled as layer 2/3 or layer 5. We altogether analyzed 145 datasets, with 

 sessions (median 10) and from  mice (median 6) per area and layer ( Table S1 ,≥ 6  ≥ 3  
Table S2 ), after a requirement that there be at least 100 consecutive trials per session 
where the mouse made  correct choices (overall performance per mouse is ,5%≥ 6 7%> 6  
mean 70%;  Table S2 ).   

Data related to the VR-based behavior were recorded using custom Matlab-based software 
embedded in the ViRMEn engine loop, e.g. the treadmill velocity, position in the virtual 
world, stimulus and trial generation parameters, and so forth. This VR simulation software 
was run on a separate PC (Windows 7 operating system) than the computer that ran the 
ScanImage acquisition software. In order to synchronize the behavioral data with the 
�luorescence imaging frames, we utilized the I2C digital serial bus communication 
capabilities of ScanImage (version 2015 and beyond) to transmit from the VR computer an 
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identifying timestamp per VR iteration (block, trial, and iteration number). An NI SCB-19 
breakout box was used to connect two digital output lines from a NI-DAQ card (62xx or 
63xx series) in the VR computer to the FPGA utilized by ScanImage. The ScanImage system 
acts as the I2C slave and the VR computer as the I2C master, and a unidirectional variant of 
the protocol was implemented in order to be able to emulate this using a NI-DAQ card. 
Custom C++ code (MEX program) was used to translate the desired synchronization 
message to the binary I2C format and perform buffered digital I/O (2048-bit buffer) with 
the NI-DAQ card, using a lightweight execution thread so as not to block Matlab 
computations. This call was benchmarked to take at most a few tens of microseconds and 
was negligible relative to the VR iteration duration, which was locked to the refresh rate of 
the projector (85Hz in the imaging rig, although small deviations could occur due to the 
non-real-time nature of the Windows operating system). There is a stereotyped lag of 

 between transmission and reception of the I2C message, likely due to overhead onms~ 2  
the end of the NI-DAQ card driver/hardware. This is also small compared to the 30Hz 
imaging frame rate. Because the VR iterations were nearly a factor of 3 higher than the 
imaging frame rate, up to 3 VR time-stamps could be recorded per imaging frame. When 
analyzing behavioral quantities corresponding to a given imaging frame, only the �irst 
associated VR iteration is considered. This, together with potential software and projector 
refresh lags, makes it unlikely that e.g. the timing of visual stimuli are known to better 
accuracy than a few tens of milliseconds. This is however of the same order as uncertainties 
caused by the relatively slow dynamics of the calcium indicator GCamp6f. 

 

Data pre-processing and cell finding 

All imaging data were �irst corrected for rigid brain motion by using the Open Source 
Computer Vision (OpenCV) software library function . This correctionv : atchTemplate  c : m  
was performed in 3000-frame stacks, which were used to compute a median �luorescence 
image that was used as the template to which the individual frames should be registered. 
Because the median is sensitive to the �inite (integer) resolution of the imaging data, which 
is particularly a problem for low-signal samples, this median was computed on a 10-frame 
binned average of the data (i.e. the median of 300 temporally averaged frames). The 
template-matching algorithm located the optimal row and column shifts per frame to 
maximize the normalized cross-correlation coef�icient of that frame with the median-based 
template. 30 pixels on both x and y extents of the median image were cropped to de�ine the 
template, thereby allowing up to a 30-pixel shift. Sub-pixel registration was performed 
using Gaussian interpolation to locate the optimal shifts. The image stack was then 
corrected by applying these optimized shifts, and the entire procedure was repeated at 
most 5 times or until the obtained shifts were no greater than 0.3 pixels, whichever 
occurred �irst. 2-3 iterations was typical for data in our hands. All 3000-frame stacks that 
comprised the imaging session were then registered together by applying the same motion 
correction algorithm to the �inal template per stack. 

For a given imaging dataset, �luorescence timecourses corresponding to individual neurons 
were extracted using a deconvolution and demixing procedure that utilizes the Constrained 
Non-negative Matrix Factorization algorithm (CNMF;  (Pnevmatikakis et al. 2016) ). This 
algorithm hypothesizes that neural activity is suf�iciently well-described as a 
time-independent spatial component (weights in a small number of pixels) multiplied by a 
single timecourse (temporal component). The timecourse is furthermore assumed to 
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correspond to a temporally sparse approximate-spiking signal with a calcium impulse 
response modeled using a low-order autoregressive process (typically 2). The problem is 
computationally hard and solved using an iterative approach analogous to 
coordinate-descent methods, where the spatial components are �irst hypothesized, then the 
temporal components optimized while keeping the spatial component �ixed. This is then 
used to further re�ine the spatial components, and the procedure is iterated another time. 
Because the problem is highly non-convex, the results are sensitive to the initial hypotheses 
for spatial components. We used a custom, Matlab Image Processing Toolbox (Mathworks) 
based algorithm that estimated this initialization in a data-driven way i.e. without strong 
assumptions on the roundness of components or requiring the user to hypothesize the 
number of cells to be found, albeit with other sample-insensitive parameters related to the 
spatial scale of the image and SNR thresholds. This alternative initialization procedure is 
outlined below and may be incorporated in future updates of the CaImAn software suite 
(Giovannucci et al. 2018) .  

To improve SNR and reduce processing time, for the initialization stage only the data is 
downsampled by a factor of 10 in time (to 3Hz) by computing the time-average 
�luorescence value in disjoint groups of 10 frames. For the  pixel we then compute theith  
mode  of the distribution of �luorescence values (  where  indexes the imagingF i F }{ i

k k  
frame), and estimate the standard deviation  of this distribution using the σi

F  
full-width-at-half-max (FWHM), which is less sensitive to long tails in this distribution as 
would be present if the pixel corresponded to some part of a neuron that was not always 
active but had high enough �luorescence values when it was active. The matrix of  was σi

F  
smoothed to reduce noise and incorporate prior expectations that a neuron should span 
more than just one pixel, using the guided �iltering method (  function;mguidedf ilteri  
see  (He, Sun, and Tang 2013) ), which better preserves the boundary between neurons and 
neuropil-only pixels. The rest of the initialization algorithm uses the 
signi�icance-transformed data, , which acts as a whitening �ilter as well asF −F ) σ  Si

k ≡ ( i
k

i / i
F  

being expressed in units that allow for thresholds to be speci�ied in a way that scales 
naturally with the SNR of the sample. In order to parallelize the procedure, we �irst divided 
the �ield of view up into smaller contiguous regions as follows. First we computed the 
high-tail fraction matrix as the fraction of time-points per pixel where the �luorescence 
signi�icance exceeded 5 standard deviations, capping this at the 95% quantile to reduce 
sensitivity to anomalously active cells. Edges were identi�ied in this matrix by �inding the 
zero-crossings of the Laplacian of Gaussian �iltered map (  function;  (Marr and Hildrethdgee  
1980) ), with threshold zero so that the edges always formed closed contours. The interior 
of these contours were �illed in using a morphological hole-�illing operation ( mfilli  
function), producing a binary-valued matrix. Contiguous nonzero regions of this matrix 
mostly corresponded to entire individual cells, or subsets of cells that were adjacent to or 
overlapped with each other. These regions were processed in parallel to resolve the 
(potentially overlapping) sets of pixels that corresponded to the spatial footprint of 
individual cells, as described in the next paragraph.  

For data restricted to a given processing-region above, the signi�icance time-series  S }{ i
k  

was thresholded above 4 standard deviations after smoothing by taking the geometric 
average in the 9-pixel neighborhood. The connected components of this 3D binary tensor 
were then found (  function), and corresponded to snapshots in time wherewconncomp  b  
ideally only one neuron was active (in the case of sparse activity) and occasionally when 
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two or more adjacent neurons were co-active. To resolve the latter, we computed the matrix 
of pairwise correlations  where  and  indexes pairs of imaging frames,  isorr(s , )  c →j s→k j k  s→k  
the vector of  with pixels outside of the connected component set to the negative meanS }{ i

k  
value of pixels inside (to penalize mismatches in extent), and  computes Pearson’sorr(. )c . .  
linear correlation coef�icient. This matrix typically had an approximate block structure 
where low values corresponded to frames where one neuron or the other began or ceased 
to be active, causing the spatial pro�ile to be poorly correlated across frames. When this 
kind of transition structure was detected, we split up the connected component into 
subsets of contiguous frames where the spatial correlation remained high, discarding the 
poorly correlated intermediaries. After identifying all these connected components, a 
merging/discarding procedure was performed because the same cell could be active at 
discontiguous points in time, causing it to register as more than one component. The 
strategy taken here is to handle the most clear-cut cases �irst and then deal with more 
ambiguous and edge cases in multiple stages. This part of the procedure uses the spatial 

shape of each component, de�ined as the time-averaged spatial pro�ile  where s⟩ n⟨→ ≡ ∑
 

k
s→k/  n  

is the number of frames spanned by the connected component. First, components with 
highly correlated spatial shapes were merged, by computing the pairwise correlation 
matrix and thresholding this above 0.8. Cliques in this thresholded matrix were merged 
into a single component per clique. A subsequent pass �irst identi�ied ambiguous 
components as those that were insuf�iciently large compared to the minimum expected 2D 
size of cell somata. This was achieved using a heuristic set of morphological operations and 
includes cases such as small bright spots as well as thin crescent-like shapes, which can 
occur under a combination of the cell being only slightly active as well as various 
nonuniformities that can make some parts of the cell appear brighter than others. The same 
merging procedure was then repeated with two modi�ications: (1) the pairwise correlation 
was computed using only pixels within the extent of components marked as ambiguous; 
and (2) a lower threshold of 0.6 was used to determine which components to merge. 
Excessively large spatial components were then split up by using morphological erosion 
operations (  function) to identify weakly connected “islands”, which occurred whenmerodei  
adjacent cells have highly identical activity timecourses. Since this modi�ies the list of 
hypothesized components, the procedure of merging components with correlated spatial 
shapes was repeated with a threshold of 0.7 (still 0.6 for ambiguous components). In the 
last stage after components have been located in all of the parallel-processed regions of the 
full dataset, we resolved redundancies caused by e.g. ambiguous boundaries between 
processing regions by discarding all components that had an insuf�icient number of pixels 
that were not overlapping with other components. 

In some brain regions, particularly those close to the midline, we have observed that the 
imaging �ield of view appears to drift slowly and systematically throughout the  hour~ 1  
session. We suspect this to be due to distortion of the brain tissue e.g. from a combination 
of re-hydration and exercise, which dilates blood vessels. This can cause cells to move out of 
the �ield of view, which cannot be correctly modeled by a matrix factorization based source 
extraction method. As a compromise, we ran the cell �inding procedure in approximately 
30-minute chunks of the session data (downsampled via averaging to 15Hz to improve SNR 
and to reduce processing time and memory load), and then identi�ied post hoc components 
that were the same across these independent reconstructions. This matching was based on 
the spatial components extracted by the matrix factorization process, which are �irst 
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centered using image translation to form shape templates  the center-of-massesA }  {
→
k  

(COM) of which are all at the same pixel location. We remind the reader that  for the A )( i k
 spatial component is an analog quantity that speci�ies the intensity of �luorescence in akth  

given pixel . The set of candidate components was initialized using shape templatesi  
extracted in the �irst 30-minute chunk, and then updated using information from 
temporally subsequent chunks in a serial fashion. For a given new component being 
examined, all candidate templates the COM of which were within the diameter (

) of the new component were considered for potential √4 nonzero area in pixels) π× ( /  
matches, creating a list  of potential pairings where  indexes a new component(c , )}  { i ti ci  
and  indexes a candidate template. The same components could appear multiple times inti  
this list. The list was then sorted in order of descending  in order to greedilyorr(A , )c

→
ci A

→
tj

 
pair the most correlated components �irst. The �irst pair in this list was accepted as a match 
if , and then all occurrences of  and  were removed from futureorr(A , ) .85c

→
ci A

→
tj

≥ 0 ci ti  
consideration. This procedure was repeated until no further matches could be made. The 
shape templates were updated with the new  whenever a match was registered, so as toA

→
ci  

allow for slow systematic changes in the components vs. imaging time. For the purposes of 
neural data analysis, the time-series data of matched components was concatenated to 
form a single putative component. This meant that some cells could only be identi�ied in 
some subset of the imaging session, and the time-points with no information were marked 
with NaNs. For population-level analyses like the decoding studies, only the subset of cells 
that were all identi�ied throughout the imaging session were used. For other analyses, care 
was taken to account for this potential lack of information (i.e. not the same as zero activity 
levels).  

The above procedure for initializing and solving for neuron candidates was by construction 
very permissive, as the goal was to form hypotheses for as many components as possible 
including non-somatic sources like transverse and apical dendrites so that these could be 
correctly demixed by the CNMF algorithm. However the quality of non-somatic components 
can be poor due to lower SNR, a much larger space of possible spatial con�igurations, 
compartment-speci�ic calcium dynamics (incompatible with the matrix factorization 
hypothesis), higher occupancy leading to pervasive overlap with other components, and 
high degrees of temporal correlation with e.g. neuropil, and so forth. For the purposes of 
this work, we are only interested in somatic activity as those can be more de�initively 
localized at a particular cortical depth. We thus performed a semi-automated step of 
selecting high quality somatic components for analysis, by �irst classifying components into 
�ive morphologically de�ined classes: (i) doughnuts, which are somatic components that 
have visible nuclear exclusion in the average �luorescence intensity; (ii) blobs, which are 
somatic components with no visible nuclear exclusion; (iii) puncta, which are small and 
typically bright spots that deviate from somata mostly by size; (iv) �ilaments, which are 
long, thin, and potentially branching shapes likely corresponding to pieces of dendrites; (v) 
a catch-all category for shapes that do not �it well into the other categories. We manually 
classi�ied components for a single exemplary layer 2/3 dataset, and then trained a 30-tree 
forest of boosted decision trees (Matlab Statistics and Machine Learning Toolbox) to 
perform this classi�ication based on 6 heuristically de�ined metrics based on the spatial 
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component   (normalized so that ) and the corresponding temporal activity A
→
k (A )∑

 

i
i k = 1  

signal :(t)T k  

• The major axis length (largest eigenvalue) of the -weighted covariance matrixA )( i k  
between  and , the latter being the vectors of row and column indices forrow }{ i col }{ i  
the pixels in the component. 

• The minor axis length (smallest eigenvalue) of the above covariance matrix. 

• The -weighted average correlation between the spatial component and the(t)T k  
time-series �luorescence data corresponding to nonzero pixels of the spatial 
component. 

• The number of connected components with >1 pixels, after morphologically eroding 
the nonzero pixels of the spatial component with a disk-shaped structural element of 
radius 4 pixels. For somatic components this will typically still be one connected 
component because the erosion of a suf�iciently large disk is still a disk. However this 
can break up dendritic components and completely erase puncta, and so provides 
discrimination power. 

• The fraction of pixels occupied by the morphological skeleton (  function withwmorphb  
argument “thin” until unchanged) after dilation with a disk-shaped structural element 
of radius 2 pixels. This should be close to 1 for dendritic components, but deviates for 
somata that are not perfect disks. 

• The 25% quantile of  restricted to pixels within a central region of the(A ) }{ i k  
component. This region is de�ined by �irst computing the convex hull of the 
component, then eroding that with a disk-shaped structural element of radius 4 pixels. 
This value is typically high for somatic components, but for components that are 
curved the center of the convex hull can fall outside of the nonzero region of the 
component entirely, leading to low values. 

This classi�ier was quite insensitive to the spatial scale of neurons (e.g. layer 2/3 vs. layer 5 
data) and performed very well in separating puncta and dendrite-like components from 
somata, although it did not distinguish well between the doughnut vs. blob categories of 
somata, and also misclassi�ied some soma-like components (especially when small or oddly 
shaped, e.g. if half cut off by the �ield of view) as being in the “unknown” category (v). We 
manually corrected the classi�ication labels for 10-20% of components, taking care to 
remove miscellaneous indicators of poor component quality, including those with 
egregiously drifting baselines, huge overlaps between components, and overly large spatial 
components that seemed to include neuropil or more than one cell. We paid little attention 
to trying to separate doughnut- and blob-like components, both of which (and no other 
category) were accepted for analysis. 

All neural data analyses were based on the baseline-subtracted and normalized 
�luorescence time-series  for the  putative neuron.  forΔF F ) (t) F (t)−F ] F  ( / k ≡ [ k k

b / k
b kth (t)F k  

a given imaging frame indexed by  was de�ined as the spatially averaged �luorescencet  
value using uniquely assigned pixels i.e. where  and  for all otherA ) =  ( i k / 0 A )  ( i l = 0  
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components . The baseline �luorescence  was estimated in 3-minute long=  l / k F k
b  

windows as the modal value of the distribution of  in that window. Because of this(t)F k  
simple piecewise constant approximation, there can be small discontinuities at the 
3-minute boundaries. We did not do use a more complicated (e.g. linearly interpolated or 
sliding window) correction because the baseline levels of cells in our data are very stable, 
so this discontinuity is expected to be well within noise levels, and furthermore there is no 
correlation between the 3-minute boundaries and any particular trial feature, given that the 
trials have variable durations determined by the mouse’s behavior. 

Activity-based cell �inding methods like CNMF have a deteriorating ef�iciency of identifying 
the more infrequently active cells, which adds ambiguity to our reports of the fractions of 
cells with various response phenotypes. We therefore restrict all our analyses to a more 
well-de�ined subset of cells that have on average  transients per trial (choosing a.1≥ 0  
task-speci�ic measure because of the direction of this work). The noise level  for a given σk

F  
cell  is �irst estimated using the FWHM of the  distribution.  A transient isk ΔF F ) (t)  ( / k  
de�ined as a contiguous block of frames of at least 500ms in duration where 

, and is assigned to the trial corresponding to the �irst time-point in thisΔF F ) (t) σ  ( / k ≥ 4 k
F  

block. 

 

Quantification and Statistical Analysis 

Dataset size and mouse strains 

All of the two-photon imaging datasets (11 mice, 145 sessions) were included in all neural 
data analyses. The behavioral accumulator models used data from 17 mice (144366 trials) 
that performed the Accumulating-Towers task  (Lucas Pinto et al. 2018) , and data from 6 
rats (266984 trials) that performed the �lash-accumulation task  (Scott et al. 2015) .  

Unless where explicitly noted, data included all strains of mice listed in the Experimental 
Model and Subject Details section. As the Ai93-Emx1 strain had higher expression levels of 
the �luorescent indicator, they produced signi�icantly higher signal-to-noise (SNR) 
recordings than the Thy1 GP5.3 strain, and contributed more to the layer 5 datasets (see 
Table S2 ). As such, some analyses that are sensitive to SNR (e.g. detection of time periods in 
which cells were active) exhibited small but signi�icant differences, whereas relative 
quantities such as the proportions of choice-speci�ic and cue-locked cells were less 
sensitive ( Fig. S1 B-D,  Fig. S3 K-M). We believe these small strain differences to be driven 
mostly by SNR differences as well as the different contributions of layer 2/3 vs. layer 5 
recordings as data were pooled across layers for these plots for better statistical power. In 
short, results from all strains were highly comparable up to numerical differences that were 
not relevant to our conclusions. 

General statistics 

We summarize the distribution of a given quantity vs. areas and layers using quantile-based 
statistics, which are less sensitive to non-Gaussian tails. Either the arithmetic mean or the 
median is used as a central measure, as stated in �igure legends. The standard deviation is 
computed as the difference between the 84% and 16% quantiles of the data points. The 
standard error (S.E.M.) is computed as the standard deviation divided by  where  is the √n  n  
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number of data points. For uncertainties on fractions/proportions, we compute a binomial 
con�idence interval using a formulation with the equal-tailed Jeffreys prior 
interval  (DasGupta, Tony Cai, and Brown 2001) . The signi�icance of differences in means of 
distributions were assessed using a two-sided Wilcoxon rank sum test (equivalent to the 
Mann-Whitney U-test, Matlab function ). The p-value threshold for evaluatinganksum  r  
signi�icance is 0.05 for all tests, unless otherwise stated. 

Violin plots 

The distributions of various quantities are visualized across areas/layers using violin plots, 
which utilized kernel density estimates of the distributions (Matlab function )sdensity  k  
with bandwidth selected using an optimal rule-of-thumb for normal distributions (Scott’s 
rule, see  (Silverman 1986) ). This bandwidth was computed separately for the data for a 
given area/layer, then the average bandwidth was used to construct the kernel density 
estimate for all areas/layers, for comparability. The width of these plots indicate the 
estimated density at a given y-axis location. Inset error bars show the S.E.M. as described 
above. 

 

Behavioral metrics 

Psychometric function 

The fraction of trials where a given mouse turned right is �irst computed in 11 evenly 
spaced bins centered around , resulting in a list of fractions −15, 12, 5]  Δ = [ − . . . , 1 f }{ i  
where  indexes the bin and the corresponding bin-average , which can differ from thei Δ }{ i  
bin centers depending on the generated distribution of  across trials. These data are �it toΔ  
a 4-parameter sigmoid function  by minimizing a(Δ) 1  pR = p0 + B[ + e−(Δ−Δ ) λ0 / ]−1  
weighted-least-squares loss function using the Matlab function : itf  

 

The weights on the data points are given by  being the 68% (one standard deviation)δf }{ i  
binomial probability content con�idence interval on the observed .f }{ i  

Utilization of evidence 

As detailed in  (Lucas Pinto et al. 2018) , we modeled the dependence of the mice’s choices 
on cues at various spatial locations along the maze using a logistic regression model where 
the factors are the amount of evidence (#R - #L cues) in equally-sized thirds of the cue 
region. The regression was performed using the Matlab function  with the datalmf itg  
assumed to be binomially distributed with a logistic link function. Statistical uncertainties 
on the regression weights were determined by repeating this �it using 1000 bootstrapped 
pseudo-experiments, where the same number of trials were drawn with replacement from 
the original experiment. 
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Neural coding of task-related information 

Task-epoch time axis 

In order to compare data across mice and trials in which the T-maze was traversed at 
different speeds, we resampled the  time-traces of cells using a task-epoch axis thatF F  Δ /  
is piecewise linear in time within �ixed segments being the pre-cue period, cue period, 
delay period, a “turn” period up to the end of the trial, and the ITI. For each trial, we kept 
track of the imaging frames in which the virtual world y position of the mouse �irst crossed 
into the cue region ( ), delay region ( ), and the arm region (past the stem; ), ast0cue t0delay t0arm  
well as the �irst frame of the ITI ( ), and for error trials only the �irst frame of the penaltyt0IT I  
time-out period ( ). For a given imaging frame , where  ( ) corresponds tot0timeout t  t = 0  t = tend  
the start (end) of the trial, the task-epoch time is de�ined as: 

 

The number of resampling bins per task-epoch segment was selected to result in 
approximately equal duration bins ( ). For the data in our hands, these were00ms~ 2  

 bins respectively. For display purposes, the duration of a given epoch is8, 7, 2, , 1, 8}  { 1 1 5 1 2  
shown as the average duration in seconds across all trials in the data. 

Choice-specific sequences 

For comparability, we followed the analysis and presentation in  (Harvey, Coen, and Tank 
2012) , but with adjustments necessary for the faster dynamics of the GCamp6f indicator as 
well as to report additional statistics. The following analyses only used data from trials 
where the mouse made a correct (rewarded) choice. First we located all periods of time in 
which the trial-average  for a given cell was at least 25% of the maximum for at leastF F  Δ /  
2 epoch bins ( ). The cell was de�ined as choice-speci�ic if a two-sample t-test00ms~ 4  
detected that the distribution in right- vs. left-choice trials of  in these active periodsF F  Δ /  
were signi�icantly different at a 5% signi�icance level. For these choice-speci�ic cells, the 
side selectivity was de�ined as the one with the greater distribution average. A 
ridge-to-background excess was de�ined using the  averaged over onlyF F  Δ /  
preferred-choice trials (or all trials if the cell was not choice-speci�ic) as the maximum 
value in time minus the modal value of the distribution. The mode was computed using a 
fast algorithm that does not require binned estimates of the probability distribution 
function  (Bickel and Frühwirth 2006) , and we generally �ind it to be a robust and 
simple-to-calculate estimate of baseline activity for cortical neurons, which are sparsely 
active. In the extreme theoretical case of a completely inactive cell, the distribution of 

 values should be approximately Gaussian and the mode of this distributionF F  Δ /  
corresponds to the zero activity i.e. baseline state. If the cell were to be active, given the 
good contrast of the GCamp6f indicator and high SNR of our data this contributes some 
probability mass to a long high tail of  values. Even for highly active cells orF F  Δ /  
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trial-averaged data, which is temporally less sparse, the mode remains little shifted (unlike 
other summary statistics such as the mean) especially since cortical cells have bursty �iring 
patterns that sample a wide dynamic range of  values.F F  Δ /  

We selected cells to include in the choice-speci�ic sequences analysis by asking if they have 
suf�iciently stereotyped task-related activity. First we generated 1000 null hypotheses per 
cell by randomly rotating the  time series, which maintained the temporal statisticsF F  Δ /  
of the data but broke their correspondence with task-epoch axis. A cell was determined to 
have signi�icantly task-localized activity ( Fig. S1 A) if no more than 5% of these randomized 
pseudo-datasets have a ridge-to-background excess greater than that of the actual data. 
This test is rather permissive for very sparsely active cells, so long as they were active more 
than once throughout the entire session and there is some task-related locality to their 
activity patterns. Complementary to this, we also asked the question of whether cells 
reliably responded within their putative �iring �ields ( Fig. S1 B). The latter is de�ined using 
the  averaged over only preferred-choice trials (or all trials if the cell was notF F  Δ /  
choice-speci�ic), by �inding all time-points that have average  values being at leastF F  Δ /  
50% of the maximum and selecting the period that is contiguously high and containing the 
maximum. The reliability index was de�ined as the fraction of preferred-choice trials in 
which the activity averaged in this �iring �ield is  times noise, where the noise is ≥ 3  
estimated as .  is the median number of imaging frames per epoch σ  √n nf ield

k
epoch

k
F  nepoch  

bin,  is the number of epoch bins in the �iring �ield of cell , and  is the estimate ofnk
f ield k  σk

F  
per-imaging-frame noise explained in the previous section. Only signi�icantly task-localized 
cells with reliability  were included in  Fig. 2 .0%≥ 2  

 -modulation of activity in firing fieldsΔ  

For non-cue-locked cells, we tested for dependence of a given cell’s activity on evidence 
strength by �itting a linear model that regressed its �iring-�ield-average  against theF F  Δ /  
cumulative value of  at the onset of its �iring �ield (example cells in  Fig. S1 I). This analysisΔ  
was used only to eliminate signi�icantly -modulated cells from the choice decodingΔ  
analyses ( Fig. 3 C-D). 

From a purely behavioral standpoint, the strength of evidence is correlated with both the 
mouse’s eventual choice and the likelihood of it receiving a reward at the end of the trial. It 
is also correlated with sensory effects that could be caused by differences in view angles at 
the time that the cell was active. We controlled for all these possible alternative 
explanations for the neural activity as follows. For choice-speci�ic cells (previous section), 
this analysis uses only trials that corresponded to the preferred choice for that cell. For 
non-choice-speci�ic cells, the slope computation described below was �irst performed 
separately for trials of each choice, then the average slope across the two choices was taken. 
Effects arising indirectly from view-angle-speci�ic neural activity was controlled for by 
weighting the data used in �itting this linear model such that the distribution of  in thatθ  
data are equal when conditioned on   (Runyan et al. 2017) . First we divided the data intoΔ  
�ive bins de�ined by , , , , and . We then5Δ ≤ − 4 2− ≤ Δ ≤ − 1− ≤ Δ ≤ 1 2 ≤ Δ ≤ 4 Δ ≥ 5  
computed the locations of view angle bin edges  such that each binθ , , ]  [ (0) θ(1) . . . , θ(3)  
contained insofar as possible the same proportion of  values, or equivalently the θ

 quantiles. Let  be the counts of data in the   0, 3.3%, 6.7%, 00%[ 3 6 1 ] n  ∣ i }{ j
(i) = 1 . . . 3 jth Δ  

bin that fall into these  bins. We de�ined the target proportions as the geometric meanθ  
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across  bins, , where  is a normalization constant suchΔ f  [ ]  ∣ i }{ (i) ≡ f 0 ∏
5

j=1
nj

(i) 1 5/ = 1 . . . 3 f 0  

that . The weight for a given data point was thus , where  is∑
3

i=1
f (i) = 1 (θ, ) n  w Δ ≡ f (i )θ / jΔ

(i )θ jΔ  

the  bin and  is  the bin in which that data fell. Importantly, the use of the geometricΔ iθ θ  
mean resulted in a weight of zero for bins where one or more of the data categories were 
unavailable, as this cannot be compensated for via weighting. This caused a loss of 
statistical power, but this was small because for a �ixed choice, there was little dependence 
of  on  (re  Fig. S5 E). Lastly, cells that were active in the ITI had no direct view angleθ Δ  
dependence since the virtual world display was either frozen in place or later blacked out, 
but could instead be responding to the delivery or lack thereof of the reward. For these cells 
we controlled for the reward outcome in lieu of  using the same distribution-weightingθ  
method. To test for modulation by evidence in the previous trial, we analogously controlled 
for the past reward outcome (only) for all cells. This neglects correlations of the present 
view angle with the past outcome, but we have in unpublished analyses observed these to 
be negligible, explainable by that mice predominantly interrupt their motor actions by 
stopping to lick (or in anticipation thereof) at the end of the trial. 

The above-mentioned weighted least-squares linear �it can be computed analytically 
( (Press et al. 2003)  chapter 15.2). Let  be the average activity in the cell’s �iring �ield inF }{ k  
a given trial ,  be the corresponding cumulative #R-#L at the onset of the �iring �ieldk Δ }{ k  
in that trial, and  be the weights of the data as described above. The slope of the linearw }{ k  

�it is , where , , , F dΔ SS −S S ) (SS −S )  d / = ( FΔ F Δ / ΔΔ
2
Δ S ≡ ∑

 

k
wk ΔSΔ ≡ ∑

 

k
wk k FSF ≡ ∑

 

k
wk k

, and . We categorized a cell as being signi�icantly ΔSΔΔ ≡ ∑
 

k
wk k

2 F ΔSFΔ ≡ ∑
 

k
wk k k Δ

-modulated if  is larger in magnitude than the same in at least 95% of nullF dΔ  d /  
hypotheses constructed by permuting the  data across trials and repeating theF F  Δ /  
weighted �its. The increase in signi�icantly -modulated cells throughout the cue periodΔ  
can be due to greater statistical power for regression where a larger range of  wasΔ  
sampled, but this does not affect trends from the delay period and beyond.  

Decoding from neural population activity 

For the decoding analyses, we downsampled the  time-series data by averaging inF F  Δ /  
(disjoint) groups of two epoch bins, resulting in  duration samples. Behavioral00ms~ 4  
variables to be controlled for, i.e. the view angle in the main experiments and the Arduino 
sensor velocity in control experiments, were similarly averaged in the epoch bins 
corresponding to the resulting  time series. For each of this epoch bins, a SVMF F  Δ /  
classi�ier (Matlab function ) was trained on 2/3rds of the data (i.e. across trials butitcsvm  f  
restricted to a given epoch bin) and the classi�ication accuracy (proportion of correctly 
classi�ied test trials) was computed on the remaining 1/3rd of held-out data. This 
procedure was repeated with the other two disjoint subsets of 1/3rd of held-out data, i.e. 
using a 3-fold cross-validation paradigm. This 3-fold cross-validation procedure was itself 
repeated 35 times, each with a different random partitioning of the data into thirds. Thus 
the average accuracy over a total of 105 cross-validation sets was reported. The SVM 
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classi�ier used a box constraint penalty factor of 1, a linear kernel function, and the 
predictors were standardized. 

To control for a behavioral variable  of interest, we computed weights for the trainingψ  
data input to the SVM classi�ier so that the distribution of  in that data are equal whenψ  
conditioned on the target quantity to be classi�ied. This weighting procedure is identical to 
that described above for assessing -modulated cells, except that we used predeterminedΔ  
bin edges  for when the view angle should be controlled, and5°, .., °,+ °, .. 5°]  [− 8 . − 5 5 . + 8  
the obvious right/left choice categories for when choice should be controlled. The use of 
�ixed-resolution  bins is important because near the end of the T-maze corridor the viewθ  
angle distributions for right- vs. left-choice trials necessarily becomes highly 
non-overlapping as the mouse executes a turn into either arm, as well as spans a large 
range of possible values, which would have resulted in a large degree of residual differences 
in view angle distributions had the same quantile-based strategy as above been used. For 
these same reasons, we were mostly unable to dissociate view angle from choice-related 
effects past midway in the delay region up to the end of the trial in  Fig. 3 D, as  of data0%≥ 5  
had to be discarded (received zero weight) due to there not being data in the other choice 
category with the same view angles. For present and past choice decoding, the view angle 
was controlled for. For reward decoding, the choice that lead to that outcome was 
controlled for, i.e. the past choice was controlled for when evaluating the past reward 
decoding accuracy. 

The signi�icance of the decoding accuracy was assessed by constructing 100 null hypothesis 
pseudo-experiments where the  of cells for a given epoch bin were permuted acrossF F  Δ /  
trials. The entire procedure above was repeated per pseudo-experiment, and the p-value of 
the decoding accuracy was de�ined as the fraction of null hypotheses for which the 
cross-validated decoding accuracy was greater than or equal to that of the actual 
experiment. The data from each imaging session was analyzed separately. To correct for 
multiple comparisons when determining whether the decoding p-value for a particular 
dataset was signi�icant, we used a hybrid Hochberg–Hommel type modi�ication  (Gou et al. 
2014)  to the Bonferroni procedure. For a given type of decoder, say, upcoming choice, we 
constructed a list of p-values across all datasets. The p-values were sorted in descending 
order, resulting in a list  where  is the largest p-value, and the �irst rank  isP , , ]  [ 1 P 2 . . . P 1 iα  
found such that ,  being the signi�icance level of this test. All (i ) (2i )  P iα ≤ α α + 1 / α .05  α = 0  
decoding accuracies corresponding to  are considered to be signi�icantly abovei  P j ≤ α/ α  
chance. This correction is likely conservative because given the  duration of �irings~ 1  
�ields even just on a per-cell basis ( Fig. 2 C), there is reason to think that decoders for 
consecutive time-points (separated by ) have positively correlated accuracies, i.e.00ms~ 4  
the number of repeated tests should be smaller than the naive counts. 

Analysis of view-angle-restricted control experiments 

Overall, we observed qualitatively similar neural phenomena in the control experiments 
where the view angle was restricted to zero throughout the cue region (and where relevant, 
half of the delay region). For choice decoding, as running speed is known to modulate the 
response of at least visually tuned cells  (Niell and Stryker 2010) , we controlled for this by 
weighting trials such that the distribution of treadmill movement speeds are the same 
when conditioned on choice ( Fig. S2 G). This had little effect as mice ran at a fairly 
stereotyped speeds on each trial ( Fig. S2 I). On the other hand, the lateral (X only) treadmill 
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velocity did differ between right- and left-choice trials in these control experiments ( Fig. 
S2 H-bottom), albeit to a much lesser extent in the main experiments ( Fig. S2 H-top). This 
observed difference in motor behavior is likely due to there being no direct visual feedback 
during the view-angle restricted period, unlike in the main experiment where running at an 
angle was visually like running “into” the wall. Since the correlation between the sign of the 
lateral velocity and choice was high for some mice, controlling for it resulted in a 
substantial reduction of the accuracy for decoding choice from the neural data ( Fig. S2 J; but 
not for the RSC dataset, where the mouse had less of a choice vs. lateral-velocity 
correlation). It is possible that we have discovered motor-action-speci�ic activity in the 
visual cortices, or a more subtle and motor-action-speci�ic form of 
sensorimotor-mismatch-driven neural activity than previously reported (i.e. studies where 
the visual scene was abruptly halted as the mouse was running, see  (Keller, Bonhoeffer, and 
Hübener 2012) ). However, X-velocity differences were subtle in the main experiment where 
we still �ind above-chance choice decoding accuracies, suggesting a more parsimonious 
explanation that the neural population re�lects the mouse’s choice, and that the latter is 
itself drives motor actions even without visual feedback during the control task.   

 

Impulse response model for cue-locked cells 

This analysis excluded some rare trials where the mouse backtracks through the T-maze, 
because these can have unusual neural effects outside of the scope of the models. Trials 
were thus included if the  displacement between two consecutive behavioral iterations is y

 (including all time-points up to the entry to the T-maze arm), and if the duration0.2cm> −  
of the trial up to and not including the ITI was no more than 50% different from the median 
trial duration in that session.  

We modeled the activity of each cell as a time series of non-negative amplitudes  inAi  
response to the  cue, convolved with a parametric impulse response function :ith (t)g  

  ( 5 ) 

 are the appearance times cues throughout the behavioral session. The freet ∣i , }  { i = 1 . . . ,m  
parameters of this model are the lag ( ), rise ( ) and fall ( ) times of the impulseτ lag  σ↑  σ↓  
response function, the amplitudes , and small (L2-regularized) time jitters  thatAi τδ i  
decorrelates variability in response timings from amplitude changes.  is a calcium(t)hCa2+  
indicator response with parameters from literature (i.e. same for all cells;  (Chen et al. 
2013) ), which deconvolves calcium and indicator dynamics from our reports of timescales. 
This is parameterized as a difference of exponentials, , where(t) 1−e ) e h  hCa2+ = ( −t τ/ ↑

Ca −t τ/ ↓
Ca/ 0  

, , and  is a normalization constant such that the peak of this5ms  τ↑
Ca ≡ 3 00ms  τ↓

Ca ≡ 3 h0  
function is 1. We note that timescales cannot be resolved to better than about the imaging 
data rate of .15Hz 7ms  1/ ≈ 6  
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We maximized the model likelihood to obtain point estimates of all the parameters, using a 
custom algorithm detailed below. The signi�icance of a given cell’s time-locking to cues is 
de�ined as the number of standard deviations that the impulse response model AIC C  score 
(bias-corrected Aikaike Information Criterion,  (Hurvich and Tsai 1989) ) lies above the 
median AIC C  of null hypothesis models where the timings  of cues were randomly{t }i  
shuf�led within the cue region. In addition, a small fraction of cells responded to both left- 
and right-side cues. We parsimoniously allowed for different impulse responses to these by 
�irst selecting a primary response (preferred-side cues) as that which yields the best 
single-side model AIC C , then adding a secondary response if and only if it would improve 
the �it (see below for algorithm details). We de�ined cells to be cue-locked if the primary 
response signi�icance exceeds 5 standard deviations. Statistics reported in the text include 
the peak of the response , the onset of the half-maximum response, , andτ lag − σ  τ lag √2ln2 ↑  
the full-width-at-half-max (FWHM), . (σ )  √2ln2 ↑ + σ↓  

Because of the nonlinear dependence on a large number of parameters and likely multiple 
local optima for this problem, we used a custom coordinate-descent-like algorithm  (Wright 
2015)  where subsets of parameters are optimized at a time while keeping others �ixed or in 
simpli�ied forms. The three subsets are the impulse response shape parameters 

, the amplitude parameters , and the time-jitter parameters . Theτ , , }  { lag σ↑ σ↓ A }{ i δτ }{ i  
optimization procedure utilizes the C++ linear algebra package Eigen (version 
3;  http://eigen.tuxfamily.org/ ), an Eigen-based implementation of the 
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm for gradient-based function 
minimization ( https://github.com/PatWie/CppNumericalSolvers ), and is presented in 
Algorithms 1-4, which takes as input the activity data  for a given cell (simplifying the (t)F

 notation) and outputs a predicted activity time-trace . Model selection isF F  Δ / (t)m  
performed using AIC C . In particular because the model assumes that the data are 
Gaussian-distributed around the model prediction, this calculation is: 

 

where we have treated the discretely sampled time-series data as vectors, ,ength(F )  nF = L
→

 
and  is the number of free parameters in the model. npar  

If we assume for a moment that the shape and jitter parameters are �ixed, �inding the 
optimal amplitudes can be formulated as a linear regression problem , where  isA  H

→
~ F

→
 A

→
 

the  vector of amplitudes,  is the  vector of  time-series data, and  is nA × 1  F
→

 nF × 1 F F  Δ / H  
an  regressor matrix the columns of which are the same impulse response nF × nA  
timecourse but shifted to have peaks located at  for the  column (  is theτti + τ lag + δ i ith ti  
onset time of the  cue). We assume there is a function  that computes this matrixith egMat  R  
given the shape parameters and onset times. In order to account for the �inite duration of 
imaging frames, the impulse response shape ( Eq. 5 ) is evaluated by taking the integral 
within the imaging frame in question (this is particularly important for stability of the �it 
when the  duration parameters are small relative to the frame rate). That is, for the calcium 
response function in a given imaging frame at  we compute t, t]  [ t + Δ

 where the cumulative integral function is:(t) (t t)−H (t)hCa2+ ~ HCa2+ + Δ Ca2+  
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(t) h   H
Ca2+ = 1

h0
τ[ ↓
Ca 1−e( −t τ/ ↓

Ca) + e −1( −t (1 τ +1 τ )/ ↑
Ca / ↓

Ca ) τ τ↑
Ca

↓
Ca

τ +τ↑
Ca

↓
Ca]  0  

 (τ ) (τ )  ≡ τ↓
Ca

↑
Ca τ τ↑

Ca/ ↓
Ca

↑
Ca + τ↓

Ca −(τ +τ ) τ↑
Ca

↓
Ca / ↓

Ca
 

Similarly for the full impulse response function we compute  where(t) (t t)−G(t)g ~ G + Δ  

 

The procedure  (Algorithm 2) assumes zero jitter, and uses gradient descentptimShapeO  
(BFGS algorithm) to optimize the shape parameters while keeping the amplitude 
parameters �ixed, alternating this with steps where the shape parameters are kept �ixed 
while the amplitudes are obtained using a fast nonnegatively-constrained conjugate 
gradient solver (Eigen function ). We use L2igen : nternal : onstrained_cg  E : i : c  
regularization to break potential degeneracies in the solution as well as constrain the shape 
and jitter parameter values to be within a reasonable range given the duration of trials. 
Parameter bounds are implemented by using a working-set of unbounded parameters that 
the BFGS optimizer “sees”, which are then transformed using a softplus-like recti�ication 
function by  before using them to compute the regressor matrix :egMat  R H  

 

This function transitions quickly but smoothly between the hard bounds  and ax , ]  [ min xmax  
linear regime in between. The bounds are very liberally set to  for , and 0, 0s]  [ 2 τ lag 0, 0s]  [ 1  
for  and . The jitter parameters  are bounded to be in the range . σ↑  σ↓ δτ }{ i −τ ,+ ]  [ lag τ lag  

The procedure  is highly similar, except that the shape parameters asef ineT imings  R  
obtained from procedure  are held �ixed while the jitter and amplitudeptimShapeO  
parameters are iteratively optimized (Algorithm 3). Thus the jitter parameters allow for 
small variations in timings of either the experimental measurement of the cue presentation 
times or in the neural responses, but these are restricted degrees of freedom in the sense 
that they are not allowed to cause deviations in the shape parameters. Lastly, in the case 
where a cell has two signi�icant response components i.e. to both right- and left-side cues, 
procedure  (Algorithm 4) is called to jointly optimize the two sets of amplitudes (i.e.ef itA  R  
for right-cue vs. left-cue responses). This more fairly allows the two components to 
compete in explaining the data, as the secondary component was previously obtained by 
�itting the model on the residual  where  is the prediction of the primary(t)−m(t)F (t)m  
response model. 

As detailed in Algorithms 2-4, L2 regularization terms are included for the amplitude and 
jitter parameters. We select the strength of the regularization terms to contribute a �ixed 
small amount to the cost function. For the amplitude parameters, regularization enters the 
cost function as the second term in , so to make the regularization effect beH IHT + λA  
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comparable to that of the regressor matrix , we should selectH  
. We want the regularization to have a small effect instead,r(H H) tr(I) r(H H) n  λA ~ t T / = t T / A  

so this motivates choosing  as in Algorithms 2-4. For the jitter0  tr(H H) n  λA = 1 3− T / A  

parameters, we ballpark the sum-squared residuals  to be of magnitude  ∥F−HA∥
→ →

2
2

σ )  ( F 2  
per time-point, where  is the estimated �luorescence data noise for that cell. σF  
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Amplitude modulation models 

The cue-locked amplitudes are modeled as samples from a Gamma distribution with mean 
functions as follows: 

 

 

 is the onset time of the  cue, which is located at distance  along the cue region andti ith yi  
appears at a visual angle  relative to the the mouse.  is the upcoming choice of(t )  ϕcue i (t )C i  
the mouse in that trial, and  is the cumulative right minus left cue counts up to and(t )Δ i  
including cue .  is the speed of the mouse in the virtual world at the time of thei (t )  vi = v i  
cue, and for the simple linear speed dependencies the standardized version 

 is used, where  is the  probability content quantile of(t) v(t)−Q ] [Q −Q ]  ṽ ≡ [ v
50% / v

90%
v
10% Qvp p  

the speed distribution. The shape parameter  for the Gamma distribution is furthermorek  
indexed by choice for the  model. The spline-based functions were implemented using anC  
open source C++ cubic spline �itting library ( https://github.com/ttk592/spline/ ), with 
modi�ications (for evaluation convenience) available 
from  https://github.com/sakoay/spline . For a given set of control points ,x ∣i , }  { (i) = 1 . . . , n  
the spline  is a piecewise continuous and twice continuously differentiable 3 rd  degree(x)s  
polynomial in between adjacent control points  and . Natural boundary conditionsx(i) x(i+1)  
were used at the endpoints  and , i.e. the second-order derivatives were de�ined tox(1) x(n)  
be zero at those points so that the solution linearly extrapolates past the range of control 
points. For the SSA model, the response to the �irst cue in the session is de�ined to be 

.(t )  μA 1 = 1   

Because neural activity can be very different in the rare cases where the mouse halts in the 
middle of the cue region, only data where the speed  is within 25% of its median value v  
were included in the construction of this model. Point estimates for the model parameters 
were obtained by minimizing the Gamma-distribution negative log-likelihood (Matlab 
function ):mincon  f  
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lnL (1−k)lnA ln nΓ(k)− = ∑
 

i
i + Ai

μ (t ) kA i / + k k
μ (t )A i + l  

We selected a Gamma distribution hypothesis because the amplitudes were restricted by 
de�inition of the impulse response model to take on non-negative values. However because 
the Gamma distribution is de�ined only in the positive domain, we had to make an 
assumption about how to treat data points where . We reasoned that we could Ai = 0  
substitute these with a noise-like distribution of amplitudes, which were obtained by �itting 
the impulse response model ( Eq. 5 ) using the same cue timings but simulated noise-only 
data, which comprised of a  time-series drawn i.i.d. from a Gaussian distribution withF F  Δ /  
zero mean and standard deviation being , the estimated �luorescence noise level for that σF  
cell. This yielded a set of  which had some nonzero values from chance �luctuations inA }{ ′

j  
the simulated data. All  were then replaced with  values from thisσ  Ai ≤ 10−3 F σA′

j > 10−3 F  
set. This substitution drives the model  away from zero in the regime of very smallμA  
response amplitudes, but not beyond noise levels. In order not to run into unde�ined 
log-likelihood values during optimization,  is also bounded below by a small number, μA

.ax(μ , σ )  μA → m A 10−3 F  

Bounds were set on the parameters so that  and aspects of the solution remainedμA ≥ 0  
within a reasonable range. For the angular receptive �ield hypotheses, the preferred 
response angle was restricted to . For the skew-Gaussian hypothesis in−2π, π]  ϕ0 ∈ [ 2  
particular, the width/skew parameters were restricted to  and .0, 0π]  σ ∈ [ 1 −10π, 0π]  ζ ∈ [ 1  
For the sigmoid hypothesis, the restrictions were , , 0, A ]  ρmin ∈ [ maxi i 0, A ]  ρmax ∈ [ maxi i

, and . The spline-based functions are de�ined by their values at the0, 00]  γ ∈ [ 1 0, 00]  ν ∈ [ 2  
control points, all of which were bounded between . The shape parameter of the0, A ]  [ maxi i  
Gamma distribution was restricted to . Lastly, the SSA adaptation strength was0, )  k ∈ [ ∞  
restricted to  and the associated timescale to .0, ]  γ ∈ [ 3 0, s]  γ ∈ [ 7  

The AIC C  score for a given model is  ICC  n −2 n lnL  n (n ) (n −n −1)  A = 2 par A
︿+ 2 par par + 1 / A par  

where  is the optimal model likelihood,  the number of response amplitudes i.e. dataL︿  nA  
points, and  the number of free parameters for that model. For any one model, the best npar  
(lowest AIC C ) option for the angular receptive �ield shape  is �irst selected. The(ϕ )  ρ cue  
relative AIC C -based likelihood for two models, then used for model selection as described in 
the text, is .xp([AICC(model 1)−AICC(model 2)] 2)  e /  

Choice modulation strength 

The location-dependent choice modulation strength for cue-locked amplitudes is de�ined 
as , where A (y) A (y)−A (y)]   ⟨A⟩  δ choice = [ choice

contra ipsi
choice / (y) (y; C ontralateral choice)Achoicecontra ≡ μA   = c  

as in Eq. 7, and analogously for ipsilateral choices. This is computed by evaluating the 
amplitude model prediction vs. location in the cue region, but at �ixed  corresponding ϕcue  
to zero view angle (  for right-side cues and  for left-side cues) and . The2°+ 2 2°− 2  Δ = 0  
normalization constant is: 

A⟩  ⟨ =  dy( 1
2Lcue ∑

 

C∈{R,L}
∫
Lcue

0

1
max[A (y),σ ]C

choice F )−1
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In practice the location-averaging of the model prediction is performed by evaluating the 
function at 1000 evenly spaced points over the cue region . We preferred the0, ]  [ Lcue  
harmonic over the arithmetic mean because the activity of cortical cells including 
cue-locked ones tend to be sparse, leading to a prevalence of small amplitude values that 
was poorly re�lected by the arithmetic mean (which is dominated by high outliers). To  
prevent this from being unde�ined in the rare cases where , we used the larger ofAC

choice = 0  
the model prediction vs. the activity noise level  of that cell. σF  

 

Feedback-loop model 

As explained in the main text, the sensory and accumulator states are speci�ied by: 

(t) (t) 1 (t) u]  r→ = R × [
→

+ ar →   

a (t) dt (t) (t) 1 (t) a (t) u   d r / = r→ · w→ = R
→

· w→ + R r
→· w→  

This is an ordinary differential equation that can be solved by the integrating factor 
method. Writing it in the form , we identify the integratinga dt−R(t)u  a (t) (t) 1  d r/ →· w→ r = R

→
· w→  

factor to be , giving a solution:(t) ∫R(t)u  dt u  N (t)  b = − →· w→ = −→· w→ R  

(t)  aR = e−b(t) ∫e R(t) 1  dt[ b(t) →
· w→ + c1] = eu·w N (t)→ →

R ∫e R(t) 1  dt[ −u·w N (t)→ →
R

→
· w→ + c1]  

where  is a constant of the integration. We can simplify this:c1  

 

We assume that at the start of the trial, the accumulator has zero content. This requires 
, and substituting  into the above we obtain  Eq. 3 .(0)aR = 0 = − u·w→ →

1·w
→ →

+ c1 c1 = u·w→ →
1·w
→ →

 

In the case of weak feedback, a Taylor’s series expansion of  Eq. 3  gives 
. The accumulator thus reduces to perfect  N (1 ) (u ) N [(u ) ]ar = 1

→
· w→ R + 2

1 →
· w→ →· w→ 2

R + O →· w→ 2  
integration in the zero feedback limit ( ), and exhibits growing nonlinearities vs. u→· w→ → 0  

 for stronger feedback. Interestingly, the relevant measure of feedback strength is notNR  
the “synaptic” weights , but the projection of  the feedback onto the feedforward u→  
direction, . In other words, near-linear integration can be achieved in a neural circuit u→· w→  
with strong feedback synapses, so long as there is net cancellation such that 

. This requires the sensory population state to be at least 2-dimensional.wu→· w→ = ∑
 

i
ui i ≈ 0  
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Dependence of cue-response amplitudes on counts 

We performed a quasi-independent check that count modulation of cue-locked amplitudes 
could be detected using a simple linear model in a more controlled experimental situation, 
as opposed to the multi-factor amplitude modulation models that accounted for angular 
receptive �ield effects, running speed, and so forth ( Fig. 5 ). This was achieved by restricting 
the data to the last third of the cue period, which minimizes behavioral differences like 
running speed, place dependence, etc.  

To control for categorical choice effects, we �it a different linear model 
 for each subset of trials with choice , where (t ) N (t )A last ~ β0

C + β1
C

last right, ef t}  C ∈ { l (t )A last  
is the amplitude of the response to the last cue in the last third of the cue period, and 

 is the total number of preferred-side cues in that trial.  To control for the visual(t )N last  
angle, the same type of weighted linear �it as used to assess -modulation ofΔ  
non-cue-locked cells was used, with weights chosen so that the  distributions are the ϕcue  
same in three equally sized quantile bins when conditioned on 

. Null hypotheses were constructed by shuf�ling the1 , , , 0}  N ∈ { − 3 4 − 6 7 − 9 ≥ 1  
amplitudes  across trials for a �ixed choice , and the slope  for a cell is considered toA C β1

C  
be signi�icant if less than 5% of shuf�led-data �its have slopes greater than that value. For 
cells with either signi�icant  or , these slopes are highly signi�icantly correlated acrossβ1

R βL1  
choice categories ( , ), and we therefore used the choice-averaged.44  r = 0 .7 0  p = 2 × 1 5−  
slope  to identify signi�icantly modulated cells. The signi�icance of thisA dN β ) 2  d / ≡ ( 1

R + βL1 /  
choice-averaged slope was analogously de�ined by comparing its value to the 
choice-averaged slopes in shuf�led-data �its. 

Because sensory responses are expected to have a causal in�luence on the behavioral 
choice, it is possible that the above method to control for choice effects may arti�icially 
introduce a negative correlation between the amplitudes of sensory responses  and cueA  
counts . For example, trials with low right-cue counts tend to be more ambiguousN  
(smaller differences between right- and left-cue-counts), and therefore positive �luctuations 
in right-cue sensory responses may bias the decision towards a right-turn choice. This is in 
contrast to trials with high right-cue counts, which tend to already have unambiguously 
high rightwards evidence, and therefore both positive and negative �luctuations have little 
effect on the decision to turn right. In other words, when selecting only right-choice trials 
we may inadvertently also select trials where the sensory response amplitudes are biased 
upwards for low  and less biased for high , resulting in a negative . We checkedN N A dN  d /  
for this by performing linear regression of  vs.  without controlling for choice (i.e. usingA N  
all of the data), and comparing this to when choice was controlled for. The slopes A dN  d /  
estimated using both methods are highly correlated ( Fig. S5 F; ,  for.63  r = 0 .5 0  p = 2 × 1 42−  
all cells; , for cells identi�ied as having a nonzero slope), with no.8  r = 0 .1 0  p = 7 × 1 15−  
indication that the choice-control method biases the computed  towards lowerA dN  d /  
values due to the aforementioned negative correlation ( Fig. S5 G, all points lie close to the 
diagonal line). We therefore conclude that any choice-selection biases are negligible in our 
analysis. 

For the non-parametric visualization of the dependence of  on  ( Fig. 6 D), we computedA N  
the weighted mean amplitude in the same bins of  as above and with the same weights asN  
used to equalize the  distributions. To account for the width of the bins vs. ϕcue  
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non-uniform distributions of the generated cue counts, the abscissa of this plot is shown at 
the bin-average . Similarly, the Fano factor  was computed per N (A) ar(A) mean(A)  F ≡ v / N
-bin as the weighted variance over weighted mean. Linear regression was then performed 
for  vs. the bin-average .(A)F N  

Predicted Fano factor of cue-locked responses 

Here we consider the theoretical consequences of  in  Eq. 3  not being perfectlyNR  
deterministic, but instead Gaussian-distributed random variate with mean  andNR  
variance  (as per the central limit theorem as explained in the text). This means that σNR

2
1

 is lognormally distributed with non-logarithmized mean  andxp(u N )  e →· w→ R N  u→· w→ R  
variance . Letting ,  and u ) N σ(→· w→ 2

R
2
1 1 )   (u )  a0 ≡ (

→
· w→ / →· w→ u ) σ 2  b ≡ (→· w→ 2 2

1/ + u→· w→

 to simplify notation, the accumulator state has the following mean andu ) σv ≡ (→· w→ 2 2
1  

variance  (Johnson, Kotz, and Balakrishnan 1994) : 

 

We want to understand the trend of the Fano factor vs.  for the activity of a singleNR  
sensory neuron under pulsatile input. From  Eq. 1  this is  where  is the (1 u )  ri = R + ar i ar  
stochastic accumulator state above and  corresponding to a single input pulse is a R  
Gaussian random variate with mean 1 and variance . For simplicity we will assume that  σ2

1
 and  are independent random variables, which would be the case in the discrete-time R ar  

version of  Eq. 3  since for causality reasons the scaling by the accumulator state should 
depend on the inputs up to but not including . We use the following rule for the variance R  
of a product of two independent random variables: 

     ( 6 )ar(XY ) ean(X) var(Y ) ar(X)mean(Y ) ar(X)var(Y )  v = m 2 + v 2 + v  

 
The Fano factor of the distribution of  is thus:ri  

    ( 7 ) 
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In the regime of small  we expand Eq. 10 in a Taylor’s series, NR

. Direct substitution of  in the above gives us (N ) (0) (0)N (N )F R = F + F ′
R + O 2

R  NR = 0
. For the �irst-order term, we have:(0)F = σ2

1  

  ( 8 ) 

All the variables , , , and  are positive, whereas  can take on either sign. Thisa0 b  v  σ1 ui  
means that for cells with feedback strength , all the terms in  Eq. 8  are non-negative,ui > 0  
in particular the �irst-order term a.k.a. the slope, and  is thus a monotonically increasingF  
function of . Viewed as a function of the feedback strength,  has roots at 0NR (u ) (0)  f i ≡ F ′  
and , so for  cells there is a range of  where σ b   (1 ) a v  ui

(0) = − 2
1 / + σ2

1 0 < 0  ui < 0 u , )ui ∈ ( i
(0) 0

 i.e.  is a monotonically decreasing function of , for small enough  such(0)  F ′ < 0 F NR NR  
that the  Eq. 8  expansion holds. However as  grows large but still for , this trendNR  ui < 0  
reverses. We can see this by considering the behavior of  close to the singular point(N )F R  
where . Going back to the form of  Eq. 7  as ean(1 u )  m + ar i → 0

, the �irst term proportional to the mean(N ) mean(1 u ) · ]   mean(1 u )  F R = σ2
1 + ar i + [ · · / + ar i  

becomes negligible compared to the second which is inversely proportional. The latter 
diverges to , because the denominator decreases monotonically from 1 down to 0,+ ∞  
while the numerator is always non-negative. The latter follows from the squares of real 
numbers always being non-negative, which is also the case for those of the form ex ≥ 1  
when all . Thus to recap, for  cells the Fano factor �irst decreases with , thenx ≥ 0  ui < 0 NR  
at some point turns to increasing since it diverges to  as . For+ ∞ ean(1 u )  m + ar i → 0  
extremely strong negative feedback such that the mean sensory response would decrease 
below zero, we must extend the model to include recti�ication effects to prevent this from 
happening. This is beyond the scope of this work, although depending on the type of 
recti�ication, this can also modify the behavior of the Fano factor  (Charles et al. 2018) . 

We illustrate the above analytical results using simulations where for a given true input 
count of , we model the single-pulse stochasticity  as a Gamma-distributed randomN  R  
variable with mean 1 and variance , the accumulator state as  Eq. 3  but with  replaced σ2

1 NR  
with a Gamma-distributed random variable with mean  and variance −1N N−1) σ( 2

1  
(discrete-time version). The parameters used are , , and . The 1

→
· w→ = 1 .3  u→· w→ = 0 ± .01  ui = 0  

resulting distribution of sensory responses as in  Eq. 1  is shown in  Fig. S5 A, but bounded to 
be no less than zero. For , the accumulator state is zero and thus there is no N = 1  
distinction between positively and negatively modulated sensory responses. For  and  N = 5

 the feedback effect grows progressively larger, inducing a separation between 0  N = 1
 and  cases.  Fig. S5 B shows the mean, variance, and Fano factor of the sensoryui > 0  ui < 0  

response distributions for a range of true counts. The Fano factor monotonically increases 
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for  and has the expected non-monotonic trend of �irst decreasing then increasing forui > 0  
the  case given our choice of parameters. These results are not sensitive to the type of ui < 0  
distribution (e.g. Gamma vs. Gaussian) modeled, so long as the variance remains �inite and 
there is not an excessive amount of probability mass that is truncated at zero. 

Sources of noise in various accumulator architectures 

To account for imperfect psychophysical performance, we consider three sources of noise 
in modeling the distribution of .ar  

First is sensory noise, any source of stochasticity that occurs either in the stimulus (t)  R  
itself or in the activity  of the sensory neurons. Because the latter are slaved to their(t)  r→  
input drive, the detail of where along the feedforward path this noise arises from does not 
matter in its effect on the accumulator state. Also since only the projection of the sensory 
state onto the readout direction  matters, only the net 1-dimensional variability along  w→  w→  
matters. Sensory noise is thus equivalent to replacing  where  is a(t) (t) (t)  R → R + ε (t)ε  
(scalar) noise process. Assuming the central limit theorem, we model this as replacing the 
true integral  where  is a Gaussian distributed random variable with mean  NR → n︿R  n︿R NR  
and spread .σ  √NR 1   

Secondly, we consider modulatory noise that may be present in gain modulations of the 
sensory population. For the  fdbk  model, as the sensory gain modulation is proportional to 
the feedback weight, this is equivalent to there being stochasticity in the feedback weights 

, which for tractability we consider to be slow on the timescale of the cue period. Again, u→  
only the 1-dimensional variability along  matters, so in sum this source of stochasticity u→· w→  
leaves  Eq. 3  unchanged but instead can be considered as  being drawn randomly per u→· w→  
trial, . We model  with a lognormal distribution, which is the limiting case of u→· w→ → m︿R m︿R  
a product of many positive random variables. For the  ffwd  model, we instead hypothesized 
a non-speci�ic source of slow gain �luctuations, equivalent to scaling the accumulator value 
with a stochastic variable per trial,  in  Eq. 4 . 1

→
· w→ → m︿R  

Third, for both models there can be noise associated with comparing the two accumulators 
to form a decision, which we model as the decision variable  being Gaussian-distributedc  
around .−aar l   

Sources of variability that we for simplicity do not model include initial and drift noise in 
the accumulator,  as these were seen to be negligible according to behavioral models of 
pulsatile evidence accumulation  (Brunton, Botvinick, and Brody 2013; Scott et al. 2015; 
Lucas Pinto et al. 2018) . Accumulator drift noise also predicts a time-dependence to the 
behavior that we do not observe.  

Formally, the modi�ied differential equation for the evolution of the  fdbk  model accumulator 
state given a sensory noise process  and a modulatory noise process  is:(t)ε (t)ξ  

R(t) (t)] 1 R(t) (t)] a (t) ξ(t)  u  dt
da (t)r = [ + ε

→
· w→ + [ + ε r

→· w→  

The solution as discussed above (assuming that  is slower than the trial duration) is:(t)ξ  

           ( 9 ) ar = m︿R
1·w
→ →

e −1[ m n︿
R
︿
R ] ∝ 1

m︿R
e −1[ m n︿

R
︿
R ]  
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 ∣ N ,  (N , σ )  n︿R R σ1 ~ N R √NR 1  

n(m ) ∣ μ ,  (μ , )  l ︿
R u σu ~ N u σu  

The model predicts that the animal should make a choice to the right with probability given 
by the decision variable  being positive. The likelihood of getting exactly (a −a , )  c ~ N r l σc

 right- and left-choice trials in the behavioral data for a �ixed  is binomiallyk , )  ( R kL N , )  ( R NL  
distributed around this probability. The constant  that  is proportional to can be 1

→
· w→ ar  

neglected since this just sets the arbitrary units of the accumulator, which we presume that 
the brain adjusts so that the right and left accumulators can be compared in a way that is 
not biased by having potentially different units. We additionally include a lapse rate that 
acts as the animal instead making a fair coin toss to go right  of the time. Lastly, weplapse  

maximized the model likelihood over the �ive free parameters  to best σ , , , ,{ 1 μu σu σc plapse}  
�it the behavioral data as described in the next section. 

As discussed in the text, we assessed how well the the  fdbk  model predicts behavior in 
comparison to three other architectures. The  ffwd  model has accumulator states distributed 
as , and the full set of �ive free parameters , same as for then  ar = m︿R︿R  σ , , , ,{ 1 μu σu σc plapse}  
fdbk  model. The  intg  variant of this model has no modulatory nor accumulator-comparison 
noise ( ), and so has two free parameters . The  webr  variant instead has m︿R ∝ 1  σ ,{ 1 plapse}  

no sensory nor accumulator-comparison noise ( ), and so has three free n︿R = NR  
parameters . The modulatory noise  is the cause of Weber-Fechner μ , ,{ u σu plapse} m︿R  
scaling in all three of the  webr ,  fdbk  and  ffwd  models. 

Fitting accumulator models to behavioral data  

The behavioral data that we used here are: 

● mice with  trials from  (Lucas Pinto et al. 2018)00≥ 5  
● data from head-�ixed rats performing a �lash accumulation task  (Scott et al. 2015) 

Let  and  be the number of right- and left-choice trials respectively(N , )  kR R NL (N , )  kL R NL  
out of all trials in the behavioral data with a given number of true right ( ) and left ( )NR NL  
cue counts. A particular accumulator model  is characterizedintg, ebr, fwd, dbk}  M ∈ { w f f  
by its predicted probability of right-choice trials given the true cue counts, 

 where  are the free parameters of the model. Including a lapse rate (N , ; )qR
(M )

R NL β
→
M  β

→
M

, we optimized the models by minimizing their negative log-likelihood, which have theplapse  
same form as given by the binomial probability distribution: 

 

For the  intg  model, the probability distribution of right- and left-accumulator states are 
Gaussian according to the central limit theorem. Assuming that the accumulators are 
independent and have the same parameters, the joint probability distribution is 
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, and the right-choice probability is given by the(a ,  ∣ β ) (a  ∣ β ) P (a  ∣ β )P r al
→
intg = P r

→
intg l

→
intg  

region :  . This has a well-knownar > al a a  P (a  ∣ β ) P (a  ∣ β )pR
(intg) = ∫

∞

−∞
d r ∫

ar

−∞
d l r

→
intg l

→
intg  

simpli�ication in that the difference  of two (independent) Gaussian-distributed  −a  c ≡ ar l  

variables is also Gaussian-distributed, so . For the[c ∣ N −N , N ) σ ]pR
(intg) = ∫

0

−∞
N R L ( 2

R + N 2
L

2
1  

non-negative variant  ( Fig. S5 I) we assume Gamma-distributed sensory noise, and intg+  
performed the following integral numerically (Matlab functions ,  andntegral  i ampdfg  

):amcdfg  

a a  Γ Γ  pR
intg+ = ∫

∞

0
d r ∫

ar

0
d l a  ∣ μ ,( r 0 + σ2

1

NR σ2
1)   a  ∣ μ ,( l 0 + σ2

1

NL σ2
1)  

 is an additional free parameter of the  model, which was required because theμ0  intg+  
Gamma distribution is otherwise not de�ined at zero counts. Otherwise the Gamma 
distributions were selected to have the same mean and variance as a function of the true 
counts as the Gaussian distributions in the intg model, following the central limit theorem 
hypothesis. 

For the remaining three models, we evaluated the necessary integrals using a Monte Carlo 
method. For a given combination of , we drew 200,000 samples each for the �iveN , )  ( R NL  
stochastic quantities , , ,  (see  Eq. 9 ), and  which acts as them︿R  n︿R m︿L  n︿L (0, )  ε︿c ~ N σc  
accumulator comparison noise. For the non-negative variants , , and , thewebr+ f fwd+ fdbk+  
integrated distributions are instead  and . The(μ σ , )  n︿R ~ Γ 0 + NR/ 2

1 σ2
1 (μ σ , )  n︿L ~ Γ 0 + NL/ 2

1 σ2
1  

decision variable was computed as  for the  webr  models, m −N m  c = NR
︿
R L

︿
L

 for the  ffwd  models, and  for them −n m  c = n︿R︿R ︿
L
︿
L + ε︿c e −1) m −(e −1) m  c = ( n m︿

R
︿
R /︿R n m︿

L
︿
L /︿L + ε︿c  

fdbk  models. The right-choice probabilities for the model were then estimated as the 
fraction out of the 200,000 samples for which .c > 0  

The method used for minimizing the negative log-likelihood for the  intg  models was the 
interior-point algorithm implemented by the Matlab function . For the othermincon  f  
models, this could not be used because the stochastic nature of the Monte Carlo integration 
resulted in slightly non-smooth log-likelihood landscapes. Instead, the gradient-free direct 
search method  (Global Optimization Toolbox) was used for these models.atternsearch  p  
Parameter ranges were bounded during the minimization in order to obey non-negativity 
constraints and in some cases to avoid numerical under/over�low issues at extreme values 
(particularly for the  fdbk  model, which involves exponentiation). For all models, 

, , ,  and  . The bounds for the0, 00]  σ1 ∈ [ 1 −5, ]  μu ∈ [ 2 0, 0]  σu ∈ [ 2 0, .5]  plapse ∈ [ 0  
comparison noise was  for the  ffwd  models and  for the  fdbk  model.0, 0]  σc ∈ [ 2 0, 0]  σc ∈ [ 5  
The motivation for this is because the accumulator states in the  fdbk  model are on an 
exponential scale compared to the  ffwd  models, thus larger values of comparison noise for 
the  fdbk  models can have comparable effects on  compared to smaller values in the ffwdpR  
models. Lastly, for the non-negative model variants we constrained , and we0.01, 0]  μ0 ∈ [ 1  
optimized  directly instead of , with bounds  since the Gammaβ ≡ σ2

1  σ1 0.2, 0]  β ∈ [ 2  
distributions become unde�ined (and run into numerical integration issues) as .β → 0  
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Interestingly, for the mouse  fdbk  model �its, accumulator-comparison noise had a more 
dominant effect than sensory noise ( Fig. S5 H-left,  Fig. S6 A) , whereas the reverse holds for 
rats ( Fig. S5 H-right,  Fig. S6 B). This could be related to the stimuli in the rat task being very 
brief (10ms) LED �lashes, compared to the high visual salience of cues in the mouse task. 
The navigational component of the mouse task instead adds unmodeled sources of 
behavioral variability that may have been absorbed into the accumulator-comparison noise 
term. 

 

Theoretical effects of various sources of noise 

In the  ffwd  model, the relative uncertainty in  diminishes with increasing  as for the n︿R NR  
intg model, so asymptotically  as in Weber-Fechner scaling. More formally, wemar → NR

︿
R  

can perform a variance analysis to assess the contributions of sensory, modulatory, and 
accumulator-comparison noise. The variance of this is given by application of  Eq. 6 : 

 

, , and  remain at �ixed magnitudes as we consider growing , so σ2
1 ean(m )  m ︿

R ar(m )  v ︿
R NR  

eventually the  term dominates, leading to Weber-Fechner scaling. The decision variableN 2
R  

is  as previously discussed, from which we obtain m −n m  c = n︿R︿R ︿
L
︿
L + ε︿c

 which follows from the two accumulators and thear(c) ar(n m ) ar(n m ) ar(ε )  v = v ︿
R
︿
R + v ︿

L
︿
L + v ︿

c  
comparison noise all being uncorrelated random variates. The comparison noise variability 

 is the only non-count-dependent term in this expression, and given thear(ε )  v ︿
c  

non-negative nature of all other terms, therefore has the most quickly diminishing effect 
with increasing counts. 

For the  fdbk  model, even though  Eq. 3  predicts that the accumulator state is exponentially 
related to the true counts, this does not on its own predict any change in perceptual 
performance if there is only sensory noise. This is because if  for the perfect n︿R > n︿L  
integrator, then , being a monotonic transformation of both left-e −1) m e −1) m  ( m n︿R / > ( m n︿L /  
and right-hand-sides (assuming ). What distinguishes the  ffwd  and  fdbk  models ism > 0  
therefore the interaction of sensory and other (downstream) sources of noise. At small 
counts we can expand  Eq. 3  as , which means that at small countsn 2 (n )  ar = n︿R + m︿R︿

2
R/ + O ︿3

R  
i.e. to �irst order the predicted performance follows the  intg  model more closely than the 
ffwd  model, seen in  Fig. 7 B as a steeper increase in performance (for everything else �ixed). 
At high counts , so . Making use of the fact that  if and em  n︿

R
︿
R ≫ 1 m  ar ≈ em  n︿

R
︿
R/︿R n a n a  l r > l l  

only if , we can equivalently consider the performance of comparing thear > al  
log-transform of the accumulators, . At large counts the  termn a  n −ln m  l r ≈ m︿R ︿R ︿

R n m  l ︿
R  

becomes negligible (and already ), so also the  fdbk  model converges to the  ffwdn m  l ︿
R < m︿R  

model, and in the same way, Weber-Fechner scaling.  

Supplemental Information 
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 Layers 2/3 Layer 5 

 V1 AM PM MMA MMP RSC V1 AM PM MMA MMP RSC 

# sessions 9 18 11 15 8 30 8 12 6 9 7 12 
# mice imaged 4 8 6 9 4 8 4 7 3 8 4 6 

Table S1 .   Number of imaging sessions and mice for various areas and layers, for the main 
experiment. 

 

  Layers 2/3 Layer 5 

 % correct V1 AM PM MMA MMP RSC V1 AM PM MMA MMP RSC 

gp31 73.0 1 1 1 1 0 2 1 1 1 1 1 1 
gp36 75.3 2 1 1 1 1 2 2 1 1 1 1 1 
gp37 70.1 0 1 0 1 1 1 0 0 0 1 0 0 
gp40 67.7 0 2 0 0 0 9 0 1 0 0 0 5 
gp42 67.1 0 1 0 2 3 4 0 1 0 1 2 1 
gp46 67.8 0 0 1 3 0 4 0 0 0 1 0 2 
ai50 68.7 0 2 1 3 0 7 0 1 0 2 0 2 
ai53 67.8 2 0 0 1 0 0 2 0 0 0 0 0 
ai55 71.6 0 3 0 2 0 1 0 3 0 1 0 0 
ai56 71.9 4 7 6 1 3 0 3 4 4 1 3 0 
ai57 67.2 0 0 1 0 0 0 0 0 0 0 0 0 

Table S2 .   Overall performance and number of imaging sessions for the main experiment, per 
mouse (rows), in various areas and layers (columns). Mice of the Thy1 GP5.3 strain have names 
starting with “gp”, and those from the Ai93-Emx1 strain have names starting with “ai” (see 
Methods). 

 

  Factors 

   ϕcue  Speed Adaptation Location Choice #R,#L 

 ϕ  ✓      
v ✓ ✓     

SSA ✓ ✓ ✓    
y ✓ ✓  ✓   
C ✓ ✓  ✓ ✓  
Δ  ✓ ✓    ✓ 

Table S3 .   Factors (columns) present in the six amplitude-modulation models (rows).  and ϕcue  
speed are effects that depend on the momentary visual stimulus and are included in most models. 
Sensory adaptation, location, and cue counts ( ) are factors that can explain systematic trendsR, L# #  
vs. time, and are exclusively present in any one model. 
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Figure S1 .   Additional statistics for choice-specific sequences, and evidence modulation.   (A) 
Percents of cells that have signi�icant ridge-to-background excess vs. a permutation test (left plot), 
and additionally are active within their �iring �ields in  of their (preferred-choice, if any) trials0%≥ 2  
(activity reliability index, middle plot), and additionally have different activity levels in right- vs. 
left-choice trials (right plot). Error bars: std. dev. across imaging sessions. Rectangles: Median and 
S.E.M. Stars: signi�icant differences in means (Wilcoxon rank-sum test).   (B)  Like  (A) , but comparing 
two strains of mice. Data were pooled across layers. Double-stars indicate areas for which there was 
a signi�icant difference in means (Wilcoxon rank-sum test).   (C)  Average reliability of choice-speci�ic 
cells in a given area/layer, de�ined as the fraction of trials in which the cell is signi�icantly active 
within its putative �iring �ield . Error bars as in  (A) .   (D)  Like  (C) , but comparing two strains of mice. 
Data were pooled across layers. Double-stars indicate areas for which there was a signi�icant 
difference in means (Wilcoxon rank-sum test).   (E)  Percents of choice-speci�ic cells with higher 
activity in contralateral- than ipsilateral-choice trials, for various areas/layers. Error bars: 95% 
C.I.   (F)  Percent of cells that have activity signi�icantly modulated by , after controllingR LΔ = # − #  
for view angle, choice, and reward outcome (see Methods). Data were pooled over recordings for a 
given area/layer. Error bars: 95% C.I.   (G)  Same as  (F)  but for cells that are signi�icantly modulated 
by the evidence in the past trial.   (H)  Percents out of all signi�icantly -modulated cells that haveΔ  
positive -modulation slopes, shown separately for left- vs. right-choice preferring cells. Data wereΔ  
pooled across layers for a given area. Error bars: 95% C.I.   (I)  Activity vs. time in the trial for 12 
non-cue-locked cells with signi�icant -modulation. The bottom two rows are for cells withΔ  
signi�icant dependence on  in the previous trial. Lines: average activity across trials with similarΔ  

 values (color).      (J)  Correlation between the value of  and that decoded from neural states inΔ Δ  
various areas/layers, analogous to  Fig. 3 A-B. To control for choice, decoding is performed separately 
in right- vs. left-choice trials, and the results averaged. 
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Figure S2 .   Qualitatively similar neural phenomena in view-angle-locked control experiments.  
(A-C)  Choice-speci�ic sequences and tiling statistics, as in  Fig. 2 A-C.   (D-F)  Evidence, choice and 
reward decoding accuracies, as in Fig. 3.   (G)  Distribution of treadmill rotation speeds at the end of 
the cue period, for data collected in the main task (top plot) vs. -controlled scenario (bottom plot).θ  
(H)  As in  (G) , but for the treadmill X (roll) velocity.   (H)  Choice decoding accuracy as in  (E) , but 
controlling for the treadmill speed only, in lieu of view angle.   (I)  Choice decoding accuracy as in  (E) , 
but controlling for the treadmill X velocity in lieu of view angle.  
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Figure S3 .   Additional statistics for cue-locked cells and amplitude modulations thereof.   (A) 
Percentages of cells with various types of contextual modulations, as determined by the selected 
best amplitude model per cell. Error bars: 95% C.I. for the sum over modulation types; the 
remaining fraction are cells that favor the angular-receptive-�ield-only model.    (B)  Distribution of 
AIC C  likelihood ratios for the location-and-choice model vs. location-only model (left plot), and vs. 
the SSA model (right plot). The colored area corresponds to cells for which the location-and-choice 
model is the best for that cell. Data were pooled across all recordings.   (C)  Same as  (B)  but for the 
cue-counts model vs. the location-and-choice model (left plot), and vs. the SSA model (right plot). 
(D)  Distribution (kernel density estimate) of predicted speed-induced changes in amplitudes for a 
change in speed of 10cm/s. Data were pooled across layers and include cells that favor the SSA, y, C, 
and # models. Error bars: S.E.M. Stars: signi�icant differences in means (Wilcoxon rank-sum 
test).   (E)  Distribution of adaptation/enhancement timescales for cells that favor the SSA model, 
de�ined as the amount of time taken for the amplitude to recover by a factor of  . Error bars:e  1/  
S.E.M. Stars: signi�icant differences in means (Wilcoxon rank-sum test).   (F)   Distribution of choice 
modulation effect sizes for cue-locked cells in various areas/layers. Cells with numerically near-zero 
modulations ( ) were excluded. Error bars: S.E.M.   (G)  Distribution of choiceδA ∣  ∣ choice ≤ 10−4  
modulation effect sizes for contralateral-cue-locked (left plot) and ipsilateral-cue-locked (right plot) 
subsets of cells. The colored area corresponds to cells that favor the location-and-choice model. 
Arrows indicate the effect size values for cells in  Fig. 5 A-B. Data were pooled over all areas. The left- 
(right-)most bins include under- (over-)�low.   (H)  Proportions out of all 
signi�icantly count-modulated cells for which the best evidence-based model is that which depends 
on the difference (left columns) in or single-side numbers (middle and right columns) of cues, 
separately for contralateral- and ipsilateral-cue-locked cells. Error bars: 95% C.I.   (I)  Choice 
modulation strength vs. location in the cue period for ipsilateral-cue-locked cells.   (J)  Choice (left 
plot) and reward (right plot) decoding accuracy vs. number of cue-locked cells decoded from. The 
highlighted (orange) points are for sessions where the decoding accuracy is signi�icantly above 
chance.   (K)  Percent of cue-locked cells vs. area, like  Fig. 4 H except comparing two strains of mice. 
Data were pooled across layers.   (L)  Onset of half-max response (left plot) and 
full-width-at-half-max (right plot) of cue-locked cell responses, like  Fig. 4 I-J except comparing two 
strains of mice. Data were pooled across layers.   (M)  Percentages of cue-locked cells that favor 
various amplitude modulation models, like  Fig. 5 C except comparing two strains of mice. Data were 
pooled across layers. 
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Figure S4 .   Qualitatively similar cue-locked amplitude modulations in view-angle-locked 
control experiments.   (A)  Distribution of amplitudes in right vs. left choice trials in the 
view-angle-locked control experiments, for ten cue-locked cells with the highest choice modulation 
indices.   (B)  Percents of cue-locked cells for various areas/layers, as in  Fig. 4 H.   (C)  Distribution 
(kernel density estimate) of full-width-at-half-max of the cue-locked responses, as in  Fig. 4 J.   (D) 
Distribution of choice modulation strengths for contralateral- and ipsilateral-cue-locked cells, as in 
Fig. S3 G.   (E)  Percentages of cue-locked cells that favor various contextual-modulation models, as in 
Fig. 5 C.   (F)  Adaptation/enhancement factors for cells that favor the SSA model, as in  Fig. 5 D.   (G) 
Distribution of choice-averaged amplitude-vs.-counts slope, with signi�icant cells highlighted in 
color, as in  Fig. 6 C.   (H)  Distribution of Fano-factor-vs.-counts slopes for signi�icantly positively and 
negatively modulated cells in  (G) . c.f.  Fig. 6 E.  
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Figure S5 .   Neural phenomena and behavioral performance predictions compatible with the 
fdbk circuit model.   (A)  Distribution of simulated sensory responses according to the 
feedback-loop model Eq. 3, for a range of true counts (columns) that result in a stochastic 
distribution of accumulator states. Positively (negatively) modulated neurons are shown in blue 
(green).   (B)  Mean (left), variance (middle), and Fano factor (right plot) for the sensory responses 
in  (A) .   (C)  Illustration of how the distributions of perceived counts should change given a true 
count of  (gray) vs. a true count of  (orange), as predicted by the Weber-Fechner Law ofN = 1 N = 3  
perceptual discrimination. This law prescribes that the  distribution is equivalent to takingN = 3  
the  distribution and scaling the perceived-counts axis by a factor of 3, including the referenceN = 1  
level . This preserves the area under the reference level (15.9%) and for the sameNN ref → 3 ref  
reason perceptual discriminability.   (D)  As in  (C) , but as predicted by the central limit theorem 
instead. Given 3 times more integrated counts, the width of the  distribution increases by N = 3  √3  
relative to that of the  distribution. This leads to less area falling under the reference levelN = 1  
(15.9% for  as opposed to 4.16% for ), and corresponds to improved perceptualN ref N3 ref  
discriminability at higher counts.   (E)  Dependence of visual angle distributions on the number of 
left (left plot) and right (right plot) cues, for either choice category (color).   (F)  Slope of linear 
regression of cue-locked amplitudes vs. cue counts, computed either right-choice (x-axis) or 
left-choice (y-axis) trials only. Highlighted points are cells for which either of these slopes are 
signi�icantly different from zero (permutation test; see Methods).   (G)  Slope of linear regression of 
cue-locked amplitudes vs. cue counts, computed either with controlling for choice (x-axis) or using 
all the data regardless of choice (y-axis). Highlighted points are for cells with a signi�icant A dN  d /  
slope post controlling for choice. More cells could be identi�ied as having a signi�icant  slopeA dN  d /  
without ( ) compared to with ( ) controlling for choice, because the latter method%18.3+4.2

3.8− %17+4.1
3.7−  

necessarily decreases statistical power.   (H)  Performance vs. counts as predicted by the  fdbk  model 
(solid lines), compared to the same when the sensory noise (dashed lines) or 
accumulator-comparison noise (dash-dotted lines) parameters are set to zero. The left plot is for �its 
to pooled mouse data, the right plot for �its to pooled rat data.   (I)  Relative AIC C  likelihood for 
accumulator models with Gamma-distributed sensory noise (disallows mis-classi�ication of right- 
for left-side cues), vs. the best model which is  fdbk  (Gaussian-distributed sensory noise). The left 
plot is for mouse data and the right plot for rat data. 
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Figure S6 .   Log-likelihood landscape for the fdbk model vs. all pairs of model parameters.   (A) 
fdbk  model log-likelihood for the pooled mouse data, relative to the maximum (heat map), and for 
various combinations of parameter values (x- vs. y-axes, different parameter pairs in each plot). All 
points within the 95% C.I. region are shown in color while points outside are rendered in grayscale. 
The optimal parameters are indicated by crosshairs.   (B)  Same as  (A)  but for pooled rat data.  
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Figure S7 .   Trial-to-trial variability in trajectories through neural state space .    (A)  Transition 
probability matrix for neural states through time in the trial (see methods in  (Morcos and Harvey 
2016) ). The neural state space is clustered separately per time-bin in the trial (x-axis), and the 
resulting clusters depicted as disks with area proportional to the number of trials in which the 
neural state visited that cluster. Disks are colored by the fraction of trials in which the mouse made 
a left choice. Lines are drawn between clusters at a given time-bin to clusters at the subsequent 
time-bin, with intensity proportional to the fraction of trials in which the neural state transitioned 
from one to the other cluster. The data here is for a single-session recording in layer 5 of V1, same as 
for  Fig. 2 . The second and third rows show the transition matrix restricted to correct left-choice and 
correct right-choice trials respectively.   (B)  Same as  (A) , but for a single-session recording in layer 5 
of AM, same as for  Fig. 2 .   (C)  Same as  (A) , but for a single-session recording in layer 5 of RSC, same 
as for  Fig. 2 .   (D)  Percent of neural-state clusters at a given time-bin, for which there was at least 
one trial that was a correct ipsilateral-choice trial. For a single session, this would correspond to e.g. 
the fraction of clusters per column in the middle row of  (A)  that had one or more edges. Lines: 
Mean across datasets. Bands: S.E.M.   (E)  Same as  (D) , but for contralateral-choice trials. 
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