FOUNDATIONS OF COMPUTING AND DECISION SCIENCES
Vol. 38 (2013) No. 2

DOI: 10.2478/fcds-2013-0005 ISSN 0867-6356
e-ISSN 2300-3405

E-ETL: Framework for Managing Evolving ETL Workflows

Artur WOJCIECHOWSKI *

Abstract. Data warehouses integrate external data sources (EDSs), which very
often change their data structures (schemas). In many cases, such changes cause
an erroneous execution of an already deployed ETL workflow. Structural changes of
EDSs are frequent, therefore an automatic reparation of an ETL workflow, after such
changes, is of a high importance. This paper presents a framework, called F-ETL, for
handling the evolution of an ETL layer. Detection of changes in EDSs causes a repa-
ration of the fragment of ETL workflow which interacts with the changed EDSs. The
proposed framework was developed as a module external to a standard commercial
or open-source ETL engine, accessing the engine by means of API. The innovation
of this framework consists in: (1) the algorithms for semi-automatic reparation of an
ETL workflow and (2) its ability to interact with various ETL engines that provide
API.

Keywords: data warehouse, data integration, ETL, data source evolution, ETL
evolution, E-ETL

1 Introduction

A data warehouse (DW) is usually created to integrate multiple heterogeneous, dis-
tributed, and autonomous external data sources (EDSs). Such integrated data can
be used for analysis, called On-Line Analytical Processing (OLAP). One of the DW
elements is an ETL workflow which extracts data from EDSs, transforms data into
a common data model, cleans data (removes missing, inconsistent, and redundant
values), integrates data, and loads them into a DW. An inherent feature of EDSs is
their evolution in time with respect not only to their contents (data) but also to their
structures (schemas). Since changes of EDSs structure may cause erroneous execu-
tion, after every such a change, an ETL workflow must be redesigned and redeployed.

*Poznan University of Technology, Institute of Computing Science, Poznan, Poland,
artur.wojciechowski@cs.put.poznan.pl

132 A. Wojciechowski

Frequent manual modifications of an ETL workflow are complex, prone-to-fail, and
time-consuming. Hence, it is of a high importance to develop methods for handling
structural changes of EDSs and managing the evolution of the ETL workflow. So far
research community has not given much attention to the evolution of the ETL layer
and few solutions to this problem have been proposed, e.g., [1, 2].

Paper Contribution. This paper contributes a framework, called E-ETL, for:
(1) detecting structural changes of EDSs and (2) handling the changes in the ETL
layer. This paper extends our previous work [3] with detailed descriptions of the
changes detection mechanism and evolution rules. Changes are detected either by
means of Event-Condition-Action (triggers) mechanism or by means of comparing two
consecutive EDS metadata snapshots. Detection of the EDS schema change causes a
reparation of the ETL activities that interact with the changed EDS. The reparation
of the ETL activities is guided by several customizable reparation algorithms. The
proposed framework was developed as a module external to a standard commercial
or open-source ETL engine. Communication between E-ETL and the ETL engine
is realized by means of the ETL engine API. The framework is customizable and it
allows to:

e work with different ETL engines that provide API communication,

e define the set of detected structural changes,

e modify and extend the set of algorithms for managing the changes,

e define rules for the evolution of ETL workflow,

e present to the user the impact analyses of the ETL workflow,

e store versions of the ETL workflow and history of EDS changes.

e framework has a graphical user interface for visualizing the ETL workflow.

Paper Organization. The paper is organized as follows. Section 2 presents the
concept of the E-ETL framework. Section 3 the E-ETL internal metamodel. Section
4 introduces reparation algorithms. Section 5 overviews detected schema changes.
Section 6 presents the evolution rules of ETL. Section 7 outlines research related to
the topic of this paper. Section 8 summarizes the paper and outlines issues for future
development.

2 Concept of the E-ETL Framework

The E-ETL project focuses on developing a method and a framework to support the
semi-automatic evolution of ETL workflow. In particular, the research and develop-
ment focus on: (1) the development of a prototype architecture, called E-ETL that
will be able to co-operate with a leading commercial and open source ETL develop-
ment environments, (2) a graphical interface for visualizing ETL workflows, (3) tools

E-ETL: Framework For Managing Evolving ETL Workflows 133

for detecting structural changes and propagating them into an ETL layer, (4) a lan-
guage for defining rules for the evolution of ETL workflows, (5) a method for checking
the validity of an evolved ETL workflow, (6) a metamodel for storing versions of ETL
workflows.

E-ETL is designed to co-operate with ETL development environments (currently
the Microsoft SQL Server Integration Services is supported). To this end, E-ETL
is an external system to an ETL development environment. FE-ETL connects to a
development environment by means of API.

E-ETL analyses the design of an ETL workflow which is defined in an ETL devel-
opment environment, and on the basis of this project an internal model of the ETL
workflow is created. Next, an ETL designer defines a set of rules that specify how
the ETL workflow should evolve in response to the detected changes. Then, when
E-ETL detects structural changes in an EDS, it proposes semi-automatically (in some
cases automatically) the modifications of the ETL workflow. After a user’s acceptance
of the changes, E-FETL applies them to the ETL workflow in the ETL development
environment.

3 Internal metamodel

Different ETL development environments may use different data models. Therefore,
the E-ETL framework uses its own internal data model that permits to unify work
with external ETL systems. In this model, an ETL workflow is represented as a
directed graph. Each activity in the ETL workflow is presented as SuperNode. Su-
perNode consists of Nodes that represents input and output parameters of an ETL
activity. An input parameter can be a table attribute that the activity reads, a node
in XML structure, or a column in a spreadsheet. Dependencies between nodes are
determined by edges between nodes. So, if there is a directed edge from node A to
node B, then this means that node B depends on node A. Such model permits to do
impact analyses. The impact analyses mark the parts of an ETL workflow that has to
evolve as the result of structural changes in EDSs. These analyses are done by select-
ing all nodes succeeding the nodes that have been changed (nodes that describe EDS
attributes that have been changed). To make the internal metamodel more readable
and organized SuperNodes can be grouped into GroupNodes. GroupNodes also can
be grouped into GroupNodes. This mechanism of grouping allows user to work on
different levels of details.

Figure 1 presents an example of an internal metamodel. It shows a fragment of
an ETL workflow that reads the People table and splits read data basing on the Age
attribute. In the next step People tuples are joined with data read from Addresses
table and addresses.csv file. SuperNodes that represents ETL activities are depicted in
the figure as labeled boxes (e.g., SQL query (1), Conditional split). Attributes inside
boxes (e.g., Id, Street, Name, Status) are Nodes and they represent ETL activity
parameters (input or output).

Exemplary SuperNode — SQL query (1) defines an activity that is described as an
SQL query that selects tuples with Country equal to 'Poland’. Id, Street and City

134 A. Wojciechowski

External data sources ETL process |
SELECT Id, Street, City FROM Addresses
Database WHERE Country="Poland' |
Addresses SQL query (1) |
d > 1d 1d |
Street > Street Street Join
City > City City |
Country > Country d
Street Street >
City City —)—,
People SQL query (2) Conditional split Name Name —)—|
Id Id N Addressld
Forename Forename Name —»—— Name Ag(rjne Id / I
Surname Surname / Addressld —3»—— Addressld N ress| J Id=Add D
0in on |a=, ress
Addressld Addressld/ Age F»— Age A(achrissl g |
Age Age
Conditional split Join I
CsV file SELECT Forename + "' + Surname as Name basing on "Status" value q |
Add Id, Age FROM Peopls
ressd Ade cople Street Street —»—
addresses.csv File read City City e
Id T Name Name —»—
Street H— W —>—ud Addressld |
) [l Street —>— Street
City I S) |
Country Y City —— Ciy
Country |

Figure 1: Internal metamodel example

output parameters depend respectively on Id, Street, and City input parameters.
The SQL query that defines the exemplary activity contains also WHERE clause
(Country="Poland’). Therefore modification or removal of Country input parameter
would influence the result of the query. Therefore all output parameters also depend
on Country input parameter. The dependencies are shown as directed edges between
attributes.

4 Reparation algorithms

The detection of changes in an EDS fires the execution of algorithms that adapt an
ETL workflow to the detected changes. These algorithms have been categorized as
follows: Defined rules, Replacer, and Alternative scenarios. An ETL designer can
specify algorithms that are supposed to be used to modify the ETL workflow, their
priorities, and their parameters.

The Defined rules algorithm applies evolution rules, defined by a user, to particular
elements of an ETL workflow. For each element (Node, SuperNode, or GroupNode) of
an ETL workflow, a user can define whether this element is supposed to propagate the
changes, to block them, to ask a user, or to fire action specific to a detected change.

The Replacer algorithm is based on the solution presented in [2]. For each element
of an ETL workflow, a user can define whether this element can be replaced by other
element. This replacement can be done when the element has been removed due to
changes in EDS.

The Alternative scenarios algorithm repairs an ETL workflow basing on the fact
that similar EDSs are usually processed in the same way and also the same changes

E-ETL: Framework For Managing Evolving ETL Workflows 135

on similar EDSs should be handled in the same way. Therefore, when the structure of
one of the EDSs has changed, then the Alternative scenarios algorithm tries to find
another EDS with a similar structure. After finding a similar EDS, operations related
to both EDSs (the changed EDS and the similar one) are analyzed. This analysis
provides information about differences between an ETL workflow fragment affected by
the detected change and an ETL workflow fragment related to the similar EDS. Basing
on this information, the Alternative scenarios algorithm proposes modifications of
the ETL workflow fragment affected by the detected change. Since the history of the
ETL workflow evolution and history of the EDSs changes are stored in the system,
the Alternative scenarios algorithm can search not only in the current version of an
ETL workflow, but also in their previously used versions. Such functionality may be
useful when some changes will be undone in EDSs or changes will be done gradually
in sequential EDSs.

5 Monitored Structural Changes

As mentioned before, E-ETL detects changes in EDSs either by comparing two suc-
cessive snapshots of an EDS’s metadata, or by the mechanism of triggers (if such
triggers are supported and allowed to be installed in an EDS). Changes that can be
detected are divided into two groups: Collections changes and Collection element
changes. A Collection defines a set of tuples. Collection elements define elements of
the tuple. Database table, spreadsheet, branch in XML are examples of Collections
and respectively database table column, column in spreadsheet, node in XML are
examples of Collection elements. Five changes can be distinguished for Collections:
(1) Add, e.g. a new table addition in a database, (2) Delete, e.g. a deletion of a
spreadsheet in Excel file, (3) Rename, e.g. a change of a file name, (4) Split, e.g. a
partition of a table, (5) Merge, e.g. a merger of partitioned tables. Also five changes
can be distinguished for Collection elements: (1) Add, e.g. a new column addition to
a database table, (2) Delete, e.g. a deletion of a column in a spreadsheet, (3) Rename,
e.g. a change of a node name in XML, (4) Type, e.g. a change of a column type form
numeric to string, (5) Length, e.g. a change of a column type length from char(4) to
char(8).

Regardless of the method used to detect changes in EDS’s, E-ETL take snap-
shots of the EDS’s structure. These snapshots are used to build representation of
data sources in the E-ETL internal metamodel. When an EDS is a database, the
snapshot can be taken form database metadata (system tables/views that describes
user objects). Since every database management system (DBMS) vendor can have its
own structure of metadata there are special methods that take snapshots for different
DBMSs. The case when an EDS is an Excel or CSV file is more complicated. In such
types of files there is no metadata that define the data structure so a snapshot must
be build directly from the data. Usually, in spreadsheets and CSV files the first row
is a header of the table and it contains names of the columns in that table. By taking
and analyzing a sample of data in the column we can discover the type of the column.
A snapshot of an XML file is build basing on XSD or DTD description that defines

136 A. Wojciechowski
that file.
5.1 Comparing snapshots of an EDS’s metadata

The process of comparing two successive snapshots of an EDS’s metadata can be
divided into the six following steps.

1.

The first step is to check which collections from the old snapshot are not present
in the new snapshot. Found collections are marked as deleted collections.

The second step is to check which collections from the new snapshot are not
present in the old snapshot. Found collections are marked as added collections.
Those to steps are based only on names of the collections.

The third step is to discover changes of collections names. Every deleted col-
lection is compared with every added collection. Since the change of collec-
tion name may be connected with changes of its elements, the structure of
the renamed collection may be not equal to the structure of the old collection.
Therefore, the comparison of two collections is a calculation of a similarity that
is based on an edit distance measure. The less changes must be done in one
collection to make its structure the same as the structure of the second collec-
tion, the more similar these collections are. The following editing changes on
collection elements are allowed: adding element, removing element, renaming
element, changing the type of the element and changing the length of the type.
If the calculated similarity is above a threshold then collections are marked as
renamed (they are no longer marked as added or deleted collections). In an
analogous way collection splits and merges are detected.

In the fourth step, among the deleted collections, sets of collections are detected
that can be joined basing on a common key collection element. The detected
sets of collections are marked as merge candidates. Similar detection is carried
out on added collections and detected sets of collections are marked as split
candidates.

Next, each of collection marked as deleted is compared with each set of collec-
tions marked as split candidates. The similarity is measured between a deleted
collection and a collection that would be a result of joining collections form a
set marked as the split candidate. If the calculated similarity is above a thresh-
old, then the collections are marked as split. Analogously, each of the added
collection is compared with each set of collection marked as merge candidates.
If the calculated similarity is above a threshold, then the collections are marked
as merged.

The next step of comparing two snapshots of an EDS’s metadata is to check
for changes in all collection. After detecting added, deleted, renamed, split
and merged collections, for each collection in a new snapshot it is known its
equivalent in the old snapshot. By comparing a collection from a new snapshot

E-ETL: Framework For Managing Evolving ETL Workflows 137

and its equivalent it is possible to identify changes in collection elements. The
algorithm for detecting changes in collection elements is similar to detecting
changes in a collection. First, deleted elements are marked in a collection from
the old snapshot. Second, added elements are marked in a collection from the
new snapshot. Next, changes of elements names are detected by comparing
elements marked as deleted and elements marked as added. The comparison
of the elements is based on elements’ data types and data characteristics taken
from a data sample. These characteristics differ depending on the type of data.
For numeric types it is an average value and a deviation. For string types it
is an average length of the string or an average number of words in the string.
If collection elements from old and new snapshots have the same type and
differences in data characteristics are below a threshold, then the elements are
marked as renamed. Finally, all the elements that were not marked as deleted,
added, or renamed are checked for a type change or a type length change.

5.2 Detecting changes by the mechanism of triggers

Detecting changes by the mechanism of triggers is based on the solution presented
in [4]. This form of changes detection can be used with EDSs that have a manage-
ment system which controls structural changes of the EDS and support the Event-
Condition-Action (triggers) mechanism. An example of such EDS is a fully-functional
database. The process of detecting changes by the mechanism of triggers requires to
create the Changes table. In this table a history of changes will be stored. The event
is a modification of the system table that stores information about the database
structure (information about tables, columns, views). If that modification indicates
modification of user structures then the action is fired. The action is an entry with
information about the detected change. This informational entry is stored in the
Changes table. When E-ETL runs, it reads data form the Changes table.

6 Evolution rules

All of the mentioned changes are handled by our framework at the level of SuperNode
(an ETL activity). We adopt a similar solution to the one presented in [1]. On each
GroupNode, SuperNode, or Node for every type of change a user can define one of five
evolution rules: Inherit, Propagate, Block, Ask or Action. User can also define default
behavior for an element by setting appropriate rule for Any change.

The Inherit rule means that the rule should be inherited from the Any change. If
the Inherit rule is set on the Any change this means that the rule should be inherited
from an enclosing element (for Node it is SuperNode, for SuperNode it is GroupNode,
and for GroupNode it is enclosing GroupNode). The Propagate rule instructs that
the detected change should be propagated through the ETL activity (SuperNode).
Both, input and output attributes of the activity should be modified accordingly to
the change and an information about the change should be passed to next activities

138 A. Wojciechowski

(activities that depend on this activity). The Block rule ignores the change and does
not modify SuperNode. The Ask rule defines that the system should ask a user to
decide what to do at the moment of the change occurrence. The Action rule also
instructs that the ETL activity (SuperNode) should be modified accordingly to the
change. Contrary to the Propagate rule, only input attributes of the activity should
be modified. The evolution of the ETL workflow should stop on this activity and
information about the change should not be passed to the next activities.

Table 1 presents all types of EDS structural changes and rules that can be set
for them. Inherit, Block, and Ask rules work for every type of change in the same
way. Contrary to this, the Propagate and Action rules are different for every type of
change.

Table 1: Monitored structural changes and possible rules to define

| Change type | Inherit [Propagate | Block | Ask [Action |
Any change Ve Ve v Ve v
o Add v Join v v Ignore
2 Delete v Delete Ve v | Replace
2 Rename v Rename v v Map
g Split v Delete v v Merge
Merge v Add v v Ignore
o Add v Add v v Ignore
E % Delete v Delete v v | Replace
ks g | Rename v Rename v v Map
g G Type v Change type v v | Convert
Length v Change length v v Cast

As mentioned before the Propagate rules instruct that the element should be mod-
ified accordingly to the change and pass the change to next elements. The intention
of these rules is to adjust the SuperNode to the change and to propagate the evolu-
tion of the ETL workflow to next SuperNodes. The Join rule that can be set for the
Collection Add change instructs that the attributes from the new collection should be
added to existing attributes. This addition is possible if among the existing attributes
there is a foreign key that point to the key attribute in the new collection. The Delete
rule can be set for Collection Delete, Collection Split, and Collection Element Delete
changes. If this rule is set for the Collection Delete change then all attributes con-
tained in the deleted collection will be removed from SuperNode. Also, all attributes
that depend on deleted attributes will be removed from SuperNode. In case of a split
operation on a collection we get: (1) the primary collection (the collection with the
name equal to the name of the not split collection or the collection with the largest
number of attributes) and (2) the secondary collection or collections. If the Delete
rule is set for the Collection Split change then attributes that are present in the pri-
mary collection will be unchanged and other attributes will be removed, similarly as
in the case of the Collection Delete change. If the Delete rule is set for the Collection

E-ETL: Framework For Managing Evolving ETL Workflows 139

element Delete change then the deleted attribute and attributes that depend on it
will be removed from SuperNode. The Rename rule can be set for the Collection
Rename and Collection element Rename changes. In both cases if this rule is set
then the name of the element (SuperNode and Node accordingly) will be changed.
All elements that depend on the renamed elements will be renamed as well. The Add
rule can be set for the Collection Merge and Collection element Add changes. If the
Add rule is set for the Collection element Add change then the new attribute will be
added to input elements of SuperNode. Depending on the activity that is represented
by the modified SuperNode also new attributes can be added to output elements of
that SuperNode. If the Add rule is set for the Collection Merge change then every
new attribute (attributes from merged collections) will be added similarly as in the
case of the Collection element Add change. The Change type and Change length rules
can be set accordingly for the Collection element Type and Collection element Length
changes. Both rules instruct that a type or a length of the type of the attribute should
be changed, respectively.

On the contrary to the Propagate rules, the intention of the Action rules is to
try to compensate the change and stop the evolution of the ETL workflow. The
Ignore rule can be set for the Collection Add, Collection element Add, and Collection
Merge changes. If this rule is set, then all new elements will be ignored and the ETL
workflow will not change. The Replace rule can be set for the Collection Delete and
Collection element Delete changes. The concept of this rule is based on the solution
presented in [2]. If this rule is set then in case of some element absence E-ETL will
try to replace it with a different element (with the same structure). Additionally,
for this rule a user can define parameters of replacing element. A user can define
if the set of data contained in the replacing element should be equal to the set of
data contained in the replaced element, should be the subset, the superset, or can be
any set of data with the same structure. The Map rule can be set for the Collection
Rename and Collection element Rename changes. If this rule is set, then SuperNode
will be modified in such way that input elements will change to new names but output
elements remain unchanged. An appropriate mapping will be done inside SuperNode.
The Merge rule that can be set for the Collection Split change instructs that E-ETL
should try to merge back the split collection. The Conwvert and the Cast rules can
be set accordingly for the Collection element Type and Collection element Length
change. The rules instruct that a type or a length of the type of the attribute should
be converted or casted, respectively.

Every ETL activity represented by SuperNode can work in a different way. For
example, it can be a simple SQL query, or it can just count duplicated elements. For a
simple SQL query, a change like adding attribute may modify both input and output
Nodes. However, for an activity that counts elements, a similar change may modify
only the input Nodes. The output remains just as one numeric value. Activities based
on SQL queries are similar and can be handled by rewriting the query. Contrary to
this, activities that are based on ETL tool built-in functionality (i.e. fuzzy lookup)
are more complex and each of them has its own parameters set that can be modified.
Therefore, for every type of activity there must be a method for handling all types
of changes. Since every ETL development environment can have a different set of

140 A. Wojciechowski

available ETL activities and they can work in a different way, the handling methods
are specific for every ETL development environment.

7 Related Work

The research and technological developments in the area of handling structural changes
of EDSs in the DW architecture have mainly focused on managing changes in a DW.
In this field, the five following approaches can be distinguished: (1) materialized view
adaptation, (2) schema and data evolution, (3) temporal schema and data extensions,
(4) partial versioning of schema and data, and (5) the Multiversion Data Warchouse
approach. Since they are not directly related to the topic of this paper, they will not
be described here. An overview of research problems and approaches can be found in
[5, 6].

Detecting structural changes in EDSs and propagating them into the ETL layer
have not received much attention from the research community. One of the first
solution of this problem was Evolvable View Environment (EVE) presented in [2].
EVE is the environment that allows the evolution of an ETL workflow implemented
by means of views. For every view it is possible to specify which elements of the views
may change. It is possible to determine whether a particular attribute, both in the
select and where clauses, can be omitted, or replaced by another attribute. Another
possibility is that for every table, which is referred by a given view, a user can define
whether this table can be omitted or replaced by another table.

The E-ETL versus EVE. E-ETL also employ a similar solution for handling
missing elements (the Replacer algorithm). However, the E-ETL extends to this
solution. E-ETL works with different ETL engines, whereas EVE works with ETL
workflows developed as sequences of SQL queries. This difference implies that in
E-ETL method for replacing missing elements can be applied not only for views,
tables and their columns but also for ETL activities and their attributes.

Recent developments in the field of evolving ETL workflows include a framework
called Hecataeus [1, 7]. In Hecataeus, all ETL activities and EDSs are modeled as
a graph whose nodes are relations, attributes, queries, conditions, views, functions,
and ETL steps. Nodes are connected with edges that represent relationships be-
tween different nodes. The graph is annotated with rules that define the behavior of
an ETL workflow in response to a certain EDS change event. In a response to an
event, Hecataeus can either propagate the event, i.e. modify the graph according to
a predefined policy, or prompt an administrator, or block the event propagation.

E-ETL versus Hecataeus. The E-ETL framework, presented in this paper, is
related to Hecataeus. However, E-ETL differs from Hecataeus with respect to:

e F-ETL has extended set of evolution rules;
e E-ETL has introduced new algorithms for repairing ETL workflow;

o F-ETL detects structural changes in EDSs either by means of schema triggers
or by comparing two consecutive snapshots of EDS metadata (no information

E-ETL: Framework For Managing Evolving ETL Workflows 141

was provided how Hecataeus detects structural changes);

e F-ETL can be connected to any ETL engine and development environment that
offers API, whereas Hecataeus needs a specific ETL engine that models ETL
tasks by means of graphs;

e E-ETL support ETL workflows built of several complex operations (i.e. the
operation of removing duplicates that may be available only in the external ETL
tool), whereas Hecataeus work with ETL workflows developed as sequences of
SQL queries;

e E-ETL can work with different types of EDS (i.e. data base, XML files, spread-
sheet, record files), whereas Hecataeus supports only data bases as EDSs.

In [4] authors proposed a prototype system that can automatically detect changes
in EDSs and propagate them into a DW. The prototype allows to define changes that
are to be detected and associates with the changes actions executed in a DW. The main
limitation of the prototype is that it does not allow ETL workflows to evolve. Instead
of that it focuses on propagating EDSs’ changes into a DW. Moreover, the presented
solution is restricted to only relational databases as EDSs. The next drawback of this
prototype is a detection of changes which depends on triggers mechanism that can be
not allowed to be installed in an EDS. Although, the E-ETL project is based on that
developments, all mentioned shortcomings are not present in the E-ETL framework.
Previous works on E-ETL were presented in [8].

8 Summary

This paper presents the E-ETL framework for detecting structural changes in EDSs
and repairing an ETL workflow accordingly do detected changes. The framework
repairs automatically an ETL workflow using evolution rules defined by a user. The
E-ETL framework is also able to present to a user possible consequences of future
changes (impact analyses). Currently we are implementing the presented framework.
We are also preparing tests in an environment including structural changes that ap-
peared in the real production DW systems, outlined in Section 5. Furthermore, we
focus on developing a language for defining structural changes that are to be detected
and propagated, and for repairing algorithms. E-ETL API is currently under devel-
opment for communicating with Microsoft ETL engine, i.e., SQL Server Integration
Services.

The approaches outlined in Section 7 handle structured changes in EDSs. However,
as stressed in [9, 10] even ordinary content (data) changes of an EDS may cause
structural changes at a DW or changes to the structure of dimension data in a DW.
Neither Hecataeus nor EVE nor [4] nor E-ETL supports handling appropriately such
content changes. In future, we will work on handling such kinds of content changes
at the ETL layer and on correctly propagating them into a DW.

142 A. Wojciechowski

References

[1] G. Papastefanatos, P. Vassiliadis, A. Simitsis, T. Sellis, and Y. Vassiliou, “Rule-
based Management of Schema Changes at ETL sources,” in Proc. of Conf. Ad-
vances in Databases and Information Systems Workshops (ADBIS), pp. 5562,
Springer, LNCS 5968, 2010.

[2] E. A. Rundensteiner, A. Koeller, X. Zhang, A. J. Lee, A. Nica, A. Van Wyk, and
Y. Lee, “Evolvable View Environment (EVE): Non-Equivalent View Maintenance
under Schema Changes,” in Proc. of ACM Int. Conf. on Management of Data
(SIGMOD), pp. 553-555, ACM Press, 1999.

[3] A. Wojciechowski, “E-ETL: Framework For Managing Evolving ETL Processes,”
in Proc. of Conf. Advances in Databases and Information Systems Workshops
(ADBIS), vol. 185 of Advances in Intelligent Systems and Computing, pp. 441
449, Springer, 2013.

[4] R. Wrembel and B. Bebel, “The Framework for Detecting and Propagating
Changes from Data Sources Structure into a Data Warehouse,” Foundations
of Computing & Decision Sciences, vol. 30, no. 4, pp. 361-372, 2005.

[5] A. Wojciechowski and R. Wrembel, “Research Problems of the ETL Technol-
ogy.,” Foundations of Computing and Decision Sciences, vol. 35, no. 5, pp. 283—
306, 2010.

[6] R. Wrembel, “On handling the evolution of external data sources in a data ware-
house architecture,” in Data Mining and Database Technologies: Innovative Ap-
proaches (D. Taniar and L. Chen, eds.), IGI Group, 2011.

[7] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou, “Policy-
Regulated Management of ETL Evolution.,” J. Data Semantics, pp. 147177,
20009.

[8] A. Wojciechowski, “E-ETL: Framework For Managing Evolving ETL Processes.,”
in Proc. of Ph.D. Students in Information and Knowledge Management Work-
shop (PIKM), pp. 59-66, ACM Press, 2011.

[9] J. Eder, C. Koncilia, and T. Morzy, “The COMET Metamodel for Temporal
Data Warehouses,” in Proc. of Int. Conf. on Advanced Information Systems
Engineering (CAiSE), pp. 83-99, Springer-Verlag, 2002.

[10] E. A. Rundensteiner, A. Koeller, and X. Zhang, “Maintaining data warehouses
over changing information sources,” Communications of the ACM, vol. 43, no. 6,
pp- 57-62, 2000.

Presented at the 16th East-European Conference on Advances in Databases and In-
formation Systems, September 17-20, 2012, Poznan, Poland

