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Abstract

For ecologists, the challenge at using remote sensing tools is to convert spectral data into ecologically

relevant  information  like  abundance,  productivity  or  traits  distribution.   Among these  features,  plant

phenology is one of the most used variables in any study applying remote sensing to plant ecology and it

has formally considered as one of the Essential Biodiversity Variables. Currently, satellite imagery make

possible cost-efficient monitoring of land surface phenology (LSP), but methods applicable to different

ecosystems are not available. Here, we introduce the 'npphen' R-package developed for remote sensing

LSP reconstruction and anomaly detection using non-parametric techniques. The package implements

basic and high-level functions for manipulating vector and raster data to obtain high resolution spatial

and temporal LSP reconstructions. Advantages of ‘npphen’ are: its flexibility to describe any LSP pattern

(suitable  for  any  ecosystem),  it  handles time series  or  raster  stacks with  and without  gaps,  and it

provides confidence interval for the expected LSP at yearly basis, useful to judge anomaly magnitudes.

We present two study cases to  show how 'npphen' can successfully reconstruct and map  LSP and

anomalies for contrasting ecosystems.

Keywords:  disturbance mapping, kernel density estimation, land surface phenology, plant phenology, satellite

imagery.
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Introduction

The development of cost-efficient tools for monitoring the effects of climate change on vegetation and

biodiversity has turned into a high priority in natural resources management, conservation and human welfare. In

this scenario, remote sensing  arises as a powerful tool for vegetation monitoring at large scales (Horning et al.

2010). Currently, dense time series of satellite imagery are freely available from missions such as Landsat or

MODIS  from  NASA or  the  Sentinel  from  ESA allowing  detailed  description  of  natural  and  anthropogenic

landscapes (Petorelli et al. 2014).

For ecologists, the challenge at using remote sensing tools is to convert spectral data into ecologically relevant

information like abundance, productivity or traits distribution. Among these features, plant phenology is one of

the most used variables in any study applying remote sensing to plant ecology and it has formally considered as

one of the Essential Biodiversity Variables (EBV’s) for species traits’ monitoring (Pereira et al. 2013). An accurate

reconstruction of the annual plant phenological cycle, valuable in itself, is also fundamental for detection and

quantification of anomalies on primary production dynamics. From a remote sensing perspective, Land surface

phenology (LSP) has been defined as the study of  the spatio-temporal  development of the vegetated land

surface through the use of satellite sensors (de Beurs and Henebry 2005). Because anomaly detection requires

the  comparison  with  an  expected  pattern,  LSP reconstructions  should  be  the  base  of  any  study  aimed at

detecting changes in the spatial or temporal patterns of plant phenology  (Hargrove et al. 2009, Verbesselt et al.

2012).

In this regard, Verbesselt et al. (2010, 2012) summarized the main challenges that  LSP reconstructions and

anomaly detection have to overcome. First, remote sensing observations are a combination of multiple signals

acting at different conditions and time scales, and therefore, the ability of any method to detect a significant

anomaly relies on its capacity to differentiate the expected phenological pattern from noise (aerosols, clouds,

geometric  errors,  etc.).  Second,  change detection  techniques  should  be  independent  of  vegetation-specific

thresholds. This means that anomaly detection should be based on the dynamics of the system itself, and not on

predefined thresholds. Finally, the method needs to be robust to missing data, which is important for regions

where climate prevents periodical records from optical sensors (e.g. at high latitudes).
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Remote sensing based vegetation indices such as the Normalized Difference Vegetation Index (NDVI, Tucker

1979) or the Enhanced Vegetation Index (EVI, Huete et. al. 1994) provide multi-year pixel-base time series at

high temporal and spatial resolution. LSP reconstructions using vegetation indices time series can be conducted

using two approaches. First, by using a theoretical frequency distribution, which is considered an appropriate

representation of  the expected dynamic of  the system.  Usually, this  is  a function with  an explicit  seasonal

component fitted to data using OLS. This theoretical pattern works by assuming that regular, annual waves are a

good representation of the plant phenological cycle (e.g. Malo 2002, Verma et al. 2016), which is not true for all

ecosystems. However, this approach is the most used in the literature (see de Beurs and Henebry 2010 for a

review of LSP methods). The second approach, which we call empirical, uses the observed frequency values,

and defines the expected distribution directly from observed data without reference to a theoretical model. The

advantage of this approach is its flexibility to adapt to the particular conditions of every site, e.g. arid and semi-

arid ecosystems where seasonal approaches are not suitable (Beurs and Henebry 2010, Broich et al. 2015). At

the best of our knowledge, this approach has never been used in LSP reconstruction.

Following this empirical approach, here we present a new computational methodology for LSP reconstruction

and anomaly detection using remote sensing data, which takes advantage of the flexibility of kernel density

estimation  to  overcome  the  challenges  summarized  by  Verbesselt  et  al.  (2010).  We  first  introduce  the

mathematical  basis  of  the  method,  followed  by  two  examples  of  different  plant  phenology  regimens  and

disturbances to demonstrate its performance. To facilitate the application of our method to users, we provide a

complete implementation in the R environment: the ‘npphen 1.1-0’ package.

Methods

LSP reconstruction

For reconstructing LSP, the first step is to estimate the expected value of a vegetation index through

the growing season.  This  in  turn  depends on the estimation of  the probability  density  function ƒ(x).  In  our

method, we approximate ƒ(x) by ƒ ƒ(x) using a Kernel Density Estimation (KDE) procedure. 

Let us define X = (X1,…, Xn), a sample time series containing paired values of a vegetation index (VgI), like NDVI

or EVI, and time corresponding to the day of the growing season (ranging from 1 to 365, e.g. Julian day, Fig. 1b).

So,
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Xi = (Timei, VgIi)T , i = 1,…, n

For example, if our dataset covers p annual phenological cycles with  m observations per cycle, then our time

series will contain  n=m×p  observations (Fig. 1a-b provides a time series example). However, for our method

having  the same number of points per cycle is not mandatory. 

We define ƒ ƒ(x) as the bivariate density function of X estimated by

f̂ ( x;H )=
1
n
∑
i=1

n

KH ( x−X i )

where x is a generic point in the bivariate Time-VgI space, Xi = (Timei, VgIi)T, H is the so called bandwidth 2×2

matrix, and K is the kernel. KDE in 2 dimensions works by centering a bivariate kernel (e.g. a Gaussian kernel)

around each observation, and by averaging the heights of all kernels till obtaining the final density estimation.

The size of the kernel in each dimension is defined by H. For more details about theoretical aspects of KDE see

Wand and Jones (1994). 

In our algorithm we used a Gaussian kernel over the observed VgI values. Estimation is performed over a grid of

365 columns (daily estimation) and 500 rows. The bandwidth is defined using the multivariate plug-in selector of

Wand and Jones (1994). The bandwidth matrix defines the size of the kernel in each dimension (diagonal) and

the rotation of the kernel in reference to the axes (anti-diagonal).

Using ƒ ƒ(x) we can identify the set of most probable values of VgI along the phenological cycle and its confidence

interval (Fig. 1c).  The set of VgI values representing the more probable value per day along the phenological

cycle will  be set  as the expected LSP for  this  site.  The anomaly is  defined as the difference between the

observed and the expected value at a given day (red arrow in Fig. 1c),

Ai = VgIobs – E(VgIi),
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Algorithm implementation

The algorithm has been implemented in the Non-Parametric Phenology  “npphen 1.1-0” R-package

(https://CRAN.R-project.org/package=npphen).  The  package  implements  basic  and  high-level  functions  for

manipulating vector data (numerical series) and raster data (satellite derived products). Processing of very large

raster files using multi-core computing functionalities is also supported. The package contains functions that

reconstruct LSP from numerical series of  vegetation index (e.g. Fig. 1a), but also from 3-dimensional stacks of

images representing a vegetation index for a given area at a pixel basis. For an specific time period (e.g. 1 or 2

years), npphen also  calculates the anomaly of the observed vegetation index given the reconstructed LSP  (a

description of the functions is provided in table 1).

For  functions  implemented  for  numerical  series  (Phen  and  PhenAnoma)  the  output  is  a  numerical  vector

containing the expected value of the vegetation index or the anomalies for each date during a given period (Fig.

1). Functions implemented for raster stacks  (PhenMap and PhenAnoMap) generate as output a new raster

stack with the same spatial dimensions than the input stack and a time dimension equal to the number of dates

per growing seasons of the original data. Raster stack functions reconstruct LSP and calculate anomalies for

each pixel independently.

The ‘npphen’ R package, manual and examples of its use can be downloaded from The Comprehensive R

Archive Network (https://cran.r-project.org/package=npphen). 

Comparison with other packages

Different from other R packages devoted to phenology, “npphen” reconstructs the expected “long-

term phenology” and its confidence intervals for a given period of time (e.g. 34 years of NDVI GIMMS data),

which can be used to set a robust base line and make comparisons to observed phenology at certain times

(anomaly detection) or to analyze long-term changes in phenology (e.g. comparing the phenology of subsequent

five-years periods). Other r packages such as “phenology” (Girondot 2018) are intended to interpolate or fit a

parametric phenological curve to data for a single growing season or consecutive growing seasons  (Girondot

2018). The “phenopix” package (Filippa et al. 2016), devoted to analyze digital pictures of vegetation cover, also

includes some functions to fit parametric functions to the resulting phenological data. Others such as “bfast”
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(Verbesselt  et  al.  2010) or  “green-brown”  (Forkel  et  al.  2013) provide  several  tools  to  study  land  surface

phenology using remote sensing time series data, but using a different approach as the one used here. Using

parametric functions to fit the complete time series, they compute phenological metrics (e.g. start, end, peak and

length of  the growing season) per growing season, or in the case of  “bfast”,  decompose the series into  a

phenological (seasonal) component, a trend component, and a remainder error. Abrupt changes in trends can be

related to vegetation perturbations, defining periods (between perturbations) for which the phenological signal is

homogeneous and accounted by the parametric function. This approach does not deal well  with large inter-

annual variability in the time series, since no parametric function can describe subtle changes in the annual

phenological  cycle (Forkel et al. 2013).  

Study cases

Temperate forests and insect outbreaks

We applied  our  algorithm to  reconstruct  the  LSP of  Nothofagus pumilio forests  in  Chile  and to

quantify the defoliation (negative anomaly) caused by outbreaks of the moth Ormiscodes amphimone. We used

the 16-day compositions of MODIS EVI (Version 5), which is sensitive to vegetation green biomass (Huete et al.

2002).  We downloaded 365 EVI  images obtained from the Terra satellite  (MOD13Q1 product)  covering the

region of Aysen, Southern Chile. All scenes were pre-processed considering the quality assessment bands and

using the 'raster' package (Hijmans and Van Etten 2014) in the R software (R Core team 2017). From this stack

of satellite imagery, the expected LSP cycle of the forest  was reconstructed per pixel. An example of the  LSP

cycle and its confidence interval for an specific pixel is shown in Fig. 2d. The reconstructed phenological curve

resembles  the  seasonal  behavior  of  this  deciduous  species.  Furthermore,  an  outbreak  of  O.  amphimone

reported  on  January  2012,  was detected  by  means of  EVI  anomalies  (Fig.  2d).  By  applying  the  anomaly

mapping function ‘PhenAnoMap’ from the npphen package we obtained a 23-layer stack (one layer per date

from the MODIS data) containing anomaly values per pixel. EVI anomaly maps showing defoliation levels are

shown in Fig. 2a-c. 

Blooming desert

In this second example, we reconstructed the LSP cycle in the Atacama desert in Chile, and  quantify

the increase in plant biomass due to the “blooming desert” phenomenon. This phenomenon occurs when above-

average rainfalls trigger a remarkable development and flowering of herbaceous plants. In this case, we used
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the GIMMS NDVI 3g product (Version 1), generated from the NOAA AVHRR satellites, consisting of bi-monthly

NDVI  records  at  8  km  pixel  resolution  and  spanning  from  1981  to  2015  (Pinzón  and  Tacker  2014).  We

downloaded 828 NDVI composites  by using the R Package “gimms” (Detsch 2018), covering a large area of the

Atacama Desert in Northern Chile. Maps showing positive anomalies or “greening” areas are shown in Fig. 3a-c.

The LSP reconstruction for an specific pixel is shown in Fig. 3d, displaying the expected LSP of the desert: very

low and flat throughout the growing season. This behavior was disrupted by unusual heavy rainfalls during year

2011, causing a massive bloom of herbaceous plants. Our algorithm detected and map these positive NDVI

anomalies, allowing us to study the spatial and temporal spread of the blooming event.

Conclusions and future directions

Our  results  show how the  algorithms  implemented  in  ‘npphen’  can  successfully  reconstruct  the

expected  LSP for  two  contrasting  ecosystems,  using  different  data  sources,  and  also  detect  and  quantify

anomalies caused by two different phenomena. Going back to the three challenges pointed out by Verbeselt et

all.  (2010), we will  now explain how our algorithm overcome these issues. In the first place, ’npphen’ takes

advantage of long time series of satellite imagery to reconstruct the expected LSP for the complete time period

used in training the algorithm. In this way we a) minimize the effect of particular disturbances by diluting their

effects over data from multiple growing seasons, and b) increase the statistical power of the LSP estimation. Our

approach has another relevant feature, which is  the calculation of  confidence intervals for the expected LSP.

This is a key improvement because allows users to judge the magnitude of the anomaly on a probabilistic base,

an aspect  missing in  current  LSP reconstruction methods.  de Beurs and Henebry (2010),  after  a thorough

comparison of the different methods concluded that most of them have been developed for temperature and light

limited vegetation, therefore non suitable for water-limited systems, and they all lack of a quality assessment of

the significance or robustness of the model. ‘npphen’ overcomes both issues pointed out by this author.

In  relation  to  the  second  challenge,  our  algorithm  uses  the  KDE  approach,  and  therefore,  is  completely

independent of any particular functional form of the phenological curve. KDE methods are able to capture any

functional form (Wand and Jones 1994), and therefore, can be applied at any type of vegetation. This has been

illustrated by the two cases presented previously where ‘npphen’ was successfully applied to two contrasting

vegetation types despite the high asymmetry in the distribution of the original data. 
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Finally, the LSP reconstructions using the complete time series and KDE methods ameliorate the data absence

for some specific dates because these gaps can be partially filled with data from other seasons or contiguous

dates. The case of Nothofagus pumilio forests is a good example of this situation. The study area in this case is

commonly covered by clouds, and therefore, the time series has recurrent temporal  gaps, which was not a

limitation to perform the anomaly detection analysis. See Fig. 1b-c for an example of the estimation of LSP

(Fig.1c) from a pixel with multiple missing data (Fig. 1b).

In the near future we plan to improve the algorithm performance and include new functionalities. In relation to the

former, despite the good performance of the current parallelization of some functions, we believe there is still

room for reductions in the time consumed for some mapping functions. In relation to new functionalities, we are

working on the implementation of simultaneous estimation of LSP anomalies for multiple growing seasons by

means of a leave-one-out algorithm. We expect the ‘npphen’ packages will  facilitate research on vegetation

phenology and anomaly detection in natural  systems, especially for unaccessible areas of the planet where

remote sensing is the only viable alternative for monitoring.
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Table 1. Brief description of the functions contained in the npphen package.

Functions Description

Phen Reconstruct the annual LSP cycle from a time series of vegetation greenness

PhenAnoma Calculate anomalies with respect to the regular phenological cycle using time series 
of vegetation greenness

PhenAnoMap Calculate anomalies with respect to the regular phenological cycle using raster stacks
of vegetation greenness

PhenKplot Plot the most probable vegetation greenness values and their confidence intervals

PhenMap Reconstruct annual LSP using raster stacks of vegetation greenness
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Figure 1.

Figure 1. Example of npphen applied to time series of the Enhanced Vegetation Index (EVI) in the case study 1.

a)  Original  time  series  of  the  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  16-days  EVI

composites.  The  red  box  shows  the  growing  season  (GS)  2011-2012  when  the  outbreak  of  Ormiscodes

amphimone took place. b) All EVI values from all growing seasons (grey x), except for the growing season to be

analyzed (GS 2011-2012 in black circled dots), are used to reconstruct the leaf phenology of the deciduous

Nothofagus pumilio forest. c) Frequency map of the EVI-time space displaying the probabilities of EVI values at

different days of the growing season (DGS): the dark red line (maximum probability) is considered the reference

EVI phenological  curve.  The difference between the dark red line (reference) and the black dots (observed

values) are negative EVI anomalies (red arrow), which can be related to foliage loss due to the defoliating insect

outbreak.
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Figure 2.

Figure 2. Example of npphen used for detecting and mapping foliage loss (“browning”) caused by an insect

outbreak. Fig. 2a-c show EVI anomaly maps for different days of the growing season (DGS) displaying the

spatial expansion and defoliation intensity of the Ormiscodes amphimone outbreak occurred during the growing

season 2011-2012, which affected thousand of hectares of  Nothofagus pumilio forests in Chilean Patagonia.

Fig. 2d shows the density kernel plot and EVI anomalies for the growing season 2011-2012 at a single pixel

located at 46.80° S and 72.49° W.
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Figure 3.

Figure 3. Example of npphen used for detecting and mapping a desert bloom (“greening”) caused by abnormal

rainfall events occurred in 2012 in the hyper-arid Atacama Desert, Northern Chile. Fig. 3a-c show NDVI anomaly

maps for different days of the year (DOY) displaying the spatial expansion and the development of a desert

ephemeral grassland and flowers. Fig. 3d shows the the density kernel plot and anomalies for the year 2012 for

a single pixel located at 27.96° S and 71.05° W.
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