
Research Article
QoS Management for Embedded Databases in Multicore-Based
Embedded Systems

Woochul Kang1 and Jaeyong Chung2

1Embedded Systems Engineering Department, Incheon National University, Incheon 406-772, Republic of Korea
2Electronic Engineering Department, Incheon National University, Incheon 406-772, Republic of Korea

Correspondence should be addressed to Jaeyong Chung; jychung@inu.ac.kr

Received 11 June 2015; Accepted 27 September 2015

Academic Editor: Francesco Palmieri

Copyright © 2015 W. Kang and J. Chung. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

With ubiquitous deployment of sensors and network connectivity, amounts of real-time data for embedded systems are increasing
rapidly and database capability is required for many embedded systems for systematic management of real-time data. In such
embedded systems, supporting the timeliness of tasks accessing databases is an important problem. However, recent multicore-
based embedded architectures pose a significant challenge for such data-intensive real-time tasks since the response time of
accessing data can be significantly affected by potential intercore interferences. In this paper, we propose a novel feedback control
scheme that supports the timeliness of data-intensive tasks against unpredictable intercore interferences. In particular, we use
multiple inputs/multiple outputs (MIMO) control method that exploits multiple control knobs, for example, CPU frequency and
the Quality-of-Data (QoD) to handle highly unpredictable workloads in multicore systems. Experimental results, using actual
implementation, show that the proposed approach achieves the target Quality-of-Service (QoS) goals, such as task timeliness and
Quality-of-Data (QoD) while consuming less energy compared to baseline approaches.

1. Introduction

Recently, database functionality is increasingly embedded
into mobile and embedded platforms for systematic man-
agement of a large amount of real-time data such as sensor
streams. For example, autonomous cars need to process a
large volume of real-time data from sensors in real time [1]. In
such systems, real-time tasks with intensive database accesses
are required to provide a certain level of Quality-of-Service
(QoS), such as task timeliness and data freshness.

In our previous work [2], we presented a real-time
embedded database, called QeDB, that supports the timeli-
ness of data-intensive tasks using the control-theoretic QoS
management architecture. With the feedback control loop,
QeDB can achieve the desired QoS by adapting its control
knobs based on QoS errors. Hence, a precise systemmodel is
not required at the design time. Our previous work assumed
single-core platforms for the QoS management. However,
modern embedded systems are increasingly moving towards
multicore platforms and they pose a huge challenge since

concurrent data accessesmight cause contention at non-CPU
resources, such as memory and I/O [3–9].There are potential
intercore interferences as the data accesses from one core
could also be influenced by the requests from the other CPU
cores. As a result, the response time of a data-intensive task
can be delayed significantly due to the bottleneck in accessing
data.

To handle such unpredictable intercore interferences,
we might consider Quality-of-Data (QoD) scaling as a pri-
mary control knob for the QoS management. With the
QoD scaling, the incoming sensor updates are selectively
dropped by the admission controller to control the workload.
By scaling down QoD, the workload for data accesses is
reduced, rendering less intercore contention for data accesses.
However, a major disadvantage of QoD scaling is that its
applicability is limited by users’ QoD requirements. Hence,
the QoS goals might not be satisfied if QoD is saturated at its
maximum or minimum.Moreover, QoD scaling is not useful
if a task’s response time is dominated by computation, not by
accessing data.

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2015, Article ID 657252, 14 pages
http://dx.doi.org/10.1155/2015/657252

2 Mobile Information Systems

In this paper, we propose an efficient QoS management
approach, in which multiple complementing control knobs
are exploited simultaneously to handle highly unpredictable
workloads in multicore platforms. In our approach, the
limitation of QoD scaling is complemented by exploiting
Dynamic Voltage/Frequency Scaling (DVFS) [10]. Unlike QoD
scaling, DVFS is more appropriate to control the speed
of tasks when the workload is less data-intensive. Further,
DVFS has a wide range of operating region. For example,
ARM-based Exynos 5422 mobile processor supports 19 fre-
quency/voltage levels ranging from 200MHz to 2.0GHz.The
two distinctive control knobs are combined using a novel
multiple inputsmultiple outputs (MIMO) control architecture.
This MIMO control architecture can capture the interrela-
tionships between the multiple control knobs and the system
outputs and generates proper combinations of the multiple
control signals according to the varying workloads.

We implement the proposed approach in an actual
multicore-based embedded device by extending our previous
work. The evaluation results demonstrate that the proposed
QoSmanagement approach is more effective in QoS enforce-
ment than applying either DVFS or QoD scaling alone. Our
approach can achieve theQoS goals with significantly smaller
power consumption, particularly when workloads are data-
intensive and have high chance of intercore interferences for
accessing data.

The rest of this paper is organized as follows: in Section 2,
we summarize our previous work on QeDB including its
transaction model and QoS management architecture. In
Section 3, we discuss the effect of intercore interferences on
data-intensive real-time tasks. In Section 4, we present our
approach to QoSmanagement. In Section 5, the performance
evaluation settings and results are presented. Related work is
presented in Section 6 and Section 7 concludes the paper.

2. Overview of QeDB

Our current work extends our previous work on QeDB [2].
QeDB is a key/value store database for data-intensive real-
time applications running on embedded devices. We briefly
introduce QeDB for the discussion of the following sections.

2.1. Data and Real-Time Transactions. Data objects in QeDB
can be categorized into temporal and nontemporal data.
Temporal data objects are updated by update transactions
when new sensor readings become available. User transac-
tions are tasks that perform computation using data objects
in the database. User transactions consume both temporal
and nontemporal data objects. Algorithm 1 is an example of
user transaction that performs real-time analysis by accessing
sensor data in QeDB. Instead of supporting complex queries,
data objects in QeDB can be accessed through get (key) and
put (key, value) interfaces. Data objects are identified using
keys.

User transactions in QeDB can specify its desired
response time or deadline, according to their timing con-
straints. We call such user transactions as real-time trans-
actions. If a real-time transaction is periodic, its periodic

rt task begin:

/∗ a list of keys for fresh sensor data ∗/

DBT key sensors = {s 1,s 2,. . .,s n};

/∗ memory buffer for sensor data ∗/

DBT data sensors[MAX SENSORS];

/∗ access data through embedded database ∗/

for key in key sensors {

data sensors[i++] = get(key);

}

/∗ computation for analysis ∗/

analyze risk(data sensors);

rt task end:

Algorithm 1: An example of data-intensive real-time task.

instances are supposed to meet the deadline. QeDB only
supports soft real-time semantics, and, hence, missing dead-
lines decreases the QoS (Quality-of-Service) but does not
jeopardize correct system behavior.

2.2. QoS Metrics. Since typical embedded systems do not
have many transactions, deadline miss ratio is not a stable
metric for QoS management [11]. Hence, we define the
tardiness of a transaction as follows:

tardiness = response time
deadline

. (1)

For example, a task is tardy if its response time is greater
than its deadline. In QeDB, the average tardiness of real-time
transactions is used as aQoSmetric to quantify the timeliness
of the transactions. Each transaction performs both compu-
tation and data accesses. Therefore, a transaction’s response
time is affected by both its data accessing activities and
computation activities. To this end, we define the following
parameters for a transaction 𝐽:

(i) Data response time 𝑅data is the total response time
for 𝐽 to access data objects in the database. The
response time of each database access is measured
by instrumenting put and get methods. It should
be noted that put/get methods have computational
overheads to access data, such as processing indexes.

(ii) Computation response time 𝑅comp is the response time
for 𝐽 to perform computational activities, excluding
database accesses.

(iii) Transaction response time 𝑅 is the response time of 𝐽.
Hence, 𝑅 equals 𝑅comp + 𝑅data.

Another important QoS metric for data-intensive real-
time systems is the Quality-of-Data (QoD). In real-time
systems, the result of real-time tasks depends on both the
logical correctness and the temporal correctness.The result is
temporally correct only if the real-time data from sensors are
fresh enough. A temporal data object𝑂

𝑖
is considered fresh or

temporally consistent, if its timestamp is less than its absolute
validity interval (avi). In this work, we defineQoD as the ratio

Mobile Information Systems 3

Transaction hander

BM CC

Admission
control

Dispatch

Abort/restart

BlockBlock queue

Admission

Ready queue

User transactions

Best effort
Update

rate

Performance
monitor

feedback controller
Tardiness

QoS manager

Control signals

Transaction
tardiness

Control signals to
control knobs

SC
Q2

Q0

Q1

Δ update rate

· · ·

· · ·
· · ·

Figure 1: QoS management architecture of QeDB [2].

of the number of fresh data objects𝑁fresh to the total number
of temporal data objects𝑁temporal:

QoD =
𝑁fresh
𝑁temporal

. (2)

Since the higher QoD is desirable as far as the system is not
overloaded, users or applications specify only the minimum
QoD, denoted in QoDmin, as a QoS specification.

2.3. QoS Management Architecture. QeDB supports the
desired QoS through its QoS management architecture
shown in Figure 1.

The architecture follows the feedback control principle,
and hence it exploits the closed loop of continuous “mon-
itoring” and “control.” The transaction handler includes the
core engine of the underlying embedded database, and it
processes admitted transactions. At every sampling period,
the performance monitor computes the average tardiness
of real-time transactions. The tardiness feedback controller
generates control signals by taking the difference between the
target tardiness and the current average tardiness. The QoS
manager enforces these control signals by using available con-
trol knobs in the system. In our previous work, we changed
the rate of sensor updates and subsequent QoD using the
admission controller to control the system’s overheads. In
recent embedded platforms, the QoS controller might exploit
other control knobs, such as DVFS. In the following sections,
we discuss how to exploit these multiple control knobs in
multicore environments.

3. Motivation: Intercore Interferences in
Multicore Systems

Modern embedded systems are increasingly moving towards
multicore platforms.Wemight consider scheduling real-time
transactions onto a dedicated CPU core to avoid scheduling
interferences from non-real-time tasks. However, contention
for shared resources, such as memory and I/O, cannot be
avoided completely in multicore platforms. In particular,

the interferences between the cores pose significant challenge
for data-intensive real-time applications, inwhich predictable
system behavior is highly required.

To illustrate the problem, a microbenchmark is per-
formed in amulticore embedded platform. In the benchmark,
a real-time task is invoked periodically on every 100ms, and
it is scheduled to run inCPU core #1.The task is a transaction,
as shown in Algorithm 1, that performs computational analy-
sis by actively accessing real-time data in the database. At the
same time, a stream of independent best-effort transactions
are executed in the other CPU cores to interfere the real-
time transaction. These best-effort transactions access differ-
ent databases in the system. For this benchmark, the QoS
management mechanism in Figure 1 is deactivated. We use
the CPU affiliation feature of the testbed platform to assign
the transactions to different CPU cores. Transactions in each
active CPU core are scheduled according to real-time FIFO
policy. The details of the testbed platform are discussed in
Section 5.

In the benchmark, the real-time transaction’s data
response time 𝑅data and computation response time 𝑅comp
are measured under varying CPU clock speed. Figure 3(a)
shows the result when the real-time transaction is executed
without interfering best-effort transactions in the other CPU
cores. Figures 3(b) and 3(c), respectively, plot the results
when the best-effort transactions are scheduled in the other
1 and 3 CPU cores. The results show that the task response
time of the real-time transaction is increased significantly as
more CPU cores are used to execute best-effort transactions.
For instance, at 2.0GHz, the task response time of the
transactions is increased from 0.21 to 0.36 and to 0.42,
respectively, when the other 1 and 3 CPU cores are involved
in interfering real-time transactions. However, it should be
noted that the computation response times 𝑅comp’s of the
real-time transactions are not much affected by the intercore
interferences. Only the data response times 𝑅data’s of the real-
time transactions are increased from 0.05 to 0.16 and to 2.3,
respectively, in Figures 3(a), 3(b), and 3(c). These results
demonstrate that the response time of data-intensive real-
time transactions can be affected significantly by intercore

4 Mobile Information Systems

interferences. Further, these intercore interferences at the
shared resources are hard to predict and pose significant
challenges for data-intensive real-time applications.

The potential presence of intercore interferences
changes the characteristics of the workload. For example, in
Figure 3(a), the real-time transactions aremore computation-
oriented when no interfering transactions run at other CPU
cores. The ratio between 𝑅comp and 𝑅data is about 0.8 : 0.2.
Therefore, changing the CPU speed using DVFS can be
effective in controlling the total response time of the
transaction. However, when transactions have high intercore
interferences from other CPU cores, as in Figure 3(c), the
ratio between 𝑅comp and 𝑅data is changed to about 0.5 : 0.5.
In this situation, changing the computation speed using
DVFS has limited effect on the task response time. For
instance, in Figure 3(a), the normalized response time of 0.4
is achieved at CPU core frequency of 1100MHz. In contrast,
in Figure 3(c), the normalized response time of 0.4 cannot
be supported even at 2000MHz CPU frequency, which is the
maximum CPU frequency.

We performed the second microbenchmark experiment
to understand the impact of QoD scaling when transactions
incur high intercore interferences. In the experiment, we
measure the response time of the real-time transactions while
the QoDs of the transactions are varied from 10% to 100%.
We can decrease the QoD of temporal data by increasing the
update intervals of sensors. During the experiment, the CPU
frequency is fixed at 1.0 GHz. Figure 4 shows that the data
response time 𝑅data of the real-time transactions is affected
significantly byQoD. For instance, in Figure 4, decreasing the
QoD from 100% to 50% reduces 𝑅data from about 0.5 to 0.3.
This result shows that decreasing QoD is an effective method
to reduce the chance of intercore interferences in multicore
systems.

4. QoS Management for Multicore Systems

In this section, we propose the QoS management approach
that exploitsmultiple control knobs to handle highly dynamic
workloads in multicore environments.

4.1. Metric to Quantify Intercore Interference. As seen in
Section 3, the workload characteristic of a transaction can
be significantly affected by intercore interferences. As a
consequence, the effectiveness of the control knobs, for
example, DVFS and QoD scaling, also changes according to
the varying workloads. The QoS management architecture
in Figure 1 is supposed to coordinate these multiple control
knobs under such highly variablemulticore environments. To
this end, we define drr (data response ratio) as a metric that
characterizes transaction 𝐽’s workload state:

drr =
𝑅data

𝑅comp + 𝑅data
. (3)

drr of a transaction is a ratio of data response time to
the total response time. In this paper, we assume real-time
transactions, in which the data access pattern is not varying
much between their repeating periods. Therefore, significant

changes in drr imply the presence of intercore interferences.
For instance, drr gets higher as more intercore interferences
occur. We further define drrnorm as 𝐽’s nominal data response
ratio that represents the minimal drr:

drrnorm =
𝑅
norm
data

𝑅normdata + 𝑅
norm
comp
, (4)

in which 𝑅normdata and 𝑅normcomp, respectively, are transaction
𝐽’s 𝑅data and 𝑅comp profiled while no interfering tasks are
executed in the other CPU cores. Therefore, the gap between
drr and drrnorm can be used as an indicator that tells how
much a transaction is delayed due to tardy data accesses.
In multicore-based real-time systems, intercore interferences
are the major source of tardy data accesses.

4.2. Feedback Control Procedure. The primary goal of QoS
management is to support the transaction response time
equal to the desired response time. Further, another goal
is to exploit multiple control knobs properly, considering
the dynamic workloads of multicore systems. Since we have
two control goals, we need to provide at least two control
inputs to control them. For example, if real-time transactions
are tardy due to intercore interferences, we need a control
knob that effectively reduces the intercore interferences.
Conversely, if the transactions are tardy because of slow
computation activities, we need another control knob to
speed up the computation. Given a task, one available control
knob that significantly affects its computation response time
is the processor speed. The higher the processor speed, the
shorter the response time of the task. In modern embedded
processors, the processor speed can be controlled by changing
processor frequency using DVFS. Regarding data response
time, we can exploit QoD scaling as a control knob. Since
the higher QoD is translated into the more frequent accesses
to temporal data, the data response time of a transaction is
highly affected by QoD.

To achieve these multiple goals using multiple con-
trol knobs, we propose to exploit the MIMO (multiple
inputs/multiple outputs) control loop shown in Figure 5. The
overall feedback control steps are as follows:

(1) The desired transaction tardiness, tardtarget, and the
desired data response time, drrtarget, are set. Typically,
we may set them to 1 and drrnorm, respectively. By
setting drrtarget to drrnorm, we require the system to
maintain the minimal drr against potential intercore
interferences.

(2) At the 𝑘th sampling instant, the average tardiness
error 𝑒tard(𝑘) and the drr error 𝑒drr(𝑘) are computed
for real-time transactions.

(3) According to 𝑒tard(𝑘) and 𝑒drr(𝑘), the tardiness con-
troller computes the control signalsΔfreq andΔQoD.
The MIMO controller computes the control signals
simultaneously considering both the transaction tar-
diness and the data response ratio.

(4) TheQoSmanager changes the CPU core frequency to
achieve Δfreq.

Mobile Information Systems 5

(5) ΔQoD is achieved by adjusting the update rates of
temporal data objects.

4.3. Feedback Control Loop Design. In this paper, we take a
systematic approach to designing the feedback controller.

4.3.1. System Modeling and Verification. The first step in
designing a feedback controller is to construct a model that
captures the target system’s properties. In this study, the
QeDB running on a multicore system is the target system.

As discussed in previous sections, the goals of the QoS
management are to support the desired transaction tardiness
while preventing excessive intercore interferences in multi-
core environments. To achieve these multiple control goals
using multiple control knobs, we exploit a MIMO model.
The form of MIMO linear time-invariant model for QeDB is
shown in

[
tardiness (𝑘 + 1)

drr (𝑘 + 1)
] = A ⋅ [

tardiness (𝑘)
drr (𝑘)

] + B

⋅ [
freq (𝑘)
QoD (𝑘)

] .

(5)

Themodel parametersA andB are 2×2matrices because the
system has two inputs and two outputs.

We may choose to use two separate single input/single
output (SISO) models, one SISO model to relate CPU
frequency to transaction tardiness and another SISO model
to relate QoD to drr. However, if system inputs affectmultiple
outputs, then aMIMOmodel should be considered to capture
the interaction between the different control inputs and
system outputs [12]. For instance, in our system, changing
QoD affects both the transaction tardiness and drr.

In the actual system identification of QeDB, two inputs
are varied simultaneously. The relatively prime cycle inputs
are used to fully stimulate the system by applying all different
combinations of the two inputs. Figure 6 shows the result
of the system identification. The model parameters obtained
through the system identification areA = [0.8504 −0.0066

−0.1449 0.3882
] and

B = [−0.1983 0.1485
0.2448 0.7762

].These parameters quantify the interaction
between the control inputs and the system outputs. For
instance, the two components of B’s first row have different
signs and this means that the CPU frequency and the
QoD scaling drive the tardiness of transactions in different
directions. One widely used metric to quantify the model
accuracy is 𝑅2, where 𝑅2 = 1−variance(experimental value−
predicted value)/variance(experimental value). The 𝑅2’s of
our model are 0.908 and 0.823 for transaction tardiness
and drr, respectively. In general a model with 𝑅2 ≥ 0.8 is
considered valid [13].

4.3.2. Controller Design. The closed-loop model is con-
structed as follows:

[
e (𝑘 + 1)
e
𝐼
(𝑘 + 1)
] = [

A 0
I I
][

e (𝑘)
e
𝐼
(𝑘)
] − [
−B
0
]u (𝑘)

+ [
I − A
0
] r,

(6)

where r = [1 drrtarget]𝑇. In this model, the control error
vector e(𝑘) and the acumulated control error vector e

𝐼
(𝑘)

are used as the state vector. For the robustness against
disturbance and simplicity, we choose to apply a proportional
integral (PI) control function, given by

u (𝑘) = [
freq (𝑘)
QoD (𝑘)

] = − [K
𝑃

K
𝐼
] [

e (𝑘)
e
𝐼
(𝑘)
] , (7)

where K
𝑃
and K

𝐼
, respectively, are proportional and integral

controller gains. K
𝑃
and K

𝐼
are 2 × 2 matrices. At each

sampling instant 𝑘, the performance monitor calculates the
control error

e (𝑘) = [
1 − tardiness (𝑘)
drrtarget − drr (𝑘)

] (8)

and the accumulated control error

e
𝐼
(𝑘 + 1) = e

𝐼
(𝑘) + e (𝑘) . (9)

Using e(𝑘) and e
𝐼
(𝑘), the control law in (7) computes the

controller input u(𝑘).
The properties of the closed-loop system, such as the

settling time, the overshoot, and the stability, are determined
by the control gains K

𝑃
and K

𝐼
. We obtained the control

gains using linear quadratic regulator (LQR) technique that
minimizes the cost function 𝐽:

𝐽 =

∞

∑
𝑘=0

[e (𝑘) e
𝐼
(𝑘)] ⋅Q ⋅ [

e (𝑘)
e
𝐼
(𝑘)
] + u (𝑘)𝑇 ⋅ R

⋅ u (𝑘) ,

(10)

where the weighting matrices Q and R quantify the cost
of control error and the cost of control effort, respectively.
Since minimizing the transaction tardiness is the primary
goal of the QoSmanagement, we put the higher weight to the
tardiness control error 𝑒tard compared to the data response
ratio error 𝑒drr by choosing Q = diag(1, 1/10, 1, 1/10). The
first and the second elements ofQ quantify the cost of control
errors 𝑒tard and 𝑒drr, respectively. Once weighting matrices
Q and R are determined, MATLAB commands 𝑑𝑙𝑞𝑟 can be
used to get the controller gains.The controller gains obtained
through dlqr are K

𝑃
= [0.396 −0.062
−0.107 −0.067

] and K
𝐼
= [0.058 −0.035
−0.025 −0.041

].
We can analytically prove the stability of the closed-loop

system in (6) by showing that the poles of the closed-loop
system are all within the unit circle [13]. In (6), the poles are
the eigenvalues of

[
A 0
I I
] − [
−B
0
] [K
𝑃

K
𝐼
] . (11)

6 Mobile Information Systems

Table 1: Hardware specification.

CPU Exynos 5422 octa cores
Processor frequency 200MHz–2.0GHz (19 levels)
Memory 2GByte RAM
Storage 32GByte eMMC
Network IEEE 802.11b/g/n wireless LAN

By applying K
𝑃
and K

𝐼
to (11), we can get the poles of the

closed-loop system, which are 0.38, 0.87 ± 0.02𝑖, and 0.93.
These poles are all within the unit circle, and this proves
that the designed closed-loop system is analytically stable.
However, an actual systemmight manifest different behavior,
and hence we need to verify the stability of the system in
empirical manner too. In Section 5, we verify the empirical
stability of the proposed system through actual evaluation.

4.4. Implementation. The proposed QoS management
approach and baselines are implemented by extending QeDB
[2]. QeDB internally exploits Berkeley DB as a transaction
handler. Berkeley DB [14] provides low-level database
features, such as storage management, multithreading for
concurrent data processing, locking, and recovery. However,
the original Berkeley DB does not support QoS, such as task
tardiness and freshness of temporal data. QeDB extends
Berkeley DB with QoS management architecture shown in
Figure 1. Originally, QeDB only supports the QoD scaling
through admission control. This work integrates the QoD
scaling with hardware-supported DVFS. In each real-time
task, every access to data is performed by invoking Berkeley
DB’s put and get methods. These data access methods are
instrumented to monitor the response time and data ratio.

5. Evaluation

In this section, we introduce the testbed used for the experi-
ment and present the goals and results of the evaluation.

5.1. Evaluation Testbed and Settings. The hardware platform
for the testbed is Odroid-XU3 evaluation board [15]. The
specification of the board is shown in Table 1. The Exynos
5422 SoC of Odroid-XU3 has 4 Cortex-A15 cores and 4
Cortex-A7 cores. During the evaluation, 4 Cortex-A7 cores
are turned off to exclude the effect of heterogeneous cores.
Exynos 5422 has 19DVFS voltage/frequency steps.The power
consumption of the system is measured in real time using
Odroid Smart Power [15].

For performance evaluation, we simulate the adapted
search-and-rescue scenario from [16] on our testbed. In
the scenario, a mobile device, carried by a firefighter, col-
lects streams of sensor readings from nearby sensors. The
Odroid-XU3 device is used to simulate fire-fighter’s mobile
device. Sensor streams from the building are simulated by
3.0GHz quad-core i-7 Linux desktop. The sensor readings
were obtained from realistic simulation using CFAST (the
Consolidated Model of Fire and Smoke Transport) simulator
[17]. Total 1024 sensors are recorded using the simulation, and

Table 2: Tested approaches.

Open Pure Berkeley DB with OnDemand DVFS governor

DVFSonly Embedded database supporting QoS via DVFS
control

QoDxxx Embedded database supporting QoS via QoD scaling
control; CPU core frequency is set to xxx Mhz

MIMO Embedded database supporting QoS with MIMO
control of DVFS and QoD scaling

Table 3: Transaction workload types.

None No interfering best-effort transactions in the other
CPU cores.

C90-D10 Computation-intensive workload
(𝑅normcomp : 𝑅

norm
data = 9 : 1).

C50-D50 Balanced workload (𝑅normcomp : 𝑅
norm
data = 5 : 5).

C10-D90 Data-intensive workload (𝑅normcomp : 𝑅
norm
data = 1 : 9).

each sensor’s reporting period follows the uniform distribu-
tion ranging from 1 to 10 seconds. During the evaluation, the
desktop sends sensor streams from the trace to the mobile
device. When a new sensor reading arrives to the device, an
update transaction is invoked to store the sensor data.

At the mobile device, one Cortex-A15 core is assigned
for real-time transactions/tasks as shown in Figure 2. A real-
time transaction is invoked periodically on every 100ms to
simulate the real-time analysis of the building state such as
the direction of fire, possibility of explosion, and safe retreat
paths. We set the real-time transaction’s workload to have
𝑅
norm
comp :𝑅

norm
data = 5 : 5.The deadline of the real-time transaction

is set to 50ms. The slack time is used for aperiodic jobs, such
as updating theGUI and updating sensor data.Theminimum
QoD is set to 0.5, implying that maximum 50% of incoming
sensor updates can be dropped.

The other 3 CPU cores are assigned for aperiodic best-
effort transactions/tasks. These best-effort transactions are
supposed to generate various intercore interferences accord-
ing to workload types. Table 3 shows the workload types of
best-effort transactions with different ratios between 𝑅normcomp
and 𝑅normdata . C90-D10 is the most computation-intensive, and,
conversely, C10-D90 is the most data-intensive. Each best-
effort transaction’s 𝑅normdata and 𝑅normcomp are adjusted by changing
the number of data object accesses and the loop counts
of a dummy computation loop. However, all transactions
are configured to have almost equal nominal response time
𝑅
norm, which is 𝑅data + 𝑅comp. At each core, a best-effort

transaction is invoked continuously, and its consecutive
invocations are separated by a uniformly distributed time
interval between 50ms and 150ms.

The real-time transactions and the best-effort trans-
actions are assigned to their respective CPU cores using
the processor affinity feature of Linux. We do not assign
particular CPU cores to update transactions. Hence, update
transactions can be assigned to any CPU cores according to
underlying operating system’s scheduling policy.

Mobile Information Systems 7

Ca
ch

es

M
em

or
y

Databases

Real-time
transactions

Best-effort
transactions

CPU

CPU

CPU

CPU

core #1

core #2

core #3

core #4

Figure 2: Concurrent database accesses.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Re
sp

on
se

 ti
m

e (
no

rm
al

iz
ed

)

600 800 1000 1200 1400 1600 1800 2000400
CPU frequency (MHz)

Computation response time Rcomp

Data response time Rdata

(a) Real-time transaction run at CPU core 1 without interfering CPU
cores

Computation response time Rcomp

Data response time Rdata

600 800 1000 1200 1400 1600 1800 2000400
CPU frequency (MHz)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Re
sp

on
se

 ti
m

e (
no

rm
al

iz
ed

)

(b) CPU core 2 interferes real-time transactions at core 1

Computation response time Rcomp

Data response time Rdata

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Re
sp

on
se

 ti
m

e (
no

rm
al

iz
ed

)

600 800 1000 1200 1400 1600 1800 2000400
CPU frequency (MHz)

(c) CPU cores 2–4 interferes real-time transactions at core 1

Figure 3: Task response time with varying CPU speed (QoD = 100%).

20 30 40 50 60 70 80 90 10010
QoD (%)

0
0.2
0.4
0.6
0.8

1

Re
sp

on
se

 ti
m

e (
no

rm
al

iz
ed

)

Computation response time Rcomp

Data response time Rdata

Figure 4: Task response timewith varyingQoDwhile the best-effort
transactions run at 3 CPU cores.

5.2. Evaluation Goals and Baselines. The objectives of the
performance evaluation are (1) to verify that the proposed
approach can support the QoS specification under various
conditions and (2) to test the effectiveness of the proposed
QoS management approach.

For the first objective, we investigate the behavior of the
proposed system under various conditions, where a set of
parameters are varied. We vary the following parameters: (1)
the workload characteristics of interfering tasks and (2) the
number of interfering CPU cores. For the second objective,
we compare the proposed QoS management approach with
several state-of-the-art baseline approaches. For performance
evaluation, we consider 4 approaches shown in Table 2.
Open is the Berkeley DB without QoS support. In Open,

8 Mobile Information Systems

controller
(MIMO)

Tardiness
RTEDB

+

+ −

−

Δfreq

ΔQoDdrrtarget

tardtarget

edrr(k)

etard(k)

drr(k)

tard(k)

Figure 5: Tardiness control loop.

50 100 150 200 250 300 350 400 450 5000
Time (k)

0

0.5

1

CP
U

 fr
eq

ue
nc

y

(a)

50 100 150 200 250 300 350 400 450 5000
Time (k)

0

0.5

1

Q
oD

(b)

50 100 150 200 250 300 350 400 450 5000
Time (k)

0
1
2
3

Ta
rd

in
es

s

(c)

50 100 150 200 250 300 350 400 450 5000
Time (k)

2

dr
r 1

0

(d)

Figure 6: System identification.

the operating system’s DVFS governor is set to OnDemand,
in which the CPU frequency is adjusted to maintain its CPU
utilization within the boundary between 20% and 90%.Thus,
Open represents the state-of-the-art embedded databases
with nominal power management support from underlying
operating systems. DVFSonly and QoDxxx represent QeDB
supporting transaction tardiness using a single input/single
output (SISO) controller. In DVFSonly and QoDxxx, the
tardiness of real-time transactions is controlled only through
DVFS and QoD scaling, respectively. Since QoD scaling
does not adjust CPU frequency dynamically, QoDxxx’s CPU
frequency is set to xxx MHz. Finally,MIMO is the proposed
QoS management approach that supports the transaction
tardiness using the MIMO controller integrating DVFS and
QoD scaling.

5.3. Average Performance. In this experiment, the average
performance of the proposed approach is investigated under
various conditions.

5.3.1. Data-Intensive versus Computation-Intensive Work-
loads. In this experiment, we test the performance of each
approach when different workloads, shown in Table 3, are
applied to interfere the real-time transactions in one CPU
core.

Figure 7 shows the results. As shown in Figure 7(a),
both DVFSonly and MIMO closely support the target tar-
diness of real-time transactions in all interfering workload
types. In contrast, Open and QoDxxx do not satisfy the
tardiness goal in most interfering workload types. QoD
scaling approaches cannot achieve the tardiness goal since,

as shown in Figure 7(b); their QoD is saturated at either
the minimum, which is 0.5, or the maximum, which is 1.
This result demonstrates the limitation of scaling QoD. For
DVFSonly and MIMO, the target tardiness is satisfied at the
cost of increased CPU frequency as shown in Figure 7(c). In
particular, the CPU frequency of DVFSonly increases rapidly
as the more data-intensive workloads are applied.This shows
that intercore interferences for accessing data have significant
impact on the tardiness of real-time transactions. In contrast,
MIMO’s CPU frequency increases slowly as the workload
becomesmore data-intensive.This is becauseMIMO exploits
not just DVFS but also QoD scaling. Figure 7(b) shows that
more QoD degradation occurred in MIMO as the workloads
becomemore data-intensive. It should be noted that MIMO’s
QoD is saturated at the minimum, which is 0.5, when C10-
D90 workload is applied. However, unlike QoDxxx, MIMO
achieves the tardiness goal since it can exploit DVFS as
another control knob.

Figure 7(d) shows the average power consumption of
different approaches. When no interfering workload is
applied, the power consumption of all approaches, except
QoD1800, is not much different. However, as more data-
intensive workloads are applied, the power consumption
of Open and DVFSonly increases rapidly. For example,
Open consumes about 2.7 times more power when C10-D90
workload is applied. This shows that intercore interferences
result in significant power consumption. Unlike Open and
DVFSonly, however, MIMO’s power consumption increases
slowly compared to other approaches.This is because MIMO
can maintain relatively lower CPU frequency by reducing
intercore interferences using QoD scaling.

Mobile Information Systems 9

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Ta
rd

in
es

s

None
C90-D10

C50-D50
C10-D90

(a) Tardiness

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO

None
C90-D10

C50-D50
C10-D90

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Q
oD

(b) QoD

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO

None
C90-D10

C50-D50
C10-D90

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CP
U

 fr
eq

ue
nc

y
(n

or
m

al
iz

ed
 to

 m
ax

im
um

)

(c) CPU frequency

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO

None
C90-D10

C50-D50
C10-D90

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

Po
w

er
 co

ns
um

pt
io

n
(W

)

(d) Power

Figure 7: Average performance with varying interfering workload patterns.

5.3.2. Varying Number of Interfering CPU Cores. In this
experiment, we change the number of interfering CPU cores
while real-time transactions are executed in one CPU core.

Figure 8 shows the result when computation-intensive
workload C90-D10 is applied. In Figure 8, increasing the
number of interfering CPU cores has not much impact on
the performance of real-time transactions. For instance, each
approach, except Open, shows very similar tardiness, QoD,
and CPU frequency regardless of the number of interfering
CPU cores. Further, in Figure 8(d), the power consumption
is gradual and proportional to the number of interfering
CPU cores. For instance, in Figures 8(b) and 8(c), when
3 CPU cores are used to interfere real-time transactions,
MIMO maintains the maximum QoD while CPU frequency
is increased no more than 5%.These results demonstrate that
when workloads are computation-intensive, the chances of
intercore interferences are low, and the power consumption
is proportional to the number of active CPU cores.

Figure 9 shows the results when C10-D90, which is
data-intensive, is applied. The result shows that increasing

the number of interfering CPU cores has significant impact
on the performance when the workload is data-intensive.
For instance, DVFSonly requires about 72% higher CPU
frequency to achieve the tardiness goal when 3 CPU cores
are used to interfere real-time transactions. Further, in
Figure 9(d), the power consumption increases exponentially
for Open and DVFSonly. In contrast, MIMO requires less
than 20% increase of CPU frequency at the cost of degrading
QoD to the minimum to achieve the tardiness goal. By
combining DVFS and QoD scaling, MIMO incurs gradual
power increases.This is becauseMIMO reduces the intercore
interferences by decreasing QoD as shown in Figure 9(b).

5.4. Transient Performance. For real-time applications, aver-
age performance is not enough to describe their dynamic
behavior. Transient performance such as settling time and
overshoot should be small enough. In this experiment, we
introduce sudden intercore interferences in order to observe
the transient behavior of the tested approaches. Initially, real-
time transactions are running in one CPU core without

10 Mobile Information Systems

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Ta
rd

in
es

s

= 3

= 2

= 1 Interfering cores
Interfering cores

Interfering cores
Interfering cores = 0

(a) Tardiness

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Q
oD

= 3

= 2

= 1 Interfering cores
Interfering cores

Interfering cores
Interfering cores = 0

(b) QoD

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CP
U

 fr
eq

ue
nc

y
(n

or
m

al
iz

ed
 to

 m
ax

im
um

)

= 3

= 2

= 1 Interfering cores
Interfering cores

Interfering cores
Interfering cores = 0

(c) CPU frequency

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Po
w

er
 co

ns
um

pt
io

n
(W

)

= 3

= 2

= 1 Interfering cores
Interfering cores

Interfering cores
Interfering cores = 0

(d) Power

Figure 8: Average performance with varying number of interfering cores (C90-D10 workload is applied).

interferences from the other CPU cores. At the 150th sam-
pling instant, disturbance is introduced by executing best-
effort transactions in the other 3 CPU cores. The disturbance
persists until the 400th sampling period. The best-effort
transactions’ workload type is C50-D50.

Figure 10 shows the transient behavior of the tested
approaches. All approaches, except Open in Figure 10(a),
support the desired tardiness using the QoS management
architecture of QeDB. These approaches react against the
disturbance within 3 sampling periods to achieve the tar-
get transaction tardiness. Their overshoots, which are the
maximum deviations from the QoS goal, are less than 20%.
In Figure 10(b), DVFSonly supports the desired tardiness
by increasing CPU frequency by 37%. In Figure 10(c), the
QoD1000 does not achieve the target tardiness initially
because itsQoD is saturated at themaximum.However, while
the disturbance is injected, it achieves the target tardiness
by lowering QoD. This shows that QoD saturation severely
limits the applicability of the QoD scaling technique. Both
DVFSonly and QoD1000 do not control drr, and hence drr

increases significantly while the disturbance is injected. For
instance, DVFSonly’s drr increases from 0.28 to 0.44 during
the disturbance period. This high drr implies that the real-
time transactions’ data accesses are delayed due to intercore
interferences. InMIMO, we can control drr by setting drrtarget
properly. In Figures 10(d) and 10(e), drrtarget is set to 0.28 and
0.40, respectively. According to drrtarget, MIMO shows differ-
ent behavior.When drrtarget is 0.28, which is drrnorm, MIMO’s
controller maintains drrtarget by significantly lowering QoD
against the disturbance. On the other hand, the increase
of CPU frequency is less than 10%. This means MIMO
exploits QoD scalingmore aggressively since the transactions
are tardy due to intercore interferences. If a user wants to
maintain high QoD, MIMO can be configured to resemble
DVFSonly by setting drrtarget high. In Figure 10(e), MIMO’s
drrtarget is set to 0.40 and its reaction against the disturbance
is similar to DVFSonly’s. When drrtarget is 0.40, MIMO
maintains QoD as high as 0.96 against the disturbance.
The target tardiness is mostly achieved by increasing CPU
frequency; the CPU frequency is increased by about 34%.

Mobile Information Systems 11

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Ta
rd

in
es

s

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO

= 3

= 2

= 1 Interfering cores
Interfering cores

Interfering cores
Interfering cores = 0

(a) Tardiness

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Q
oD

= 3

= 2

= 1 Interfering cores
Interfering cores

Interfering cores
Interfering cores = 0

(b) QoD

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO

= 3

= 2

= 1 Interfering cores
Interfering cores

Interfering cores
Interfering cores = 0

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

CP
U

 fr
eq

ue
nc

y
(n

or
m

al
iz

ed
 to

 m
ax

im
um

)

(c) CPU frequency

Open DVFSonly QoD600 QoD1000 QoD1800 MIMO
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Po
w

er
 co

ns
um

pt
io

n
(W

)

= 3

= 2

= 1 Interfering cores
Interfering cores

Interfering cores
Interfering cores = 0

(d) Power

Figure 9: Average performance with varying number of interfering cores (C10-D90 workload is applied).

6. Related Works

Prior research demonstrates that, in multicore environments,
the contention for shared resourcesmight cause performance
anomalies [7–9]. In particular, existing databases show poor
performance in multicore systems due to the interference
between cores to access data. Hence, developing databases
for multicore machines has drawn intense research effort
[3–6]. Papadopoulos et al. proposed to exploit helper cores
to efficiently prefetch data needed by working threads [4].
Johnson et al. removed locking contention from existing
storage managers [5]. Salomie et al. proposed to partition
the multicore machine and used existing databases in a
replicated configuration as if the multicore machine was a
distributed system [3]. These works target high-performance
server environments and their primary goal is to achieve high
throughput. Further, they try to change the implementation
of a specific DBMS to better exploit multiple cores. Unlike

these works, we focus on supporting predictable data access
response time in multicore embedded systems and our
approach is not tailored for specific DBMS implementation.

QoD scaling via active load shedding [18] has been
applied to real-time databases (RTDBs) [19, 20] and stream
management systems (DSMSs) [21, 22] for performance
management at runtime. A common approach for load
shedding is to drop incoming data updates under overloading
situation. For instance, Amirijoo et al. exploited imprecise
computation ondata to allowdata objects to deviate from true
value to a certain degree [20]. However, the applicability of
load shedding is highly application-dependent and its range
is limited by applications’ requirements. Hence, for many
applications, QoD scaling via load shedding is hard to be a
primary control knob to support the desired performance.
In our work, we use QoD scaling together with DVFS to
reduce potential intercore interferences. These two control
knobs complement each other.

12 Mobile Information Systems

2
1.5

1
0.5

0
50 100 150 200 250 300 350 400 450 500 5500

Time (s)

Tardiness
QoD

Frequency
drr

(a) Open

2
1.5

1
0.5

0
50 100 150 200 250 300 350 400 450 500 5500

Time (s)

Tardiness
QoD

Frequency
drr

(b) DVFSonly

2
1.5

1
0.5

0
50 100 150 200 250 300 350 400 450 500 5500

Time (s)

Tardiness
QoD

Frequency
drr

(c) QoD1000 (CPU cores at 1000MHz)

2
1.5

1
0.5

0
50 100 150 200 250 300 350 400 450 500 5500

Time (s)

Tardiness
QoD

Frequency
drr

(d) MIMO (drrtarget = drrnorm = 0.28)

2
1.5

1
0.5

0
50 100 150 200 250 300 350 400 450 500 5500

Time (s)

Tardiness
QoD

Frequency
drr

(e) MIMO (drrtarget = 0.40)

Figure 10: Transient behavior.

There has been a large amount of previous works to
use DVFS to save processor power while still supporting
the timeliness of tasks [10, 23, 23–25]. Yao et al. first gave
theoretic exploration of DVFS for real-time tasks considering
a set of aperiodic tasks [26]. For non-real-time systems
without specific deadlines, performancemetrics such as CPU
utilization have been used [27, 28]. These approaches exploit
a simple feedback mechanism based on the chosen perfor-
mance metric to control processor frequency dynamically.
In this work, we showed that the effectiveness of DVFS is
diminishedwhen tasks contend to access non-CPU resources
in multicore systems. To address this problem, we integrate
DVFS with QoD scaling.

Because of its robustness against unpredictable work-
loads, feedback control theory has been extensively applied
for the QoS management of various computing systems,
including web servers [29], caching service [30], and email
server [31]. Feedback control theory has also been used to
support the timeliness of real-time transactions in real-time
data services [2, 19, 32]. However, these works do not consider
modern multicore environments. In this work, we proposed
a novel feedback control mechanism to support transaction
tardiness while reducing potential intercore interferences of
multicore embedded systems.

7. Conclusions

In this paper, we proposed the QoS management archi-
tecture for data-intensive real-time applications running
on multicore-based embedded platforms. A novel multi-
dimensional feedback control architecture is proposed to
support the timeliness of transactions while reducing the
effect of potential intercore interferences. Through the pro-
posed control architecture, two distinctive control knobs,
which are DVFS and QoD scaling, are controlled simul-
taneously to support the QoS goals in an efficient and
robust manner. We showed the feasibility of the proposed
QoS management scheme by implementing and evalu-
ating it on a modern multicore mobile platform. Our
evaluation results show that our approach achieves the
target QoS goals, such as task tardiness and data qual-
ity, while consuming less energy compared to baseline
approaches.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Mobile Information Systems 13

Acknowledgment

This research was supported by Basic Science Research
Program through theNational Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2014R1A1A1005781).

References

[1] J. Levinson, J. Askeland, J. Becker et al., “Towards fully
autonomous driving: systems and algorithms,” in Proceedings
of the IEEE Intelligent Vehicles Symposium (IV ’11), pp. 163–168,
Baden-Baden, Germany, June 2011.

[2] W. Kang, S. H. Son, and J. A. Stankovic, “Design, implemen-
tation, and evaluation of a QoS-aware real-time embedded
database,” IEEE Transactions on Computers, vol. 61, no. 1, pp.
45–59, 2012.

[3] T.-L. Salomie, I. E. Subasu, J. Giceva, and G. Alonso, “Database
engines on multicores, why parallelize when you can dis-
tribute?” in Proceedings of the 6th ACMConference on Computer
Systems (EuroSys ’11), pp. 17–30, ACM, April 2011.

[4] K. Papadopoulos, K. Stavrou, and P. Trancoso, “HelperCoreDB:
exploiting multicore technology to improve database perfor-
mance,” in Proceedings of the 22nd IEEE International Parallel
and Distributed Processing Symposium (IPDPS ’08), pp. 1–11,
Miami, Fla, USA, April 2008.

[5] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B.
Falsafi, “Shore-mt: a scalable storage manager for the multicore
era,” in Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Tech-
nology (EDBT ’09), pp. 24–35, ACM, Saint Petersburg, Russia,
March 2009.

[6] N. Hardavellas, I. Pandis, R. Johnson, and N. Mancheril,
“Database servers on chip multiprocessors: limitations and
opportunities,” in Proceedings of the 3rd Biennial Conference
on Innovative Data Systems Research (CIDR ’07), pp. 79–87,
Asilomar, Calif, USA, January 2007.

[7] S. P.Muralidhara, L. Subramanian, O.Mutlu,M. Kandemir, and
T. Moscibroda, “Reducing memory interference in multicore
systems via application-aware memory channel partitioning,”
in Proceedings of the 44th Annual IEEE/ACM Symposium
on Microarchitecture (MICRO ’44), pp. 374–385, ACM, Porto
Alegre, Brazil, December 2011.

[8] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-
Guard: memory bandwidth reservation system for efficient
performance isolation in multi-core platforms,” in Proceedings
of the IEEE 19th Real-Time and Embedded Technology andAppli-
cations Symposium (RTAS ’13), pp. 55–64, IEEE, Philadelphia,
Pa, USA, April 2013.

[9] H. Shah, K. Huang, and A. Knoll, “Timing anomalies in
multi-core architectures due to the interference on the shared
resources,” in Proceedings of the 19th Asia and South Pacific
Design Automation Conference (ASP-DAC ’14), pp. 708–713,
Singapore, January 2014.

[10] T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,” in Proceedings of the
International Symposium on Low Power Electronics and Design,
pp. 197–202, IEEE, Monterey, Calif, USA, August 1998.

[11] L. Bertini, J. C. B. Leite, and D. Mossé, “Generalized tardiness
quantile metric: distributed dvs for soft real-time web clusters,”
in Proceedings of the 21st Euromicro Conference on Real-Time

Systems (ECRTS ’09), pp. 227–236, IEEE, Dublin, Republic of
Ireland, July 2009.

[12] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M.
Tilbury, “Using MIMO feedback control to enforce policies
for interrelated metrics with application to the Apache Web
server,” in Proceedings of the IEEE/IFIP Network Operations and
Management Symposium (NOMS ’02), pp. 219–234, IEEE, April
2002.

[13] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems, Wiley IEEE Press, 2004.

[14] Oracle Berkeley DB, 2014, http://www.oracle.com/.
[15] HardKernel Products, 2015, http://www.hardkernel.com.
[16] K. Sha, W. Shi, and O. Watkins, “Using wireless sensor net-

works for fire rescue applications: requirements and challenges,”
in Proceedings of the IEEE International Conference on Elec-
tro/Information Technology, pp. 239–244, East Lansing, Mich,
USA, May 2006.

[17] R. D. Peacock, W. W. Jones, P. A. Reneke, and G. P. Forney,
CFAST-ConsolidatedModel of Fire Growth and Smoke Transport
(Version 6) User’s Guide, US Department of Commerce, Tech-
nology Administration, National Institute of Standards and
Technology, 2005.

[18] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying FIT: efficient
load shedding techniques for distributed stream processing,”
in Proceedings of the 33rd International Conference on Very
Large Data Bases (VLDB ’07), pp. 159–170, VLDB Endowment,
Vienna, Austria, September 2007.

[19] J. Oh and K.-D. Kang, “A predictive-reactive method for
improving the robustness of real-time data services,” IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no.
5, pp. 974–986, 2013.

[20] M. Amirijoo, J. Hansson, S. Gunnarsson, and S. H. Son,
“Enhancing feedback control scheduling performance by on-
line quantification and suppression of measurement distur-
bance,” in Proceedings of the 11th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS ’05), pp. 2–11,
San Francisco, Calif, USA, March 2005.

[21] D. J. Abadi, Y. Ahmad, M. Balazinska et al., “The design of the
borealis stream processing engine,” in Proceedings of the 2nd
Biennial Conference on Innovative Data Systems Research (CIDR
’05), Asilomar, Calif, USA, January 2005.

[22] StreamBase, http://www.streambase.com/.
[23] J.-P. Halimi, B. Pradelle, A. Guermouche et al., “Reactive DVFS

control formulticore processors,” in Proceedings of the IEEE and
Internet of Things, IEEE International Conference on and IEEE
Cyber, Physical and Social Computing, Green Computing and
Communications (iThings/CPSCom-GreenCom ’13), pp. 102–109,
IEEE, Beijing, China, August 2013.

[24] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-
time systems on dynamic voltage scaling (DVS) platforms,”
in Proceedings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA ’07), pp. 28–38, IEEE, Daegu, Republic of Korea,
August 2007.

[25] S. Li and F. Broekaert, “Low-power scheduling with DVFS for
commonRTOS onmulticore platforms,”ACMSIGBEDReview,
vol. 11, no. 1, pp. 32–37, 2014.

[26] F. Yao, A. Demers, and S. Shenker, “A scheduling model
for reduced CPU energy,” in Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pp. 374–382,
IEEE, Milwaukee, Wis, USA, October 1995.

14 Mobile Information Systems

[27] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in
Proceedings of the Linux Symposium, vol. 2, pp. 215–230, Ottawa,
Canada, 2006.

[28] B. Wu and P. Li, “Load-aware stochastic feedback control for
DVFS with tight performance guarantee,” in Proceedings of the
20th IEEE/IFIP International Conference on VLSI and System-
on-Chip (VLSI-SoC ’12), pp. 231–236, IEEE, Santa Cruz, Calif,
USA, October 2012.

[29] C. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son, “A
feedback control approach for guaranteeing relative delays in
web servers,” in Proceedings of the 7th Real-Time Technology and
Applications Symposium (RTAS ’01), pp. 51–62, June 2001.

[30] Y. Lu, T. F.Abdelzaher, andA. Saxena, “Design, implementation,
and evaluation of differentiated caching services,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 15, no. 5, pp.
440–452, 2004.

[31] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J.
Bigus, “Using control theory to achieve service level objectives
in performance management,” Real-Time Systems, vol. 23, no.
1-2, pp. 127–141, 2002.

[32] K.-D. Kang, S. H. Son, and J. A. Stankovic, “Managing deadline
miss ratio and sensor data freshness in real-time databases,”
IEEE Transactions on Knowledge and Data Engineering, vol. 16,
no. 10, pp. 1200–1216, 2004.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

