Research Directions on the Pegasus Toroidal Experiment #### J.A. Reusch G.M. Bodner, M.W. Bongard, R.J. Fonck, C.M. Pierren, A.T. Rhodes, N.J. Richner, C. Rodriguez Sanchez, C.E. Schaefer, J.D. Weberski 60th Annual Meeting of the APS Division of Plasma Physics Portland, OR 9 November 2018 ### Non-Solenoidal Startup Remains a Critical Need for Spherical Tokamak, and May Benefit AT - PEGASUS research program has focused on LHI - Local DC helicity injection + poloidal field induction - Demonstrated $I_p > 200$ kA with $I_{inj} < 8$ kA* - Need for dedicated facility for NS startup studies - LHI/CHI/RFCD/PF induction and others - Enhancements to Pegasus will provide a dedicated development station for non-solenoidal startup $I_p \sim N_{turns} I_{inj}$ 1 ms 2.5 ms $I_p \gtrsim N_{turns} I_{ini}$ $I_p \gg N_{turns} I_{inj}$ #### RF Startup Experiments | KI Startup Experiments | | | | |------------------------|----------|------------|--| | RF
Method | Device | I_p [kA] | | | ECH + PF | DIII-D | 166 | | | induction | JT60-U | 100 | | | ЕСН | QUEST | 70 | | | | DIII-D | 33 | | | | KSTAR | 15 | | | ECH +
LHCD | T-7 | 20 | | | EBW | MAST | 73 | | | | LATE | 15 | | | LH | PLT | 100 | | | | TST-2 | 25 | | | | GLOBUS-M | 21 | | NSTX Transient CHI # URANIA Experiment: Converted Pegasus Facility for US Non-Solenoidal Startup Development Station - Mission: compare / contrast / combine reactorrelevant startup techniques - Goal: guidance for ~1 MA startup on NSTX-U, beyond - PEGASUS to URANIA: - New centerstack and divertor assembly - Next generation LHI injectors - Transient, Sustained CHI (w/ Univ. Washington, PPPL) - EBW RF Heating & CD (w/ ORNL, PPPL) - Improved diagnostics including diagnostic neutral beam #### **Collaborative Enterprise:** ### Heart of the Facility Enhancement is New TF Assembly | Parameter | PEGASUS | URANIA | |-------------------------------------|----------|----------| | I_{TF} | 0.288 MA | 1.15 MA | | N_{TF} | 12 | 24 | | ψ_{sol} (mWb) | 40 | 0 | | R_{inner} [cm] | 5.5 | 12 | | TF Conductor
Area [cm²] | 13.2 | 151 | | $B_{T,max}$ [T] at $R_0{\sim}0.4$ m | 0.15 | 0.60 | | B_T Flattop [ms] | 25 | 100 | | ΔT_{bundle} | < 10°C | < 40°C | | R_0 [cm] | 45 | 48 | | A | 1.15-1.3 | 1.33-1.4 | #### URANIA Concept Drawing **PEGASUS** High-Stress OH Solenoid 12-turn TF Bundle Urania Solenoid-free 24-turn TF Bundle ### Local Helicity Injection on URANIA Will Test Critical Scalings for Extrapolation to Larger Scale #### LHI physics basis at increasing B_T - MHD, I_p scaling and CD mechanism - Electron heating and confinement - PMI - Compatibility with subsequent sustainment #### Injector technology - Large-area - Low V_{ini} - High B_T - Longer pulse ### High-B_T of URANIA Facilitates Coaxial HI Studies #### CHI utilizes coaxial passive electrodes - RF heating compatibility - Target plasma characteristics - Flux conversion efficiency (T-CHI) #### Next-Gen CHI systems - Transient and sustained CHI capability - No vacuum vessel break - Flexible, segmented floating electrodes - · Refractory metallic electrodes initially - Consider active (LHI-like) electrodes #### Vacuum Field for 300kA Transient CHI on URANIA Pre-Conceptual Segmented CHI Electrode Design on URANIA ### RF/EBW for Startup and Sustainment - ~ 400 kW EBW, 8 GHz - Synergy of heating with LHI/CHI - Explore EBW CD as handoff tool - Direct RF current drive for startup - High T_e for non-inductive sustainment (e.g. NBCD) - Pre-ionization for PF induction experiments #### Favorable wide range of injection angles for O-X-B GENRAY, CQL3D Modeling Indicates Core Absorption for EBW Heating, CD # Improved Diagnostic Suite of URANIA Facilitates Physics Understanding for Extrapolation to Larger Scale #### DNB spectroscopy - $B(R,t), J(R,t), T_i(R,t), n_Z(R,t), v(R,t), n_e(R,t)$ #### Impurity diagnostics - SPRED - Bolometry #### Insertable probe arrays - 3D magnetics (Hall, \dot{B}) - Langmuir, Mach, Rogowski #### Diagnostic Layout for URANIA ## Broadening Studies of Non-Solenoidal Startup on Pegasus with Transition to URANIA - Evaluate leading concepts for non-solenoidal startup in single dedicated facility - Local Helicity Injection - Coaxial Helicity Injection (Transient, Sustained) - EBW startup and assist - Poloidal Field Induction - Future: NBI heating and current drive - Develop common understanding & validation of all approaches - Goal: develop validated concept, equipment for ~ 1 MA startup on NSTX-U and beyond #### **Collaborative Enterprise:**