
Efficient o -Regular Language Containment
R a m i n Hojat i (UC Be rk e l ey) 1

H e r v e Touat i (D E C P R L)

R obe r t P. Kurshan (A T & T Bell Labora to r ies)

Robe r t K. B ray ton (UC Be rk e l ey)

A b s t r a c t

One method for proving properties about a design is by using L-automata [Kur90].
The main computation involves building the product machine of the system and spec-
ification, and then checking for cycles not contained in any of the cycle sets (these are
sets of states specified by the user). In [Tou91] two methods were introduced for per-
forming the above task; one involves computing the transitive closure of the product
machine, and the other is an application of a method due to Emerson-Lei ([Eme86]).
We have implemented both methods and extended them. We introduce a few general-
purlx)se operators on graphs and use them to construct efficient algorithms for the
above task. Fast special checks are applied to find bad cycles early on. Initial experi-
mental results are encouraging and are presented here.

1 I n t r o d u c t i o n

Inqdementation verification involves checking whether two different representa-
tions of a system are equivalent. An example is checking whether a logic implemen-
tation faithfully implements a register-transfer language description. Design
verification is the process of verifying whether a system has a set of desired proper-
ties. An example is checking that a communication protocol does not fall in a dead-
lock state. Presently, design verification is done by extensive simulation.

Design verification is the more challenging and important problem. Two general
approaches using formal verification exist. The first employs general theorem-prov-
ing techniques to prove a result about some aspect of the design. Verification based
on Boyer-Moore theorem prover or HOL verification system are examples. The sec-
ond approach uses specialized logics or automata on infinite strings (w-autonuaa) to
express properties about a set of interacting finite state machines which model the
design. Examples are Computation Tree Logic ([Cla86]), process calculi ([Bou89])
and L-automata ([Kur90]). This work is concerned with the use of L-automata in for-
real design verification.

1.1 The L-automata Environment

Specification of both systems and properties in this environment is done by the use
of o~-automata. [Ch74] provides an introduction to the subject. Here, we briefly
cover a few relevant extensions made to the basic theory. For a more detailed expla-
nation of these, see [Kur90]. The system in this environment is modeled by a set of
L-processes, which are similar to Moore machines. An L-process consists of 6 com-
ponents.

1) States. The set of states of the L-process.
2) Transition matrix. Specifies the state transitions of the machine. The entries

of this matrix are boolean equations, specifying the conditions under which a transi-
tion is taken.

3) Initial states. The set of initial states of the machine.

1. During this work, the first author was supported by an SRC grant, under contract
number 91-DC-008.

397

4) Output function. A function of states which specifies a set of outputs for each
state. At a given state, each machine chooses one of its outputs non-deterministi-
cally. Since the systems are modeled as closed systems, outputs and inputs are the
same; they are collectively called selections.

5) Recur edges. A set of edges in the machine with the interpretation that if the
machine follows a recur edge infinitely often, then the resulting sequence is rejected.

6) Cycle sets. A set of sets of states with the interpretation that a sequence of
states is rejected if the set of states traversed infinitely often is contained in one of the
cycle sets.

A string is accepted if one of its runs is not rejected, where a run of a string is a
path in an L-process which results in that string. The model of concurrent computing
used in this environment is know as the selection/resolution model, and consists of
two basic steps which are repeated indefinitely. During selection, all machines simul-
taneously and non-deterministically choose one of the outputs possible for their
respective states. During resolution, each machine chooses a new state based on both
its current states and the global selection, i.e the set of outputs produced by all
machines during the previous selection step.

L-autonmla, which are used for specifying properties or tasks, are similar to L-
processes with two differences; first L-automata have no outputs, second is the way
recur edges and cycle sets are interpreted. In the case of L-automata, a sWing is
accepted either if for one of its runs some recur edge is traversed infinitely often or the
infinite portion of the string is contained in some cycle set. Note that this is comple-
mentary to the acceptance condition of L-processes.

Verification now consists of modeling a system and its environment as a closed sys-
tem of L-processes. Non-determinism is used heavily to express concisely all possi-
ble behaviors. A property is then represented using an L-automata, which takes
inputs from the selections of the L-processes. A complex property is usually broken
down into several smaller properties, each one represented by a deterministic L-
automaton, i.e. an L-automaton which has deterministic transitions but may have
multiple initial states. In our environment, all L-automata are deterministic. Verify-
ing whether a system has a property is then reduced to checking whether the language
accepted by the system is contained in the language of the L-automata of the property
([Kur90]). The language of the system is the languageaccepted by the automaton
obtained as the product of all of the L-processes with outputs ignored. This accep-
tance check is sometimes referred to as an C0-regular language containment check.

1.2 Product Machines

At two points in the verification process, we need to form product machines; first,
to represent the system of L-processes by their tensor product. Second, to verify that
a system has a property, we form the product machine of the L-processes and the L-
automaton, and verify that all cycles of this product machine either contain a recur
edge or are completely contained in some cycle set. The two products can be per-
formed in one step.

A product machine is formed by taking the tensor product of the transition matri-
ces, taking the Cartesian product of the initial states, and taking the union of the cycle
sets and recur edges. Note that the last two unions are in terms of the product
machines, i.e. a set of states of a product machine is a cycle set if and only if the set
restricted to some component is a cycle set for that component. The case of recur
edges is similar.

1.3 Fixpolnt Computations

Let Q be a k-ary predicate over D 1 D k, where all Di's are finite. Let F(X) be a k-
ary predicate transformer, i.e. a unary function whose first argument is a k-ary pred-

398

icate and which returns a k-ary predicate. Assume F is monotone decreasing (or
nmnotone increasing), i.r (VQ (F (Q) ~ Q)) ((VQ (Q ~ F (Q)))). A f ixpoint of F
is a predicatr Q such that F(Q) = Q.

Definition Let F be a k-ary predicate transformer. Define F/(X) by

F i (X) = (F (F (... F (X)))) , when: F is applied i times to X.
Definition Let F be a k-ary predicate transformer, which is monotone increasing.

Dgfine thc greatest dixpoint o f F given Q, denoted by It (X, Q). FX, where Q is an k-

ary monotone increasing predicate over D l D k by the set ~ (Q) such that

F (F i (Q)) = F i (Q). Similarly, define the leastfixpoint of a monotone decreasing k-

ary prexficatc transformer F given Q, v (x, Q).FX by the set F/(Q) such that
F(Fi (Q)) = Fi(Q) .

Example Let T(x,y) be the transition function for an unlabeled graph. Let A (x)
denote tile set of initial states. The fixpoint computation

R* (A, x) = It (X,A). (X (y) v 3x (X (x) ^ T (x, y))) computes the set of all the states
reachable from A.

The computation R* (A, y) = ix (X, A). (A (y) v 3x (X (x) ^ T (x, y))) is an alternate
way to compute the set of reachable states. Note that the two methods compute the
same set. However, they perform it differently. Similarly, the fixpoint computation

R* (x, A) = It (X, A). (X (x) v -qy (X (y) ^ T (x, y))) computes the set of states which
can ultimately reach A.

1.4 Our Contribution

The software COSPAN, described in [Hat90] performs the language containment
check by explicitly building the product machine and then examining the strongly
connected components of an altered product machine, where the recur edges
removed, ff each strongly connected component of this altered machine is contained
in a cycle set of the product machine, the check passes. In the case of failure, an error
tracing mechanism interacts with the user to help locate the source of error.

[Tou91] presented a method based on Binary Decision Diagrams (BDDs) where
explicit enumeration of the states of the product machine is not required. Two algo-
rithms using BDDs were suggested in [Tou91]; one involving a transitive closure
computation and one based on an application of the Emerson-Lei method introduced
in [Eme86]. After implementing the transitive closure algorithm and noticing that
this computation is usually very expensive, we proposed several algorithms based on
ideas borrowed from the Emerson-Lei method. Checks for finding simple errors early
on were also added. All of our algorithms have been implemented and are compared
to each other on a limited set of examples.

The organization of the paper is as follows. Section 2 describes the algorithms for
language containment check. Section 3 gives the experimental results. Section 4
defines complexity classes for BDD's. Section 5 is the conclusion. Due to lack of
space, most proofs have been omitted.

2 Language Containment Check
In this section, we study several algorithms for checking language containment. In

what follows, PI Pn are a set of L-processes, where Pi = (Qi, Ti, li, Oi, Ri, Ci) , and
A = (QA, Ta,/,4, Oa, Ra, Ca) is an L-automaton, defining a property of the system.

Let P = (Q, T, I, R, C) be the product machine P = P1 x ... x P n x A , where the out-

399

puts are ignored. For all the algorithms which follow, we assume that all L-processes,
L-automata, and product machines are represented by BDD's. Let 3'j for j = 1 n

be the set of cycle sets of P. The language containment check is as follows. All of
the algorithms we present, follow the same basic methodology.

Language Containment Algorilhm

1) Let P = PI x. . . •
2) Let Q be the underlying graph of reachable states of P with the recur edges
removed.
3) If all cycles (or equivalently cyefie strongly connected components) of Q are
contained in some cycle set, then the dleck has passed. Otherwise, it has failed.

Definition A badcycle is a cycle of the product machine P = Pi x ... x Pn xA, not
contained in any of the cycle sets and not containing any recur edge. Equivalently, let
Q be P, with recur edges removed from its transition function. Then, a bad cycle in P
is a cycle in Q, not contained in any of the cycle sets.

The first algorithm we study involves computing the transitive closure of P. This
algorithm is rather expensive because computing the transitive closure of a graph is
generally an expensive operation. Iterated squaring, as a possible candidate to speed
up the transitive closure operation, is described. Then, we describe three algorithms
based on ideas borrowed from [Eme86] and [Tougl]. Methods for finding simple bad
cycles early are presented afterwards, which complete all the details needed to present
the final algorithm.

2.1 Algorithm Based on Transitive Closure

The first BDD based algorithm for this task appeared in [Tougl]. The algorithm
uses transitive closure to represent strongly connected components. Let G be an unla-
beled graph, represented by its transition function T(x,y) . Let C(x,y) denote the
transitive closure of G.

Definition Let G be as above. Define S such that S (x, y) = 1 iff.~ and y are in the
same cyclic strongly connected component of G.

Lemma Let G, S, and C be as defined above. Then, S (x, y) = C (x, y) ^ C (y, x) .
Definition Let P = Pl x . . . x P, x A. Define by B (x) the set of all states of P,

which are involved in some bad cycle.
The algorithm which follows, uses the transitive closure of Q. For each cycle set,

the SCC's of Q, not contained in that cycle set are determined. I f the intersection of
all such sets is empty, the check passes. Otherwise it fails.

Language Containtitent Check Using Transilive Closure

1) Build the product of the component machines and the task. Let T (x, i, y, r)
represent the transition function of the product machine.
2) Remove the selection variables from the transition function,
T(x,y,r) = 3iT(x,i,y, r).
3) Compute the set of reachable states,

R* (l ,y) = tt(X,l) . (X(y) v3x(X(x) ^ T(x,y,r))) .
4) Remove the unreachable states and the recur edges from the transition func-
tion.

Y(x,y, r) ffi Y(x,y,r) ^R* (x) ^R* (y)

T(x,y) = T(x,y, O)
5) Compute the transitive closure of the transition function of the product

400

machine.
C(x,y) = It(X,T). (X(x,y) v3z(X(x,z) ^T(z ,y)))

product machine. Then, 6) Let yj denote the j-th cycle set of the

k (x) -- r (~ (y) ^ c (x ,y) ^ C(y,x))
1

7) In the case of failure (/) ~ 0) , call the debugger.

Theorem Let B(x) be the set calculated by the above algorithm. Then,

h (x) = ~ (x).
Building the transitive closure of the product machine has proved to be expensive.

In the next section, we discuss algorithms which can speed up this operation.

2.2 Iterated Squaring

In this section, we introduce a technique which can speed up some fixpoint compu-
tations on some graphs. Specifically this technique is useful on graphs with long
chains of states, such as counters. Consider a fixpoint computation such as computing
the set of reachable states of a graph. The usual method of computing this set can
take o (n) iterations, where n is the level of the underlying graph. Such computations
will be denoted as linear computations, where tile worst ease complexity is o (n), n
being the number of vertices of the graph. A method which reduces the time for such
computations from o (n) to O (logn) is iterated squaring. [Bur90] introduced one
iterated squaring technique for symbolic verification of Ix-ealculus. We describe iter-
ated squaring techniques for two problems, namely computing reachable states and
transitive closure of a graph G. For the first problem, we introduce one iterated squar-
ing method, whereas for the second, we introduce two iterated squaring techniques
which perform differently in practice.

Definition Let T(x,y) denote the transition relation of a graph G. Let Tk(x,y)
denote the transition relation of a graph where there is an edge between x and y iff
there is a path of length exactly k between x and y. Let C (x, y) denote the transitive
closure of G. Let C k (x, y) be the transition relation of a graph, where there is an edge
between x and y iff there is a path of length k or less between x and y. Note that
C a (x, y) = C (x, y), where n is the diameter of G.

2.2.1 Computing Reaclmble States
Recall that the linear computation of reachable states is accomplished by the fix-

point calculation., R* (A,y) = It(X,A). (X (y) v3x(X(x) ^ T(x,y))). An iterated
squaring form of the above computation is

R* (A,y) = It(X,A). (X(y) v3x(X(x) ^T2t_t(x,y))) . In order to calculate

T2k (x, y) , one has to perform an expensive computation where three sets of variables

(x, y, and z) are active at the same time, namely,
T2k(x,y) = 3z(T2k_,(x,z) ^T2k_l(z,y)). The above computation is usually time

consuming, since the BDD corresponding to T2t_~(x,y) or intermediate BDD's

needed to build T2k_ l (x, y) can become large (as an aside, note that the number of

edges represented by T2t_ t (x, y) "should be of the same order as those represented by

T(x,y)). As a rule, computations of the form 3z(A (x, z)B (z,y)), which involve
tln'ee sets of active variables take much longer than image computations, which
involve two sets of active variables.

401

Our experiments indicate that the use of iterated squaring, as presented above, for
computing the reachable states is not recommended. Tile experimental results were
obtained running the dining philosopher examples. With only 6 philosophers, com-
puting the reachable states using iterated squaring takes 60 seconds, where it only
takes 1 second using linear computations. Hence, we did not perform further experi-
ments using iterated squaring for computing reached states.

2.2.2 Computing Transitive Closure
Recall the linear computation for transitive closure of a graph G, i.e.

C (x, y) = I1 (X, T). (X (x, y) v 3z (X (x, z) ^ T(z, y))) . We discuss two general meth-
ods of using the iterated squaring technique for this computation. Both of these meth-
ods compute r (x, y) successively until a fixpoint is reached.

Iterated Squaring by Shifting We calculate C2k (x, y) by calculating C2~_ ~ (x, y) ,

then shifting it by T2k_, (x, y) and OR-ing it with C2k_ t (x, y) (recall from last section

how T~k_~ (x, y) is computed). The following describes the futpoint computation

c (x, y) = ~t (X,/3. (x (x, y) v 3z (X (x, z) ^ 72,_, Cz, y))) .

Note that by the above computation every path is added in only once. For example,
assume C+ (x, y) and T 4 (x, y) have been computed. Let a computation of the form

(A ̂ B) be called a path extension. Then, the above path extension adds to C 4
only paths of length 5-8, i.e. an edge is added between x and y iff there is a path of
length 5-8 between x and y in the original graph. For example, let (xl, x2, x3, x4, xS,
xt, xT) be a path of length 6 in the original graph. Then, there is an edge (xl, x3) in
C4(x,y) , and an edge (x3, x7) in T4(x.y) . So (xl, x7) is included in

3z (C 4 (x, z) ^ T 4 (z, y)) . However, there are no edges for (xl, x3) and (x3, xT) in this
path extension. Note that the edge (xl, xT) is added only once. We will see that in
iterated squaring by folding such an edge can be added many times.

The number of iterations of this method is logn, where n is the diameter of the
graph. However, we need to perform two sets of path extensions, each with three sets
of active variables at every iteration. On the other hand, we only need to save two
functions at every step, namely the current T k (x,y) and C2k (x,y). Based on our

experiments, iterated squaring by shifting compared to linear computations, con-
sumes more memory but has about the same running-time.

Iterated Squaring by Folding To calculate C2k (x, y) , we use the fixpoint computa-

tion, C (x, y) = !1 (X, T). (T (x, y) v 3z (X (x, z) ^ X (z, y))) . As an example, assume
C 4 (x, y) has been calculated. After the above path extension, we get C 2_ s (x, y),
where there is an edge between x and y iff there is a path of length 2-8 between them.
To get C s (x,y), we add T(x,y) to the result. Note that by this computation, an edge
for a path may be added many times. For instance, the path (xl, x2, x3, x4, xS, x6, x7)
creates the edge (xl, xT) three times: first, by (xl, x3) and (x3, x7); second, by (xl, x4)
and (x4, x7); and third, by (xl, xS) and (xS, xT).

Again, the number of iterations is logn. This computation was faster than the linear
computation in the experiments we performed. A main reason is that there is only
one path extension with three sets of active variables. It appears that this method is
more space consuming compared to linear computations. In the experimental section,
we describe the results of our experiments with the transitive closure algorithm for
doing language containment, where the transitive closure check was done using iter-
ated squaring. In the next few sections, we describe algorithms which don't need the

402

transitive closure computation.

2.3 The Emerson-Lei Method and Modifications

In this section, we introduce four algorithms for the language containment cheek.
The main idea for these algorithms is a computation introduced in [Eme86] for propo-
sitional }x-calculus, and adapted to check language containment by [Tou91]. We first
introduce some operators on graphs, which are needed later.

Historical Remark The work in [Eme86] described a method for translating a sub-
set of CTL* ([Cla86]) formulas into a subset of propositional }x-calculus, namely Liq,

for which polynomial-time algorithms are available. The important point about the
model checking algorithm for L~2 is that it does not involve any transitive closure

computation. The works described in [Eme87] and [Cla90] described methods to per-
form the language containment check for c0-automata using this polynomial subset of
CTL*. [Tou91] formulated file language containment check for L-automata in L~.

This is the first algorithm we describe. Our contribution was to enhance this algo-
rithm. We view the Emerson-Lei method for performing language containment check
as an operator trimming the state space. We introduce several new operators. More-
over, we describe a method for early failure detection.

2.3.1 Some Graph Operators
In what follows, let G be a graph, V(x) the set of its vertices, A (x) ~ V(x) a sub-

set of its vertices, and T (x, y) its transition function.
Definition Let G be a graph. A cyclic strongly connected component (CSCC) of G

is a SCC of G which contains at least one cycle. Hence, all SCC's of G are CSCC's
except for single node SCC's which don't have a self-loop, which are called acyclic
strongly connected components (ASCC's).

Definition Let S i (it, y) = 3x (A (x) ^ T (x, y)) and
Sl(x,A) = 3y(A(y) ^ T (x , y)) . Thus, Sl(A,y) are the successors of A(x) and

S 1 (x, A) are the predecessors of A (x).

Definition Let Ri(A,y) = A(y) vS l (A ,y) , Rl(x,A) = A(x) vS l (x ,A) ,

R* (A,y) = Ix(X,A). (R i (X,y)) , R* (x,A) = tt(X,A). (R I (x ,X)) . Note that the
first two are "one-step" operators, while the last two compute the least fixed-point

containing A. One should read R* (A, y) as the set of points reachable from A. Simi-

larly R* (x,A) is the set of vertices that can reach A. R l (A,y) and R I (x,A) are the

one-step versions of these respectively.

Definition We define two "stable set" operators, S* (A, y) = v (X, A). (S I (X, y))

and S* (x,A) = v(X,A). (S x (x,X)). Note these ate computing the greatest fixed

point contained in A. One can think of the first as calculating the backward stable sa
contained in A (i.e. the set of all vertices which are reached by some vertex involved
in some cycle), and the latter as the forward stable set of A (i.e. the set of all vertices
which can reach some vertex involved in some cycle).

Lemma IrA contains a cycle T, then S* (A, y) and S* (x, A) contain T-
Definition We define one more one-step operator, the trim operator.

~^A if (A ^ R l (C , y) ~ c) or (A^Rl(X,C)~C)
z i (c , a) ffi {

A otherwise

where c and A are sets of states. This operator will be used on each cycle set to elim-

403

inate cycle sets Tj that either have no exit from Vj (sink cycle sets) or no incoming

edges (source cycle sets). Re.cursive application of this operator, the recursive trim

operator, defined by Z* (x,A) = v(Y,A) .Z i ('fl, Zl (T2 Zl (Tn, Y)"")) , where A is

some initial set of state, is also useful. The usefulness of recursive trim is because Tj

may be eliminated by Z* but not by Z 1 ('/j,A) as the example below shows.

Fig. 1. Each bubble represents a set of states.
Each highlighted rectangle represents a set of states
which is passed to the recursive trim operator

In the order tried Tn, Tn-1 TI, no eliminations occur until T2, where T2 and T1 are
eliminated. Repeated application eliminates all ~j's. Obviously the order in which the
Tj's are tried is important for efficiency. Also, one can see that the elimination o f f f s
depends on the active set A. As A gets smaller, it becomes more likely that ~j is a
source or sink cycle set.

Remark There are several remarks about the recursive trim operator.
1) In general, the recursive trim operator would not return the same set, if the trim

operator deleted only the source cycle sets or only the sink cycle sets.
2) There are situations in which deleting only sinks or sources suffice. For exam-

ple, consider the following figure. I f trim only deleted sources or sinks, all vertices
are eliminated. However, applying both tests in trim can sometimes speed up the test.
Assume, we are given the sets in the order (Tl Tn). If trim deleted sinks, the com-

putation takes O (n 2) time, whereas if trim deleted both sinks and sources, the com-
putation would take O (2n). Hence, applying both tests in trim can sometimes speed
up the test.

Fig. 2. Each bubble represents a set of states.
Each highlighted rectangle represents a set of
states which is passed to the recursive trim
operator.

3) In our implementation, before calling recursive trim, we sort the cycle sets by
the number of states they contain. We start processing the cycle sets from big to
small, with the hope that bigger cycle sets will have a better chance of being a source
or a sink.

2.3.2 The EL Algorithm
In this section, we will describe the adaptation of the Emerson-Lei method for the

language containment check as it first appeared in [Tou91]. We will denote this algo-

rithm by EL. This algorithm calculates the set NC ~ as defined below.

Definition Let NC* (NC stands for not contained) denote the set of states x such
that there is a path from x to a bad cycle.

404

Note that the language containment check passes iff NC ~ ffi O. All the algorithms
presented in this section work on Q, the product of the system and the property with
the recur edges removed. The EL method calculates the set E (x) by the fixpoint

computation E(x) = v (X, V). (H R ! (x, R* (x, ~ ^ X))) (the language containment
J

check passes iff E(x) = ~). Note that R* (x ,~^E) is the set of all vertices which

start a path in E whose end-point is in Tj A E. We will show that E (x) = N C ~ (x) .

Note that this demonstrates the correctness of the algorithm.
Definition Let x be a vertex of G. Define SCC (x) to be the SCC which contains x.

Similarly, if x r S, where S is some CSCC of G, let r (x) = S.
Definition Define by SC6 the graph where every SCC of G is replaced by a node.

Note that SC c is acyclic.

Definition Let x ~ V. Let H be the set of vertices y reachable from x, such that
y e S, where S is some ASCC of G. Define by ASG (x) the graph where G is

restricted to H. Again note that AS6 (x) is acyclie.

Lelrmm Let H = Rl (x, R* (x, yj ̂ V)) for some graph G with vertices V, and some

c ~ V. If x r H, then 3CC (x) ~ H.

Theorem E (x) = NC* (x).
2.3.3 The EL1 Algorithm

In this section, we describe our first modification of EL. The EL1 method calcu-
lates the set E 1 (z) by the fixpoint computation

El (x) = v(X, tO. (R t (x, I-IR* (x,~̂ x))).
J

Theorem E t (x) = NC* (x) .

2.3.4 The EL2 Algorithm
Although one can present EL2 as a nested fixpoint computation, we choose to

present the algorithm in a more sequential manner for two reasons. The first reason is
that we would like to think of the operators as deleting irrelevant portions of a graph.
Hence, they work like hyper-planes, constraining our current set of possible bad
states. The sequential presentation makes this point more clear. The second reason is
that such nested computations involve rather long formulas, and may be hard to read
(for example, our final algorithm would involve four nested computations).

Definition Define the forward bad-path operator by F (x) = F I R* (x, ~j ̂ A),
J

where A is the current active set. Note that if a state can reach a bad cycle, it is not
deleted by this operator. So, sink cycle sets are deleted by this operator. Similarly,

define the backward bad-path operator by B (x) = I-I.R* (~ ^ v, y). Note, if a state
J

is reached by a bad cycle, it is not deleted by this operator. So, source cycle sets are
deleted by this operator.

EL2 computes the set E 2 (x) as follows.

1) Let E 2 (x) = R (x) , i.e. the set of all reachable states.

405

2) Repeat until convergence is achieved

2.1) Apply forward bad-path operator, E 2 (x) = ~[R* (x. ~j ̂ E2) .
J

2.2) Apply forward stable operator, E 2 (x) = S* (x, E2).

T h e o r e m E 2 (x) = N C + (x) .

Proof Let H = E 2 c~ NC + . We will first show H c NC*, i.e. H = O. Let S be a

leaf of SC H. We will show S is a leaf of SCr If not, S can reach some vertices in

N ~ ' . Hence, S ~ N ~ ' , which is in contradiction to the assumption that S is a subset
of H. I f S is a ASCC of E 2, then S is deleted by the forward stable operator. This is a

contradiction to EL2 having converged. I f S is some CSSC of E 2, then it is contained

in some "~j. Since S is a sink cycle set, S is deleted by the forward bad path operator.

Again, this is in contradiction to EL2 having converged. We conclude that H -- O.

Conversely, assume that x e NC* (x). We need to show x e E 2 (x). It suffices to

show that if NC + (x) ~ Y, then no vertices in Y is deleted by either operator. This is
easy to see since every state in Y has a successor and hence is not deleted by the for-
ward stable operator. Moreover, every state of Y can reach a bad cycle, and hence is
not deleted by the forward bad-path operator (QED Theorem).

Definition Let NC" denote the set of states x such that there is a path from a state y,
involved in some bad cycle, to x.

Corollary I f we replace the forward operators in EL2 with backward operators,

EL2 computes NC'.

2.4) Early Cycle Detection

In practice, it is expected that the algorithm will be applied frequently with proper-
ties which fail. Hence, we would like to have special checks to find easily detectable
bad cycles early. Let 1" = L).~. We classify the cycles of G into tlu'ee groups:

1) Cycles which lie entirely in F, i.e. cycles o f the f irst kind. Any cycle of the first
kind is a bad cycle.

2) Cycle which intersect both F and F, cycle o f the second kind. All such cycles
are bad.

3) Cycles which are completely contained in V, i.e. general cycles or cycles o f the
thirdkind. These cycles may bebad or good.

Definition Let F = UjTj. Denote by FC (x) (for first kind) the set of all state in [',

which can reach some cycle which lies entirely in [', i.e. a cycle of the first kind. Let

CS s (x) (for second kind) be the set of all states in V, which are involved in some

cycle of the second kind, whose length is less than B, where B > 1. Note that

CS 1 (x) = F C (x) . Similarly, let CS(x) = kJCSn(x) be the set of all states in V,
n

which are involved in some cycle of the second kind.

Finding Cycles o f the First Kind

406

1) Let F = ~_)y., where each 7j is a cycle set.
j J

2) Let 7" (x, y) = I" (x) ^ T (x, y) ^ F (y), Le. the transition function restricted to

3) Let F (x) = S* (x, F).
L e m m a Let F (x) be the set returned by the above algorithm. Then,

F (x) = FC (x) .
Remark In section 4, we pose a problem for which we don't have an efficient solu-

tion. The problem is finding the set of all states in a graph G which am in some
CSCC. In other words, the set of all states which are involved in some cycle. Let this
set be C~(x). If there are no cycles of the first kind, we have

cs (x) = r (x) ^ c~ (x).
We present the a method for finding cycles of the second kind after we introduce

our final algorithm.

2.5 The Final Algorithm

The final algorithm first checks for cycles of the first kind, and then for short cycles
of the second kind. If none is found, then it enters its main computation. First, recur-
sive trim is called to reduce the state space as much as possible. Then, the main loop
which consists of a forward and a backward pass is executed. The algorithm com-

putes a set which is no larger than NC (x).

Definition Let N C ~" denote the set of states x such that there are states y and z,
involved in bad cycles, and x can reach y and z can reach x.

Final Algorithm
1) Check for cycles of the first kind. If found, call the debugger.
2) Check for cycles of the second kind. ff found, call the debugger.

3) Let F* (x) = R (x), where R (x) is the set of reachable states.
4) Apply recursive trhn

F* (x) = Z* (x, R) = v (Y, R). Z I (Yt' Zl ('t2 Z t ('/,, 19...)).

5) Repeat until convergence

2.1) Apply forward bad-path operator, F* (x) = I~R* (x, yj ̂ F) .
J

2.2) Apply forward stable operator, F* (x) = S* (x, F*) .

2.1) Apply backward bad-path operator, F* (x) =]-IR* (yj ̂ F*, y) .
J

2.2) Apply backward stable operator, F* (x) = S* (F*, y) .

6) If F* (x) ~ 5 , call the debugger.

operator,

Theorem Let F* (x) be the set returned by the above algorithm. Then,

F* (x) = NC ~ (x).
Remark It is possible that after applying one of the operators in the loop of step 5

of the final algorithm, recursive trim operator can delete some vertices. For example,
consider the situation illustrated by the following figure, where each bubble repre-
sents a SCC.

407

Fig. 3. Each bubble represents a
SCC. Each highlighted rectangle
represents a cycle set.

If re.cursive trim is applied to file above graph, no vertices would be deleted. How-
ever, if forward bad path operator is applied to this graph first, vertices in component
3 are removed. If we now apply rccursive trim, all vertices arc deleted. More experi-
mentation is needed to justify whether recursive trim should be applied inside the
loop of step 5.

2.6 Finding Cycles of The Second Kind

The algorithm for finding cycles of the second one returns the following set.

Definition Let Ca '̀+- denote the set of states x such that there are states z and y in
C3 (x), and there is a path from x to y and from z to x.

Finding Cycles of The Second Kind
I) Check for eydcs of the first kind. If none a~ found, go to step 2.
2) Apply step 4 ofthe final algorithm on G with the eyde set F = L~Tyj.

Remark If the above procedure is used to find cycles of the second kind, we can
initialize F to R ^ F. The reason is that since there are no cycles of the first or second

kind, the states in F cannot be involved in any bad cycles.

3 E x p e r i m e n t a l R e s u l t s

Up to now, we have performed experiments only on a limited set of examples. Four
examples were based on the encyclopedia version of the dining philosophers prob-
lem, ranging from 16 to 40 philosophers. We checked for starvation, i.e. if a philoso-
pher becomes hungry s/he is eventually fed. The number of reachable states for an n-

philosopher example is about 2 n. Two examples were counters of size 100 and 500
states. In counters, we checked that the edge (n,0) is taken infinitely often. The last
example was part of an indusa-ial design.

Seven different algorithms for language containment were compared: using iterated
squaring by shifting in our first algorithm to compute transitive closure (iss), iterated
squaring by folding in our first algorithm to compute transitive closure (is0, the origi-
nal algorithm (org), and the algodfluns described in section 2 EL, ELI, EL2, and
final. The results show that final performs the best on our examples, except for
counters where iterated squaring did very well. In general, iterated squaring by fold-
ing is faster than iterated squaring by shifting and linear computation, but is more
space consuming. Iterated squaring by shifting first ran out of memory on 32 philos-
ophers, where iterated squaring by folding ran out of memory at 48 philosophers. We
also experimented with different properties on both the philosopher examples and the
counters where the checks fail. On all these examples, the early failure detection
algorithms found a bad cycle. Indeed, all bad cycles found were of the first kind. The
following table summarizes our results.

4 0 8

~hill6 118

~hi124 535

phil32 Mei
t ')n l '~

~hil40 Me~
t '~l!

:ntl0(1.4

.'ntS0r 11.4

indus 8.1

55 114 9.8 6.8 6.7

290 442 25.9 20 20

67O 1171 53 42 38

1622 2541 88 73 65

1.6 9.7 2.9 2.2 2.2

15.6 317 48 48 55

7.2 8.5 3.0 4.4 3.5

3.5 iss: iter sq by shifting in first alg
isf: iter sq by folding in first alg
org: first alg.

9.9 EL: originalEmerson-Lei
ELl: first modification
EL2: second modification

19 final: final alg

32

2.2

55

. 2 *

"lime: reported in seconds

*: Check fails, and early cycle
detection finds the error. Without
early cycle detection, the
algorithm takes 7.2 seconds.

Table I

4 BDD Complexity Classes
As we have seen so far, developing efficient general purpose graph manipulation

algorithms using BDD's has proven useful in solving our problems. To make the
notion of efficiency more concrete when dealing with BDD's, we ina:oduce the fol-
lowing definition. Possibly, this can serve as a guideline for designing efficient algo-
rithms.

BDD Complexity Classes (BCC): Let finite domains D 1 D n be given. Let d: be

a formula describing a fixpoint computation involving predicates over the finite
domains D i D n. Let thealternatlon depth of~ be as defined in [Eme86], which is
roughly the number of alternations of tt and o's. Then, the computation described by

is in BCCm,, if the following holds:
1) The maximum arity of predicate variables in ~b over which fixpoint computa-

tions are taken is less than or equal to m.
2) The alternation depth of qb is less than or equal to n.

Note that if there arc no fixpoint computations in ~b, then ~ is in BCCo. o" For exam-

pie, taking the intersection or union of two sets of vertices is in BCCo, o" Computing

the set of reachable states is in BCCi, i; and computing the transitive closure of a

graph is in BCez, i" The EL algorithm of section 2.2.2. is in BCC~, 2" Based on our

experience, it appears that the algorithms in BCCm, j arc more time consuming than

algorithms in BCC,~j, where m > n. Also, in general, algorithms in BCCj, m are more

time consuming than algorithms in BCCj,,, where m>n. We pose the following

problem:
Cycle Problem: Find a BCCI. a algorithm which finds the set of all vertices in a

graph which are involved in some cycle.
Note that the above problem has an efficient (linear time) classical algorithm: find

the SCC's and return" all states except those in singleton SCC's with no self-loops.
However, this algorithm is not efficient when BDD's are used. One application of an
efficient solution to this problem is finding cycles of the second kind. Another appli-
cation of this problem is in finding general cycles. Let B (x) be the set returned by
our final algorithm. Running the algorithm for the cycle problem would delete the

409

vertices in B (x) which can reach and ale reached by bad cycles but are not them-
selves involved in any cycle. This can potentially decrease the size of B (x).

5 Conclusion
In this paper, we have presented several ways of speeding up the c0-regular lan-

guage containment check using BDDs. By introducing five operators which trim the
current active space, we are able to obtain very good result on our set of examples.
The operators are forward bad-path, backward bad-path, forward stable, backward
stable and trim. Special checks are also applied to find easily detectable failures early.
On all of our examples, when the check failed, the bad cycles were found with these
special checks. It is not clear what fraction of failures in practice will be caught by the
early failure detecfon algorithms. We also introduced iterated squaring by folding as
a method to speed up the transitive closure computation, which is needed in the algo-
rithm described in [Tou91] for checking language containment. Finally, an open
problem, i.e. a BCC1.2 algorithm to find the set of states involved in some cycle in a
graph was posed.

References
[BOU91] G. Boudel, V. Roy, R. de Simone, D. Vergamini, "'Process Calculi, from

Theory to Practice: Verification Tools", in Automatic Verification Methods for Finite State Sys-
tems, Joe Sifakis ed., LNCS 407, 1989.

[Bur90] J. IL Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, "Sym-
bolic Model Checking: 1020 states and Beyotu~: Logic in Computer Science, 1990.

[Ch74] Y. Choueka, "Theor/es of Automata on co-Tap~: A Simplified Approach",
Journal of Computer and System Sciences 8, 117-141, 1974.

[Cla86] E. M. Clarke, F_. A. Emerson, A. P. Sistla. "Automatic Verification of Finite-
State Concurrent Systems Using Temporal Logic Specifications", ACM Transactions on Pro-
grmnraing Languages and Systems. 8(2):244-263, 1986.

[Eme86] E. A. Emerson, C. L. Lei. "Efftc/ent Model Checking in Fragments of the
Prepositional Mu-Calculus", In Syrup. on Logic in Computer Science. IEEE, June 1986.

[Eme87] E.A. Emerson, C. L. Let, "Modalities for Model Checking: Branching
Tune Logic Strikes BacE', Science of Computer Programming 8, 275-306, Elsevier Science
Publishers, 1987.

[clagO] E. M. Clarke, I. A. Dmghicescu, 1L P. Kurshan, "A Unified Approach for
Showing Containment and Equivalence Between Various Typ~ of r In Proceed-
ings of Fifteenth Colloquium on Trees in Algebra and Programming, 1990.

[Hatg0] Z. Har'El, R. Kurshan. "Soflware for Analytical Development of Communi.
cations Protocols", ATr technical journal, 1990.

[Kam91] T. Kam, R. Brnyton. "Multi-valued Decision Diagrams", Electronics
Research Laboratory, University of California, Berkeley, Memorandum No. UCB/ERL, Mg0/
125, 1990.

[KuO0] R. Kurshan. "Analysis of Discrete Event Coordination", Lecture Notes in
Computer Science, 1990.

[Tou90] H. Touati, H. Savoj, B. Lin, R. K. Brayton, A. S. Vincentelli, "Implicit State
Enumeration of Finite State Machines Using BDD's ~ International Conference on Computer-
Aided Design, 1990.

[Tou91] H. Touati, IL Kurshan, R. Brayton. "Testing Language Containment of to-
Automata U~ing BDD~", International Workshop on Fennel Methods in VLSI Design, 1991.

