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Abstract

We demonstrate the effectiveness of a relatively straightforward analysis of the complex 3D Fourier transform of
galaxy coordinates derived from redshift surveys. Numerical demonstrations of this approach are carried out on a
volume-limited sample of the Sloan Digital Sky Survey redshift survey. The direct unbinned transform yields a
complex 3D data cube quite similar to that from the Fast Fourier Transform of finely binned galaxy positions. In
both cases, deconvolution of the sampling window function yields estimates of the true transform. Simple power
spectrum estimates from these transforms are roughly consistent with those using more elaborate methods. The
complex Fourier transform characterizes spatial distributional properties beyond the power spectrum in a manner
different from (and we argue is more easily interpreted than) the conventional multipoint hierarchy. We identify
some threads of modern large-scale inference methodology that will presumably yield detections in new wider and
deeper surveys.
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1. Introduction: Perspective and Assumptions

This paper takes the background established by two
previous publications on the multiscale structure of the
universe (Way et al. 2011, 2015, Papers I and II, respectively)
in a different direction: direct 3D Fourier analysis of the
galaxy positions. The goal is to maximize three things:
simplicity, extraction of information from the data, and
independence from assumptions and models. The following
list describes the principles underlying this work. These items
are largely methodological clarifications and not cosmological
assumptions as such. In many cases, our approach differs
from previous works, references to which are deferred to the
next section.

1. A Limited Cosmological Sample. Testing models against
finite-volume data usually involves consideration of
cosmic variance. To avoid the need to postulate proper-
ties of unobserved data that is inherent in this notion, we
here adopt a viewpoint nicely described (but not
necessarily endorsed) by Peebles (1975, pp. 417):

“One can adopt the view that we have only one
Universe, that we can see only part of it, and
that the analysis ought to be based on that part
alone.”

See Section 5.2 for an approach to cosmic variance using
resampling techniques.

2. Nearly Noise-free Data. For our purposes, the uncertainty
due to observational errors in the SDSS data is essentially
negligible (Section 5). We thus do not follow the
common practice of treating irregularities at small scales
as noise (or as not “topologically persistent”) with
smoothing or other practices that destroy information.

Structure detected on all scales carries significant
information about the universe.

3. Point Distribution, Not a Continuous Field. Galaxies are
often assumed to trace some underlying continuous field
—e.g., an averaged luminous or dark-matter density, or a
probability density for the presence of a galaxy. We
address the spatial distribution of galaxies without
reference to any continuous field, and treat galaxies as
discrete entities whose spatial distribution carries infor-
mation about the structure of the universe. This approach
is consistent with equal treatment of all galaxies—i.e.,
massive galaxies are not given more weight than
light ones.

4. Summary Distributions. There are two qualitatively
different approaches:
(a) detailed representation and interpretation of local

structures
(b) estimation of a few summary, global distributional

parameters
again nicely spelled out in Peebles (1975). In Papers I and II,
we opted for the former. Here we derive several Fourier
analysis functionals with the goal of estimating important
global parameters.

5. Gaussianity. We approach the search for signs of non-
Gaussianity (NG) via the Fourier phase spectrum. A
complete characterization of Gaussianity is contained in
the power spectrum. The information about NG contained
in the phase spectrum is organized in a form that is
relatively easy to interpret (cf. Section 4.2).

6. Absolute Clustering. Most previous analyses have treated
spatial correlations as departures from the mean density
(e.g., Yu & Peebles 1969; Landy & Szalay 1993). In
contrast, density estimates here and in Papers I and II are
absolute. In fact, as discussed in Section 3.2, subtraction
of a reference value, such as the mean, does not make
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sense for a direct Fourier transform as in Equation (4). In
addition, our approach avoids some technical problems
(Jones et al. 2004).5

7. Explicit Deconvolution of the 3D Selection Function.
Using standard Fourier transform methods, we avoid
constructs such as Monte Carlo simulations of “un-
clustered” points within the selected volume. For example,
Feldman et al. (1994, pp. 25) state: “Our approach is to
take the Fourier transform of the real galaxies minus the
transform of a synthetic catalog with the same angular and
radial selection function as the real galaxies but otherwise
without structure.” Perhaps this approach has meaning in
the context of a model based on underlying randomness,
but is not a prescription for deconvolving the selection
function. Further, in consonance with items 1 and 2, we
avoid interpreting such variance as a measure of
uncertainty. Although various deconvolution methods have
been employed for both CMB and galaxy data, we believe
the direct 3D Fourier deconvolution described in
Section 3.5 is novel.

8. Use All the Data. In order to maximize the information
gleaned from the analysis, where possible we use all of
the data. For example, we do not discard galaxies near the
edges of the data space in order to simplify the shape of
the window function (Section 3.3), but the next item
indicates one case where we feel a cut on the data is
justified.

9. Volume-limited Samples. Throughout, as in Papers I
and II, we use well-defined volume-limited samples. This
minor violation of the previous item is made for the good
reason that it avoids bias corrections necessary for a
magnitude-limited sample.

10. Omitted Effects. Due to the small radial depth of our
relatively shallow volume-limited sample (redshift�0.12)
and our interest in the simplest analysis, we have neglected
many processes known to affect the data, including
evolution and nonlinear cosmological terms, peculiar
velocities, gravitational lensing, and local and non-local
GR terms depending on Bardeen potentials and their
temporal derivatives (Raccanelli et al. 2016, especially
Figure1).

The few of these viewpoints that are nonstandard are not meant as
criticisms of other approaches. The goal here is limited to
investigating the simplest possible way to extract spatial frequency
information, largely avoiding model-specific assumptions and
concentrating more on the phase spectrum and less on the power
spectrum.

The organization of the rest of this paper is as follows.
Following a brief survey of prior works in Section 2, Section 3
provides explicit details of two different ways to compute
Fourier transforms—a direct unbinned approach and a fast
Fourier transform (FFT) of galaxy coordinates in 3D spatial
bins—and a simple procedure for deconvolution of the
sampling window from the estimated galaxy transform.

Section 4 gives examples of applications of the complex 3D
Fourier transform, briefly dwelling on the amplitude (power)
spectrum but focusing on the phase spectrum as a measure of
Gaussianity. Section 5 briefly addresses uncertainties. The
epilogue in Section 6 provides a summary and pointers to three
statistical techniques that should be useful in future research.
Two appendices provide a check of the analysis and some
MatLab code.

2. Previous Work

A small part of the relevant earlier literature can be found in
Limber (1953), Gunn (1965), Yu & Peebles (1969), Peebles
(1975), and Peebles & Hauser (1973, 1974). The cosmological
importance of power spectrum analysis has recently been
extensively discussed in Carron et al. (2015), especially in the
context of galaxy redshift surveys (e.g., Vogeley & Szalay 1996,
Section1.1). Fourier phases have been studied in connection with
cosmic microwave background data (see, e.g., Ferreira & Jagueijo
1997; Chiang et al. 2003, 2004; Nadelsky et al. 2003, 2004, 2005;
Chiang & Naselsky 2007; Kovács et al. 2013b). More recently,
phase analysis was beginning to be applied to galaxy redshift data
(Hikage et al. 2005; Matsubara 2007; Eggemeier et al. 2015;
Wolstenhulme et al. 2015).
Some relevant works on NG, much in the context of CMB but

with application to large-scale—or more appropriately multiscale
—structure include Hikage et al. (2006), who provide a general
overview; Sefusatti & Komatsu (2007), who discuss the bi-
spectrum for high redshift galaxies; Hikage et al. (2008), who
discuss the application of Minkowski functionals; Sánchez &
Cole (2008), who estimate the power spectrum using Fourier
methods based on work by Feldman et al. (1994); Martínez-
González (2009) and Lentati et al. (2014) for pulsar timing
studies; and also Kovács et al. (2013b). See Coles et al. (2005)
for application of Fourier methods to the 2dF galaxy redshift
survey, employing the Fourier-based method of Percival et al.
(2004), a generalization of the minimum variance method of
Feldman et al. (1994). Coles et al. (2005) derive power spectra
and compare them to several empirical (e.g., Tegmark et al.
2002) and theoretical results. See Kitaura (2010) for a derivation
of some statistics relevant to NG in galaxy clustering. Other
works on NG can be found in Coles & Chiang (2000), Rocha
et al. (2001), Watts et al. (2003), and Tegmark et al. (2004).
Efstathiou & Moody (2001) describe a method of recovering

the three-dimensional power spectrum from measurements of
the angular correlation function applied to the APM galaxy
survey—one of the first large surveys using automatic plate
measuring methods. See also Querre et al. (2002) for a
discussion of the galaxy distribution using multiscale methods
in general, and 3D implementations of the á trous algorithm,
and the ridgelet and beamlet transforms in particular. Percival
et al. (2004, hereafter PVP) studied luminosity-dependent
galaxy clustering with spherically averaged Fourier analysis.
Coles et al. (2005) applied the Fourier-based method of PVP to
the 2dF galaxy redshift survey. This approach in turn is a
generalization of the minimum variance method of Feldman
et al. (1994). See recent papers (Doré et al. 2015; Slepian &
Eisenstein 2015a, 2015b, 2016) for an estimation of three-point
correlation functions and their application to problems in dark-
matter cosmology. Alam et al. (2016) give a recent summary of
relevant literature and extensive analysis of data from the
SDSS-III Baryon Oscillation Spectroscopic Survey.

5 A related comment applies to the standard way of estimating correlation
functions (Peebles 1975). A formula for the probability that a galaxy is found
within the volume element dV at a distance r from a randomly chosen galaxy,
δP=n [1 + ξ(r)] dV, with n the mean density, is conventionally used to define
the autocorrelation function ξ(r) as a measure of clustering. This definition
yields a quantity explicitly in excess (or deficit) of the mean. Its normalization,
ò x = -( ))r dV

n

1 , is negative due to the hold-one-out procedure, and is very
small due to the referencing to the mean. This can be awkward for fitting
positive-only models of ξ(r) (e.g., power laws) to cosmological data.
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3. 3D Fourier Transforms

The subsections below describe the procedures used to
compute the complex Fourier transform of the galaxy distribu-
tion—first reviewing the data and then outlining direct and
binned transforms of the galaxy positions and the corresponding
data window, concluding with a Fourier-based procedure to
deconvolve the effect of this window function.

3.1. The Data

Below we Fourier analyze the SDSS DR7 data described in
Papers I and II, namely the NASA/Ames Research Center
SDSS Value Added Galaxy Catalog (AMES-VAGC). Data
Release 7 of the SDSS was augmented using the New York
University Value Added Catalog (see Appendix A of Paper II
for details and references). As a reminder, redshift ζ, R.A. α,
and decl. δ were converted to rectangular Cartesian coordinates
with the formulas

z d a
z d a
z d

=
=
=

( ) ( )
( ) ( )
( ) ( )

x
y
z

cos cos
cos sin
sin , 1

and no cosmological corrections were made in view of the low-
redshift nature of the sample. The one small difference is that
since the analysis here does not involve Voronoi tessellation,
the omission of the small sample of galaxies near the edges of
the data space (Paper I, Section5.2.2) is unnecessary. This
slightly increases the sample size. More significant is the
resulting improved definition of the edges of the data space, of
importance for the transform of the data window described in
Section 3.3.

3.2. Fourier Transform of the Galaxy Distribution

Let us start with the Fourier transform of the data, keeping an
eye toward preserving both directional and phase information.
The Fourier transform of any function f (x) defined over a 3D
volume V in x=(x, y, z)-space is, without specifying a
normalization,

ò= -( ) ( ) ( )·k x xF f e d , 2k x
f

V

i

where k is the spatial frequency vector k=(kx, ky, kz) chosen
so that the linear scale (one full period of the sinusoid)
corresponding to k is 2π/k.

Following Yu & Peebles (1969), Peebles (1975), and Peebles
& Hauser (1973, 1974), we account for the discreteness of the
data by taking f (x) in Equation (2) as the sum of point locator
functions, i.e., delta functions at the positions xn of each of the
galaxies:

åd= -
=

( ) ( ) ( )x x xf , 3
n

N

n
1

where the sum is over the N galaxies included in the volume-
limited sample. (See also Bardeen et al. (1986) for a similar
representation in terms of peaks—local 3D maxima—of
density.) The resulting galaxy Fourier transform is simply

ò å åd= - =
=

-

=

-( ) ( ) ( )· ·k x x xF e d e , 4k x k x

V n

N

n
i

n

N
i

1 1

n

where the dot is the vector scalar product. In component
notation,

å=
=

- + +( ) ( )( )F k k k e, , . 5x y z
n

N
i k x k y k z

1

x n y n z n

To examine the behavior of the transform for small frequencies,
after defining the galaxy centroid as

åá ñ º
=

( )xx
N

1
, 6

n

N

n
1

a simple computation gives

~ - á ñ + á ñ +

( ) [ · ( · ) ] ( )k k x k xF N i1

1

2
... . 7

k
n

0

2

Thus, the normalization is F(0)=N, and one sees that the
transform is smooth at k=0. With this form of the Fourier
transform, there is no analogue for subtracting the mean value
to bring the power spectrum to zero at zero frequency. The
nearest thing to this procedure is to remove the linear term in
Equations (7) by referring the coordinates to the centroid; but
the higher-order terms are still smooth at the origin.
The formula in Equation (5) is easily evaluated for any galaxy

sample, in time of order ´N Nk
3, i.e., the product of the number

of galaxies and the total number of frequencies (Nk is the number
of frequencies in a single coordinate direction). It treats all
galaxies as identical points. Through its response to the crowding
together of galaxies in various regions, it is sensitive to the local
number density of galaxies, but by choice not to mass density.
Figure 1 displays the 3D structure of the Fourier power spectrum

= =( ) ( ) ∣ ( )∣kP P k k k F k k k, , , ,x y z x y z
2. Since the definition in

Equation (4) does not include a factor 1/V, powers throughout
are dimensionless and normalized to P(0, 0, 0)=N2. Conversion
to physical units (per unit volume) is easily made from the value
9.47×107 Mpc3 for the volume of the convex hull of the data
sample. The higher frequencies roughly speaking form an
isotropic but somewhat irregular shell around the inner core
(the black shape at the center of the plot) of low-frequency or
large-scale structure. Spectral quantities derived using
Equation (5) will be called direct, as opposed to binned for
those from the methods in Section 3.4. Appendix A describes the
use of the inverse Fourier transform to check how well
Equation (5) represents the raw data.

3.3. Fourier Transform of the Data Window

The data from a survey of a given volume V can be thought
of as the product of the actual 3D spatial distribution of
galaxies multiplied by a 3D spatial window, or selection
function, given by:

= Î( )
( )

x xS V1 for
0 otherwise. 8

This window can be defined by the 2D footprint of the survey
on the sky combined with the 1D redshift selection function.
Here we use the corresponding volume in terms of rectangular
coordinates x, y, z. This approach ignores the variation of the
redshift selection over the relatively narrow redshift range of
our data. Of course, any survey has this and additional
selections, not considered here.

3
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Using the well-known convolution theorem (Bracewell 1999),
the Fourier transformation of this product relation yields the fact
that the Fourier transform of the survey data, Equation (4), is the
transform of the actual distribution convolved with the Fourier
window function, defined as the transform of the selection
function:

ò ò= =
-¥

¥
- -( ) ( ) ( )· ·k x x xF S e d e d . 9k x k xi

V

i
window

In order to compute this integral exactly, one could discard
some of the data and redefine V as a simplified subset of the
actual data space, such as a figure with planar boundaries. Here
we wish to compute Fwindow(k), where V is the actual 3D data
space of the redshift survey. Note that the linearity of
Equation (2) means that the Fourier transform can be evaluated
as a sum of transforms over the elements of any partition of V;
i.e., for any f,

òå= -( ) ( ) ( )·k x xF f e d , 10k x
f

n V

i

n

where {Vn, n=1, 2, ...} is a set of disjoint volumes, the union
of which is the full observation space V. It is convenient here to
partition V into a set of rectangular parallelepipeds, or cuboids.
The contribution of a cuboid C, i.e., the volume defined by

     =
=

( )
( )

xS x x x y y y z z z1 ; ;

0 otherwise, 11
a b a b a b

can be found exactly as a function of its bounding xyz
coordinates xa, xb, etc. The Fourier transform of such a cuboid
is just

ò= -( ) ( )·k xF e d 12k x
C

C

i

ò ò ò= - - - ( )e dx e dy e dz 13
x

x
ik x

y

y
ik y

z

z
ik z

a

b
x

a

b
y

a

b
z

=
-

-
-

-
-

-

- - - - - -⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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e e

ik

e e

ik

e e

ik
.

14

ik x ik x

x

ik y ik y

y

ik z ik z

z

x b x a y b y a z b z a

Now let us approximate the data space with a refined
partition as follows. Construct a grid of equal squares covering
the projection of V onto the x–y plane, with a fine spacing
D = - = -x x y yb a b a. To define a cuboid, za and zb remain
to be specified. We take these as the z coordinates at which a
vertical line through the center of the square and parallel to the
z-axis intersects the convex hull of the full set of galaxy
positions. It is easy to see that each such line intersects the
convex hull in either two or zero facets; in the latter case, the
cuboid is entirely outside the data set and is ignored.
Figure 2 shows relatively crude partitions of the actual data

space with the long axes of the cuboids in two different
directions. If the transverse dimensions of the cuboids are
sufficiently small, the partition approaches an exact coverage of
the overall convex hull and the resulting window Fourier
transform is independent of the cuboid orientation. For the grid

Figure 1. Isosurface plot of the Fourier power spectrum. The x, y, and z coordinates are proportional to the base-10 log of spatial frequency, but labeled with the value
of k in units of h Mpc-1. The powers, in order of decreasing opacity of the isosurface and expressed as fractions of the zero-frequency power N2, are 0.8357, 0.7612,
0.7450, and 0.7288. These levels were chosen to make this display informative.
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size equal to .0001 redshift units (0.416 Mpc), the sum of the
volumes of the cuboids matches the exact volume of the
convex hull to one part in 108, which is not surprising since this
computation is equivalent to the elementary integral calculus
procedure for computing the volume of the convex hull.
Putting all of this together, the result will be used to correct the
galaxy Fourier transform for the effects of the data window—
cf. Section 3.5. Appendix A describes a way to check how well
the transform approximates the actual selection function, and
Appendix B describes the MatLab code implementing the
Fourier transforms, including the deconvolution of the window
transform, with a link to the code and data files in
electronic form.

3.4. FFT of the Binned Galaxy Distribution

Another way to estimate the Fourier transform is to construct
a 3D histogram of the galaxy positions in a spatial grid of 3D
bins, or voxels. To use the FFT, each voxel must be a cube with
the same small size Δx=Δy=Δz. This procedure discards
some information, due to the rounding of galaxy coordinates
and placing some close pairs in the same voxel. Table 1
summarizes the statistics for three grid sizes. Columns 5–8,
giving the maximum number of galaxies in any one voxel and
the fractions with 0, 1, and 2 or more galaxies, are useful in
assessing the information loss in this binning. Ideally, the
fraction with more than one galaxy would be zero, leaving
coordinate truncation as the only error. The computation with

512 bins in each coordinate—case (c), with 135,005,697 voxels
—seems to be the largest feasible with current personal
computers. As the accuracy of the computation increases, more
and more voxels are empty, since the number of non-empty
voxels cannot exceed the number of galaxies. The last column
gives the fraction of voxels that are empty because they are
outside the survey volume; these values are large due to the
shape of the survey and because we zero-padded it for good
frequency resolution.
The Fourier transform of the window is simply that of this

bin array with unity inside the sample volume and zero outside;
cf. Equation (8). Actually, instead of the convex hull of the
filled bins, for each dimension we assigned a unit value to each
bin between the minimum and the maximum indices of bins
containing galaxies in all of the corresponding x-columns, y-
columns, and z-columns. In practice, this is essentially the same
as the convex hull. The inverse transform of the Fourier
transform computed this way is guaranteed to exactly
reproduce the input counts-in-voxels, so there is no point in
numerically demonstrating the accuracy of this representation
as in Appendix A for the direct transform.

3.5. Deconvolution of the Data Window

We approach correcting for the selection function (or window)
in a straightforward way. Functions of a 3D coordinate vector x

Figure 2. Two sample partitions of the convex hull of the SDSS data into cuboids with transverse size 0.01 redshift units. The long axes of the cuboids are parallel to
the z-axis and y-axis. These crude partitions are for illustration only; those used in the analysis are much finer.

Table 1
Statistics for the Binned Fourier Transform

Case Nbins
a Nvox

b Δc Max nd Fraction n=0e Fraction n=1f Fraction n>1g Fraction Outsideh

(a) 128 2.1 M 6.8 32 0.9693 .016519 .014221 0.8923
(b) 256 16.8 M 3.4 11 0.9938 .004882 .001300 0.9347
(c) 512 134.2 M 1.7 5 0.9991 .000869 .000062 0.9347

Notes.
a Number of bins per dimension.
b Number of voxels (millions).
c Linear dimension of voxels (Mpc).
d Maximum number of galaxies in a voxel.
e Fraction of empty voxels.
f Fraction of voxels containing one galaxy.
g Fraction of voxels containing more than one galaxy.
h Fraction of voxels outside the convex hull of the data.

5

The Astrophysical Journal, 839:40 (25pp), 2017 April 10 Scargle, Way, & Gazis



related multiplicatively in the manner

=( ) ( ) ( ) ( )x x xq q q 15obs true window

have spatial Fourier transforms related by

= *( ) ( ) ( ) ( )k k kQ Q Q , 16obs true window

where Qobs(k) is the Fourier transform of qobs(x), etc., and ∗
means a 3D convolution on the vector k. There are many
deconvolution techniques for finding qtrue(k), thus correcting
for the window function, but here the simple expediency of
Fourier transforming Equation (16) yields

= -( ) [ ( )]
[ ( )]

( )k
k

k
q F

F Q

F Q
, 17true

1 obs

window

where F and F−1 are the forward and inverse Fourier
transforms. In all numerical results presented here, the MatLab
(©MathWorks) multidimensional functions fftn and ifftn
were used for both the direct and binned cases. This
deconvolution method is sometimes avoided because of
worries about noise amplification and/or issues when the
denominator in Equation (17) is zero (or small in absolute
value), but here these issues do not cause any serious problems.

4. Characterizing the Spatial Distribution of Galaxies

We are now ready to use the above Fourier transform
methods for the global characterization of the galaxy distribu-
tion. It is useful to compare results from the binned and
unbinned Fourier transforms. Neither one is better in all aspects
than the other. Of course, they both have limited spatial
frequency resolution, but their different data representations
implement distinct approximations. The binned approach
suffers from information loss associated with the quantization
of the galaxy coordinates.

4.1. Fourier Power Spectrum

Figure 3 shows the deconvolved power spectra for both
methods: direct as in Sections 3.2 and 3.3 and binned as in
Section 3.4. The powers projected in three orthogonal directions,
∣ ( )∣F k , 0, 0x

2, ∣ ( )∣F k0, , 0y
2, and ∣ ( )∣F k0, 0, z

2, are distin-
guished by lines of different widths. These three power spectra
share the same zero-frequency value, namely =∣ ( )∣F N0, 0, 0 2 2,
and we have normalized the plotted curves to unity at zero spatial
frequency—which of course is off-scale on these log–log plots.
Comparison of the power spectra in different directions provides a
simple measure of isotropy. The spectra at lower spatial
frequencies approximate the power-law dependence characteristic
of red noise (Aschwanden 2011). The straight (dashed) lines in
this figure are least-squares fits to the mean of the three power
spectrum curves in the interval below the cutoff at log k=−1.2
mentioned in the caption; the log–log slopes indicated there are
not far from the common red noise value of ≈−2. The scatter
reflecting high variability at small scales motivates the vertical
shifts in the higher frequency part of these plots, at the same cutoff
used for the power-law fits.
Figure 4 plots our power spectra against those from some

other authors. In interpreting the figure and assessing this
comparison, the reader should bear in mind both the simplicity
of our method—using the unadorned Fourier basis and
avoiding the variety of known weighting schemes, corrections,
and assumptions—and the differences in the data used. This
figure compares the average of our three x, y, and z projected
spectra in Figure 3 with results from the detailed analysis of
very similar data by Tegmark et al. (2004) and of a much larger
sample by Percival et al. (2007).
Using a flux-limited sample instead of our more easily

interpreted volume-limited sample, the first authors address the
selection function, redshift-space distortions, bias effects, and
other systematic errors using a Pseudo-Karhunen–Loeve
expansion (Tegmark et al. 2004). Figure 4 includes the data

Figure 3. Power spectra from deconvolved direct (left) and binned (right) Fourier transforms: x, y, and z powers in solid lines of increasing thickness. As in Figure 1,
the dimensionless power is shown divided by its zero-frequency value N2 to yield P(0)=1. Above a log k of −1.2 (spatial frequencies > 0.063), the powers are
multiplied by 3000, 10, and 0.1, respectively, for clarity. The dashed straight lines are the power-law fits to the low-frequency data (averaged over the three directions)
with slopes −2.8 and −2.3, respectively.
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from the first two columns of their Table2 in the form of open
circles, without showing their rather large horizontal and
vertical error bars. They refer to this as the real-space galaxy–
galaxy power spectrum Pgg in units of (h−1 Mpc)3, and
“recommend using column 2 for basic analysis.” Like ours, this
estimate treats the galaxies as equal points and accordingly is
not corrected for bias, justified because bias appears to be
largely luminosity and scale independent (their Figures 28 and
29, renormalizing to the linear ΛCDM model). It is noteworthy
that their power spectra with and without correction for the
Fingers of God (FOG)—their columns 2 and 3, respectively—
would be indistinguishable had we plotted both. Even though
the effect of FOGs seems insignificant here, redshift-space
distortions should be addressed in any serious scientific
applications. Analysis of a much larger redshift survey,
extending to much larger redshifts than our study, by Alam
et al. (2016) includes significant redshift-space distortion
corrections. The results of a similarly detailed analysis by

Percival et al. (2007) of a sample including both SDSS main
galaxies and luminous red galaxies (LRGs) out to much larger
redshifts (z∼ 0.5) than our sample are plotted as plus signs.
First compare the curves for the direct and binned transforms

(solid and dotted–dashed lines). While the values at some
frequencies, especially the lower ones, differ by nearly an order
of magnitude, the rough similarity of the slopes and values at
higher frequencies demonstrates that these two methods are
crudely consistent with each other. The similarity of some of
the finer details in the two representations also support the
notion that the effective spatial resolution is relatively good
(probably better than that corresponding to Tegmark et al.ʼs
horizontal error bars, not shown here). The differences between
our spectra and those of the others, especially in the form of a
vertical offset above about k≈.05, are not surprising in view
of the differences in the data and methods used.
Nominally, the plotted points in our power spectra are

independent of each other. Essentially, no significant

Figure 4. Power spectrum comparison. Solid line: power from average direct Fourier transform (Equation (5)). Dotted–dashed line: average binned FFT. Dashed line:
average of the direct powers at all of the frequencies falling in a given 1D spherical volume in k space. Our power spectra are renormalized to units of (h−1 Mpc)3 for
comparison with the other authors, and corrected for the selection window (cf. Section 3.5). The spatial frequencies and powers from columns 1 and 2 of Table2 in
Tegmark et al. (2004) are plotted as plus signs (+), and those of Percival et al. (2007) as small dots (but with the lowest six frequencies emphasized by the
circumscribed circles).
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measurement errors propagate into this plot at any spatial
frequency. The only large discrepancy in the plot is between
Percival et al.ʼs and our powers at the longest scales,
understandable in terms of the difference of the data samples
and systematic effects at large scales. In the power spectra in
Tegmark et al. (2004) and ours, not surprisingly there is no
evidence for baryon acoustic oscillation features. These
important features do begin to appear at around k=0.7
Mpc−1 with the larger sample and the inclusion of the SDSS
LRGs in Percival et al. (2007).

A further avenue of investigation would invoke surrogate
redshift surveys, such as galaxy catalogs derived from N-body
simulations. The idea would be to compare simulated against
actual distributions of variously grouped power or phase-
spectrum quantities. Using ensembles of synthetic catalogs
to enable variance analysis is probably a fruitful path to reliable
scientific conclusions. Although such a study is beyond the
scope of this paper, we have carried out a simple comparison
against a single catalog, the Millennium Simulation (MS) of
Springel et al. (2005). This N-body simulation (with
N= 21603= 1.0078× 1010) contains data used to study multi-
scale structure in Papers I and II. The xyz positions of simulated
galaxies were treated in the same way as the SDSS data, yielding
a volume-limited sample and without discarding galaxies lying
close to the edges of the data space. This MS analysis is
described in Section 5.

4.2. Gaussianity

In modern cosmology it is often posited that the initial
conditions of the universe consisted of a random density
distribution described as a Gaussian random field. It is not
completely clear how the character of such an initial
distribution may have evolved gravitationally, or how matter-
to-galaxy biasing, integrated Sachs–Wolfe (ISW) effects, and
gravitational lensing may complicate conclusions based
directly on the galaxy distribution (Coles 2000). Hence, the
interpretation of detected NG in the distribution of low-redshift
galaxies would not be straightforward. We find no NG
signatures here, but if significant detections were to be made,
e.g., in future large redshift surveys, the resulting parameters
would be useful as additional constraints on precise cosmolo-
gical evolution models. Hence we now describe some aspects
of direct analysis of the Fourier phase spectrum.

Although Gaussian processes are well-understood mathema-
tically, the elusive nature of NG processes has complicated and
discouraged exploration of searches for their signatures. The
infinite number of ways a process can depart from Gaussianity
leads to a plethora of potential NG metrics, only a handful of
which have been pursued. Here we describe a relatively
straightforward class of NG tests based on metrics of
Gaussianity applied to the complex Fourier data cube. The
idea centers around metrics of how identically and indepen-
dently (IID) the Fourier phases at different spatial frequencies
are distributed.

Much previous work centers on parametric tests, valid only in
the context of hypothetical physical or mathematical models and
thus far short of general characterization of NG. Analyses using
higher-order spectra and correlation functions, or function bases
such as Karhunen–Loeve expansions (Vogeley & Szalay 1996;
Tegmark et al. 2004) or harmonic oscillator eigenfunction
expansions (Rocha et al. 2001), are closer to the spirit of non-

parametric analysis with their greater generality and flexibility.
On the other hand, these methods are simply ad hoc ways to
project an infinite dimensional function space into lower
dimensions for modeling convenience. By contrast, the
approaches of Rocha et al. (2001) and Contaldi et al. (2000)
employ Bayesian frameworks that alleviate some of this ad hoc
character. But the conclusions are still dependent on the
correctness of a hypothetical model (e.g., the quantum mechan-
ical harmonic oscillator in Rocha et al. 2001). More recently,
Kovács et al. (2013a) defined generalized phases and applied this
concept to characterize the coherence between WMAP and
Planck CMB maps.
In the CMB context, various authors have made suggestions

for the two aspects of this problem, namely, identification of (a)
phase subsets that are computationally practical but do not
discard too much information, and (b) NG metrics for these sets
(Chiang et al. 2003, 2004; Nadelsky et al. 2005; Chiang &
Naselsky 2007). For one example, Chiang et al. (2004) discuss
a number of general problems and propose an innovative
procedure using return maps. This can be thought of as a way
to quantitatively characterize joint distributions (cf. Scar-
gle 1990, e.g.,). In another example, Chiang & Naselsky
(2007) propose ring-like sets in spatial frequency space. More
recently, several authors have proposed phase analysis based
on three-point correlation functions of the Fourier transform of
a whitened version of the density field (Eggemeier et al. 2015;
Wolstenhulme et al. 2015).
We utilize the Fourier transform as a convenient setting for

quantitative characterization of the Gaussianity of the spatial
distribution of galaxies. Keep in mind that the histograms
constructed in pursuing this goal are simply distributions from
the one data sample on hand, not probability distributions with
respect to some stochastic ensemble. Several considerations
motivate our focus on phases.

(1) The phase spectrum captures much of the information on
NG present in the data.

(2) Phases of Gaussian data are identically and independently
distributed (IID; see, e.g., Nadelsky et al. 2005). Measures
of dependency in the phase distribution are consequently
measures of NG.

(3) The oft used bi-spectrum and higher-order spectra and
correlation functions have many problems.

(4) In most practical, largely non-astronomical, situations the
Fourier phase information in 2D images is much more
important than the amplitude information (Oppenheim &
Lim 1981; Chiang & Coles 2000; Coles 2000). See also
Mannell (1990) for a related discussion of phase in
speech intelligibility.

In addition, see comments in Section 6 regarding related
statistical methods to be pursued in future work.
Point number 3 deserves more explanation. Several authors

(e.g., Ferreira & Jagueijo 1997; Carron 2011; Carron &
Neyrinck 2012; Carron & Szapudi 2015) have disclosed a
variety of fundamental problems with the multipoint correlation
function hierarchy, including large computational complexity
that grows rapidly with order, information mixing among the
orders, and the fact that even when all orders are included, only
incomplete information for a log-normal density field (Carron &
Neyrinck 2012) and only a tiny dramatically decaying fraction of
the total information content of large fluctuations (Carron 2011)
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are captured. A direct Fourier transform avoids to a large degree
all of these problems: computational complexity is relatively
small (N× the number of spatial frequencies), the amplitudes at
different spatial frequencies are independent of each other,
convergence is well-understood, and the invertibility of the
Fourier transform (Appendix A) ensures that the combination of
the power and phase spectra capture all of the information in the
data. Most importantly, simple data cubes cleanly display phase
as an explicit function of k. Furthermore, there are no special
problems like those with generating representative sets of
triangles and avoiding oddly shaped ones, as for three-point
estimators.

Coles (2000) gives a clear discussion of the background for
these points, to which we add only a few remarks. Of course,
the basic notion is that the Fourier transform appraises structure
as a function of scale. The discrete estimate is a finite sampling
of a potentially infinite number of degrees of freedom. But the
Nyquist–Shannon sampling theorem guarantees that it captures
all the information contained in the data, limited only by the
data resolution. Since the inverse Fourier transform exactly
recovers the raw data, it is clear that the (frequency-dependent)
amplitudes and phases contain complementary information,
together yielding a complete description of the data. The
Fourier power spectrum completely characterizes the Gaussian
properties of the data; although NG information can appear in
both amplitude and phase spectra, in many situations the latter
dominates.

Driven by these comments, our basic approach is to study
phase distributions for non-uniformity. Perhaps the simplest
possible approach is to examine the overall distribution of
phases without regard to spatial frequency. Any structure in
this distribution would suggest the presence of underlying NG.

Figure 5 shows simple histograms of all 16 million-plus
phases for the four cases, with 256+1 spatial frequencies in
all three dimensions. If these plots were scaled to include the
zero of the ordinate, the fluctuations would be invisible. There
is no evidence here for any departure from uniformity, but
these overall distributions are almost certainly insensitive to
NG because they do not take account of frequency relation-
ships, which are discussed in the next section.
It is perhaps notable that even the distributions for the phases

uncorrected for the data window (the first and third panels) do
not reveal perceptible nonuniformity. This somewhat surprising
result probably reflects the fact that the data window truncates
the Fourier components but does not change their phases.

4.2.1. Distributions of Phases Grouped by Spatial Frequency

A more refined approach is to aggregate phases into two or
more sets and test whether the distributions in them are
identical, as they should be in the Gaussian case. The model-
independent and non-parametric way the phase spectrum neatly
lays out the relevant information in a 3D data cube facilitates
such segmented analysis. Accordingly, we use the following
procedure to study NG.

(a) Compute the complex 3D Fourier transform A(k) e if( k).
(b) From (a), compute the 3D data cube f ( )k k k, ,x y z .
(c) Specify a collection of subsets of (b) to be tested.
(d) Evaluate differences of the nearest-mode phases within

each member of collection (c).
(e) Select an IID metric and compute it for each of the

differenced arrays in (d).
(f) Assess the statistical significance of the results of the

collection of tests (e).

Figure 5. Distributions of phases for the four cases (direct as in Equation (4) and simple FFT of binned data as in Section 3.4, both with and without correction for the
window function, as labeled). The horizontal axis is the phase in radians. The vertical axis is the 129 bin histogram population of phases from the 128×128×128
3D phase cube, with the horizontal dotted line at the expected rate of 1283/2π=333,772.1 counts per radian. The ranges of these plots are 12,000 in the same units.
Poisson count error bars for a typical bin are shown in the upper left corner of each plot.
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The first two steps are straightforward from the discussion in
Section 3. Step (c) addresses the need to identify sets of
frequencies related to each other in some germane way. For
example, phases at nearby frequencies would presumably show
dependencies when those at well-separated frequencies might
not. From among the many possible ways to take advantage of
the organized way frequencies are arranged in a 3D phase-data
cube, we adopt the following. Let Nk be the size of the Fourier
transform in each of its three dimensions. For each of the Nk

2

pairs (ky, kz), for the array consisting of the corresponding Nk

phase values as a function of kx—we call this array an x-beam
—compute a metric or test statistic Tx, and similarly for the y-
beams and z-beams.

Step (d) implements suggestions in Chiang & Coles (2000),
Coles (2000), Coles & Chiang (2000, 2001), and Watts et al.
(2003), emphasizing the potential effectiveness of studying the
differences between phases at adjacent spatial frequency
modes, as opposed to the phases themselves. Consider one-
dimensional first differences of the form

f f= -+ ( )D , 18k k k1

where k is a spatial frequency index, here taken in one of the
three cardinal directions—x, y, or z. The following analysis was
done with undifferenced, first-differenced, and higher-order-
differenced beams, the latter proving useful in unrelated
sequential analysis problems (unpublished). But undifferenced
or higher-order differences gave less clean results than first
differences, so here we report only these results.

As noted by Watts et al. (2003), if the phases are IID on the
circle, then so are their differences. This requires that the phase
differences that lie outside (−π, π) first be adjusted for
“wraparound” as follows:

p p
p p
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This procedure is different from standard phase unwrapping
based on changing absolute jumps greater than π to their 2π
complement (e.g., for the MatLab function unwrap, © the
MathWorks Inc).

Step (e) amounts to the generation of a collection of
estimates of an NG metric of a beam in the form

f= =
=

( ) ( )
( )

F k k T k k k k N

k N

, , , 1, 2 ,..., ;

1, 2 ,... , 20
x y z x x y z y k

z k

where the subscript just indicates which variable T operates on.
At this point a huge range of possible definitions of T opens up.
There is no unique or universally best metric, and undoubtedly
different metrics are suitable for different forms of NG. Item (2)
in Section 4.2.1 motivates the use of a test statistic for the null
hypothesis of IID phases. The formal definition of indepen-
dence (joint distribution equals the product of individual
distributions) is difficult to turn into a practical IID test (e.g.,
Scargle 1981; Coles 2000; Hyvärinen et al. 2001; and Section 6
below). Variance is a simple and easily interpretable statistic
that might be sensitive to some types of NG. The Planck
Collaboration studied both skewness and kurtosis (Ade
et al. 2014)—measures of the asymmetry of a distribution
and of the relative importance of the center versus tails. Jin
et al. (2005), based on a detailed study of various methods of

CMB NG detection, concluded that analysis of the kurtosis of
wavelet coefficients is best. Based on an idea in Polygiannakis
& Moussas (1995), Chiang & Coles (2000) proposed the use of
phase entropy for NG studies. Hyvärinen et al. (2001) claimed
the optimality of entropy as an NG metric, but in practice use
kurtosis as an approximation because of pitfalls in entropy
estimation. Skewness did not seem to add any NG detection
efficiency compared to kurtosis, so here we report studies of
variance, kurtosis, and entropy. In every case these metrics
were applied to first differences between phases at adjacent
frequencies.

4.2.2. NG Metric Maps: Control Samples

Consider now the analysis of synthetic NG-free data for a
sequence of three increasingly realistic sampling schemes,
followed by analysis of the actual data. Maps of the beam
metrics defined in Equation (20) are presented as images with
grayscales of the metric defined along one dimension, as a
function of the two perpendicular dimensions in the phase-data
cube. Within each of the following figures, the three panels
present the analysis of the same data for beams in the x, y, and z
directions. When the data fall within the irregularly shaped
volume, we used different spatial frequency arrays in the three
directions. That is, the frequencies are integer multiples of a
fundamental frequency defined by

p
=( ) ( )

( )
k n

L

2
, 21

n
0

where L(n) is the range of the data in coordinate direction n.
This choice gives slightly better deconvolutions. In contrast, for
convenience the power spectra presented above in Section 3
refer to the same frequency array in all directions, namely
corresponding to the largest of Lx, Ly, and Lz.
Figure 6 contains maps generated from a single 3D random

phase cube. Such images are used throughout this section to
visually search for possible non-random patterns in the
behavior of NG metrics computed along beams parallel to
the coordinate axes. The rows of panels are for the three
metrics—variance, kurtosis, and phase entropy—applied to the
first differences of the phases adjusted as in Equation (19). The
columns are for the statistics computed along the x, y, and z
directions. These unsmoothed6 plots retain the discrete nature
of the data to allow better appreciation of the randomness of the
distributions. The data cube generating this figure consists of
phases generated directly from an IID random number
generator, not from a Fourier transform, and thus represents
the simplest and most extreme form of the null hypothesis of
IID phases. As expected, there is no apparent structure in any
of these panels.
Figure 7 shows the same type of map as in Figure 6, but here

the phases are derived from the direct Fourier transform in
Equation (5) of random points distributed uniformly within an
xyz cube. This configuration is chosen to diagnose possible
modifications of the phase distribution inherent in the transform
procedure, but with a window that is benign due to the
simplicity of its boundaries. Deconvolution of the data window
is not relevant, due to the simplicity of the boundaries of the

6 Specifically, we used the MatLab flat mode for shading plots, not the
interpolation mode interp.
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data space. As expected, there is no apparent structure in any of
the metrics presented in these panels.

Figure 8 presents the phase analysis for xyz data that are still
synthetic random points but now distributed uniformly within
the convex hull of the actual data. The idea is to diagnose
possible structure in these maps induced by the irregular
boundaries of the data space. The lack of structure here
indicates that such distortion is minimal.

4.2.3. NG Metric Maps: The Galaxy Data

We now turn to the actual galaxy data. Figure 9 presents the
same analysis as carried out for the last of the control cases in
the previous section. The maps in the first, third, and fifth rows,
depicting the statistics for the phase cube not corrected for the
data window, show clear evidence of structure. This is most
evident for the y-beam in the middle row.

The null results with the control samples in the previous
section suggest that this structure is not due to the irregularity
of the data window alone—no non-random structure is evident
in Figure 8—but rather to the combination of both the
multiscaled clustering in the point distribution and the irregular
shape of the data window. In any case, the structure in all three
beams (rows 2, 4, and 6) largely disappears when the data
window has been deconvolved in the spatial frequency domain.
The subtle residual structure is possibly real, but more likely

reflects imperfect deconvolution and is therefore not of
astrophysical interest. This conclusion is reinforced by the
similarity of the morphologies of the uncorrected and residual
structure. Figure 9 is simply illustrative of an approach to a
difficult scientific problem—perhaps useful in future studies
with larger data sets—and is of course not a definitive
comparison of the three statistics nor meant to imply that
kurtosis or variance are superior metrics. Indeed, Hyvärinen

Figure 6. Maps of NG metrics for random phases. All images are from the same 3D 128×128×128 cube of data consisting of IID random numbers uniformly
distributed on (0, 2π). Columns from left to right: beams in the x, y, and z directions. Rows (top to bottom): variance, kurtosis, and phase entropy. Coordinates are
indices in the synthetic random arrays, not functions of spatial frequency as such, so axis labels are suppressed. Here and in subsequent figures, the grayscale bars to
the right of each panel depict the range of the metric.
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et al. (2001) present evidence that entropy may be the optimal
Gaussianity detector (cf. Section 6).

4.2.4. Phase NG due to Density Perturbations

Under gravitational evolution from even a perfectly
Gaussian initial state, the low-redshift galaxy distribution is
likely to have developed some degree of departure from
Gaussianity. Hence, more realistic tests of NG detection
methodologies would involve simulated density perturbations.
This section explores the connection between the distribution
of phase differences and nonlinear clustering (cf. Watts
et al. 2003).

We generated synthetic data consisting of points randomly
distributed in cylinders superimposed on a uniform background
within a unit cube. These structures are not meant to be realistic
models, for example, of cosmic strings or other topological
defects; they are constructed as pseudo-acoustic, transversely
confined waves to introduce some degree of disturbance to the
Fourier phases. Each cylinder contains points drawn randomly

from normal distributions with variance 0.005 in the transverse
directions (x and y) and proportional to 1.1+sin (kz)
longitudinally. Figure 10 depicts these cylinders: one is parallel
to the z-axis, a second is slightly tipped (≈1°), and the third
even more so (≈6°)).
Realizations of this configuration were superimposed on a

dense random background of uniformly distributed points, the
former representing a perturbation of the latter. The columns of
Figure 11 display the distributions of the phase differences in
the three indicated directions:

f f
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From top to bottom, the vertical sequences exhibit the
evolution of the distribution with increasing NG signal
strength. As expected, for weak signals the distributions are
flat, but as the NG signal strength grows, the distributions are
more and more distorted. At the seventh case (out of 12), with

Figure 7. NG statistics maps for phases of the direct Fourier transform of a set of 100,000 xyz points randomly and uniformly distributed within a cubic 3D volume,
using Equation (5). The identities of the panels are as in Figure 6. Although the coordinates are now spatial frequencies, the units are fixed by the arbitrary size of the
cube and therefore are also arbitrary. The 128 frequencies shown here cover the range −f0 to f0 , where f0=2π/L is the fundamental frequency and L is the cube size;
zero frequency is the point at the very center of the plot, as in all subsequent figures.
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10,000 points in each of the three cylinders, the distortion starts
to become clearly significant.

Plotted in the same way as Figures 6–9, the maps in Figure 12
for the pure density signal (only points in the cylinders, no
background) indicate that all three of these statistics reveal a
distinct spatial frequency structure. The maximum frequency in

the Fourier transform gives a minimum scale somewhat larger
than the approximate width of the cylinders; therefore, the plots do
not resolve these structures but reflect the larger scales associated
with distances between the cylinders, etc.
Figure 13 is for the case from the sequence in Figure 11 where

the weakest NG signal is just barely detectable in the difference

Figure 8. Variance (first two rows), kurtosis (middle pair of rows), and phase entropy (last two rows) maps for phases from the Fourier transform of 139,798 xyz points
(the same as the number of galaxies in our SDSS data set) randomly distributed within the convex hull of the actual data. The members of each of these pairs are
without and with data window deconvolution, respectively. The columns are the three projections as in previous figures.
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distribution: 10,000 points in each of the three cylinders, with a
background of 10,000,000 uniformly distributed points. The three
cylinders together thus contain the fraction 0.003 of the
background. The volumes of the cylinders are approximately π

(2× .005)2—smaller than the cube’s volume by a factor of
3×103—so the point density in the cylinders is about three times
the mean density of the background.

This section developed a visual approach to assessing
distributions of statistical parameters in a 3D data cube and
applied it to try to detect departures from the hypothesis of IID
Fourier phases. In such displays, the eye is famously good at
perceiving patterns, but also easily fooled by noise fluctuations.
Given the display issues of pixelization, contrast, range, color,
nonlinear scaling, etc., and the difficulty of the rigorous analysis of

Figure 9. NG maps from the Fourier transform of the actual 139,798 galaxy positions, displayed as in Figure 8. Note that the kurtosis structure is lighter than average,
as opposed to the darker than average features in the other two cases. The centers of the linear scales of 128 frequencies are 0, the adjacent points are ±0.002 Mpc−1,
and the ends of the scale are ±0.128 Mpc−1.
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statistical significance of perceived patterns in this kind of image, a
more objective approach is called for, as addressed in the Epilogue,
Section 6.

5. Uncertainty

An estimate of the uncertainty of a scientific result is an
important part of its value. At issue is how widely the result might
vary on account of the inevitable accidental aspects of the
measurement process. This can be addressed by appraising data
values that could have been obtained but, by happenstance, were
not. Cosmology often sidesteps its one-universe handicap by
measuring uncertainty as the variance over a postulated distribution
function of such hypothetical data. In this section, we discuss
uncertainty in our results using several ideas of what constitutes
such “other data,” in turn considering observational, internal, and
external errors.

5.1. Observational Errors

One often has relatively good information about observational
errors. For example, normal distributions with well-determined
parameters can often be theoretically justified and empirically
tested and calibrated. Assessment of the corresponding uncertainty
is then relatively straightforward. The only sources of observa-
tional error relevant to our analysis are fiber collision effects and
random measurement errors in coordinates and redshifts. Paper II
discussed our procedure for mitigating the former, and we now
demonstrate that the latter are negligible.

We simulated 100 realizations of normally distributed hetero-
scedastic errors (zero mean and standard deviation as given for
each galaxy in the data catalog) added to the actual R.A., decl., and
redshift values. The power spectra for these data sets were carried
out exactly as for the actual data. The relative errors were
computed as the standard deviations of the resulting powers
divided by the corresponding means. Figure 14 plots these results

as functions of spatial frequency. These relative errors are
maximum at the highest spatial frequencies, reaching at most
1%. Overall, the effect of these errors is at least several orders of
magnitude too small to have any relevance. At the same time, this
analysis has ignored systematic errors and the likely possibility of
correlated errors induced by systematics. In principle, a similar
display of phase uncertainty is possible, but difficult to display and
relatively uninformative, so we do not present it.

5.2. Internal Variance

An additional element of uncertainty arises because not only
could the measured galaxy coordinates be different (as discussed in
the previous subsection), but the sample could have actually
contained different galaxies. The view is that the galaxy samples
are randomly drawn from a hypothetical spatial distribution. The
relevant uncertainty is termed internal variance—that is, internal to
the data space in hand. One can think of this process as 3D spatial
shot noise. This term typically refers to random fluctuations in a
measured light curve of a varying astronomical source, but here the
discreteness refers to galaxies instead of photons.
One could compute variances in ensembles of random draws

from a model of this distribution. Shortcomings of any such
model-based approach include loss of information by imperfect
representation of the data, imposition of incorrect information
(e.g., by effective smoothing), and dependence on the correct-
ness of the model form and its parameter values. Furthermore,
this procedure provides no evidence on what the distribution
actually is. Hence, we do not choose to follow this approach.
Happily, random resampling techniques such as bootstrap and

jackknife methods (Efron & Tibshirani 1993) enable straightfor-
ward model-independent estimation of internal variance.7 Like most

Figure 10. Density perturbations inserted into a unit 3D data cube. Coordinates of the endpoints of the three cylinders: #1: (0.5, 0.5, 0.0)–(0.5, 0.50, 1.0); #2: (0.5,
0.7, 0.0)–(0.5, 0.72, 1.0); #3: (0.8, 0.7, 0.0)–(0.9, 0.72, 1.0). Transversely within each cylinder, the points have a normal distribution of standard deviation 0.005. The
longitudinal density modulations correspond to sinusoids 1.1+sin(kz) with k=50, 64 and 45—i.e., approximate periods of 0.12, 0.10, and 0.14 units. For visual
clarity, only 1,000 points per beam are shown; many more were used in the simulations as indicated in the figure captions below.

7 See also Norberg et al. (2009) for a related discussion of internal versus
external errors and comparison of various randomization methods in the
context of clustering statistics.
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purportedly powerful and easily implemented algorithms, these
methods are sometimes misunderstood and used carelessly. Two
common reactions are that they are “useless; they seem to get
something for nothing” or “great; they capture all relevant statistical
information from all kinds of data.” The truth is in between but
closer to the latter. The following discussion shows what
resampling can do here and what it cannot.

The referenced resampling methods use the empirical
distribution function (EDF) to approximate the true distribution
described above. This function, derived directly from the data,
captures all information contained therein about the true

distribution. Galaxy-by-galaxy resampling with either replace-
ment or leave-one-out cleanly implements the bootstrap or
jackknife principle, respectively. Resampling has the advantages
that it relies on only the data measured, needs no additional data,
and makes no assumptions other than that the empirical
distribution is a good approximation of the actual one.
The jackknife method uses a set of samples, each consisting

of the full data set with one point at random removed. The
bootstrap method seeks the approximation mentioned above
with random draws from the EDF, defined to be the set of 3D
coordinates {x1, x2,..., xN}, each assigned the probability

N

1 ,

Figure 11. Normalized distributions of the nearest mode phase differences for random points in a 3D data cube with various numbers of points drawn from the
cylindrical configuration of Figure 10. The 12 thin lines represent the distribution for the following numbers of points in each cylinder: 10, 32, 100, 317, 1000, 3163,
10,000, 31,623, 100,000, 316,228, 1,000,000, and 3,162,278, against a uniform background of 10,000,000 uniformly distributed points. The thicker curves are for
background only (top) and no background (bottom; 3,162,278 points per cylinder). The curves are shifted vertically for clarity; the mean and zero levels are indicated
by horizontal dotted lines and circles at the curve endpoints, respectively. Compare with Figure1 of Watts et al. (2003).
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much as in Equation (3). The result is simply a sample,
typically N in size, randomly drawn with replacement from the
original data points. That is, the randomly drawn galaxies are
not discarded and may occur two or more times in the bootstrap
sample. In both cases, one simply analyzes many realizations of
these surrogate data samples in the same way as the actual data.
The correctness of the results relies on the single assumption
that the EDF fairly represents the underlying physical process.
The bootstrap bias or jackknife bias are estimates of any bias
inherent to the algorithm. They compare the resampled mean

against the original mean. However, they can say nothing about
possible bias in the original data themselves.
For the current power spectrum analysis, the leave-one-out

procedure of the jackknife is almost trivial to implement; the
mth jackknife sample, i.e., with the mth point left out, is from
Equation (4):

å= = -
¹

- -( ) ( ) ( )· ·k kF m e F e, . 23k x k x

n m

N
i i

jackknife n m

Figure 12. Phase statistics maps for the toy three-cylinder density data described in Figure 10, displayed as in Figures 6–9. The axis scales comprise 65 frequencies,
with 0 at the center; the spatial periods corresponding to the maximum ∣ ∣k are 0.0312 in units where the cube edges are of length 1.
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Thus, Fourier transforms of the jackknife samples can be
computed without the need to evaluate the full n sum each
time. Bootstrap samples are only slightly more complicated.
These computational efficiencies allow the luxury of using N
resamples—the maximum possible for jackknife and certainly
overkill for bootstrap.8

One more computational detail deserves mention: the
replacement aspect of bootstrap resampling yields the potential
for algorithm problems with exact data point duplicates. For
example, the local event rate measure 1/(tn + 1− tn) in time
series applications (cf. Scargle et al. 2013) is infinite for
duplicate event times. Here there are no such singularities, as the
corresponding terms in the Fourier sum simply add without
difficulty. Any concern is further alleviated since our bootstrap
results are essentially identical to those using the jackknife,
which does not generate duplicates.

Figure 13. Phase statistics maps for the toy three-cylinder density data described in Figure 10, displayed as in Figure 12. This figure illustrates what a barely detectable
NG signature of the toy signal in Figure 10 might look like, but of course is not a guide to realistic expectations.

8 Section6.4 of Efron & Tibshirani (1993) addresses the question of how
many resamples are needed to ensure good convergence.
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Reporting variance for a 3D spatial distribution is notor-
iously difficult; instead, we choose to report it for power
spectra. Figure 15 displays bootstrap means, variances, and
biases for our standard SDSS galaxy sample. It is clear that the
bootstrap components of internal variance and bias are quite
small, especially at low spatial frequencies. The bottom panels
are similar plots for bootstrap analysis of the comparable MS
sample detailed in Papers I and II. Crudely speaking, the results
are similar, although the synthetic data yield somewhat less
noisy power, with smaller variance and bias.

5.3. External Scatter: Cosmic Variance

Survey data from different regions of the universe give different
parameter estimates. Such cosmic variance9 refers to errors in
cosmological parameter estimates for scales larger than those
covered by a given survey. This uncertainty is in addition to those
discussed in the above subsections. To estimate the effect of
cosmic variance on our results, we Fourier-analyzed ensembles of
subsets of two data sets.

The first, drawn from the SDSS DR1310 (SDSS Collabora-
tion et al. 2016), is significantly larger than the original DR7
selection of Paper I. It was obtained with a very similar query
from the SDSS skyserver casjobs Web interface11, except that
the absolute magnitudes were obtained directly in the casjobs
query, whereas in Paper I we had to obtain this information via

a cross-match to the SDSS NYU VAGC catalog12 (Blanton
et al. 2005). To further increase the size of the sample while
mostly remaining within the precepts of the data selection of
Paper I, we adopted a somewhat larger redshift range
(0.005� z� 0.15) and defined the volume-limited sample with
a slightly fainter cut in absolute R magnitudes, at −19.8495
instead of −20.1, as in Paper I. In addition, we discarded
galaxies with anomalously large R magnitude errors, adopting a
threshold of 0.2786. As in Paper I, we selected only the
contiguous north galactic cap region and applied the same
procedure to address the fiber collision bias. The resulting data
set consists of N=370,847 galaxies in a (convex hull) volume
of 100.7×107 mpc3.
The second data set is the same one used in the current paper

and defined in Paper I, roughly 2.6 times fewer galaxies in a
volume 10 times smaller: N=139,798 and (convex hull) volume
of 9.4676×107 mpc3. In both cases, these main data sets were
subdivided into eight independent subsets: octants, with divisions
at the median values of the xyz coordinates. The summary
statistics for these subsets appear in Table2.
The top panel of Figure 16 shows the linear plots of the power

spectra, averaged over the eight octants (as well as the three
coordinate projections). The error bars are the standard devia-
tions, which serve as estimates of cosmic variance in the spatial
power spectra. The DR13 sample has a somewhat smaller scatter,
as expected on account of its larger size. The relative size of these
uncertainties (standard deviation divided by mean) is plotted as a
function of spatial frequency in the bottom panel. The cosmic

Figure 14. Relative uncertainty from the propagation of the observational coordinate errors. The ratio of the standard error to the mean of the power spectrum is
plotted against spatial frequency. Solid line with dots, dashed line with squares, and dotted–dashed line with circles: power in the x, y, and z directions, respectively.

9 The term is sometimes used in other ways, but here is restricted to the
variance of parameter estimates over an ensemble of subvolumes.
10 http://www.sdss.org/dr13
11 https://skyserver.sdss.org/CasJobs 12 http://sdss.physics.nyu.edu/vagc
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variance of the power values at a given frequency are rather large,
but one expects the more cosmologically relevant normalizations
and logarithmic slopes of the spectra to be less uncertain, because
they essentially average over this scatter as a function of
frequency.

That this is the case can be seen in the information on these
parameters in Table 2. The eight numbered columns refer to the
octants, i.e., the independent subsamples of the survey data
described above. For the two data samples, three quantities are
tabulated for each octant: the normalization13 and logarithmic
slopes from the least-squares fits (linear in log–log space) to the
spatial power spectra, and the number of galaxies in the octant.
The next two columns give the corresponding means and
standard deviations, first averaging over the x-, y-, and z-
projections and then over the eight octants.

We are interested in the uncertainties for the results derived
in this paper for the full DR7 sample. Accordingly, the standard
deviation values for the octants in the penultimate column are
adjusted downward by the factor -8 1 to account for the
relative sizes of the full and subsamples,14 and reported in the

last column (under the heading “This Paper”). The difference
between the values for DR13 and DR7 data indicates the
approximate uncertainty of these determinations and their
extrapolation. The fact that the percentage variance in normal-
ization is smaller than that in slope may be related to the
comment in footnote 13.
It is useful to compare these results with the quantification of

cosmic variance by Driver & Robotham (2010). These authors
studied the variance of galaxy density across independent
subsets of much the same SDSS data as used here. They
derived approximate formulas for the corresponding standard
deviation as a function of the volume and aspect ratio of the 3D
survey region and the number of independent sight lines. Their
Equation (1) gives the values reported in the second part of the
last column, for the density cosmic variance for our full DR7
sample. The close agreement between our 6.5% (power
spectrum slope) and their 7.0% (galaxy density) for the
average of the DR13 and DR7 extrapolations is probably
partly due to the similarity of the data used in the two works
and partly fortuitous.

6. Epilogue: Summary and Suggested Future Analysis

The unadorned 3D Fourier transform of coordinates from a
redshift survey can be used to characterize the spatial
distribution of galaxies, as demonstrated here with the
volume-limited sample defined in Papers I and II. A simple

Figure 15. Bootstrap mean, variance, and bias of power spectra. Left: x, y, and z projections of the bootstrap mean power (in order of decreasing darkness and as
labeled) plotted as narrow lines embedded in grayscale bands depicting the ±1σ bootstrap standard deviation. Right: fractional bootstrap bias. Top panels: 139,798
bootstrap samples of the galaxy data. Bottom panels: similarly for the Millennium Simulation data. Jackknife results are indistinguishable from these.

13 As noted in Section 3.2, the value of the spatial power at zero frequency
simply reflects the size of the sample. Hence we chose to tabulate here values
derived from the intercept of the linear fits, scaled to their mean. These values
are therefore not independent of the other two tabulated data.
14 A straightforward Monte Carlo study validated this procedure, in spite of
the fact that both the power spectra and their derived parameters are nonlinear
functionals of the data.
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Fourier sum over the galaxy positions compares well with the
transform of the same points binned in small 3D voxels. The
direct sum has no resolution limit other than that inherent to the
data or due to computational limitations. We display 3D
Fourier power spectra as well as projections radially and in
three orthogonal coordinate directions; projection in arbitrary
directions could provide a straightforward way to study
isotropy.

However, the emphasis here is on Fourier phase information,
of interest for example in the context of Gaussianity measures.
The phase spectrum has much to recommend it over the more
commonly used multipoint statistics and related methods. We
display maps (projected to 2D) of variance, kurtosis, and entropy
of nearest-mode phase differences to quantify distributional
nonuniformity. Such analysis of the SDSS data, taking into
consideration simulated control samples and the MS simulation,
has not provided any convincing evidence for non-uniformity in
the distribution of phases. This result is somewhat surprising
since structure on any scale must generate local Fourier non-
uniformities and render the distribution of density values (in
spatial voxels) non-normal (e.g., Schaap 2007). Furthermore,
even perfectly Gaussian initial density perturbations should
suffer evolutionary modifications leading to NG in the current
distribution. On the other hand, offsetting these effects are data-
analytic issues such as the rather conservative measures (e.g.,
phase differencing) we have been driven to, the ill-defined nature
of the target signal, and the plethora of possibly relevant analysis
methods, only a tiny fraction of which has been explored here
and in previous research by others. In addition, the normalization
principle underlying the central limit theorem is at work in
samples of any size.

However, we expect that improved data—more recent SDSS
data releases, deeper selections of other existing surveys, new
larger ones, compendia of several redshift surveys covering
similar redshift ranges, etc.—and guidance from theory and
simulations will elucidate these issues, perhaps using phase
analysis techniques augmented with the following three
promising new approaches.

6.1. Optimal Phase Bins via Bayesian Blocks

The first problem is finding a principle for defining sets of
phases to analyze. In an exploratory data analysis setting—i.e.,
absent guidance from theoretical predictions—one should, in
principle at least, consider the set of all possible subsets. A way
to address the exponentially large size of such a collection is to
use the Bayesian Block algorithm (Jackson et al. 2005; Scargle
et al. 2013) in its higher dimensional mode (Jackson et al. 2010)
to optimally partition the phases. This O(N2) algorithm yields the
optimal among the 2N possible binnings, where here the block
cost function to be optimized would be some NG metric for the
data within each block, for example kurtosis.

6.2. Independent Component Analysis (ICA)

This leads to the second problem: the choice of NG metric.
The close connection between independence and NG (cf.
Section 4.2.1) suggests that ICA will be useful. The wide-
ranging but comprehensive monograph by Hyvärinen et al.
(2001) elucidates all of the NG issues discussed here and then
some. By elaborating its slogan “non-Gaussian is Indepen-
dent,” this monograph provides a unified picture of many
interrelated properties of statistical processes—including
dependence, correlation, Gaussianity, nonlinear correlation,

Figure 16. Cosmic variance. Top: linear plots of mean power spectra (averaged over 24 values: 8 octants × projections in the 3 coordinate directions) and
corresponding standard deviations. Bottom: the above standard deviations divided by the means, as a function of spatial frequency. In both panels, the thin and thick
lines are for DR13 and DR7, respectively.
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kurtosis, cumulants, and sparseness. This book and the update
(Hyvärinen 2016) detail related algorithmic approaches such as
sparse coding, projection pursuit, principal component, and
ICA. The existence of practical, fast ICA algorithms15 should
facilitate application of these ideas to statistical cosmology.

6.3. Large-scale Inference (LSI): Higher Criticism (HC) and
False Discovery Rate Control (FDRC)

We are thus led to address the last step, inference.16 Recent
advances in statistics have opened up a number of opportunities
for future analysis of cosmological data. What Brad Efron calls
“scientific mass production, in which new technologies ...
allow a single team of scientists to produce [very large] data
sets ...” has given birth to the field LSI. Two monographs
(Efron 2011; Efron & Hastie 2016) review the statistical
science underlying this discipline, its historical development,
and its role in big data contexts. Two LSI techniques extremely
popular in applied statistics, FDRC and HC, address problems
of potentially great importance for large-scale astronomical
data analysis. In the generic setting, termed large-scale
hypothesis testing, one is faced with a large number of data
elements, each providing evidence for or against a hypothesis
(or possibly a different hypothesis for each datum). The
analysis techniques, much like the trials factor, focus on
integrative issues such as assessing the probability of making
even one false rejection of a hypotheses in simultaneous
analysis of N hypothesis tests, especially in cases where the
signal is expected to be weak (individual ones may not be
detectable on their own) or rare (occurring in=N of the cases).

HC, perhaps more informatively termed second-level sig-
nificance testing, was introduced by Donoho & Jin (2004),
following John Tukey’s parable of the young psychologist,
further developed in e.g., Donoho & Jin (2004, 2008, 2015) and
Walther (2013) and applied in cosmology (e.g., Cayón et al.
2005; Jin et al. 2005). The HC statistic may provide rigorous
significance analysis of the multiple tests that are implicit in
phase maps, effectively providing a statistical trials factor
correction. HC applied to numerous beams within the phase
cube could lead to HC analysis of the HC statistic itself—third-
level significance testing or even HC. With somewhat different
goals, the FDR formalism, by controlling the relative proportion
of false discoveries, can lead to more discoveries, useful
especially when follow-up of putative discoveries is practical.
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Appendix A
Checking the Formalism Using the Inverse

Fourier Transform

It is useful to check how well our Fourier transform
estimates capture the information in the galaxy coordinate data.
The discrete Fourier transform of evenly spaced voxels is
exactly invertible and therefore lossless, and so is the direct
transform in Equations (4) and (5) in the limit of an infinite
number of frequencies. Nevertheless, it is of some interest to
see how this limit is approached by comparing its inverse
transform against the raw data. For this limited purpose, a
rough visual check suffices, since a precise goodness-of-fit
metric, involving comparison of an effectively continuous
representation with point data, is difficult.
In the direct transform there is no binning of galaxy positions,

so if the Fourier transform were to be evaluated at an infinite
number of spatial frequencies, the inverse transform would

Table 2
Cosmic Variance: Power Spectra of Octants

Octant 1 2 3 4 5 6 7 8 Mean σ Full DR7 Estimate

SDSS DR13 This Paper Driver
Normalization 1.170 0.912 1.071 0.988 1.012 1.020 0.911 0.988 1.009 0.084 3.0%
Slope −2.282 −1.817 −2.126 −1.910 −2.030 −2.022 −1.823 −1.953 −1.995 0.157 5.6% 8.1%
N (370,847) 47181 40143 50153 47946 49092 49005 38995 48329 46356 4290

SDSS DR7

Normalization 1.019 1.057 0.965 1.004 0.946 1.030 0.956 1.051 1.004 0.0432 1.5%
Slope −1.937 −2.208 −1.692 −1.942 −1.629 −2.027 −1.714 −2.100 −1.906 0.209 7.4% 6.0%
N (139,798) 20408 11973 21697 15821 15903 21615 11891 20490 17475 4129

15 See https://research.ics.aalto.fi/ica/fastica/.
16

“Very broadly speaking, algorithms are what statisticians do, while
inference says why they do them.” (Efron & Hastie 2016, pp. 16).
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exactly reproduce the data. That is, the function

ò= -( ) ( ) ( )·x k kF F e d 24k x
x

i

would vanish except for unit delta functions at each of the
galaxy positions. Normalization is not important here, so the
factor

p( )
1

2 3 2 sometimes written in front of the right-hand side of

this equation is omitted. Inserting Equation (4) into this
expression we have

òå=
=
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It is well-known that this integral is equivalent to a δ-function
at xn, yielding the desired result.

It is useful to investigate how well these exact results apply
to necessarily finite numerical computations. To do so, we
evaluate the expression

å= - + +( ) ( ) ( )( )f x y z F k k k e, , , , , 26
k k k

x y z
i k x k y k z

, ,x y z

x y z

appropriately normalized against the raw data in Figure 17. The
total number of spatial frequencies increases as the third power
of the number of frequencies in each dimension, but it is
nevertheless feasible to use a frequency grid that well resolves
the relevant spatial structure in all three directions. The spatial
frequencies were taken to be the usual integer multiples of the
fundamental frequency of -Mpc1

1082
1. This denominator is

approximately twice the maximum of the x, y, and z ranges of
the data, to eliminate wraparound.
Since the forward transform can be evaluated at any set of

spatial frequencies, it is expedient to use an FFT algorithm17 to
evaluate the expression above. We reconstructed 3D data

Figure 17. Comparison of the x–yprojections of thin (12.5 Mpc.) z-slices for (a) the galaxy data and the corresponding reconstruction with the direct Fourier
transform in Equation (26) using (b) 128 frequencies, (c) 256 frequencies, and (d) 512 frequencies. Coordinates are in redshift units (rsu). The effective resolutions of
the reconstructions are 16.9, 8.5, and 4.2 Mpc, respectively. Plots of other projections are very similar.

17 Our expression for the forward transform does not automatically impose the
complex conjugate symmetry necessary for the inverse transform computed in
this way to be real. To deal with this problem, we simply evaluate the forward
transform at an odd number of points: one corresponding to zero frequency,
(N − 1)/2 at positive frequencies, and the remaining (N − 1)/2 at the
corresponding negative frequencies. This symmetry yields a positive result.
Accordingly, values for the number of frequencies are written in the form
N+1 throughout, where N is even.
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points at every location in the Nk×Nk×Nk array (Nk
3 voxels),

where the value of f (x, y, z) in Equation (26) exceeds a
threshold. This threshold value was chosen to yield the same
number of points (139,798) as in the raw data. The figure
shows xy-projections of the points contained in a 12.5Mpc
thick slice in the z-coordinate, isolating roughly 5000 points in
all three panels. The limited frequency range dictates that the
reproductions are smoothed representations of the galaxy data.
The sequence in this figure demonstrates that increasing the
number of spatial frequencies reproduces the discrete raw data
with improved accuracy. Note that panel (c) with
Nk=256+1 seems to have more points than (d) for
Nk=512+1; in fact, both have the same number, with those
in (d) more closely following the narrow filaments and other
structures (with a consequent increase in overplotting of points)
and therefore more faithfully reproducing the data. The key
point is that information about the discrete structure at a broad
range of scales, limited only by the resolution of the
computation, is contained in the Fourier transform in
Equation (5).

In the same way, the projected density plots in Figure 18
demonstrate that the inverse transform of the selection function
Fourier transform is essentially a uniform solid corresponding
to the observational data space. This procedure accounts for
incorporating only galaxies inside the window, but of course
does not in any way replace or estimate data outside of the
window.

Appendix B
3D Fourier Transforms: MatLab Code

A MatLab code (Scargle et al. 2017) computes the Fourier
transform of the galaxy coordinates, and the corresponding
window function and its deconvolution. The former is a direct
evaluation of Equation (5); the latter is based on a refined
partition of the actual data space—here taken to be the convex
hull of the galaxy positions—into cuboids with x and y
coordinates in an evenly spaced rectangular grid, as described
in Section 3.3. More details are available in the ReadMe file
and commented MatLab scripts at https://doi.org/10.5281/
zenodo.432820.
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