Research Directions on the Pegasus Toroidal Experiment

J.A. Reusch

G.M. Bodner, M.W. Bongard, R.J. Fonck, C.M. Pierren, A.T. Rhodes, N.J. Richner, C. Rodriguez Sanchez, C.E. Schaefer, J.D. Weberski

60th Annual Meeting of the APS Division of Plasma Physics Portland, OR

9 November 2018

Non-Solenoidal Startup Remains a Critical Need for Spherical Tokamak, and May Benefit AT

- PEGASUS research program has focused on LHI
 - Local DC helicity injection + poloidal field induction
 - Demonstrated $I_p > 200$ kA with $I_{inj} < 8$ kA*
- Need for dedicated facility for NS startup studies
 - LHI/CHI/RFCD/PF induction and others
- Enhancements to Pegasus will provide a dedicated development station for non-solenoidal startup

 $I_p \sim N_{turns} I_{inj}$

1 ms

2.5 ms

 $I_p \gtrsim N_{turns} I_{ini}$

 $I_p \gg N_{turns} I_{inj}$

RF Startup Experiments

KI Startup Experiments			
RF Method	Device	I_p [kA]	
ECH + PF	DIII-D	166	
induction	JT60-U	100	
ЕСН	QUEST	70	
	DIII-D	33	
	KSTAR	15	
ECH + LHCD	T-7	20	
EBW	MAST	73	
	LATE	15	
LH	PLT	100	
	TST-2	25	
	GLOBUS-M	21	

NSTX Transient CHI

URANIA Experiment: Converted Pegasus Facility for US Non-Solenoidal Startup Development Station

- Mission: compare / contrast / combine reactorrelevant startup techniques
 - Goal: guidance for ~1 MA startup on NSTX-U, beyond
- PEGASUS to URANIA:
 - New centerstack and divertor assembly
 - Next generation LHI injectors
 - Transient, Sustained CHI (w/ Univ. Washington, PPPL)
 - EBW RF Heating & CD (w/ ORNL, PPPL)
 - Improved diagnostics including diagnostic neutral beam

Collaborative Enterprise:

Heart of the Facility Enhancement is New TF Assembly

Parameter	PEGASUS	URANIA
I_{TF}	0.288 MA	1.15 MA
N_{TF}	12	24
ψ_{sol} (mWb)	40	0
R_{inner} [cm]	5.5	12
TF Conductor Area [cm²]	13.2	151
$B_{T,max}$ [T] at $R_0{\sim}0.4$ m	0.15	0.60
B_T Flattop [ms]	25	100
ΔT_{bundle}	< 10°C	< 40°C
R_0 [cm]	45	48
A	1.15-1.3	1.33-1.4

URANIA Concept Drawing

PEGASUS

High-Stress OH Solenoid 12-turn TF Bundle

Urania

Solenoid-free 24-turn TF Bundle

Local Helicity Injection on URANIA Will Test Critical Scalings for Extrapolation to Larger Scale

LHI physics basis at increasing B_T

- MHD, I_p scaling and CD mechanism
- Electron heating and confinement
- PMI
- Compatibility with subsequent sustainment

Injector technology

- Large-area
- Low V_{ini}
- High B_T
- Longer pulse

High-B_T of URANIA Facilitates Coaxial HI Studies

CHI utilizes coaxial passive electrodes

- RF heating compatibility
- Target plasma characteristics
- Flux conversion efficiency (T-CHI)

Next-Gen CHI systems

- Transient and sustained CHI capability
- No vacuum vessel break
- Flexible, segmented floating electrodes
 - · Refractory metallic electrodes initially
- Consider active (LHI-like) electrodes

Vacuum Field for 300kA Transient CHI on URANIA

Pre-Conceptual Segmented CHI Electrode Design on URANIA

RF/EBW for Startup and Sustainment

- ~ 400 kW EBW, 8 GHz
- Synergy of heating with LHI/CHI
- Explore EBW CD as handoff tool
- Direct RF current drive for startup
- High T_e for non-inductive sustainment (e.g. NBCD)
- Pre-ionization for PF induction experiments

Favorable wide range of injection angles for O-X-B

GENRAY, CQL3D Modeling Indicates Core Absorption for EBW Heating, CD

Improved Diagnostic Suite of URANIA Facilitates Physics Understanding for Extrapolation to Larger Scale

DNB spectroscopy

- $B(R,t), J(R,t), T_i(R,t), n_Z(R,t), v(R,t), n_e(R,t)$

Impurity diagnostics

- SPRED
- Bolometry

Insertable probe arrays

- 3D magnetics (Hall, \dot{B})
- Langmuir, Mach, Rogowski

Diagnostic Layout for URANIA

Broadening Studies of Non-Solenoidal Startup on Pegasus with Transition to URANIA

- Evaluate leading concepts for non-solenoidal startup in single dedicated facility
 - Local Helicity Injection
 - Coaxial Helicity Injection (Transient, Sustained)
 - EBW startup and assist
 - Poloidal Field Induction
 - Future: NBI heating and current drive
- Develop common understanding & validation of all approaches
- Goal: develop validated concept, equipment for ~ 1 MA startup on NSTX-U and beyond

Collaborative Enterprise:

