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Featured Application: The proposed Uncertainty Flow framework may benefit the facial analysis
with its promised elevation in discriminability in multi-label affective classification tasks. Moreover,
this framework also allows the efficient model training and between tasks knowledge transfer.
The applications that rely heavily on continuous prediction on emotional valance, e.g., to monitor
prisoners’ emotional stability in jail, can be directly benefited from our framework.

Abstract: To lower the single-label dependency on affective facial analysis, it urges the fruition of
multi-label affective learning. The impediment to practical implementation of existing multi-label
algorithms pertains to scarcity of scalable multi-label training datasets. To resolve this, an inductive
transfer learning based framework, i.e., Uncertainty Flow, is put forward in this research to allow
knowledge transfer from a single labelled emotion recognition task to a multi-label affective
recognition task. I.e., the model uncertainty—which can be quantified in Uncertainty Flow—is
distilled from a single-label learning task. The distilled model uncertainty ensures the later efficient
zero-shot multi-label affective learning. On the theoretical perspective, within our proposed
Uncertainty Flow framework, the feasibility of applying weakly informative priors, e.g., uniform
and Cauchy prior, is fully explored in this research. More importantly, based on the derived
weight uncertainty, three sets of prediction related uncertainty indexes, i.e., soft-max uncertainty,
pure uncertainty and uncertainty plus are proposed to produce reliable and accurate multi-label
predictions. Validated on our manual annotated evaluation dataset, i.e., the multi-label annotated
FER2013, our proposed Uncertainty Flow in multi-label facial expression analysis exhibited
superiority to conventional multi-label learning algorithms and multi-label compatible neural
networks. The success of our proposed Uncertainty Flow provides a glimpse of future in continuous,
uncertain, and multi-label affective computing.

Keywords: affective computing; Bayesian neural network; Multiple Label Learning; transfer learning

1. Introduction

1.1. Challenges in Affective Facial Analysis

Affective facial analysis, which is assessed as one of most primitive functions in vivo, has yet to
be successfully implemented in machine. Previous attempts in accomplishing this goal focused on
improving the accuracy of emotion classification tasks. Less attention was paid to reveal the uniqueness
of affective classification. The uniqueness is on the intrinsic ambiguity of emotion per se. The same
facial expression may be interpreted differently dependent upon its associated contexts, spatial and
temporal cues [1,2]. Hence, affective classification, in a nutshell, is ambiguous [3]. The past effort
in resolving this ambiguity has been reflected in lowering the single-label dependency in producing
emotion categories [4].
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To further lowering the single-label dependency, one stream of research aims in ’softening’
the label space in production of soft labels, allowing affective prediction along the continuous axis.
I.e., it allows the relaxation of a discrete label into a partial continuous one. Like in Bai et al. [5], the
pseudo soft labels can be crafted by a continuous approximation to the original labels. However, this
relaxation trick merely provides a provisional resolution in tackling the ambiguity (cf. [5]).

Instead of the foregoing proximal solution (hard label relaxation), here, we suggest a distal
approach: extending the single-label discrimination to the multi-label domain. The research on
multi-label affective discrimination is also in line with the finding that the decision boundaries among
classes are less ostentatious in affective analysis compare to other categorisation problems, e.g., object
classification [2,3]. Benefited from previous researches on multi-label classification in general, it appears
straightforward to extend affective computing along this direction. However, there is one difficulty
that hinders the success application of multi-label affective recognition: it is laborious and expensive
to collect the multi-label training data [6].

1.2. Uncertainty Flow in Zero-Shot Multi-Label Learning

In combating with the scarcity of multi-label training data, unlike conventional approaches,
we resort on inductive transfer learning [7] that allows the knowledge to be distilled from a source task,
i.e., a single-label affective learning task, and to be applied on a similar but more complex target task,
i.e., a multi-label affective discrimination task. But instead of transferring the mere knowledge,
i.e., the model parameters between source and target tasks, we propose the Uncertainty Flow
framework to transfer the model uncertainty between tasks. The crux of our proposed Uncertainty
Flow is on the quality of uncertainty quantification. To measure this quantity, instead of non-Bayesian
neural networks, Bayesian neural networks are employed in quantification of model uncertainty.
Bayesian neural network—a recapitulation of a neural network under the direct probabilistic
modelling—replaces the single point estimate of the model parameters with the distribution of
the parameter. It allows the production of real probabilistic outputs, i.e., model uncertainty [8].
Contrast with conventional implementations on Bayesian neural networks, we further provide our
suggestion on the usage of weakly informative priors, e.g., uniform and Cauchy prior, in perfecting
the final production of model uncertainty.

The article is organised as following: we chiefly introduce the proposed Uncertainty Flow
framework in sketch along with the description of four core components, e.g., Bayesian neural networks
(More precisely, two hierarchical Bayesian neural networks); our suggested weakly informative
priors; the quantification of model uncertainty; and three prediction related uncertainty indexes,
e.g., soft-max uncertainty, pure uncertainty and uncertainty plus. To demonstrate the effectiveness of
our proposed Uncertainty Flow framework, we then present the results from a large-scale comparative
experiment. This large-scale experiment contains three levels of comparisons, i.e., the comparison
among models, the comparison among different priors, and the comparison among three uncertainty
indexes. The observed pronounced discriminability, i.e., 20 to 30 percent performance enhancement,
proved the effectiveness of the proposed Uncertainty Flow framework.

This pioneer research should be credited under following contributions: (1) We develop a novel
inductive transfer learning [3] based computational framework that allows multi-label affective
prediction on single evoked source. (2) Unlike conventional inductive transfer learning, the proposed
Uncertainty Flow focuses on model uncertainty rather than the mere model weights in knowledge
distillation. (3) To obtain the model uncertainty, rather than the conventional used informative priors,
the usage on weakly informative priors, e.g., uniform and Cauchy prior has also been proposed.
(4) To further improve the discriminability of the Uncertainty Flow, two advanced prediction related
uncertainty indexes, i.e., pure uncertainty, and uncertainty plus are also suggested in this research.
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2. Related Works

2.1. Previous Works on Affective Learning

Past works on neural network based affective computing have focused on the segmentation of
single facial expression into finer sub-components, which can be achieved via the added principal
component analysis (PCA) [9] or the complex feature pre-processing engineering, e.g., the introduction
of Sobel filters [10]. However, the complex in emotional representation demands affective analysis
to move beyond the single label categorisation. The researches on multi-label learning have been
divided into two streams: problem transformation and algorithm adaptation, respectively [11].
The former approach allows a multi-label learning problem to degrade to a single-label one. Two widely
applied problem transformation algorithms are binary relevance [12] and hierarchical of multi-label
classifier, AKA., ML-ARAM [13]. The latter approach directly tackles the multi-label learning via the
reconstructed loss function. Within this scope, the representative models are ranging from k-nearest
neighbour related ML-KNN [14], to label relevance based multi-label neural networks [15].

Despite of the bulk of researches on multi-label learning in general, their applications on
affective computing are rarely documented. To fulfill this research gap, Mower et al. [16,17] proposed
a feature-agglomerate extraction method to encompass all appeared distinctive emotions in single
prediction. Their approach coincides with the foregoing ML-ARAM model in ensuring the structured
multi-label predictions. However, their claimed confidence rating—the computed Euclidean distance
between input space and feature hyperplane—is mere an metric to index the importance of a feature.
Another study that aimed in applying multi-label learning in affective classification relied on a novel
regularisation to further penalise the max margin loss [18]. In spite of their claimed effectiveness
in extracting multi-label affective features, the success of their proposed Group LASSO regulariser
depended heavily on their manual and recursive feature extraction process.

2.2. Previous Works on Bayesian Neural Networks

Previous efforts in developing Bayesian neural networks need to be mentioned here. Deep
neural networks are suffered from their inability in outputting authentic probabilistic output [19].
In literature, the history of probabilistic neural networks can be dated back to the early proposal
of using the ’soft-max’ function to transform a real-value prediction to a probabilistic one [20,21].
The mathematical role of this added ’soft-max’ function is to normalise all real-valued outputs into
[0, 1] range. However, this added ’soft-max’ function is not sufficient to craft real probabilistic account
for each classification prediction [8,22]. Therefore, the production of real probabilistic outputs demands
the binding of a neural network with a direct probabilistic model. The resultant model is a Bayesian
neural network. However, Bayesian neural networks have long been criticised for their imprecise
prior-to-posterior inferences and unreliable posterior samplings in practice. Credits to the recent
advance in variational inference, i.e., the achievement in deriving rapid and precise variational method
to tackle the issue of intractable posterior inferences, it allows the scalable training of Bayesian neural
networks [23].

Although the exhaustive review of Bayesian neural network is out of our scope, we focus on
the priors in Bayesian neural networks. In general, a prior can be classified as either informative
or non-informative. Despite of fruitful researches on informative priors, e.g., Gaussian and Laplace
priors [24], the work on non-informative or weakly informative priors is still at early stage [25].
Early researches on non-informative priors, e.g., Jeffery prior and reference prior, emphasised
on pursuing the invariance prosperities of non-informative priors (It is resistible to all types of
differentiable transformation of the input variables) [26,27]. However, these non-informative priors
are neither applicable in multiple parameter modelling nor asymptotically inconsistent in deriving the
posterior [28]. To merge the gap between the informative and non-informative priors, a proposal of
using weakly informative priors, i.e., semi-flat priors, has been put up in literature [29]. The practical
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advantages of weakly informative priors over informative ones have been witnessed in other Bayesian
models, e.g., generalised linear model [29].

3. Uncertainty Flow Framework

Sketched in Figure 1, the proposed Uncertainty Flow framework is consisted of four components,
i.e., a dual Bayesian neural networks, the weakly informative priors, the derived model uncertainty,
and prediction related uncertainty indexes. The work pipeline of Uncertainty Flow initiates at standard
supervised training of a source Bayesian neural network(BNN) with a weakly informative prior,
e.g., uniform or Cauchy prior, follows the computation of the weight posterior in preparation of model
uncertainty in the source BNN, then this distilled model uncertainty is transferred to a target BNN,
which is specialised in outputting multi-label predictions. Finally, three distinctive prediction related
uncertainty indexes are introduced in perfecting the final outputs from the target BNN.

Figure 1. Uncertainty Flow Framework. The graphic model explanation of our proposed Uncertainty
Flow framework shows four essential elements. I.e., the dual Bayesian neural networks in I,
e.g., a source and a target BNN(separate by different colours in Figure 1); the weakly informative
prior in II; the quantification of model uncertainty in III; and three proposed uncertainty indexes in
perfecting the final multi-label categorisation in IV.

3.1. I. Bayesian Neural Network

The core part of proposed Uncertainty Flow is the dual BNNs. Under Bayesian learning, a deep
neural network—a stacked multiple non-linearity transformations of affine computations—is perceived
as sequential layer-wise prior-to-posterior inferences. To allow the model to be flexible enough,
we resort on the hierarchical architecture. In a standard classification task set-up, where both input
and output variables are observable, i.e., {X|xnY|yn}, and each input is comprised of D features, i.e.,
xn ∈ <D, the likelihood functions for our dual BNNs are specified in following Equations (1) to (3):

p(yn|θ, xn, σ2) = Categorical(yn|NNtrain;test(xn; θ), σ2) (1)

NN(xn; w)source = so f tmax ◦
(
tanh ◦

n

∑
i=1

(x · θ)
)

(2)

NN(xn; w)target = sigmoid ◦
(
tanh ◦

n

∑
i=1

(x · θ)
)

(3)
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For simplicity, only tanh non-linearity is considered as the activation function in BNN. Notice
here, we tailer the target BNN in concord with the differentiated task demand. I.e., to allow a Bayesian
neural network to produce multiple outputs, the soft-max function in the source BNN is replaced with
a real-value function, e.g., sigmoid function, in the target BNN.

Armed with foregoing likelihood functions, a full hierarchical Bayesian neural network is derived
from following Equations (4) to (6):

σ ∼ Normal(0, I) (4)

θ ∼ Normal(w|0, σ2) (5)

yn|θ, σ2 ∼ Categorical(yn|NNsource;target(xn; θ), σ2) (6)

Here, we narrow our discussion in the most simplified version of a hierarchical Bayesian neural
network, which contains one hyper-parameter, i.e., σ. This hyper-parameter, e.g., σ directly controls
the variance of a prior in production of weight posterior.

3.2. II. Weakly Informative Priors

The prior, which determines the first and second order statistics of model parameters, is de facto
the driving force in bayesian learning. Hence, the proper specification of a model ties closely with the
choice of an applicable prior for a given task. Unfortunately, the majority works on Bayesian learning
pay overwhelmed attention towards the prior that are informative and conjugate for their analytical
convenience, the family of uninformative and weakly informative priors had been largely ignored.

Argued in [30], differ than conventional implementation on Bayesian neural networks with the
common used informative prior, the usage of weakly informative prior, i.e., a semi-flat prior, yielded
superior predicative performance in single-label discrimination. Therefore, it is rational to extend
this finding in multi-label learning. The formal definitions of informative and weakly informative
priors are rendered below, and their corresponding probabilistic density curves are plotted in Figure 2.
Their differentiated effects on a simple simulation is shown in Figure 3.

• Informative Prior

– Normal Prior

θN ∼ N(µ, σ2) (7)

p(θN) =
1√

2πσ2
exp(− 1

2σ2 (θ − µ)2) (8)

• Weakly Informative Prior

– Uniform Prior

θU ∼ U(α, β) (9)

p(θU) =
1

β− α
(10)

– Cauchy Prior

θC ∼ Cauchy(α, β) (11)

p(θC) =
1

πβ(1 + ( x−α
β )2)

(12)
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Figure 2. The Probabilistic Density Curves of Normal, Uniform, and Cauchy Priors. This graph
demonstrates the probabilistic density curve for each of the prior applied in this research, i.e., Normal,
Uniform and Cauchy priors. Here, the further specification of input-to-hidden, hidden-to-hidden
priors are defined as the hierarchical shrinkage in variance of the corresponding priors.

Figure 3. Effects of Different Priors on Posterior in a Simulated Binary Classification. Note, here, the simulated
posterior inferences were based on a simple three layer Bayesian neural network with five units in the hidden
layer on a binary classification problem. Left panel of Figure 3 reflects how prior, i.e., denoted as red and blue
dotted lines, transformed to the weight posterior, i.e., identified as green and light blue lines. The right panel
of Figure 3 demonstrates the sampling value of yielded weight posterior, based on 500 posterior samples.
Reflected by the separateness of yielded weight posterior, it is clear that Cauchy prior achieved the most
discriminability compare to other two priors, e.g., Normal and Uniform priors.



Appl. Sci. 2018, 8, 300 7 of 17

3.3. III. Model Uncertainty

In order to craft model uncertainty, we rely on the quantitative analysis of posterior predictive
distribution under Bayesian neural networks. As the production of posterior predicative distribution
entails the computation of the intractable parameter posterior, the common way is to approximate
it via minimising the KL-divergence [23,31] (KL(q||p) = ∑θ q(θ)log q(θ)

p(x|θ) ) between approximated
variational distribution, i.e., q(θ) and true posterior, i.e., p(θ|x), therefore solving for optimal posterior,
i.e., q∗(θ), becomes:

q∗(θ) = argminq(θ)∈QKL
(
q(θ)||p(θ|x)

)
(13)

As we cannot compute the KL-divergence directly, the common approach is to resort on optimising
an alternative objective, i.e., maximising the ELBO(evidence lower bound), derived as

ELBO(q∗) = E[logp(x|θ)]− KL(q(θ)||p(θ)) (14)

Whereas ELBO can be seen as a sum of the expected log likelihood of the data with the negative
divergence between the variational variance and the model priors. Then it is customary to use the
mean-field variational family to complete the specification of the above-mentioned optimisation.
The mean-field variational family for each latent model parameter, i.e., θ, can be defined:

q(θ) = Πm
j=1qj(θj) (15)

Hence, finding the intractable posterior degrades to a coordinate ascent optimisation in obtaining
the optimal θ∗ in maximising ELBO (cf. Algorithm 1 in [23] for detailed review). The learned optimal
parameter posterior, e.g., (θs|x) serves as a surrogate to be used in the parameter posterior in target
BNN, i.e., (θt|x)(θs|x). The model uncertainty, which is distilled from the source task, is now flowed
to the target task.

3.4. IV. Prediction Related Uncertainty Indexes

With the flowed parameter posterior in the target task, i.e., (θt|x), it is feasible to form the
predictive posterior distribution for each upcoming novel observation, i.e., xnew, where,

p(xnew|x) =
∫

θ∗
p(xnew|θ∗)p(θ|x)dθ (16)

Armed with this predictive posterior distribution, it allows the production of prediction related
uncertainty indexes. As lengthy discussion in previous literature [20,32], one overwhelming claim
insists that the probabilistic outputs can be produced by the soft-max function in (It is often placed
in the final layer of neural networks to allow the real-valued prediction to be ’pushed’ in presenting
the pseudo-probabilisitic output.) permitting the averaging over the repetitive forward propagations
of new observation in either Bayesian neural network or non-Bayesian neural networks. This type
of probabilistic output merely tells the most probable output given the input, not how uncertain is
the prediction. For the comparative purpose, we refer this type of uncertainty index as soft-max
uncertainty. The quantification of this soft-max uncertainty has been previously approximated via
averaged T times of forward model(input) propagation [33], expressed in Equations (17) and (18):

So f t−Max = E(y∗) ≈ 1
T

T

∑
t=1

(ŷ∗(xnew))|p(θ|xnew) (17)

= Class− Type|Non−Bayesian (18)

From Bayesian learning perspective, the above-mentioned softmax uncertainty reflects the
belief of applying predictive mean in indexing the prediction uncertainty. Numerically, this type of
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uncertainty index captures the mere classification type in multiple-object discrimination, is equivalent
with the class type probability in non-Bayesian neural networks. However, as the predictive mean
does not capture the full picture of parameter posterior distribution, we draw our attention towards
the predictive variance instead.

We argue that the yielded predictive variance reflects the degree of uncertainty that is associated
with each prediction. As a result, based on the approximated weight posterior, i.e., p(θ|x), a better
prediction related uncertainty index is expressed below in Equation (19):

Pure = Var[y∗] ≈ Var
[ T

∑
t=1

∫
Θ

p(xnew)p(θ|x)dθ
]

(19)

We denote this measure of prediction uncertainty index as pure uncertainty.
One step further, rather than the dichotomous uncertainty indexes, e.g., pure uncertainty and

soft-max uncertainty, these two indexes can be fused together, which allows the uncertainty index
to reflect both class-type probabilistic prediction and the model uncertainty associated with each
prediction. In consistent with the previous naming tradition, this type of uncertainty index is marked
as uncertainty plus. The production of this uncertainty plus shows that each class type probabilistic
prediction should be proportionately adjusted according to its associated prediction uncertainty,
expressed in Equation (20):

Uncert+ ≈
1
T ∑T

t=1(ŷ∗(xnew))|p(θ|xnew)

Var
[

∑T
t=1
∫

Θ p(xnew)p(θ|x)dθ
] (20)

For illustrative purposes, how each of three above mentioned uncertainty indexes, e.g., soft-max
uncertainty, pure uncertainty, and uncertainty plus, influences on a simple binary classifier,
is demonstrated in Figure 4.

Figure 4. Comparison of Three Prediction Related Uncertainty Indexes on a Binary Classifier. In this
figure, three different means of crafting uncertainty boundary for obtaining classification prediction on
a simple binary classification problem, i.e., two classes are separated by blue and red, is delineated.

4. Experiment

Relying on the transferred model uncertainty, the proposed Uncertainty Flow framework allows
a learner to output multi-label predictions under single-label training curriculum. Empirical validation
of our proposed framework contains two enquiries that need to be addressed. I.e., one is to investigate
that whether or not our proposed Uncertainty Flow is superior to conventional multi-label learning
algorithms in facilitating the zero-shot multi-label learning; whereas the other is to see which
uncertainty index leads to the most significant performance elevation. Also, in order to investigate
the role of suggested weakly informative priors, we additional specify our Uncertainty Flow into
three types of priors. Hence, in total, there are three-level comparisons in our experiment, i.e., model
comparison; prior comparison; and uncertainty comparison. The entire experiment is written in Python,
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using Theano [34], and Pymc3 [35] libraries. The partial code to produce this study is available from:
https://github.com/LeonBai/Uncertainty-Flow.

4.1. Dataset

4.1.1. Training Dataset

We selected the first 1500 images from FER2013 [36] as our training dataset. The reason for
intentional lowered size of training dataset is to enforce the similar model complexity between a source
BNN and a target BNN. (cf. Figure 1). We leave the relaxation of such restriction to future research.
FER2013 is a well researched public dataset, which is comprised of facial expression images for pictorial
sentiment discrimination. Prior to our implementation, all images in this truncated version of FER2013
had gone through the standard preprocessing process, e.g., fixate the faces at centre, standardise the
image size to 48 by 48 pixels in resolution, and all faces are properly registered. We then normalised
the pixel values of input images. The original FER2013 images are labelled as one of seven emotion
categories, e.g., angry, disgust, fear, happy, sad, surprise, and neutral.

4.1.2. Testing Dataset

To allow the evaluation of outputted multi-label predictions, it is imperative to rely on some
existing benchmark annotations. Unfortunately, there is no current reliable multi-label annotations
for FER2013 facial expressions. For this, we conducted a small-scale, i.e., 200 images, experiment on
manual annotating the multi-label version of FER2013. The descriptive statistics of this annotated
multi-label testing dataset is summarised in Appendix A, and the raw data can be found on
https://github.com/LeonBai/Uncertainty-Flow. Preliminary statistic test revealed the high similarity
between the original single-label and yielded multi-label annotations. I.e., treating the original
single-label FER2013 annotations as ground truth, the overlaps between multi-label annotations
and ground truth reached 75%, suggesting high similarity between two annotations. Indicated by
a acceptable Fleiss-Kappa coefficient value [37], i.e., 0.25 (between−1 to 1, higher is more reliable)—the
measurement of inter-rater reliability—the annotated multi-label version of FER2013 can be served as
our testing dataset.

4.2. Models

To conduct an experiment that contains above-mentioned three-level comparisons, i.e., model
comparison, prior comparison, uncertainty comparison, it demands explicit specification of all models in
current experiment. In model comparison, four widely used multi-label learning algorithms, ranging from
adaption algorithms, e.g., Multi-Label K-means Nearest Neighbour (MLkNN), Multi-label Neurofuzzy
Classifier(ML-ARAM), to problem transformation algorithms, e.g., Binary Relevance (BR) and Label
Powerset (LP), are included. In addition, two multi-label compatible neural networks. i.e., a multi-label
feedforward Neural network (ML-FNN) and a multi-label convolutional neural network (ML-CNN),
are also included in model comparison comparison.

In prior comparison and uncertainty comparison, depending on the prior type, i.e., informative or
weakly informative, and different prediction related uncertainty indexes, e.g., soft-max uncertainty,
pure uncertainty, uncertainty plus, the Uncertainty Flow generates 9 variants, denoting as
BNN-normal-soft; BNN-normal-pure; BNN-normal-plus; BNN-uniform-soft; BNN-uniform-pure;
BNN-uniform-plus; BNN-cauchy-soft; BNN-cauchy-pure; BNN-cauchy-plus. To further elevate the
discriminative performance in multi-label prediction, we additional frame a convolutional neural
network under Bayesian learning, producing Bayesian convolutional neural network within the proposed
Uncertainty Flow framework, with its associated 9 variants, i.e., BCNN-normal-soft; BCNN-normal-pure;
BCNN-normal-plus; BCNN-uniform-soft; BCNN-uniform-pure; BCNN-uniform-plus; BCNN-cauchy-soft;
BCNN-cauchy-pure; BCNN-cauchy-plus. The configurations of above-mentioned models are summarised
in Appendix B.

https://github.com/LeonBai/Uncertainty-Flow
https://github.com/LeonBai/Uncertainty-Flow
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4.3. Evaluation Metrics

Different than the uniformed metric that used in single-label classification, i.e., classification
accuracy, diversified evaluation metrics have been proposed. In line with the rouge classification
from [11], we adhere the dichotomy classification of the evaluation metrics as bipartition and ranking
based. For illustrative purposes, assuming a multi-label evaluation dataset is consist of input,
i.e., xi, and the set of true labels, i.e., Yi, where i = 1, ..., m and Yi ⊆ L, L is the set of all correct
labels. Under this notation, the set of predicated labels are denoted as Zi, where i = 1, ..., m, while the
rank predicted by learning method for a label λ is denoted as ri(λ). The most relevant label, receives
the highest rank (1), while the least relevant one, receives the lowest rank (q).

4.3.1. Bipartition Based

Delegated from the single-label metric, bipartition based metrics are proposed to capture the
differences between actual and predicted sets of labels over all evaluation dataset. These differences
can be computed in various means via either averaged over all samples or all label sets.

1. Hamming loss

Hamming− Loss =
1
m

mi

∑
i=1

|Yi4Zi|
M

(21)

Where 4 represents the symmetric difference of two sets, i.e., predicted and true label sets.
Contrast with other over-strict measures of multi-label classification accuracy, i.e., low tolerance
on partial label misclassification, e.g., 1

m ∑m
i1 I|Yi = Zi|, the hamming loss, which sums up to 1,

offers a mild criteria for wider range of measurement application.

2. Micro-Averaged F-Score & Average Precision

Inherited from classic binary evaluation in information retrieval tasks, F-score and average
precision, which both reflect their corresponded combinations of averaging over precision and
recall, are two readily applicable metrics in multi-label learning. Among various averaging
operations, e.g., macro, weighted, and micro, the preferred operation is micro-average as it offers
each sample-class pair an equal contribution to the overall metric. Consider a binary evaluation
measure tp, tn, fp, fn that is computed via the number of true positives tp, true negatives tn,
false positives fp, false negatives fn,the nth threshold for precision and recall are Pn and Rn,
the interested micro-averaged F-score and average precision score(AP) are derived as following:

Pn =
tp

tp + fp
(22)

Rn =
tp

tp + fn
(23)

MicroAveraged(Fβ) = (1 + β2 Pn × Rn

β2Pn + Rn
) (24)

AveragePreision(AP) = ∑
n
(Rn − Rn−1)Pn (25)

4.3.2. Ranking Based

1. Converge

To measure the needed distance to cover all true label sets, i.e., Yi in the predicted label sets,
we resort on the converge error metric. It can be defined as following:

Coverage− Error =
1
m

m

∑
i=1

maxλ∈Yi ri(λ)− 1 (26)
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2. Ranking Loss

The ranking loss targets at the incorrect ordering of the predicted label sets. Presume Ȳi is
expressed as the complementary set of Yi, its computation can be defined as following:

R− Loss =
1
m

m

∑
i=1

1
|Yi||Ȳi|

{(λa, λb) : ri(λa) > ri(λb), (λa, λb) ∈ Yi × Ȳi} (27)

4.4. Results & Discussion

The overall result of our conducted large-scale comparative experiment is chiefly presented in
Table 1. For illustrative purposes, we grouped the results to highlight the comparison among different
models. As we used various of evaluation metrics to assess the performance of corresponding models,
it is difficulty to obtain a clear judgement that is based on single metric. I.e., when we pitted our
approach, i.e., Uncertainty Flow against the MLkNN approach in conventional multi-label models,
our approach, including all nine variations, is inferior to the MLkNN approach on the metric of
Hamming-Loss. However, when we accessed the model according to its performance on Average
Precision, our approach largely outperformed the MLkNN approach. Moreover, as we incorporated
nine variations in Uncertainty Flow, the in-depth analyses of the prior types and uncertainty indexes
are demanded. We then divided our discussion of the overall result into three parts, e.g., the results on
model comparison, the results on prior comparison, and the results on uncertainty comparison.

Table 1. Model Comparison in Various Multi-label Evaluation Metrics.

Candidate Models Hamming-Loss Converge-Loss Ranking-Loss F-Score Average Precision Source

Conventional Multi-Label Models
MLkNN 0.286 7.000 0.950 0.090 0.346 [14]

ML-ARAM 0.374 6.670 0.801 0.264 0.369 [13]
Binary Relevance 0.275 7.00 1.000 0.263 0.340 [38]
Label Powerset 0.328 6.940 0.837 0.215 0.370 [39]

Multi-Label Compatible Neural Networks
ML-FNN 0.402 6.700 0.761 0.282 0.376 [40]
ML-CNN 0.387 6.600 0.733 0.3108 0.384 [41]

Uncertainty Flow - Bayesian Neural Networks
BNN-normal-soft 0.404 6.500 0.75 0.279 0.360 This research
BNN-normal-pure 0.382 6.500 0.723 0.318 0.389 This research
BNN-normal-plus 0.402 6.673 0.759 0.282 0.525 This research
BNN-uniform-soft 0.414 6.750 0.7816 0.302 0.353 This research
BNN-uniform-pure 0.385 6.450 0.723 0.330 0.389 This research
BNN-uniform-plus 0.404 6.450 0.765 0.310 0.530 This research
BNN-cauchy-soft 0.400 6.7 0.759 0.285 0.378 This research
BNN-cauchy-pure 0.382 6.525 0.727 0.312 0.402 This research
BNN-cauchy-plus 0.401 6.250 0.741 0.290 0.527 This research

Uncertainty Flow - Bayesian Convolutional Neural Networks
BCNN-normal-soft 0.421 6.750 0.791 0.250 0.385 This research
BCNN-normal-pure 0.384 6.700 0.737 0.319 0.449 This research
BCNN-normal-plus 0.400 6.675 0.751 0.288 0.561 This research
BCNN-uniform-soft 0.403 6.675 0.762 0.282 0.421 This research
BCNN-uniform-pure 0.404 6.800 0.769 0.279 0.311 This research
BCNN-uniform-plus 0.387 6.725 0.736 0.310 0.527 This research
BCNN-cauchy-soft 0.401 6.675 0.760 0.285 0.416 This research
BCNN-cauchy-pure 0. 396 6.800 0.753 0.322 0.390 This research
BCNN-cauchy-plus 0.401 6.75 0.758 0.285 0.576 This research

4.4.1. Model Comparison

Ruling out the factors of prior types and prediction related uncertainty indexes, the empirical
comparison between Uncertainty Flow framework and the alternatives demonstrated mixed results,
illustrated in Figure 5.
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Figure 5. Model Wise Comparison on Multi-learning Metrics. Note here, for illustrative purposes,
we used Hamming-ACC, Converge-ACC and Ranking-ACC instead of original loss based metrics.
Rather than the averaging over the models in each category, e.g., Conventional-ML, we picked the
most representative model in each category for different metric.

Previous findings from [11] and [6] stated that it is practical difficult to observe a single model
or algorithm, which is competitive enough to beat others in every multi-label evaluation metric.
Hence, it is imperative to investigate each loss metric independently. Focusing on Hamming-Loss
(Hamming-ACC = 1 − Hamming loss), interestingly, the conventional multi-label learning models are
particular good in minimising this type of loss. However, indicated in Converge-Loss and Ranking-Loss,
both Uncertainty Flow and multi-label compatible neural networks, e.g., ML-FNN and ML-CNN are
superior than the conventional multi-label learning alternatives.

Under two precision related metrics, e.g., F-score and average precision, with the help from
a weakly informative prior, e.g., uniform or Cauchy prior, and an advanced prediction related
uncertainty indexes, e.g., pure uncertainty, or uncertainty plus, both BNN and BCNN, exhibited clear
performance advantage over their alternatives, e.g., ML-FNN, ML-CNN and conventional multi-label
models. Especially on the metric of average Precision, the nontrivial performance enhancement,
i.e., over 20% accuracy increase, demonstrated the superior discriminability that tags to our proposed
Uncertainty Flow. Moreover, comparing the performance between BNN and BCNN, the convolutional
architecture, e.g., BCNN, should be credited for overall performance improvement.

4.4.2. Prior Comparison

To verify the most applicable prior in our proposed Uncertainty Flow, the prior comparison
among three candidate priors is worthy to be fully investigated. Shown in Figure 6b, despite some
similarities in shapes, it is clear that each prior has its unique effect in shaping the corresponded
posterior distribution of the weights. In specific, the effect of uniform prior on posterior weight is seen
as the restriction on the approximated posterior weights, i.e., the posterior weights have to be higher
than a fixed value, e.g., 1 in our implementation. This restriction effect may lower the discriminability
of the uniform prior imposed model, shown in Figure 7. Interestingly, the posterior distribution of
weights from imposed normal and Cauchy priors respectively rendered nearly identical distribution
shape, shown in Figure 6a,c. The minute difference between these two is the enlarged variance for
Cauchy prior induced posterior distribution of weights. Despite seemingly trivial, this difference in
variance lead to the discrepancy in discriminative performance, shown in Figure 7. Overall, based
on final induced discriminability, a Cauchy prior is considered as the most applicable prior in our
proposed Uncertainty Flow.
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Figure 6. Different Priors on Posterior Weights Under Uncertainty Flow. Note here, the notation
winhidden1 means posterior weights in first hidden layer in our implemented BNN or BCNN.

The performance enhancement that can be reflected by above-mentioned ’clustered’ effect in
weight posterior was observed in examination of the discriminability of three implemented prior.
Plotted in Figure 7, focusing on the average precision evaluation metric, regardless of the variations
in Bayesian neural networks, i.e., BNN or BCNN, the employment of Cauchy prior—as one kind of
weakly informative prior–leaded competitive multi-label affective classification. However, as another
implemented weakly informative prior, uniform prior was inferior to the used informative prior,
e.g., normal prior. This observed attenuation in discriminability from uniform prior may due to the
its above-mentioned spike-and-slab effect on weight posterior that requires extra training epochs to
stabilise the pre-to-posterior inference.

Figure 7. Prior Induced Discriminability Differences in Uncertainty Flow. Note here, we rule out the
impacts of uncertainty indexes via averaging the performance of models with same implemented prior.
Average precision is chosen as other metrics failed to render clear discriminability comparison.

4.4.3. Uncertainty Comparison

Undoubtedly, the most pronounced performance improvement is pertaining to the inclusion
of advanced prediction related uncertainty indexes, e.g., pure uncertainty and uncertainty plus.
To recall the foregoing definition of prediction related uncertainty indexes, the soft-max uncertainty
is a mere indication of multi-class prediction type, which is equivalent with the predictions in
non-Bayesian alternatives. The pure uncertainty, i.e., on the contrary—depends heavily on weight
posterior—can be produced exclusively in our proposed Uncertainty Flow framework. Reflected in
Figure 8, when the feedforward architecture was adopted, soft-max uncertainty is inferior to pure
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uncertainty in producing multi-label prediction. Interestingly, when the convolutional architecture
was chosen, it uncovered a different story, i.e., the discriminability from pure uncertainty became
inferior to soft-max uncertainty.

Not surprisingly, the combination of soft-max uncertainty and pure uncertainty, i.e., the craft of
uncertainty plus, allows a set of multi-label predictions to be tuned based on its uncertainty value.
Shown in Figure 8, it is clear that the crafted predictions that are benefited from Uncertainty plus
are superior to other two uncertainty indexes. I.e., its introduced improvement in average precision is
over 20% compare to other two indexes. Combining the most applicable weakly informative prior
and the advanced uncertainty indexe together, the two most efficient variants in feedforward and
convolutional architectures are BNN-cauchy-plus and BCNN-cauchy-plus, respectively. We leave
sensitivity analysis of our proposed advanced uncertainty indexes to future research.

Figure 8. Discriminative Performance Across Different Prediction Related Uncertainty Indexes. Note
here, the effects of priors were marginalised via prior-wise averaging.

5. Conclusions

Over reliance on single-label affective learning hinders the fruition of the automatic affective
analysis. To free from this restriction, we resort on multi-label affective learning. However, current
multi-learning algorithms are not scalable enough due to the scarcity of multi-label training samples.
To tackle this issue, we propose a inductive transfer learning based framework, i.e., Uncertainty
Flow. Under this pioneer framework, we argue that the model uncertainty can be distilled from
a source single-label recognition task. The distilled knowledge is then fed to a to-be-learned multi-label
affective recognition task. For predictions, three types of uncertainty indexes, i.e., soft-max uncertainty,
pure uncertainty, and uncertainty plus, are further proposed. For empirical validation, the authors
conducted a large-scale comparative experiment on the manual annotated multi-label FER2013 dataset
across three levels of comparisons, i.e., model comparison, prior comparison, and uncertainty comparison.
The observed performance superiority in Uncertainty Flow unequivocally renders the feasibility of
applying this framework in zero-shot multi label affective learning.

However, even under the permitted computational resources, to run a full Bayesian posterior
remains as a daunting task. How to speed up the posterior inference is an open research question.
In terms of future researches, there are two streams of researches that are worthy to be further explored.
One focuses on improving the discriminability of our novel proposed Uncertainty Flow framework.
This entails the revision on the mainstream mean field based variational inference [23]. The other
is to extend the current inductive transfer based framework to the transductive transfer domain [7],
where has already been demonstrated in vivo [42].
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Abbreviations

The following abbreviations are used in this manuscript:

BNN Bayesian neural network
BCNN Bayesian convolutional neural network
ML-kNN Multi-Label adapted kNN(k Nearest Neighbour) classifier
ML-ARAM Multi-Label fuzzy Adaptive Resonance Associative Map
ML-FNN Multi-Label Compatible Feedforward Neural Network
ML-CNN Multi-Label Compatible Convolutional Neural Network

Appendix A. Descriptive Statistics on Annotated FER2013 dataset

Table A1. Descriptive Statistics of Single-Label and Multi-Label FER2013 Datasets.

Name # of Instances # of Labels Cardinality [11] Source
Training 1500 7 1.0 [36]
Testing 200 7 1.89 This Research

Appendix B. Model Configurations

1. ML-kNN

The number of k mixture components was set up to 4, and the default smoothing parameter was
tuned at 0.

2. ML-ARAM

The vigilance was set to 0.9 to reflect the high dataset dependence, the threshold was set to 0.02
in line with the original algorithm implementation [13].

3. Binary Relevance

Base classifier: SVC(support vector classifier).

4. Label Powerset

Base classifier: Naive Gaussian classifier.

5. ML-FNN

Layer-wise Architecture:

Dense (128) > Dropout (p = 0.2) > Dense (128) > Dropout (p = 0.2) > Dense (Output) (This notation
indicates the information pathway from a dense connected layer with 128 units, to the final dense
connected layer via intermediate dense connected and dropout layers).

Epoch: 50 (1500 iterations)

6. ML-CNN

Layer-Wise Architecture: Convolution (3 × 3) > Convolution (3 × 3) > Max Pooling (2 × 2) >
Dropout (p = 0.2) > Dense (128) > Dense (Output). Epoch: 50 (1500 iterations)
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7. BNN

Layer-Wise Architecture: Same as ML-FNN Priors: Normal/Uniform/Cauchy Inference Method:
Variational Mean Field Number of Posterior Sampling: 500.

8. BCNN

Layer-Wise Architecture: Same as ML-CNN Priors: Normal/Uniform/Cauchy Inference Method:
Variational Mean Field Number of Posterior Sampling: 500.
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