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Abstract

Fluctuations in the temporal durations of sensory signals constitute a major source of variability within natural stimulus
ensembles. The neuronal mechanisms through which sensory systems can stabilize perception against such fluctuations are
largely unknown. An intriguing instantiation of such robustness occurs in human speech perception, which relies critically
on temporal acoustic cues that are embedded in signals with highly variable duration. Across different instances of natural
speech, auditory cues can undergo temporal warping that ranges from 2-fold compression to 2-fold dilation without
significant perceptual impairment. Here, we report that time-warp–invariant neuronal processing can be subserved by the
shunting action of synaptic conductances that automatically rescales the effective integration time of postsynaptic neurons.
We propose a novel spike-based learning rule for synaptic conductances that adjusts the degree of synaptic shunting to the
temporal processing requirements of a given task. Applying this general biophysical mechanism to the example of speech
processing, we propose a neuronal network model for time-warp–invariant word discrimination and demonstrate its
excellent performance on a standard benchmark speech-recognition task. Our results demonstrate the important functional
role of synaptic conductances in spike-based neuronal information processing and learning. The biophysics of temporal
integration at neuronal membranes can endow sensory pathways with powerful time-warp–invariant computational
capabilities.
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Introduction

Robustness of neuronal information processing to temporal

warping of natural stimuli poses a difficult computational

challenge to the brain [1–9]. This is particularly true for auditory

stimuli, which often carry perceptually relevant information in fine

differences between temporal cues [10,11]. For instance in speech,

perceptual discriminations between consonants often rely on

differences in voice onset times, burst durations, or durations of

spectral transitions [12,13]. A striking feature of human perfor-

mance on such tasks is that it is resilient to a large temporal

variability in the absolute timing of these cues. Specifically,

changes in speaking rate in ongoing natural speech introduce

temporal warping of the acoustic signal on a scale of hundreds of

milliseconds, encompassing temporal distortions of acoustic cues

that range from 2-fold compression to 2-fold dilation [14,15].

Figure 1 shows examples of time warp in natural speech. The

utterance of the word ‘‘one’’ in (A) is compressed by nearly a factor

of one-half relative to the utterance shown in (B), causing a

concomitant compression in the duration of prominent spectral

features, such as the transitions of the peaks in the frequency

spectra. Notably, the pattern of temporal warping in speech can

vary within a single utterance on a scale of hundreds of

milliseconds. For example, the local time warp of the word

‘‘eight’’ in (C) relative to (D), reverses from compression in the

initial and final segments to strong dilation of the gap between

them. Although it has long been demonstrated that speech

perception in humans normalizes durations of temporal cues to the

rate of speech [2,16–18], the neural mechanisms underlying this

perceptual constancy have remained mysterious.

A general solution of the time-warp problem is to undo stimulus

rate variations by comodulating the internal ‘‘perceptual’’ clock of

a sensory processing system. This clock should run slowly when the

rate of the incoming signal is low and embedded temporal cues are

dilated, but accelerate when the rate is fast and the temporal cues

are compressed. Here, we propose a neural implementation of this

solution, exploiting a basic biophysical property of synaptic inputs,

namely, that in addition to charging the postsynaptic neuronal

membrane, synaptic conductances modulate its effective time

constant. To utilize this mechanism for time-warp robust

information processing in the context of a particular perceptual

task, synaptic peak conductances at the site of temporal cue

integration need to be adjusted to match the range of incoming

spike rates. We show that such adjustments can be achieved by a

novel conductance-based supervised learning rule. We first

demonstrate the computational power of the proposed mechanism

by testing our neuron model on a synthetic instantiation of a

generic time-warp–invariant neuronal computation, namely, time-

warp–invariant classification of random spike latency patterns. We

then present a novel neuronal network model for word recognition

and show that it yields excellent performance on a benchmark

speech-recognition task, comparable to that achieved by highly

elaborate, biologically implausible state-of-the-art speech-recogni-

tion algorithms.
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Results

Time Rescaling in Neuronal Circuits
Whereas the net current flow into a neuron is determined by the

balance between excitatory and inhibitory synaptic inputs, both

types of inputs increase the total synaptic conductance, which in

turn modulates the effective integration time of the postsynaptic

cell [19–21] (an effect known as synaptic shunting). Specifically,

when the total synaptic conductance of a neuron is large relative to

the resting conductance (leak) and is generated by linear

summation of incoming synaptic events, the neuron’s effective

integration time scales inversely to the rate of inputs spikes. Hence,

the shunting action of synaptic conductances can counter

variations in afferent spike rates by automatically rescaling the

effective integration time of the postsynaptic neuron.

We implement this mechanism in a leaky integrate-and-fire

model neuron driven by N exponentially decaying synaptic

conductances gi tð Þ~gmax
i exp {t=tsð Þ i~1, . . . ,Nð Þ. Here, gmax

i

denotes the peak conductance of the ith synapse in units of sec21,

and ts is the synaptic time constant. The total synaptic current,

measured at rest, is given by

Isyn t, bð Þ~
XN

i~1

X
tivt

V rev
i gi t{btið Þ

where V rev
i denotes the reversal potential of the ith synapse relative

to resting potential and ti denote the arrival times of the spikes of

the ith afferent. The factor b denotes a global scaling of all

incoming spike times; b = 1 is the unwarped inputs. The total

synaptic conductance, Gsyn(t,b), is

Gsyn t, bð Þ~
XN

i~1

X
tivt

gi t{btið Þ:

For fast synapses, the total synaptic current is essentially a train

of pulses, each of which occurs at the time of an incoming spike

and delivers a total charge of gitsV
rev
i . Changing the rate of the

incoming spikes will induce a corresponding change in the timing

of these pulses but not their charge. Therefore, ignoring the effect

of time warp on the time scale of ts, which is short relative to the

time scale of voltage modulations, the total synaptic current obeys

the following time-warp scaling relation, Isyn(bt,b) = b21Isyn(t,1). A

similar scaling relation holds for the total synaptic conductance.

The evolution in time of the subthreshold voltage is given by

d

dt
V t, bð Þ~{V t, bð Þ gleakzGsyn t, bð Þ

� �
zIsyn t, bð Þ: ð1Þ

Thus, V integrates the synaptic current with an effective time

constant whose inverse is 1/teff = gleak+Gsyn(t,b). If the contribution

of Gsyn is significantly larger than the leak conductance, then 1/teff

is rescaled by time-warp similar to Gsyn and Isyn, and, hence, the

solution of Equation 1 is approximately time-warp invariant,

namely, V(bt,b) = V(t,1). This result is illustrated in Figure 2, which

compares the voltage traces induced by a random spike pattern for

b = 1 and b = 0.5.

To perform time-warp–invariant tasks, peak synaptic conduc-

tances must be in the range of values appropriate for the statistics

of the stimulus ensemble of the given task. To achieve this, we

have devised a novel spike-based learning rule for synaptic

conductances, the conductance-based tempotron. This model

neuron learns to discriminate between two classes of spatiotem-

poral input spike patterns. The tempotron’s classification rule

requires it to fire at least one spike in response to each of its target

stimuli but to remain silent when driven by a stimulus from the

null class. Spike patterns from both classes are iteratively presented

to the neuron, and peak synaptic conductances are modified after

each error trial by an amount proportional to their contribution to

the maximum value of the postsynaptic potential over time (see

Materials and Methods). This contribution is sensitive to the time

courses of the total conductance and voltage of the postsynaptic

neuron. Therefore, the conductance-based tempotron learns to

adjust, not only the magnitude of the synaptic inputs, but also its

effective integration time to the statistics of the task at hand.

Learning to Classify Time-Warped Latency Patterns
We first quantified the time-warp robustness of the conduc-

tance-based tempotron on a synthetic discrimination task. We

randomly assigned 1,250 spike pattern templates to target and null

classes. The templates consisted of 500 afferents, each firing once

at a fixed time chosen randomly from a uniform distribution

between 0 and 500 ms. Upon each presentation during training

and testing, the templates underwent global temporal warping by a

random factor b ranging from compression by 1/bmax to dilation

by bmax (see Materials and Methods). Consistent with the

psychophysical range, bmax was varied between 1 and 2.5.

Remarkably, with physiologically plausible parameters, the error

frequency remained almost zero up to bmax<2 (Figure 3A, blue

curve). Importantly, the performance of the conductance-based

tempotron showed little change when the temporal warping

applied to the spike templates was dynamic (see Materials and

Methods) (Figure 3A). The time-warp robustness of the neural

classification depends on the resting membrane time constant tm

and the synaptic time constant ts. Increases in tm or decreases in ts

both enhance the dominance of shunting in governing the cell’s

effective time constant. As a result, the performance for bmax = 2.5

improved with increasing tm (Figure 3B, left) and decreasing ts

(Figure 3B, right). The time-warp robustness of the conductance-

based tempotron was also reflected in the shape of its subthreshold

voltage traces (Figure 3C, top row) and generalized to novel spike

templates with the same input statistics that were not used during

training (Figure 3C, second row).

Author Summary

The brain has a robust ability to process sensory stimuli,
even when those stimuli are warped in time. The most
prominent example of such perceptual robustness occurs
in speech communication. Rates of speech can be highly
variable both within and across speakers, yet our
perceptions of words remain stable. The neuronal mech-
anisms that subserve invariance to time warping without
compromising our ability to discriminate between fine
temporal cues have puzzled neuroscientists for several
decades. Here, we describe a cellular process whereby
auditory neurons recalibrate, on the fly, their perceptual
clocks and allows them effectively to correct for temporal
fluctuations in the rate of incoming sensory events. We
demonstrate that this basic biophysical mechanism allows
simple neural architectures to solve a standard benchmark
speech-recognition task with near perfect performance.
This proposed mechanism for time-warp–invariant neural
processing leads to novel hypotheses about the origin of
speech perception pathologies.

Time-Warp-Invariant Neuronal Processing
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Synaptic conductances were crucial in generating the neuron’s

robustness to temporal warping. Athough an analogous neuron

model with a fixed integration time, the current-based tempotron

[22] (see Materials and Methods) also performed the task perfectly

in the absence of time-warp (bmax = 1); its error frequency was

sensitive even to modest temporal warping and deteriorated

further when the applied time warp was dynamic (Figure 3A, red

curve). Similarly, the voltage traces of this current-based neuron

showed strong dependence on the degree of temporal warping

applied to an input spike train (Figure 3C, bottom trace pair).

Finally, the error frequency of the current-based neuron at

bmax = 2.5 showed only negligible improvement upon varying the

values of the membrane and synaptic time constants (Figure 3B),

highlighting the limited capabilities of fixed neural kinetics to

subserve time-warp–invariant spike-pattern classification.

Note that in the present classification task, the degree of time-

warp robustness depends also on the learning load, i.e., number of

Figure 1. Time warp in natural speech. Sound pressure waveforms
(upper panels, arbitrary units) and spectrograms (lower panels, color-
code scaled between the minimum and maximum log power) of
speech samples from the TI46 Word corpus [24], spoken by different
male speakers. (A and B) Utterances of the word ‘‘one.’’ Thin black lines

highlight the transients of the second, third, and fourth (bottom to top)
spectral peaks (formants). The lines in (A) are compressed relative to (B)
by a common factor of 0.53. (C and D) Utterances of the word ‘‘eight.’’
doi:10.1371/journal.pbio.1000141.g001

Figure 2. Time-warp–invariant voltage traces. Spike rasters show
a random spike pattern across N = 500 afferents (Nex = 250 excitatory
and Nin = 250 inhibitory), each of which fires a single action potential at
a random time chosen uniformly between 0 and 500 ms. Whereas the
original spike pattern (b = 1) is shown in (B), the pattern displayed in (A)
is compressed by a factor of b = 0.5. In each panel, the lower trace
depicts the voltage V(t,b) induced by the spike patterns in our model
neuron with balanced uniform synaptic peak conductances that
resulted in a zero mean synaptic current at rest set to
gmax

ex ~6= Nextsð Þ for excitatory synapses and gmax
in ~5gmax

ex for inhibitory
synapses. These values result in a mean total synaptic conductance of
Gsyn&7gleak . In (B), the voltage trace V(t,1) (thin grey line) is
superimposed on the rescaled voltage trace V(bt,b) (thick black line)
from (A).
doi:10.1371/journal.pbio.1000141.g002

Time-Warp-Invariant Neuronal Processing
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patterns that have to classified by a neuron (unpublished data). A

given degree of time warp translates into a finite range of

distortions of the intracellular voltage traces. If these distortions

remain smaller than the margins separating the neuronal firing

threshold and the intracellular peak voltages, a neuron’s

classification will be time-warp invariant. Since the maximal

possible margins increase with decreasing learning load, time-warp

invariance can be traded for storage capacity. This tradeoff is

governed by the susceptibility of the voltage traces to time warp. If

the susceptibility is high, as in the current-based tempotron,

robustness to time warp comes at the expense of a substantial

reduction in storage capacity. If it is low, as in the conductance-

based tempotron, time-warp invariance can be achieved even

when operating close to the neuron’s maximal storage capacity for

unwarped patterns.

Adaptive Plasticity Window
In the conductance-based tempotron, synaptic conductances

controlled, not only the effective integration time of the neuron,

but also the temporal selectivity of the synaptic update during

learning. The tempotron learning rule modifies only the efficacies

of the synapses that were activated in a temporal window prior to

the peak in the postsynaptic voltage trace. However, the width of

this temporal plasticity window is not fixed but depends on the

effective integration time of the postsynaptic neuron at the time of

each synaptic update trial, which in turn varies with the input

firing rate at each trial and the strength of the peak synaptic

conductances at this stage of learning (Figure 4). During epochs of

high conductance (warm colors), only synapses that fired shortly

before the voltage maximum were appreciably modified. In

contrast, when the membrane conductance was low (cool colors),

the plasticity window was broad. The ability of the plasticity

window to adjust to the effective time constant of the postsynaptic

voltage is crucial for the success of the learning. As is evident from

Figure 4, the membrane’s effective time constant varies consider-

Figure 3. Classification of time-warped random latency pat-
terns. (A) Error probabilities versus the scale of global time-warp bmax

for the conductance-based (blue) and the current-based (red) neurons.
Errors were averaged over 20 realizations, error bars depict 61 standard
deviation (s.d.). Isolated points on the right were obtained under
dynamic time warp with bmax = 2.5 (see Materials and Methods). (B)
Dependence of the error frequency at bmax = 2.5 on the resting
membrane time constant tm (left) and the synaptic time constant ts

(right). Colors and statistics as in (A). (C) Voltage traces of a
conductance-based (top and second rows) and a current-based neuron
(third and bottom rows). Each trace was computed under global time
warp with a temporal scaling factor b (see Materials and Methods)
(color bar) and plotted versus a common rescaled time axis. For each

neuron model, the upper traces were elicited by a target and the lower
traces by an untrained spike template.
doi:10.1371/journal.pbio.1000141.g003

Figure 4. Adaptive learning kernel. Change in synaptic peak
conductance Dg versus the time difference Dt between synaptic firing
and the voltage maximum, as a function of the mean total synaptic
conductance G during this interval (color bar). Data were collected
during the initial 100 cycles of learning with bmax = 2.5 and averaged
over 100 realizations.
doi:10.1371/journal.pbio.1000141.g004

Time-Warp-Invariant Neuronal Processing
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ably during the learning epochs; hence, a plasticity rule that does

not take this into account fails to credit appropriately the different

synapses.

Task Dependence of Learned Synaptic Conductance
The evolution of synaptic peak conductances during learning

was driven by task requirements. When we replaced the temporal

warping of the spike templates by random Gaussian jitter [22] (see

Materials and Methods), conductance-based tempotrons that had

acquired high synaptic peak conductances during initial training

on the time-warp task readjusted their synaptic peak conductances

to low values (Figure 5, inset). The concomitant increase in their

effective integration time constants from roughly 10 ms to 50 ms

improved the neurons’ ability to average out the temporal spike

jitter and substantially enhanced their task performance (Figure 5).

Neuronal Model of Word Recognition
To address time-warp–invariant speech processing, we studied a

neuronal module that learns to perform word-recognition tasks.

Our model consists of two auditory processing stages. The first

stage (Figure 6) consists of an afferent population of neurons that

convert incoming acoustic signals into spike patterns by encoding

the occurrences of elementary spectrotemporal events. This layer

forms a 2-dimensional tonotopy-intensity auditory map. Each of

Figure 5. Task dependence of the learned total synaptic
conductance. Error frequency of the conductance-based tempotron
versus its effective integration time teff. After switching from time-warp
to Gaussian spike jitter, teff increased as the mean time-averaged total
synaptic conductance G decreased with learning time (inset).
doi:10.1371/journal.pbio.1000141.g005

Figure 6. Auditory front end. (A and B) Incoming sound signal (bottom) and its spectrogram in linear scale (top) as in Figure 1D (A). Based on the
spectrogram, the log signal power in 32 frequency channels (Mel scale, see Materials and Methods) is computed and normalized to unit peak
amplitude in each channel ([B], top, colorbar). Black lines delineate filterbank channels 10, 20, and 30 and their respective support in the spectrogram
(connected through grey areas). In each channel, spikes in 31 afferents (small black circles) are generated by 16 onset (upper block) and 15 offset
(lower block) thresholds. For the signal in channel 1 (shown twice as thick black curves on the front sides of the upper and lower blocks), resulting
spikes are marked by circles (onset) and squares (offset) with colors indicating respective threshold levels (colorbar). (C) Spikes (onset, top, and offset,
bottom) from all 992 afferents plotted as a function of time (x-axis) and corresponding frequency channel (y-axis). The color of each spike (short thin
lines) indicates the threshold level (as used for circles and squares in [B]) of the eliciting unit.
doi:10.1371/journal.pbio.1000141.g006

Time-Warp-Invariant Neuronal Processing
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its afferents generates spikes by performing an onset or offset

threshold operation on the power of the acoustic signal in a given

frequency band. Whereas an onset afferent elicits a spike whenever

the log signal power crosses its threshold level from below, offset

afferents encode the occurrences of downward crossings (see

Materials and Methods) (cf. also [6,23]). Different on and off

neurons coding for the same frequency band differ in their

threshold value, reflecting a systematic variation in their intensity

tuning. The second, downstream, layer consists of neurons with

plastic synaptic peak conductances that are governed by the

conductance-based tempotron plasticity rule. These neurons are

trained to perform word discrimination tasks. We tested this model

on a digit-recognition benchmark task with the TI46 database

[24]. We trained each of the 20 conductance-based tempotrons of

the second layer to perform a distinct gender-specific binary

classification, requiring it to fire in response to utterances of one

digit and speaker gender, and to remain quiescent for all other

stimuli. After training, the majority of these digit detector neurons

(70%) achieved perfect classification of the test set, and the

remaining ones performed their task with a low error (Table 1).

Based on the spiking activity of this small population of digit

detector neurons, a full digit classifier (see Materials and Methods)

that weighted spikes according to each detector’s individual

performance, achieved an overall word error rate of 0.0017. This

performance matches the error rates of state-of-the-art artificial

speech-recognition systems such as the Hidden Markov model–

based Sphinx-4 and HTK, which yield error rates of 0.0017 [25]

and 0.0012 [26], respectively, on the same benchmark.

Learned Spectrotemporal Target Features
To reveal qualitatively some of the mechanisms used by our

digit detector neurons to selectively detect their target word, we

compared the learned synaptic distributions (Figure 7A) of two

digit detector neurons (‘‘one’’ and ‘‘four’’) to the average

spectrograms of each neuron’s target stimuli aligned to the times

of its output spikes (Figure 7B; see Materials and Methods). The

spectrotemporal features that preceeded the output spikes (time

zero, grey vertical lines) corresponded to the frequency-specific

onset and offset selectivity of the excitatory afferents (Figure 7A,

warm colors). These examples demonstrate how the patterned

excitatory and inhibitory inputs from both onset and offset

neurons are tuned to features of the speech signal. For instance, a

prominent feature in the averaged spectrogram of the word ‘‘one’’

(male speakers) was the increase in onset time of the power in the

low-frequency channels with the frequency of the channel

(Figure 7B, left, channels 1–16). This gradual onset was encoded

by a diagonal band of excitatory onset afferents whose thresholds

decreased with increasing frequency (Figure 7A, left). By

compensating for the temporal lag between the different lower-

frequency channels, this arrangement ensured a strong excitatory

drive when a target stimulus was presented to the neuron. The

spectrotemporal feature learned by the word ‘‘four’’ (male

speakers) detector neuron combined decreasing power in the

low-frequency range with rising power in the mid-frequency range

(Figure 7B, right). This feature was encoded by synaptic efficacies

through a combination of excitatory offset afferents in the low-

frequency range (Figure 7A, right, channels 1–11) and excitatory

onset afferents in the mid-frequency range (channels 12–19).

Excitatory synaptic populations were complemented by inhibitory

inputs (Figure 7A, blue patches) that prevented spiking in response

to null stimuli and also increased the total synaptic conductance.

The substantial differences between the mean spike-triggered

voltage traces for target stimuli (Figure 7C, blue) and the mean

maximum-triggered voltage traces for null stimuli (red) underline

the high target word selectivity of the learned synaptic distribu-

tions as well as the relatively short temporal extend of the learned

target features.

In the examples shown, the average position of the neural

decision relative to the target stimuli varied from early to late

(Figure 7B, left vs. right). This important degree of freedom stems

from the fact that the tempotron decision rule does not constrain

the time of the neural decision. As a result, the learning process in

each neuron can select the spectrotemporal target features from

any time window within the word. The selection of the target

feature by the learning takes into account both the requirement of

triggering output spikes in response to target stimuli as well as the

demand to remain silent during null stimuli. Thus, for each target

neuron, the selected features reflect the statistics of both the target

and the null stimuli.

Generalization Abilities of Word Detector Neurons
We have performed several tests designed to assess the ability of

the model word detector neurons to perform well on new input

sets, different in statistics from the trained database. First, we

assessed the ability of the neurons to generalize to unfamiliar

speakers and dialects. After training the model with the TI46

database, as described above, we measured its digit-recognition

performance on utterances from another database, the TIDIGITS

database [27], which includes speech samples from a variety of

English dialects (see Materials and Methods). This test has been

done without any retraining of the network synapses. The resulting

word error rate of 0.0949 compares favorably to the performance

of the HTK system, which resulted in an error rate of 0.2156 when

subjected to the same generalization test (see Materials and

Methods). Across all dialects, our model performed perfectly for

roughly one-quarter of all speakers and with at most one error for

half of them. Within the best dialect group, an error of at most one

word was achieved for as many as 80% of the speakers (Table S1).

These results underline the ability of our neuronal word-

recognition model to generalize to unfamiliar speakers across a

wide range of different unfamiliar dialects.

An interesting question is whether our model neurons are able

to generalize their performance to novel time-warped versions of

the trained inputs. To address this question, we have tested their

performance on randomly generated time-warped versions of the

input spikes corresponding to the trained word utterances, without

retraining. As shown in Figure 8, the neurons exhibited

considerable time-warp–robust performance on the digit-recogni-

Table 1. Test set error fractions of individual detector
neurons.

Digit Male Female

0 0.0 0.0

1 0.0 0.0

2 0.0008 0.0017

3 0.0 0.0

4 0.0 0.0

5 0.0029 0.0062

6 0.0 0.0

7 0.0004 0.0008

8 0.0 0.0

9 0.0 0.0

doi:10.1371/journal.pbio.1000141.t001

Time-Warp-Invariant Neuronal Processing
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tion task. For instance, the errors for the ‘‘one’’ (Figure 8A, black

line) and ‘‘four’’ (blue line) detector neurons (cf. Figure 7) were

insensitive to a 2-fold time warp of the input spike trains. The

‘‘seven’’ detector neuron (male, red line) showed higher sensitivity

to such warping; nevertheless, its error rate remained low.

Consistent with the proposed role of synaptic conductances, the

degree of time-warp robustness was correlated with the total

synaptic conductance, here quantified through the mean effective

integration time teff (Figure 8B). Additionally, the mean voltage

traces induced by the target stimuli (Figure 8C, lower traces)

showed a substantially smaller sensitivity to temporal warping than

their current-based analogs (see Materials and Methods)

(Figure 8C, upper traces).

We also found that our model word detector neurons are robust

to the introduction of spike failures in their input patterns. For

each neuron, we have measured its performance on inputs which

were corrupted by randomly deleting a fraction of the incoming

spikes, again without retraining. For the majority of neurons, the

error percentage increased by less than 0.01% for each percent

increase in spike failures (Figure 9). This high robustness reflects

the fact that each classification is based on integrating information

from many presynaptic sources.

Discussion

Automatic Rescaling of Effective Integration Time by
Synaptic Conductances

The proposed conductance-based time-rescaling mechanism is

based on the biophysical property of neurons that their effective

integration time is shaped by synaptic conductances and therefore

Figure 7. Speech-recognition task. (A) Learned synaptic peak conductances. Each pixel corresponds to one synapse characterized by its
frequency channel (right y-axis) and its onset (ON) or offset (OFF) afferent power threshold level (x-axis, in percent of maximum signal powers [see
Materials and Methods]). Learned peak conductances were color coded with excitatory (warm colors) and inhibitory conductances (cool colors)
separately normalized to their respective maximal values (color bar). The left y-axis shows the logarithmically spaced center frequencies (Mel scale) of
the frequency channels. (B) Spike-triggered target stimuli (color-code scaled between the minimum and maximum mean log power). (C) Mean
voltage traces for target (blue, light blue 61 s.d.; spike triggered) and null stimuli (red; maximum triggered).
doi:10.1371/journal.pbio.1000141.g007
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can be modulated by the firing rate of its afferents. To utilize these

modulations for time-warp–invariant processing, a central re-

quirement is a large evoked total synaptic conductance that

dominates the effective integration time constant of the postsyn-

aptic cell through shunting. In our speech-processing model, large

synaptic conductances with a median value of a 3-fold leak

conductance across all digit detector neurons (cf. Figure 8B) result

from a combination of excitatory and inhibitory inputs. This is

consistent with high total synaptic conductances, comprising

excitation and inhibition, that have been observed in several

regions of cortex [28] including auditory [29,30], visual [31,32],

and also prefrontal [33,34] (but see ref. [35]). Our model predicts

that in cortical sensory areas, the time-rescaled intracellular

voltage traces (cf. Figure 3C), and consequently, also the rescaled

spiking responses of neurons that operate in the proposed fashion,

remain invariant under temporal warping of the neurons’ input

spike patterns. These predictions can be tested by intra- and

extracellular recordings of neuronal responses to temporally

warped sensory stimuli.

A large total synaptic conductance is associated with a

substantial reduction in a neuron’s effective integration time

relative to its resting value. Therefore, the resting membrane time

constant of a neuron that implements the automatic time-rescaling

mechanism must substantially exceed the temporal resolution that

is required by a given processing task. Because the word-

recognition benchmark task used here comprises whole-word

stimuli that favored effective time constants on the order of several

tens of milliseconds, we used a resting membrane time constant of

tm = 100 ms. Whereas values of this order have been reported in

hippocampus [36] and cerebellum [21,37], it exceeds current

estimates for neocortical neurons, which range between 10 and

30 ms [35,38,39]. Note, however, that the correspondence of our

passive membrane model and the experimental values that

typically include contributions from various voltage-dependent

conductances is not straightforward. Our model predicts that

neurons specialized for time-warp–invariant processing at the

whole-word level have relatively long resting membrane time

constants. It is likely that the auditory system solves the problem of

time-warp–invariant processing of the sound signal primarily at

the level of shorter speech segments such as phonemes. This is

supported by evidence that primary auditory cortex has a special

role in speech processing at a resolution of milliseconds to tens of

milliseconds [11–13]. Our mechanism would enable time-warp–

invariant processing of phonetic segments with resting membrane

time constants in the range of tens of milliseconds, and much

shorter effective integration times.

The proposed neuronal time-rescaling mechanism assumes

linear summation of synaptic conductances. This assumption is

challenged by the presence of voltage-dependent conductances in

neuronal membranes. Since the potential implications for our

model depend on the specific nonlinearity induced by a cell-type–

specific composition of different ionic channels, it is hard to

evaluate the overall effect on our model in general terms.

Nevertheless, because of its immanence, we expect the conduc-

tance-based time-rescaling mechanism to cope gracefully with

moderate levels of nonlinearity. As an example, we tested its

Figure 8. Time-warp robustness. (A) Error versus time-warp factor b. (B) Mean errors over the range of b shown in (A) (digit color code; triangles:
female speakers, circles: male speakers) versus the mean effective time constant teff calculated for b = 1 by averaging the total synaptic conductance
over 100-ms time windows prior to either the output spikes (target stimuli) or the voltage maxima (null stimuli). (C) Mean voltage traces for time-
warped target patterns for the neurons shown in Figure 7. Bottom row: conductance-based neurons, upper row: current-based neurons (see
Materials and Methods).
doi:10.1371/journal.pbio.1000141.g008
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behavior in the presence of an h-like conductance (see Materials

and Methods) that opposes conductance changes induced by

depolarizing excitatory synaptic inputs and is active at the resting

potential. As expected, we found that physiological levels of h-

conductances resulted in only moderate impairment of the

automatic time-rescaling mechanism (Figure S1).

For the sake of simplicity as well as numerical efficiency, we

have assumed symmetric roles of excitation and inhibition in our

model architecture. We have checked that this assumption is not

crucial for the operation of the automatic time-rescaling

mechanism and the learning of time-warped random latency

patterns. Specifically, we have implemented the random latency

classification task for a control architecture in which all synapses

were confined to be excitatory except a single global inhibitory

input that, mimicking a global inhibitory network, received a

separate copy of all incoming spikes. In this architecture, all spike

patterns have to be encoded by the excitatory synaptic population,

and the role of inhibition is reduced to a global signal that has

equal strength for all input patterns. Due to the limitations of this

architecture, this model showed some reduction of storage

capacity relative to the symmetric case, but the automatic time-

rescaling mechanism remained intact. For a time-warp scale of

bmax = 2.5 (cf. Figure 3), the global inhibition model roughly

matched the performance of the symmetric model when the

learning load was lowered to 1.5 spike patterns per synapse, with

an error fraction of 0.18%.

Supervised Learning of Synaptic Conductances
To utilize synaptic conductances as efficient controls of the

neuron’s clock, the peak synaptic conductances must be plastic so

that they adjust to the range of integration times relevant for a

given perceptual task. This was achieved in our model by our

novel supervised spike-based learning rule. This plasticity posits

that the temporal window during which pre- and postsynaptic

activity interact continuously adapts to the effective integration

time of the postsynaptic cell (Figure 4). The polarity of synaptic

changes is determined by a supervisory signal that we hypothesize

to be realized through neuromodulatory control [22]. Because

present experimental measurements of spike-timing–dependent

synaptic plasticity rules have assumed an unsupervised setting, i.e.,

have not controlled for neuromodulatory signals (but see [40]),

existing results do not directly apply to our model. Nevertheless,

recent data have revealed complex interactions between the

statistics of pre- and postsynaptic spiking activity and the

expression of synaptic changes [41–44]. Our model offers a novel

computational rationale for such interactions, predicting that for

fixed supervisory signaling, the temporal window of plasticity

shrinks with growing levels of postsynaptic shunting. One

challenge for the biological implementation of the tempotron

learning rule is the need to compute the time of the maximum of

the postsynaptic voltage. We have previously shown for a current-

based neuron model that this temporally global operation can be

approximated by temporally local computations that are based on

the postsynaptic voltage traces following input spikes [22]. We

have extended this approach to plastic synaptic conductances and

checked that the resulting biologically plausible implementation of

conductance-based tempotron learning can readily subserve time-

warp–invariant classification of spike patterns. Specifically, in this

implementation, the induction of synaptic plasticity is controled by

the correlation of the postsynaptic voltage and a synaptic learning

kernel (see Materials and Methods) whose temporal extend is

controlled by the average conductance throughout a given error

trial. A synaptic peak conductance is changed by a uniform

amount whenever this correlation exceeds a fixed plasticity

induction threshold. When tested on the time-warped latency

patterns with bmax = 2.5 (cf. Figure 3), the correlation-based

tempotron roughly matched the voltage maximum–based version

at a reduced learning load of 1.5 patterns per synapse with an

error fractions of 0.35%.

Time-Warp Invariance Is Task Dependent
In our model, dynamic time-warp–invariant capabilities

become avaliable through a conductance-based learning rule that

tunes the shunting action of synaptic conductances. This learning

rule enables neurons to adjust the degree of synaptic shunting to

the requirements of a given processing task. As a result, our model

can naturally encompass a continuum of functional specializations

ranging from neurons that are sensitive to absolute stimulus

durations by employing low total synaptic conductances, to time-

warp–invariant feature detectors that operate in a high-conduc-

tance regime. In the context of auditory processing, such a

functional segregation into neurons with slower and faster effective

integration times is reminiscent of reports suggesting that rapid

temporal processing in time frames of tens of milliseconds is

localized in left lateralized language areas, whereas processing of

slower temporal features is attributed to right hemispheric areas

[45–47]. Although anatomical and morphological asymmetries

between left and right human auditory cortices are well

documented [48], it remains to be seen whether these differences

form the physiological substrate for a left lateralized implemen-

tation of the proposed time-rescaling mechanism. Consistent with

this picture, the general tradeoff between high temporal resolution

and robustness to temporal jitter that is predicted by our model

(Figure 5) parallels reports of the vulnerability of the lateralizion of

Figure 9. Robustness to spike failures. The error fraction of each
digit detector neuron was measured as a function of the spike failure
probability over the range from 0% to 10% and fitted by linear
regression. For each neuron, the resulting slope (median 0.0069) is
plotted versus the intercept (median 0.0061) with symbols and colors as
in Figure 8B. The median R2 of the linear regression fits was 0.94. The
inset shows the median error fraction of the population as a function of
the spike failure probability in the range of 1% to 50% with the robust
regime braking down at approximately 20%.
doi:10.1371/journal.pbio.1000141.g009
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language processing with respect to background acoustic noise

[49] as well as to abnormal timing of auditory brainstem responses

[50].

Neuronal Circuitry for Time-Warp–Invariant Feature
Detection

The architecture of our speech-processing model encompasses

two auditory processing stages. The first stage transforms acoustic

signals into spatiotemporal patterns of spikes. To engage the

proposed automatic time-rescaling mechanism, the population

rate of spikes elicited in this afferent layer must track variations in

the rate of incoming speech. Such behavior emerges naturally in a

sparse coding scheme in which each neuron responds transiently

to the occurrences of a specific acoustic event within the auditory

input. As a result, variations in the rate of acoustic events are

directly translated into concomitant variations in the population

rate of elicited spikes. In our model, the elementary acoustic events

correspond to onset and offset threshold crossings of signal power

within specific frequency channels. Such frequency-tuned onset

and offset responses featuring a wide range of dynamic thresholds

have been observed in the inferior colliculus (IC) of the auditory

midbrain [51]. This nucleus is the site of convergence of

projections from the majority of lower auditory nuclei and is

often referred to as the interface between the lower brain stem

auditory pathways and the auditory cortex. Correspondingly, we

hypothesize that the layer of time-warp–invariant feature detector

neurons in our model implements neurons located downstream of

the IC, most probably in primary auditory cortex. Current studies

on the functional role of the auditory periphery in speech

perception and its pathologies have been limited by the lack of

biologically plausible neuronal readout architectures; a limitation

overcome by our model, which allows evaluation of specific

components of the auditory pathway in a functional context.

Implications for Speech Processing
Psychoacoustic studies have indicated that the neural mecha-

nism underlying the perceptual normalization of temporal speech

cues is involuntary, i.e., it is cognitively impenetrable [16],

controlled by physical rather than perceived speaking rate [17],

confined to a temporally local context [2,18], not specific to speech

sounds [52], and already operational in prearticulate infants [53].

The proposed conductance-based time-rescaling mechanism is

consistent with these constraints. Moreover, our model posits a

direct functional relation between high synaptic conductances and

the time-warp robustness of human speech perception. This

relation gives rise to a novel mechanistic hypothesis explaining the

impaired capabilities of elderly listeners to process time-com-

pressed speech [54,55]. We hypothesize that the down-regulation

of inhibitory neurotransmitter systems in aging mammalian

auditory pathways [56,57] limits the total synaptic conductance

and therefore prevents the time-rescaling mechanism from

generating short, effective time constants through synaptic

shunting. Furthermore, our model implies that comprehension

deficits in older adults should be linked specifically to the

processing of phonetic segments that contain fast time-compressed

temporal cues. Our hypothesis is consistent with two interrelated

lines of evidence. First, comprehension difficulties of time-

compressed speech in older adults are more likely a consequence

of an age-related decline in central auditory processing than

attributes of a general cognitive slowing [56,58]. Second, recent

reports have indicated that recognition differences between young

and elderly listeners originate mainly from the temporal

compression of consonants, which often feature rapid spectral

transitions, but not from steady-state segments [54,55,58] of

speech. Finally, our hypothesis posits that speaking rate–induced

shifts in perceptual category boundaries [2,16,17] should be age-

dependent, i.e., their magnitude should decrease with increasing

listener age. This prediction is straightforwardly testable within

established psychoacoustic paradigms.

Connections to Other Models of Time-Warp–Invariant
Processing

In a previous neuronal model of time-warp–invariant speech

processing [5,6], sequences of acoustic events are converted into

patterns of transiently matching firing rates in subsets of neurons

within a population, which trigger synchronous firing in a

downstream readout circuit. The identity of neurons whose firing

rates converge to an identical value during an input pattern, and

hence also the pattern of synchrony emerging in the readout layer,

depends only on the relative timing of the events, not on the

absolute duration of the auditory signal. However, for this model

to recognize multiple input patterns, the convergence of firing

rates is only approximate. Therefore, the resulting time-warp

robustness is limited and, as in our model, dependent on the

learning load. Testing this model on our synthetic classification

task (cf. Figure 3) indicated a substantially smaller storage capacity

than is realizable by the conductance-based tempotron (Text S1).

An additional disadvantage of this approach is that it copes only

with global (uniform) temporal warping. Invariant processing of

dynamic time warp as is exhibited by natural speech (cf. Figure 1C

and 1D) is more challenging since it requires robustness to local

temporal distortions of a certain statistical character. Established

algorithms that can cope with dynamically time-warped signals are

typically based on minimizing the deviation between an observed

signal and a stored reference template [59–61]. These algorithms

are computationally expensive and lack biologically plausible

neuronal implementations. By contrast, our conductance-based

time-rescaling mechanism results naturally from the biophysical

properties of input integration at the neuronal membrane and

does not require dedicated computational resources. Importantly,

our model does not rely on a comparison between the incoming

signal and a stored reference template. Rather, after synaptic

conductances have adjusted to the statistics of a given stimulus

ensemble, the mechanism generalizes and automatically stabilizes

neuronal voltage responses against dynamic time warp even when

processing novel stimuli (cf. Figure 3C). The architecture of our

neuronal model also fundamentally departs from the decades-old

layout of Hidden Markov Model–based artificial speech-recogni-

tion systems, which employ probabilistic models of state sequences.

These systems are hard to reconcile with the biological reality of

neuronal system architecture, dynamics, and plasticity. The

similarity in performance between our model and such state-of-

the-art systems on a small vocabulary task highlights the powerful

processing capabilities of spike-based neural representations and

computation.

Generality of Mechanism
Although the present work focuses on the concrete and well-

documented example of time-warp robustness in the context of

neural speech processing, the proposed mechanism of automatic

rescaling of integration time is general and applies also to other

problems of neuronal temporal processing such as birdsong

recognition [3], insect communication [9], and other ethologically

important natural auditory signals. Moreover, robustness of

neuronal processing to temporal distortions of spike patterns is

not only important for the processing of stimulus time dependen-

cies, but also in the context of spike-timing–based neuronal codes

in which the precise temporal structure of spiking activity encodes
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information about nontemporal physical stimulus dimensions [62].

Evidence for such temporal neural codes have been reported in

the visual [63–65], auditory [66], and somatosensory [67], as well

as the olfactory [68] pathways. As a result, we expect mechanisms

of time-warp–invariant processing to also play a role in generating

perceptual constancies along nontemporal stimulus dimensions

such as contrast invariance in vision or concentration invariance in

olfaction [4]. Finally, time warp has also been described in

intrinsically generated brain signals. Specifically, the replay of

hippocampal and cortical spiking activity at variable temporal

warping [69,70] suggests that our model has applicability beyond

sensory processing, possibly also encompassing memory storage

and retrieval.

Materials and Methods

Conductance-Based Neuron Model
Numerical simulations of the conductance-based tempotron

were based on exact integration [71] of the conductance-based

voltage dynamics defined in Equation 1. With the membrane

capacitance set to 1, the resting membrane time constant in this

model is tm = 1/gleak. Implementing an integrate-and-fire neuron

model, an output spike was elicited when V(t) crossed the firing

threshold Vthr. After a spike at tspike, the voltage is smoothly reset to

the resting value by shunting all synaptic inputs that arrive after

tspike (cf. [22]). We used Vthr = 1, Vrest = 0, and reversal potentials

V rev
ex ~5 and V rev

in ~{1 for excitatory and inhibitory conductanc-

es, respectively. Unless stated otherwise, the resting membrane

time constant was set to tm = 100 ms throughout our work [20].

For the synaptic time constant, we used ts = 1 ms for the random

latency task, which minimized the error of the current-based

neuron, and to ts = 5 ms in the speech-recognition tasks.

H-Current
To check the effect of nonsynaptic voltage-dependent conduc-

tances on the automatic time-rescaling mechanism, we imple-

mented an h-like current Ih after [72] as a noninactivating current

with HH-type dynamics of the form

Ih~gmax
h m V{V rev

h

� �
:

Here, gmax
h is the maximal h-conductance, with reversal

potential V rev
h ~{20 mV and m is its voltage-dependent activa-

tion variable with kinetics

dm

dt
~

m? Vð Þ{m

th Vð Þ

where

th Vð Þ~ 1

a Vð Þzb Vð Þ

and

m? Vð Þ~ a Vð Þ
a Vð Þzb Vð Þ :

The voltage dependence of the rate constants a and b were

described by the form

a, b Vð Þ~ aa,bVzba,b

1{exp Vzba,b

�
aa,b

� ��
ka,b

� �

with parameters aa = 239.015 s21, ba = 2259.925 s21, ka =

1.77926 and ab = 365.85 s21, bb = 22853.25 s21, kb = 21.28889.

In Figure S1, we quantified the effect of the h-conductance on

the fidelity of the time-rescaling mechanism by measuring the

time-warp–induced distortions of neuronal voltage traces for

different values of the maximal h-conductance gmax
h . Specifically,

for a given value of gmax
h and a time warp b, we measure the

voltage traces Vgmax
h

t, 1ð Þ and Vgmax
h

t, bð Þ and their standard

deviations across time s1 and sb, respectively. We define the time-

warp distortion index L gmax
h , b

� �
as the mean magnitude of the

time-warp–induced voltage difference across time normalized by

the mean standard deviation, s~ s1zsb

� ��
2,

L gmax
h , b

� �
~

S Vgmax
h

t, 1ð Þ{Vgmax
h

bt, bð Þ
��� ���T

t

s
:

In Figure S1, values of L gmax
h , b

� �
are normalized by L(0,b).

The voltage traces were generated by random latency patterns and

uniform synaptic peak conductances as used in Figure 2. As

increasing values of gmax
h depolarized the neuron’s resting

potential, excitatory and inhibitory synaptic conductances were

balanced separately for each value of gmax
h .

Current-Based Neuron Model
In the current-based tempotron that was implemented as

described in [22], each input spike evoked an exponentially

decaying synaptic current that gave rise to a postsynaptic potential

with a fixed temporal profile. In Figure 8C (upper row), voltage

traces of a current-based analog of a conductance-based

tempotron with learned synaptic conductances gmax
i , reversal

potentials V rev
i , and effective membrane integration time teff (cf.

Figure 8B) were computed by setting the synaptic efficacies vi of

the current-based neuron to vi~gmax
i V rev

i and its membrane time

constant to tm = teff. The resulting current-based voltage traces

were scaled such that for each pair of models, the mean voltage

maxima for unwarped stimuli (b = 1) were equal.

Tempotron Learning
Following [22], changes in the synaptic peak conductance gmax

i

of the ith synapse after an error trial were given by the gradient of

the postsynaptic potential, Dgmax
i !{dV tmaxð Þ

�
dgmax

i , at the

time of its maximal value tmax. To compute the synaptic update for

a given error trial, the exact solution of Equation 1 was

differentiated with respect to gmax
i and evaluated at tmax, which

was determined numerically for each error trial. Whenever a

synaptic peak conductance attempted to cross to a negative value,

its reversal potential was switched.

Voltage Correlation-Based Learning
A voltage correlation-based approximation of tempotron

learning was implemented by extending the approach in [22]

such that the change in the synaptic peak conductance gmax
i of the

ith synapse due to a spike at time ti was governed by the

correlation ni~
Ð?

ti
dtV tð ÞKlearn t{tið Þ of the postsynaptic poten-

tial V(t) with a synaptic learning kernel Klearn(t) = (exp(2t/

tlearn)2exp(2t/ts))/(tlearn2ts). The two time constants of the
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synaptic learning kernel were the synaptic time constant ts and the

learning time constant tlearn~1
�

gleakzGsyn

� �
, which was deter-

mined by the time-averaged synaptic conductance Gsyn of the

current error trial and approximated the effective membrane time

constant during that trial. The voltage maximum operation was

approximated by thresholding ni, yielding

Dgmax
i !

+1 niwk

0 niƒk

�

for changes of excitatory conductances on target and null patterns,

respectively, and changes with the reversed polarity, 61, for

inhibitory conductances. The plasticity induction threshold was set

to k = 0.45.

Learning Rate and Momentum Term
As in [22], we employed a momentum heuristic to accelerate

learning in all learning rules. In this scheme, synaptic updates

Dgmax
i

� �
current

consisted, not only of the correction lDgmax
i , which

was given by the learning rule and the learning rate l, but also

incorporated a fraction m of the previous synaptic change

Dgmax
i

� �
previous

. Hence, Dgmax
i

� �
current

~lDgmax
i zm Dgmax½ �previous.

We used an adaptive learning rate that decreased from its initial

value lini as the number of learning cycles l grew, l = lini/

(1+1024(l21)). A learning cycle corresponded to one iteration

through the batch of templates in the random latency task or the

training set in the speech task.

Random latency task training. To ensure a fair

comparison between the conductance-based and the current-

based tempotrons (cf. Figure 3A), the learning rule parameters lini

and m were optimized for each model. Specifically, for each value

of bmax, optimal values over a 2-dimensional grid were determined

by the minimal error frequency achieved during runs over 105

cycles, with synaptic efficacies starting from Gaussian distributions

with zero mean and standard deviations of 0.001. The

optimization was performed over five realizations.

Global Time Warp
Global time warp was implemented by multiplying all firing

times of a spike template by a constant scaling factor b. In

Figure 3A, random global time warp between compression by

1/bmax and dilation by bmax was generated by setting

b = exp(qln(bmax)) with q drawn from a uniform distribution

between 21 and 1 for each presentation.

Dynamic Time Warp
Dynamic time warp was implemented by scaling successive

interspike intervals tj2tj21 of a given template with a time-

dependent warping factor ~bb tð Þ, such that warped spike

times t’j~t’j{1z~bb tj

� �
tj{tj{1

� �
with t’1:t1 and

~bb tð Þ~exp ~qq tð Þ ln bmaxð Þð Þ. The time-dependent factor

~qq tð Þ~erfc j tð Þð Þ{1 resulted from an equilibrated Ornstein-

Uhlenbeck process j(t) with a relaxation time of t = 200 ms that

was rescaled by the complementary error function erfc to

transform the normal distribution of j(t) into a uniform

distribution over [21 1] at each t.

Global Inhibition Model
To ensure that the symmetry of excitation and inhibition in our

model architecture was not crucial for the time-warp–invariant

processing of spike patterns, we implemented a control architec-

ture in which all afferents were confined to be excitatory, except

one additional inhibitory synapse, which mimicked the effect of a

global inhibitory network. In the time-warped random latency

task, spike patterns were fed into the excitatory population as

before; however, in addition, the inhibitory synapse received a

copy of each incoming spike. All synaptic peak conductances were

plastic and controlled by the conductance-based tempotron rule.

In this model, synaptic sign changes were prohibited.

Gaussian Spike Time Jitter
Spike time jitter [22] was implemented by adding independent

Gaussian noise with zero mean and a standard deviation of 5 ms

to each spike of a template before each presentation.

Acoustic Front-End
Sound signals were normalized to unit peak amplitude and

converted into spectrograms over NFTT = 129 linearly spaced

frequencies fj = fmin+j(fmax+fmin)/(NFTT+1) (j = 1… NFTT) between

fmin = 130 Hz and fmax = 5,400 Hz by a sliding fast Fourier

transform with a window size of 256 samples and a temporal

step size of 1 ms. The resulting spectrograms were filtered into

Nf = 32 logarithmically spaced Mel frequency channels by

overlapping triangular frequency kernels. Specifically, Nf+2

linearly spaced frequencies given by hj = hmin+j(hmax2hmin)/(Nf+1)

with j = 0…Nf+1 and hmax,min = 2,595log(1+fmax,min/700)

were transformed to a Mel frequency scale

f Mel
j ~700 exp hj

�
2595

� �
{1

� �
between fmin and fmax. Based on

these, signals in Nf channels resulted from triangular frequency

filters over intervals f Mel
j{1 , f Mel

jz1

h i
with center peaks at

f Mel
j j~1 . . . Nfð Þ. After normalization of the resulting Mel

spectrogram SMel to unit peak amplitude, the logarithm was taken

through log(SMel = e)2log(e) with e= 1025 and the signal in each

frequency channel smoothed in time by a Gaussian kernel with a

time constant of 10 ms. Spikes were generated by thresholding of

the resulting signals by a total of 31 onset and offset threshold-

crossing detector units. Whereas each onset afferent emitted a

spike whenever the signal crossed its threshold in the upward

direction, offset afferents fired when the signal dropped below the

threshold from above. For each frequency channel and each

utterance, threshold levels for onset and offset afferents were set

relative to the maximum signal over time to q1~0:01 and

qj~j=15 j~1 . . . 15ð Þ. For q15~1, onset and offset afferents were

reduced to a single afferent whose spikes encoded the time of the

maximum signal for a given frequency channel.

Speech Databases
We used the digit subset of the TI46 Word speech database

[24]. This clear speech dataset comprises 26 isolated utterances of

each English digit from zero to nine spoken by 16 adult speakers

(eight male and eight female). The data is partitioned into a fixed

training set, comprising 10 utterances per digit and speaker, and a

fixed test set holding the remaining 16 utterances per digit and

speaker. We also tested our neuronal word-recognition model on

the adult speaker, isolated-digit subset of the TIDIGITS database

[27]. This subset comprises two utterances per digit and speaker,

i.e., a total of 20 utterances from 225 adult speakers (111 male and

114 female), that are dialectically balanced across 21 dialectical

regions (tiling the continental United States). Because the TI46

database only provides utterances of the word ‘‘zero’’ for the digit

0, we excluded the utterances of ‘‘oh’’ from our TIDIGITS

sample.

Digit Classification
Based on the spiking activity of all binary digit detector neurons,

a full digit classifier was implemented by ranking the digit
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detectors according to their individual task performances. As a

result, a given stimulus was classified as the target digit of the most

reliable of all responding digit detector neurons. If all neurons

remained silent, a stimulus was classified as the target digit of the

least reliable neuron.

Spike-Triggered Target Features
To preserve the timing relations between the learned spectro-

temporal features and the target words, we refrained from

correcting the spike-triggered stimuli for stimulus autocorrelations

[73].

Speech Task Training
Test errors in the speech tasks were substantially reduced by

training with a Gaussian spike jitter with a standard deviation of s
added to the input spikes as well a symmetric threshold margin v

that required the maximum postsynaptic voltage on target stimuli

to exceed Vthr+v and to remain below Vthr2v during null stimuli.

Values of lini, m, s, and v were optimized on a 4-dimensional grid.

Because for each grid point, only short runs over maximally 200

cycles were performed, we also varied the mean values of initial

Gaussian distributions of the excitatory and inhibitory synaptic

peak conductances, keeping their standard deviations fixed at

0.001. The reported performances are based on the solutions that

had the smallest errors fractions over the test set. If not unique, we

selected the solution with the highest robustness to time warp (cf.

Figure 8B). Note that this naive optimization of the training

parameters did not maintain a separate holdout test set for cross-

validation and might therefore overestimate the true generaliza-

tion performance. We adopted this optimization scheme from

[25,26] to ensure comparability of the resulting performance

measures.

Comparison to the HTK
HTK generalization performance was tested with the HTK

package version 3.4.1 [74] with front-end and HMM model

parameters following [26]. Specifically, speech data from the TI46

and TIDIGITS databases were converted to 13 Mel-cepstral

coefficients (including the 0th order coefficient) along with their

first and second derivatives at a frame rate of 5 ms. Mel-

coefficients were computed over 30 channels in 25-ms windows

with zero mean normalization enabled (TARGET-

KIND = MFCC_D_A_Z_0). In addition, the following parame-

ters were set: USEHAMMING = T; PREEMPCOEF = 0.97; and

CEPLIFTER = 22. Ten HMM models, one for each digit plus one

HMM model for silence, were used. Each model consisted of five

states (including the the two terminal states) with eight Gaussian

mixtures per state and left-to-right (no skip) transition topology.

Supporting Information

Figure S1 Effect of h-conductance on time rescaling.
Time-warp distortion index computed for random latency patterns

(see Materials and Methods) versus the maximal h-conductance

for different values of the mean synaptic conductance Gsyn

�
gleak:

7.2 (triangles), 10.8 (squares), and 14.4 (circles). Curves were

averaged over 2,000 spike-pattern realizations.

Found at: doi:10.1371/journal.pbio.1000141.s001 (0.70 MB TIF)

Table S1 Generalization from TI46 to TIDIGITS. For

each dialect group, the table lists the percentages of speakers for

which our model committed a given number of word-recognition

errors.

Found at: doi:10.1371/journal.pbio.1000141.s002 (0.01 MB PDF)

Text S1 Comparison to the Hopfield-Brody model of
time-warp–invariant neuronal processing.

Found at: doi:10.1371/journal.pbio.1000141.s003 (0.03 MB PDF)
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