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Abstract 

 

The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic 

filament systems show bewildering structural and dynamic complexity, and in many 

aspects prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here I 

compare the dynamic properties of the prokaryotic and eukaryotic cytoskeleton, and 

discuss how these relate to function and the evolution of organellar networks. The 

evolution of new aspects of filament dynamics in eukaryotes, including severing and 

branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into 

a self-organizing ‘active gel’, the dynamics of which can only be described with 

computational models. Advances in modeling and comparative genomics hold promise of 

a better understanding of the evolution of the self-organizing cytoskeleton in early 

eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid 

motility, mitosis, and ciliary swimming.  

 

Introduction 

 

The eukaryotic cytoskeleton organizes space on the cellular scale, and this organization 

influences almost every process in the cell. Organization depends on the mechano-

chemical properties of the cytoskeleton that dynamically maintain cell shape, position 

organelles and macromolecules by trafficking, and drive locomotion via actin-rich cellular 

protrusions, ciliary beating or ciliary gliding. The eukaryotic cytoskeleton is best described 

as an ‘active gel’, a cross-linked network of polymers (gel), where many of the links are 

active motors that can move the polymers relative to each other (Karsenti et al. 2006). 
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Since prokaryotes have only cytoskeletal polymers but lack motor proteins, this ‘active gel’ 

property clearly sets the eukaryotic cytoskeleton apart from prokaryotic filament systems. 

Prokaryotes contain elaborate systems of several cytomotive filaments (Löwe and Amos 

2009) that share many structural and dynamic features with eukaryotic actin filaments and 

microtubules (Löwe and Amos 1998; van den Ent et al. 2001). Prokaryotic cytoskeletal 

filaments may trace back to the first cells, and may have originated as higher-order 

assemblies of enzymes (Noree et al. 2010; Barry and Gitai 2011). These cytomotive 

filaments are required for the segregation of low copy number plasmids, for cell rigidity and 

cell wall synthesis, for cell division, and occasionally for the organization of membranous 

organelles (Thanbichler and Shapiro 2008; Löwe and Amos 2009; Komeili et al. 2006). 

These functions are performed by dynamic filament-forming systems that harness the 

energy from nucleotide hydrolysis to generate forces either via bending or polymerization 

(Löwe and Amos 2009; Pilhofer and Jensen 2013). Although the identification of actin and 

tubulin homologs in prokaryotes is a major breakthrough, we are far from understanding 

the origin of the structural and dynamic complexity of the eukaryotic cytoskeleton.  

Advances in genome sequencing and comparative genomics now allow a detailed 

reconstruction of the cytoskeletal components present in the last common ancestor of 

eukaryotes. These studies all point to an ancestrally complex cytoskeleton, with several 

families of motors (Wickstead et al. 2010; Wickstead and Gull 2007), and filament-

associated proteins and other regulators in place (Eme et al. 2009; Fritz-Laylin et al. 2010; 

Richards and Cavalier-Smith 2005; Jékely 2003; Chalkia et al. 2008; Rivero and Cvrcková 

2007; Hammesfahr and Kollmar 2012; Eckert et al. 2011). Genomic reconstructions and 

comparative cell biology of single-celled eukaryotes (Raikov 1994; Cavalier-Smith 2013) 

allows us to infer the cellular features of the ancestral eukaryote. These analyses indicate 

that amoeboid motility ( Fritz-Laylin et al. 2010) (although see (Cavalier-Smith 2013)), cilia 
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(Cavalier-Smith 2002; Jékely and Arendt 2006; Mitchell 2004; Satir et al. 2008), centrioles 

(Carvalho-Santos et al. 2010), phagocytosis (Cavalier-Smith 2002; Jékely 2007; Yutin et 

al. 2009), a midbody during cell division (Eme et al. 2009), mitosis (Raikov 1994), and 

meiosis (Ramesh et al. 2005) were all ancestral eukaryotic cellular features. The 

availability of functional information from organisms other than animals and yeasts (e.g. 

Chlamydomonas, Tetrahymena, Trypanosoma) also allow more reliable inferences about 

the ancestral functions of cytoskeletal components (i.e. not only their ancestral presence 

or absence) and their regulation (Suryavanshi et al. 2010; Demonchy et al. 2009; 

Lechtreck et al. 2009).  

The ancestral complexity of the cytoskeleton in eukaryotes leaves a huge gap between 

prokaryotes and the earliest eukaryote we can reconstruct (provided that our rooting of the 

tree is correct (Cavalier-Smith 2013)). Nevertheless, we can attempt to infer the series of 

events that happened along the stem lineage, leading to the last common ancestor of 

eukaryotes. Meaningful answers will require the use of a combination of gene family 

history reconstructions (Wickstead et al. 2010; Wickstead and Gull 2007), transition 

analyses (Cavalier-Smith 2002), and computer simulations relevant to cell evolution 

(Jékely 2008).  

 

 

Overview of cytoskeletal functions in prokaryotes and eukaryotes 

  

In the first section I provide an overview of the functions and components of the 

cytoskeleton in prokaryotes and eukaryotes. To obtain a general overview, I represented 

cellular structures (e.g. cell wall, kinetochore) and cytoskeletal proteins of prokaryotes and 

eukaryotes as networks (Figs. 1, 2). In the networks, the nodes represent proteins or 
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cellular structures, and the edges represent the co-occurrence of terms in PubMed entries, 

used as a proxy for functional connections. The nodes are clustered based on an 

attractive force (Frickey and Lupas 2004), calculated as the number of entries where the 

two terms co-occur divided by the number of entries in which the less frequent term 

occurs. 

For prokaryotes, I represented all filament types in one map, even though many of these 

are specific to certain taxa and do not coexist in the same cell (Fig. 1A). For eukaryotes, I 

depicted the budding yeast (Saccharomyces cerevisiae) cytoskeletal network (Fig. 1B) and 

a simplified human cytoskeletal network (Fig. 2; eukaryotic cytoskeletal proteins were 

retrieved from Uniprot using the GO ID GO:0005856). 

The prokaryotic network has three major modules, the plasmid partitioning systems, the 

cell division machinery (divisome) employing the FtsZ contractile ring, and the MreB 

filament system involved in cell wall synthesis and scaffolding.  

Components of the first prokaryotic cytoskeletal module function in the positioning of DNA 

within the cell, driven by forces generated either by the polymerization or the 

depolymerization of filaments. These widespread and diverse filament systems are either 

responsible for the segregation of low copy number plasmids, or for chromosome 

segregation (Pilhofer and Jensen 2013). DNA partitioning systems generally consist of a 

centromere-like region on DNA, a DNA-binding adaptor protein, and a filament-forming 

NTPase, that polymerizes in a nucleotide-dependent manner. Three types of filament 

systems have been described in prokaryotes. Type I systems employ Walker ATPases 

(ParA-like), type II systems have actin-like ATPases (ParM-like), and type III systems have 

tubulin-like GTPases (TubZ-like).  

The second widespread prokaryotic filament system functions in cell division. Cell division 

in all eubacteria and most archaebacteria relies on FtsZ-mediated binary fission. The 

tubulin-like GTPase, FtsZ (Löwe and Amos 1998), forms filaments that organize into a 
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contractile ring (‘Z-ring’) at the cell centre and trigger fission. The Z-ring is thought to be 

attached to the membrane at the division site by an ‘A-ring’, formed by the actin-like 

filament-forming protein, FtsA (Szwedziak et al. 2012). GTP-dependent FtsZ-filament 

bending may initiate membrane constriction (Osawa et al. 2009). The Z-ring also recruits 

several downstream components (e.g. FtsI, FtsW) that contribute to the remodeling of the 

peptidoglycan cell-wall during septation (Lutkenhaus et al. 2012). In archaebacteria, that 

lack a peptidoglycan wall and FtsA (bar one exception), cell division proceeds using a 

distinct, poorly understood machinery (Makarova et al. 2010).  

The third prokaryotic filament system employs MreB, a homolog of actin that can form 

filaments in an ATP- or GTP-dependent manner (van den Ent et al. 2001). MreB is found 

in non-spherical bacteria, and is involved in cell-shape maintenance by localizing cell wall 

synthesis enzymes. MreB is linked to the peptidoglycan precursor synthesis complex (Mur 

proteins and MraY) and the peptidoglycan assembly complex (PBPs and lytic enzymes 

e.g. MltA). Loss of MreB leads to the growth of large, malformed cells that show 

membrane invaginations (Bendezu and de Boer 2008). In vitro, MreB forms filament 

bundles and sheets (Popp et al. 2010c), whereas in vivo MreB filaments form patches 

under the inner membrane that move together with the cell wall synthesis machinery, 

probably driven by peptidoglycan synthesis (Domínguez-Escobar et al. 2011; Garner et al. 

2011). MreB filament patches also contribute to the mechanical rigidity of the cell, 

independent of their function in cell wall synthesis (Wang et al. 2010). 

The eukaryotic cytoskeletal networks (represented by yeast and human) include a cell-

division module including the spindle, centromere, and the centrosome (spindle pole body, 

SPB in yeast). This module functions in chromosome segregation, during which 

kinetochores must interact with spindle microtubules. Proper attachment is for example 

facilitated by Stu2 (ortholog of vertebrate XMAP215), a protein that is transferred to 

shrinking microtubule plus ends when they reach a kinetochore, and stabilizes them 
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(Gandhi et al. 2011). Other examples from this module are Aurora kinase and INCENP 

(yeast Ipl1 and Sli15), proteins that ensure that sister kinetochores attach to microtubules 

from opposite spindle poles during mitosis (Tanaka et al. 2002).  

Another important subnetwork in the yeast cytoskeleton is involved in bud-site selection 

and the formation of a contractile actomyosin ring. An example in this network is yeast 

Myo1, a two-headed myosin-II that localizes to the division site and promotes the 

assembly of a contractile actomyosin ring and septum formation (Fang et al. 2010). The 

membrane trafficking subnetwork includes regulators of vesicle trafficking and cargo 

sorting, including the yeast dynamin-like GTPase, Vps1. Vps1 is involved in vacuolar, 

Golgi and endocytic trafficking (Vater et al. 1992).  

The human cytoskeletal network includes several other modules absent from yeast. These 

include a module centered around the cilium, and one module for the formation of 

lamellipodia, filopodia, and phagocytosis. The former includes ciliary transport 

(intraflagellar transport, BBSome), structural, and signaling (PKD2) proteins, the latter 

includes proteins that reorganize cortical actin filaments, including the Arp2/3 complex 

(ACTR2/3 (Mullins et al. 1998)) and the Cdc42 effector N-WASP, an activator of the 

Arp2/3 complex (Takenawa and Miki 2001). The human network also contains several 

animal-specific modules, including modules related to stereocilia of inner-ear hair-cells, 

muscle, neurons (dendrite, synapse), skin, and structures mediating cell-cell adhesion 

(desmosome). 

Despite the vastly different organization and complexity of the eukaryotic and prokaryotic 

cytoskeletal networks, we know that there is evolutionary continuity between them. The 

eukaryotic cytoskeletal networks are centered around actin-like and microtubule-like 

cytomotive filaments, that evolved from homologous filament systems in prokaryotes 

(Löwe and Amos 1998; van den Ent et al. 2001). 
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Prokaryotic origin of the major components of the eukaryotic cytoskeleton 

 

In this section I give an overview of the diversity of actin- and tubulin-like filament-forming 

proteins, and discuss a few other key cytoskeletal components, for which distant 

prokaryotic homologs could be identified. 

Besides actin- and tubulin-like filaments, prokaryotes also contain filament-forming Walker 

ATPases (ParA and SopA), with no polymer-forming homologs in eukaryotes. The 

evolution of this family will not be discussed.  

 

Origin of eukaryotic actin filaments  

Actin is a member of the sugar kinase/HSP70/actin superfamily (Bork et al. 1992). This 

family also includes different prokaryotic filament-forming proteins, including MreB, FtsA, 

the plasmid-partitioning protein ParM and its relatives, and an actin family specific to 

archaebacteria (crenactins). 

To represent the diversity of actin-like proteins and their phyletic distribution in a global 

map, I clustered a large dataset of actin-like sequences based on pairwise BLASTP P 

values using force-field based clustering (Frickey and Lupas 2004) (Fig. 3 A-C). Clustering 

can be very efficient if large numbers of sequences need to be analyzed. Given that, at 

least in prokaryotes, there is a tight link between orthologs and bidirectional best BLAST 

hits (Wolf and Koonin 2012), BLAST-based clustering can efficiently recover orthology 

groups in large datasets. Even though clustering methods still lack sophisticated analysis 

tools that are common in alignment-based molecular phylogeny methods (e.g. rate 

heterogeneity among sites), the results from similarity-based clustering can agree well with 
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molecular phylogeny (Jékely 2013; Mirabeau and Joly 2013). Cluster maps can also 

provide a general overview of taxonomic distribution and of sequence similarity, 

parameters that are not easily inferred from phylogenetic trees. Clustering is best though 

of as a representation of sequence data as a similarity network, allowing evolutionary 

biologists to draw inferences about sequence evolution than are complementary to 

answers based on phylogeny (for a thoughtful introduction to the use of similarity networks 

see (Halary et al. 2013)).  

The actin similarity network revealed all actin-like protein families and their phyletic 

distribution. Filamentous actin was at the centre of the cluster of eukaryotic actins, and the 

diverse Arp families radiated from this centre. The ‘centroid’ position of actin (Fritz-Laylin 

et al. 2010) suggests that it represents the most ancestral eukaryotic sequence, and 

therefore maximizes all the blast hits to other eukaryotic actins. The ancestral nature of 

actin is also in agreement with its role in filament formation, whereas the more derived 

Arps are either regulators of filament branching and nucleation (the Arp2/3 complex 

(Mullins et al. 1998)), or have unrelated functions. 

The similarity map also reveals the prokaryotic MreB, MamK, ParM, and crenactin families 

(the more derived FtsA was excluded) as distinct clusters. Among the prokaryotic actins, 

crenactins show the most similarity to eukaryotic actins, and have been proposed to be the 

direct ancestors of eukaryotic actins (Bernander et al. 2011; Yutin et al. 2009). Crenactin 

was shown to form helical structures in Pyrobaculum cells, and is only found in rod-shaped 

archaebacteria (Ettema et al. 2011), indicating that it may regulate cell shape. Crenactins 

share two unique inserts with eukaryotic actins, and other inserts that are uniquely shared 

with the actin-like protein Arp3 (Yutin et al. 2009). This is a puzzling observation, and 

either suggest that Arp3 (arguably a derived regulatory actin) represents the ancestral 

state, or that crenactins originated via horizontal gene transfer (HGT) from eukaryotes to 

archaebacteria. The phylogenetic trees showing a sister relationship of crenactins to all 
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eukaryotic actins (Rolf Bernander 2011; Yutin et al. 2009) should be interpreted with 

caution, given that these trees have long internal branches, use very distant outgroups, 

and have few aligned positions. If crenactins were derived Arp3 proteins, they would also 

be expected to branch artificially at a deeper node, not as a sister to Arp3, due to long-

branch attraction. Future structural studies of crenactins may be able to clarify the history 

of crenactins, relative to eukaryotic actins. 

 

Origin of microtubules 

Microtubules are dynamic polymer tubes formed by 13 laterally interacting protofilaments 

of α/β-tubulin heterodimers. Like actin filaments, microtubules are universal in eukaryotes. 

Besides the canonical α/β-tubulins, several other tubulin forms have ancestrally been 

present in eukaryotes, including delta, gamma and epsilon tubulins. The prokaryotic 

homologs of tubulins include FtsZ, TubA, BtubA/BtubB from Verrucomicrobia, and 

artubulins, so far only found in the archaebacterium Nitrosoarchaeum (Yutin and Koonin 

2012).  

The cluster map of tubulins provides an overview of the phyletic distribution of all families 

(Fig. 3 D-F). Alpha, beta, gamma, delta, and epsilon tubulins are all ancestrally present in 

eukaryotes, given their broad distribution and their presence in excavates, a protist group 

that potentially represents a divergence close to the root of the eukaryotic tree (Cavalier-

Smith 2013). Epsilon and delta tubulin are only present in lineages with a cilium. 

There are two independent, phyletically restricted groups of prokaryotic tubulins with 

higher sequence similarity to eukaryotic tubulins than FtsZ, BtubA/BtubB from 

Prosthecobacter and the archaebacterial artubulins.  

BtubA and BtubB were identified in Prosthecobacter (Jenkins et al. 2002), belonging to the 

Verrucomicrobia. These proteins show high sequence (~35% identity) and structural 
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similarity to eukaryotic α/β-tubulins, and form tubulin-like protofilaments, made up of 

BtubA/BtubB heterodimers (Schlieper et al. 2005). Despite the close similarity to α/β-

tubulins, there is no one-to-one correspondence between the α/β and BtubA/BtubB 

heterodimers. Instead, both BtubA and BtubB exhibit structural features that are specific to 

either α or β tubulin (Schlieper et al. 2005). This, together with the equal distance from α/β-

tubulin in sequence space (Fig. 3F), suggests that BtubA/BtubB represent a state in 

tubulin evolution preceding the duplication of α/β-tubulins in stem eukaryotes. Since α/β-

tubulins are the structural components of microtubules, their origin by gene duplication 

was probably the first event in the history of eukaryotic tubulin duplications. The close 

similarity of BtubA/BtubB to eukaryotic tubulins suggests that they originated by HGT from 

eukaryotes to Prosthecobacter (Schlieper et al. 2005).  

Nevertheless, the ancestral character of BtubA/BtubB, uniting features of α/β-tubulin 

suggests that BtubA/BtubB originated by an ancient HGT event, and these tubulins may 

provide insights into the early evolution of microtubules. Interestingly, and in contrast to all 

other prokaryotic tubulins, BtubA/BtubB can form tubules formed by 5 protofilaments 

(instead of 13 as in eukaryotes) (Pilhofer et al. 2011). These simpler, smaller tubules may 

represent an intermediate stage in the evolution of the eukaryotic tubulin skeleton. The 

ability to form microtubules may also explain the higher sequence conservation of 

BtubA/BtubB, despite their potential early origin. 

Another class of prokaryotic tubulins, artubulin, has recently been identified in 

Nitrosoarchaeum and has been proposed to be the ancestors of eukaryotic tubulins (Yutin 

and Koonin 2012). Artubulins show higher sequence similarity to eukaryotic tubulins, than 

to FtsZ. In a phylogenetic tree artubulins branched as a sister to all eukaryotic tubulins. In 

the cluster map, artubulins appear at the periphery of the eukaryotic tubulins (Fig. 3D), and 

show very low sequence similarity to FtsZ. Coloring the nodes connected to artubulins 

according to their similarity (BLAST P value) to artubulins indicates that gamma-tubulins 
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are closest in sequence space. Gamma-tubulin regulates microtubule nucleation, and it is 

more likely that it represents a derived tubulin class, not one ancestral to α/β-tubulins. 

These considerations, together with the very limited taxonomic distribution of artubulins 

cast further doubt on their ancestral status. The clustering results are consistent with 

artubulins representing a derived gamma tubulin, acquired by HGT from eukaryotes to 

Nitrosoarchaeum. The original molecular phylogeny may have grouped artubulins deep 

due to a long-branch artifact, caused both by the derived nature of artubulins and the very 

distant outgroup. Structural analysis and polymerization assays of artubulins will help to 

better evaluate these alternative scenarios. 

Overall, the origin of eukaryotic tubulin from either BtubA/BtubB or artubulins is not 

convincingly demonstrated, and both may have been acquired by HGT from eukaryotes. If 

this is the case, then the most likely ancestor of eukaryotic tubulins remains to be FtsZ. 

 

Origin of molecular motors 

Molecular motors are mechano-chemical enzymes that use ATP hydrolysis to drive a 

mechanical cycle (Vale and Milligan 2000). Motors step either along microtubules (kinesins 

and dyneins) or the actin cytoskeleton (myosins) and are linked to and move cargo 

(molecules or organelles) around the cell. Several families of all three motor types are 

ancestrally present in eukaryotes (Wickstead and Gull 2007; 2011; Wickstead et al. 2010; 

Richards and Cavalier-Smith 2005). 

The origin of motors is unknown, since no direct prokaryotic ancestor has been identified. 

However, kinesins and myosins have common ancestry and share a catalytic core and a 

ʻrelay helixʼ that transmits the conformational change in the catalytic core to the polymer 

binding sites and the mechanical elements (Jon Kull et al. 1996). These motors are 

distantly related and evolved from GTPase switches (Leipe et al. 2002), molecules that 
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likewise undergo conformational changes upon nucleotide binding and hydrolysis (Vale 

and Milligan 2000). 

 

Other prokaryotic homologs of cytoskeletal proteins 

The prokaryotic ancestry of cytoskeletal components other than actin and tubulin can also 

be ascertained by sensitive sequence and structural comparisons.  

Profilin is a protein that breaks actin filaments (Schutt et al. 1993). Profile-profile searches 

with profilin using HHpred recovered the bacterial gliding protein MglB (Probab=95.44  E-

value=0.73) and other proteins with the related Roadblock/LC7 domain. Profilin and MglB 

also show structural similarity, as shown by PDBeFold searches (profilin 3d9y:B and MglB 

3t1q:B with an RMSD of 2.65). The sequence- and structure-based similarities establish 

profilin as a homolog of the Roadblock family. In eukaryotes, members of this family are 

associated with ciliary and cytoplasmic dynein, and in prokaryotes MglB is a GTPase 

activating protein (GAP) of the gliding protein, the Ras-like GTPase MglA (Leonardy et al. 

2010).  

The microtubule severing factors katanin and spastin, members of the AAA+ ATPase 

family, also have prokaryotic origin. AAA+ ATPases have several ancient families with 

broad phyletic distribution, and the katanin family is a member of the classical AAA clade 

(Iyer et al. 2004). This clade includes bacterial FtsH (an AAA+ ATPase with a C-terminal 

metalloprotease domain), a protein that is localized to the septum in dividing Bacillus 

subtilis cells (Wehrl et al. 2000) where it may degrade FtsZ (Anilkumar et al. 2001). 

Whether the katanin family of microtubule severing factors evolved by the modification of 

FtsH, is not resolved. 

A third cytoskeletal regulator with prokaryotic ancestry is the enzyme alpha-tubulin N-

acetyltransferase (mec-17) that stabilizes microtubules in cilia and neurites by alpha-
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tubulin acetylation. The phyletic distribution of this enzyme tightly parallels that of cilia. 

Alpha-tubulin N-acetyltransferase is a member of the Gcn5-related N-acetyl-transferase 

(GNAT) superfamily (Steczkiewicz et al. 2006; Taschner et al. 2012), widespread in 

prokaryotes (Neuwald and Landsman 1997). 

 

 

Dynamic properties of the prokaryotic and eukaryotic cytoskeleton 

 

In the following section I compare the dynamic properties of the prokaryotic and eukaryotic 

cytoskeleton. Prokaryotic filament-forming systems show remarkable properties that in 

many respects prefigure the dynamic, self-organized properties of the eukaryotic 

cytoskeleton (Fig. 4). The dynamic features of prokaryotic filaments include regulated 

filament nucleation (Lim et al. 2005), polymerization and depolymerization, dynamic 

instability  (Garner 2004), treadmilling (Larsen et al. 2007), directional polarization with 

plus and minus ends (Larsen et al. 2007), the formation of higher-order structures 

(Szwedziak et al. 2012), and force-generation by filament growth, shrinkage or bending. 

These features enable prokaryotic filaments to perform various functions, such as the 

positioning of membraneous organelles, chromosome and plasmid segregation, cell-shape 

changes, cell division, and contribution to the mechanical integrity of the cell (Wang et al. 

2010). 

The eukaryotic cytoskeleton shares all of the above features with the cytomotive filaments 

of prokaryotes (Fig. 4) but evolved additional features (Table 1). First I discuss the 

dynamic properties shared between prokaryotes and eukaryotes. I then give an overview 

of the unique properties of the eukaryotic cytoskeleton that represent evolutionary 

innovations during the origin of eukaryotes.   
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Filament nucleation, polymerization, depolymerization, and capping 

The regulation of the polymerization and depolymerization of polymers is essential for the 

proper functioning of filament systems. Filament growth can be influenced by various 

factors, including monomer concentration, nucleotides, and accessory factors, such as 

nucleating or polymerizing proteins. In eukaryotes, the spontaneous nucleation of 

microtubules and actin filaments is slow. Filament nucleation therefore represents an 

important regulatory component, allowing the positioning of growing filaments in the cell 

(Goley and Welch 2006; Kollman et al. 2011). In contrast, prokaryotic filaments commonly 

assemble rapidly and spontaneously, although nucleation may in some cases facilitate 

assembly. For example, FtsZ filament assembly proceeds via an FtsZ dimer that can serve 

as a nucleus for polymerization (Chen et al. 2005).  

Cytoskeletal filament dynamics is also regulated by filament capping. Capping includes the 

binding of factors to the end of a filament, thereby preventing disassembly. Eukaryotic 

actin fibres and microtubules are both regulated by capping (Cooper and Schafer 2000) 

(Jiang and Akhmanova 2011). In prokaryotic DNA partitioning systems filament assembly 

is commonly facilitated by the centromere-adaptor protein complex that stabilizes the 

growing end of the filament. This has been observed for all three types of prokaryotic 

filaments (Table 1)(Lim et al. 2005; Kalliomaa-Sanford et al. 2012; Popp et al. 2012; Aylett 

et al. 2010). Capping by the DNA-adaptor complex ensures the steady polymerization of 

the filaments by the incorporation of new subunits, thereby moving the plasmid or the 

chromosome (Salje and Löwe 2008; Kalliomaa-Sanford et al. 2012). 
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Treadmilling 

Treadmilling is an important feature of eukaryotic actin (Wegner 1976) and microtubules 

(Shaw 2003), and is characterized by filament polymerization at one end and 

depolymerization at the other end. This results in the apparent motion of the filament, even 

though the individual subunits stay in place. Treadmilling has also been observed in the 

actin-like and tubulin-like DNA segregation proteins (Table 1)(Popp et al. 2010b; Kim et al. 

2006; Popp et al. 2010c; Derman et al. 2009; Larsen et al. 2007). Treadmilling of the 

tubulin-like protein TubZ was shown to be important for plasmid stability. TubZ with a 

mutation in a catalytic residue forms stable filaments that are unable to undergo 

treadmilling. The introduction of this mutant into the cell leads to the loss of the associated 

plasmid, highlighting the importance of filament dynamics for proper plasmid segregation 

(Larsen et al. 2007). 

 

Dynamic instability 

Cytoskeletal filaments often show dynamic instability, characterized by the alternation of 

steady polymerization and catastrophic shrinkage. This behavior is also characteristic of 

eukaryotic microtubules (Mitchison and Kirschner 1984). Microtubues are polar, growing at 

their plus ends by the addition of tubulin heterodimers. Tubulins use GTP for filament 

assembly, and GTP hydrolysis within the microtubule generates tension that is required for 

dynamic instability (Karsenti et al. 2006). Dynamic instability represents an efficient 

strategy to search in space (Holy and Leibler 1994). Dynamic instability is important for 

proper DNA capture and positioning in both prokaryotes and eukaryotes. The actin-like 

proteins ParM (Garner 2004), and Alp7 (Derman et al. 2009) were observed to undergo 

dynamic instability in vivo. The nucleotide-bound monomers form a cap that stabilize the 

filament (Garner 2004), but upon nucleotide hydrolysis, the filament rapidly disassembles. 
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ParM filaments are polar, but when two filaments associate in an antiparallel fashion, they 

polarize bidirectionally (Gayathri et al. 2012). The filaments are dynamic and search the 

cell. Binding of the ParR/parC adaptor/centromere complex to the ends of ParM filaments 

inhibits dynamic instability, and promotes filament growth. This ‘search and capture’ 

mechanism allows efficient plasmid segregation by pushing plasmids apart in a bipolar 

spindle. 

The Walker ATPase SopA also forms dynamic filaments, the dynamics of which is 

important for plasmid segregation, since mutants that form static polymers inhibit 

segregation (Lim et al. 2005). Filaments formed by the actin-like Alp7A also undergo 

dynamic instability, and computational modeling and experiments of an artificial system 

consisting of Alp7A and a plasmid revealed how such dynamic instability can drive the 

positioning of plasmids either to the cell centre or the cell poles (Drew and Pogliano 2011). 

This bimodal system is tunable, and cell-centre or cell-pole positioning depends on the 

parameters of dynamic instability. This simple system illustrates how a dynamic 

cytoskeletal system of a few components can create spatial inhomogeneity of 

macromolecules in the cell. 

 

Force-generation 

The eukaryotic cytoskeleton can generate force by at least three distinct mechanisms, 

filament growth, filament shrinkage (Kueh and Mitchison 2009; McIntosh et al. 2010), or 

molecular motors walking on filaments (Vale 2003). In prokaryotes, no motor has been 

found, and force is generated by filament growth, filament shrinkage, or filament bending 

(FtsZ). Nucleotide-driven filament growth relies on the continuous addition of subunits to 

the filament end, which can push the attached structures. This is the general mechanism 

of force generation for all three types of plasmid partitioning systems. Filament shrinkage 
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has also been suggested as a mechanism of force generation during chromosome 

segregation in C. crescentus. The shrinkage of the ParA filament, destabilized by 

centromere-bound ParB, is thought to move the centromere to the cell poles through a 

‘burnt-bridge Brownian ratchet’ mechanism (Ptacin et al. 2010). Filament bending was 

proposed to exert force during FtsZ-mediated cell division (Osawa et al. 2009). Large 

filaments formed by the over-expression of the actin-like protein, FtsA, can also bend E. 

coli cells (Szwedziak et al. 2012). 

 

Cooperation of distinct filament types 

In eukaryotes, the actin and tubulin systems often work together, for example at the 

midbody during cell division, or during endocytosis when cargo vesicles switch from actin- 

to microtubule-based transport (Soldati and Schliwa 2006). Cooperation of distinct filament 

types also occurs in prokaryotes. In C. crescentus the CtpS filaments and crescentin 

filaments co-occur at the inner cell curvature and regulate each other. Crescentin recruits 

CtpS, and CtpS negatively regulates crescentin assembly (Ingerson-Mahar et al. 2010). A 

two-filament system is also important during FtsZ-mediated cell division. The tubulin-like 

GTPase forming the constriction ring, FtsZ, is recruited to the membrane by the actin-like 

protein FtsA. FtsA also forms filaments, and this ability was shown to be important for 

proper cell division (Szwedziak et al. 2012). Polymerized FtsZ may be attached to the 

membrane by patches of polymerized, membrane-bound FtsA, localized to the cell division 

ring. It has recently been found that FtsZ also directly interacts with MreB, and this 

interaction is required for Z ring contraction and septum synthesis  (Fenton and Gerdes 

2013). 
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Higher-order filament structures 

Eukaryotic filament systems generate several higher-order structures, including the ciliary 

axoneme, the mitotic spindle, microtubule asters, or contractile actin meshworks (Vignaud 

et al. 2012). Several prokaryotic filaments also form higher-order structures (Table 1). FtsZ 

can form toroids and multi-stranded helices, consisting of several filaments bundled 

together (Popp et al. 2010a). Pairs of parallel FtsZ filaments associated in an antiparallel 

fashion can form sheets (Löwe and Amos 1999). In vivo, FtsZ forms discontinuous 

patches in a bead-like arrangement at the cell division ring, consisting of several filaments 

(Strauss et al. 2012). SopA is able to form aster-like structures in vitro, radiating from its 

binding partner, SopB, bound to a plasmid containing SopB-recognition-sites (Lim et al. 

2005). The actin-like protein ParM is also able to form asters in vitro (Garner et al. 2007), 

and antiparallel filaments in the cell (Gayathri et al. 2012). MreB forms multilayered sheets 

with diagonally interwoven filaments, or long cables with parallel protofilaments (Popp et 

al. 2010c). Filaments of the actin-homolog FtsA can also form large bundles when 

overexpressed in E. coli, that can bend the cell and tubulate the membrane (Szwedziak et 

al. 2012). The bacterial actin AlfA can form 3D-bundles, rafts and nets (Popp et al. 2010b).  

This list is impressive and illustrates well the versatility of the prokaryotic cytoskeleton. 

However, the complexity of the higher-order structures formed by the eukaryotic 

cytoskeleton far surpasses the complexity of these structures. The eukaryotic cytoskeleton 

organizes cellular space both using dynamic scaffolds (e.g. mitotic spindle, microtubule 

aster, lamellipodia) and static scaffolds built of stabilized filaments (e.g. axoneme, 

microtubular ciliary root, microtubule-supported cell-cortex in several protists, stabilized 

microtubule bundles in metazoan neurites, microvilli, sarcomeres). The formation of these 

structures would not be possible without the unique dynamic properties of the eukaryotic 

cytoskeleton. 
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Unique dynamic properties of the eukaryotic cytoskeleton 

The eukaryotic cytoskeleton has several novel properties, not yet described in prokaryotic 

filament systems. These include filament severing (actin fibers (Cooper and Schafer 2000) 

and microtubules (Sharp and Ross 2012)), branching (actin fibers (Mullins et al. 1998) and 

microtubules (Petry et al. 2013)), and dynamic overlap of the antiparallel fibers 

(microtubules (Bieling et al. 2010)). In addition to these novel properties, those properties 

that are shared by prokaryotic filaments also evolved additional layers of regulation. A host 

of accessory cytoskeletal factors appeared early in eukaryote evolution. For example, 

microtubule dynamics is regulated by nucleating (gamma-tubulin ring complex [gamma-

TuRC]), stabilizing (MAPs), destabilizing (stathmin, katanin), minus-end stabilizing 

(patronin/ssh4 (Goodwin and Vale 2010)), and plus-end-tracking proteins (+TIPs) (Jiang 

and Akhmanova 2011). Similarly, actin dynamics is also regulated by a range of accessory 

factors, mostly representing eukaryotic novelties (Rivero and Cvrcková 2007; Eckert et al. 

2011).  

The most dramatic innovation in eukaryotes is the use of molecular motors (Vale and 

Milligan 2000). Kinesins and myosins share a catalytic core that undergoes a 

conformational change upon nucleotide binding and hydrolysis. This is transmitted by a 

‘relay helix’ to the polymer binding sites and the mechanical elements (Kull et al. 1996). 

Motor proteins are stepping along the filaments using such mechano-chemical cycles.  

Motors are either nonprocessive or processive, depending whether they perform one or 

multiple cycles, before detaching from the filament. Processive motion enables long-range 

transport using one motor protein. A hypothetical evolutionary scheme for the evolution of 

processive motors from a GTPase is outlined in Figure 5. 
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The advent of motors added an extra layer of complexity to cytoskeletal dynamics. Motors 

perform diverse and specialized functions, and are essential for the movement of 

organelles and complexes (e.g. intraflagellar transport), the establishment of a bipolar 

spindle, the definition of the cell division plane, cell migration, and cell polarity. For 

example, specific kinesin families are involved in the regulation of ciliary transport and 

motility (kinesin 2, 9, 13), and only occur in species with cilia (Wickstead et al. 2010). 

Others are involved in ciliary length control (Kif19, (Niwa et al. 2012)). Some kinesins 

regulate different aspects of spindle organization including spindle midzone formation 

(kinesin-4, Kif14 (Kurasawa et al. 2004; Gruneberg et al. 2006)), alignment on the 

metaphase plate (Xkid (Antonio et al. 2000)), or centrosome separation during bipolar 

spindle assembly (Eg5, (Kapitein et al. 2005), Kif15 (Tanenbaum et al. 2009)). 

The eukaryotic cytoskeleton forms complex three-dimensional patterns by the dynamic 

interactions of filaments, motors and accessory proteins in a self-organizing process 

(Vignaud et al. 2012). The evolution of these new dynamic properties must have been 

tightly linked to the origin of novel cellular features during eukaryote origins. In the 

following section I will discuss some of the possible links in the framework of a cell 

evolutionary scenario. 

 

Coevolution of a dynamic and scaffolding cytoskeleton with eukaryotic organelles 

 

The origin of the eukaryotic cytoskeleton can be placed into a transition scenario of 

eukaryote origins. Such scenarios may seem like “just so stories”, but are nevertheless 

important conceptual frameworks and can identify problems for future research. The first 

major event that could have precipitated a functional shift in the prokaryotic cytomotive 

filament systems could have been the loss of a rigid cell wall (Cavalier-Smith 2002). This 

step is necessary, irrespective of the prokaryotic lineage from which eukaryotes evolved 
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(archaebacteria or the common ancestor of the sister groups archaebacteria and 

eukaryotes). The loss of the cell wall may have been a dramatic, but not lethal event. The 

recent discovery of cell division in wall-free bacteria via membrane blebbing and tubulation 

provides a model for cell division following cell wall loss (Mercier et al. 2013). Importantly, 

wall-free division is independent of FtsZ, suggesting that in early eukaryote evolution the 

release of functional constraints may have allowed the rapid functional evolution of FtsZ. 

Similarly, a rapid shift in prokaryotic actin functions may also have been facilitated by cell-

wall loss.  

MreB directly contributes to the mechanical integrity of the bacterial cell, independent of its 

function in directing cell wall synthesis (Wang et al. 2010). This suggests that the 

mechanical function of the filamentous cytoskeleton may have a prokaryotic origin. Loss of 

the cell wall may have triggered the elaboration of such a function and led to the evolution 

of actin networks involved in motility and cytokineses. 

An important step in tubulin evolution was the origin of the microtubule, formed by the 

lateral association of protofilaments. Hollow tubes have higher mechanical rigidity, and 

could have more efficiently served scaffolding and transport functions. Microtubules may 

have evolved into the 13-protofilament-form following the origin of the gamma-TuRC 

complex that helped to fix the number of protofilaments. 

A common theme in the evolution of actin and tubulin filaments is the early origin of 

paralogs involved in nucleating the filaments (Arp2/3 and gamma-tubulin). FtsZ dimers can 

nucleate FtsZ filaments, and it is conceivable that a gene duplication event allowed the 

functional separation and streamlining of the filament-forming and nucleating functions for 

both filament types. The origin of separate nucleating factors allowed a more flexible 

positioning of nucleating centers, given that these could now be regulated independent of 

the filaments.  
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By providing support for membrane transport, the filaments facilitated the evolution of the 

endomembrane system (Jékely 2003). All endomembranes depend on cytoskeletal factors 

for their formation and transport. Early membrane dynamics may have evolved to allow 

endocytic uptake of fluid and particles and to deliver extra membrane to sites of 

phagocytic uptake. Phagocytosis can proceed even without a dynamic actin cytoskeleton, 

driven by thermal membrane fluctuations and ligand-receptor bonds that zipper the 

membrane around a particle. The origin of an actin network could have made this process 

more efficient by preventing the membrane from moving backwards like a ratchet (Tollis et 

al. 2010). The origin of phagocytosis could have led to the origin of mitochondria (Cavalier-

Smith 2002; Jékely 2007). Energetic arguments seem to favor an early origin of 

mitochondria (Lane and Martin 2010), however, complex, nucleotide-driven dynamic 

filament systems are abundant in prokaryotes, and can drive membrane remodeling. For 

example, overexpresison of the actin-like protein FtsA can lead to the formation of large, 

protein-coated intracellular membrane tubules (Szwedziak et al. 2012). In addition, 

amitochondrial eukaryotes can maintain a complex cytoskeleton (e.g. Trichomonas 

vaginalis has 19 kinesin and 41 dynein heavy chains), making the energetic argument for 

the primacy of mitochondria over phagotrophy less compelling. 

The self-organizing properties of the cytoskeleton presumably evolved very early. We 

know from minimal systems and simulations, that a few components are sufficient to 

organize complex, dynamic structures, such as spindles, spirals, and aster (Leibler et al. 

1997; Surrey 2001; Nédélec 2002; Nédélec et al. 2003). For example, one function of the 

dynamically unstable microtubule cytoskeleton is to position the nucleus in the cell center 

by exerting pushing forces on the nucleus (Tran et al. 2001). This process contributes to 

the spatial organization of the cell (e.g. by determining the cell division plane). Centre-

positioning can also work in vitro with a minimal system of dynamic microtubules, even in 

the absence of motor proteins (Holy et al. 1997).  

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/005868doi: bioRxiv preprint first posted online Jun. 4, 2014; 

http://dx.doi.org/10.1101/005868


 
 

24 
 

These examples illustrate that we have a growing understanding of the self-organization of 

dynamic cytoskeletal structures of various shapes and functions. In future studies, this 

knowledge could be combined with comparative genomic reconstructions to study 

‘alternative cytoskeletal landscapes’ in different eukaryotic lineages (Dawson and Paredez 

2013), and to reconstruct the stepwise assembly of these self organizing structures during 

the origin of eukaryotes.  

 

Concluding remarks 

 

The complex self-organizing properties of the cytoskeleton set it apart from other cellular 

systems, such as large macromolecular assemblies or metabolic pathways. This means 

that it is difficult to deduce what effects the addition or loss of one component might have 

had on the systems-level properties. This is in contrast to metabolic pathways, where 

evolutionary changes can be efficiently modeled using flux-balance analysis of the entire 

metabolic network of a cell (Pal et al. 2005). A similar analysis is not yet feasible for the 

entire cytoskeletal network. However, it would now be possible to study the evolution of 

sub-systems from a systems perspective. Consider the mitotic spindle. We have a good 

understanding of how the antiparallel microtubule arrays overlapping at their plus ends 

form in a dynamic process involving an interplay of microtubule growth and shrinkage, 

motor activity, and proteins binding specifically to the overlap region (Janson et al. 2007). 

The emergence of a dynamic bipolar spindle can also be captured in computer simulations 

(Nédélec 2002). In evolutionary models, one would have to consider a succession of 

states following the gradual change of activities or addition of components. There are at 

least five ancestral kinesin families involved in mitosis (Wickstead et al. 2010). How did 

mitosis work when there was only one kinesin, in a stem eukaryote?  
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The origin of axonemal motility, involving microtubule doublets and at least seven 

ancestral axonemal dynein families (Wickstead and Gull 2007), represents a similar 

problem. What was the beat pattern of the proto-cilium like, with only one axonemal 

dynein? How did it change when inner-arm and outer-arm dyneins diverged? The origin of 

lamellipodial motility and phagocytosis could also be best addressed by focusing on 

minimal systems that allow the formation of membrane protrusions supported by an actin 

network (Gordon et al. 2012; Vignaud et al. 2012). Only a combination of mutant studies 

(Mitchell and Kang 1991), in vitro reconstituted systems (Takada and Kamiya 1994), 

comparative genomics  (Wickstead and Gull 2007), and computer simulations (Brokaw 

2004; Tollis et al. 2010) could answer these questions. 
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Figure and table legends 

 

Figure 1. Prokaryotic and yeast cytoskeletal-organellar network. 

Cytoskeletal-organellar network of (A) prokaryotes and (B) yeast. 

The nodes correspond to gene names or cytological terms. 

 

Figure 2. Human cytoskeletal-organellar network. 

The nodes correspond to gene names or cytological terms.  

 

Figure 3. Cluster analysis of actin-like and tubulin-like proteins. 

Sequence-similarity-based clustering was performed on (A-C) prokaryotic and eukaryotic 

actin-like proteins, and (D-F) prokaryotic and eukaryotic tubulin-like proteins. In both cases 

an exhaustive, 90% non-redundant set of Uniprot is shown. The clusters were colored to 

reflect domain-wide (A, D) or eukaryote-wide (C, F) phyletic distribution. The BLASTP 

connections of (B) crenactins and (E) artubulins were shown, with hits of different P value 

cutoffs shown in different hues of red. 
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Figure 4. Dynamic properties of the cytoskeleton 

Dynamic properties and self-organized patterns of the prokaryotic (A-F) and eukaryotic (G-

K) cytoskeleton. 

(A) Filament nucleation by a dimeric nucleus, (B) dynamic instability, (C) filament capping, 

(D) treadmilling, (E) bipolar growth of antiparallel filaments, (F) higher-order structures, 

such as filament pairs, asters, meshes, sheets. Eukaryotes in addition display (G) filament 

branching, (H) dynamic overlap of antiparallel filaments, (I) spindle and asters, (J) filament 

severing, (K) actin networks, axoneme and basal bodies. 

 

Figure 5. Evolutionary scenario for the origin of processive kinesin and myosin motors. 

Kinesin and myosin have a common origin, and evolved from a GTPase switch. In the first 

stage the NTPase bound to the filament in a nucleotide-dependent manner via a short 

motif connected to the NTPase domain. The NTPase was engaged in other interactions 

(e.g. membrane binding), and recruited the filament to an organelle. In the next step the 

mechanical elements evolve that can perform one mechanical cycle following the 

nucleotide cycle. Motion and dissociation are both coupled to the nucleotide cycle, and are 

transduced via a relay helix that is conserved between kinesin and myosin. This non-

processive motor can now exert force on the bound organelle (e.g. a vesicle). The 

clustering of several of these motors can move organelles. Monomeric motors may have 

been non-processive (Berliner et al. 1995), or may have used biased one-dimensional 

diffusion for processivity (Okada and Hirokawa 1999). Myosin and kinesin probably 

diverged at such a stage, by the acquisition of a novel filament-binding site and 

engagement with the second filament type (the direction is unclear). It is unlikely that the 

common ancestor of kinesin and myosin had a binding surface for both actin and tubulin 

filaments. Motor dimerization may have evolved to increase the probability of repeated 

engagement with the filaments. For processivity, the dimensions of the linker had to match 
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the spacing of the accessible binding sites on the filament (80 Å for microtubules, 360 Å 

for actin filaments). This allowed the filament-dependent coupling of the nucleotide cycles 

on the two motor heads (the “mechanically controlled access” model) (Vale and Milligan 

2000).  

 

Table 1. 

Overview of the dynamic properties of prokaryotic and eukaryotic filament systems. 
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 Prokaryotic 
actin-like 
filaments 

Prokaryotic 
tubulin-like 
filaments 

Prokaryotic 
Walker-
ATPase 
filaments 

Eukaryotic 
actin 
filaments 

Eukaryotic 
microtubules 

Capping ParM (Popp et 
al. 2012) 

TubZ (Aylett et 
al. 2010) 

SopA (Lim et 
al. 2005), 
SegA 
(Kalliomaa-
Sanford et 
al. 2012) 

(Cooper and 
Schafer 
2000) 

(Jiang and 
Akhmanova 
2011) 

Treadmilling AlfA (Popp et 
al. 2010b), 
MreB (Kim et 
al. 2006; Popp 
et al. 2010c), 
Alp7A (Derman 
et al. 2009) 

TubZ (Larsen 
et al. 2007) 

 (Wegner 
1976) 

(Shaw 2003) 

Dynamic instability ParM (Garner 
2004), Alp7 
(Derman et al. 
2009; Drew 
and Pogliano 
2011) 

 SopA (Lim et 
al. 2005) 

 (Mitchison 
and 
Kirschner 
1984) 

Higher-order 
structures 

ParM (Garner 
et al. 2007; 
Gayathri et al. 
2012), MreB 
(Popp et al. 
2010c), FtsA 
(Szwedziak et 
al. 2012; Popp 
et al. 2010b) 

FtsZ (Löwe and 
Amos 1999; 
Popp et al. 
2010a; Strauss 
et al. 2012) 

SopA (Lim et 
al. 2005) 

(Vignaud et 
al. 2012) 

(Mitchell 
2004; Satir et 
al. 2008) 

Severing    (Cooper and 
Schafer 
2000) 

(Sharp and 
Ross 2012) 

Branching    (Mullins et al. 
1998) 

(Petry et al. 
2013) 

Dynamic overlap 
of antiparallel 
fibers 

    (Bieling et al. 
2010) 

Molecular motors    (Vale and 
Milligan 
2000) 

(Kull et al. 
1996) 
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