
Journal of Automated Reasoning
https://doi.org/10.1007/s10817-019-09516-0

Strong Extension-Free Proof Systems

Marijn J. H. Heule1 · Benjamin Kiesl2,3 · Armin Biere4

Received: 30 January 2019 / Accepted: 5 February 2019
© The Author(s) 2019

Abstract
We introduce proof systems for propositional logic that admit short proofs of hard formulas
as well as the succinct expression of most techniques used by modern SAT solvers. Our
proof systems allow the derivation of clauses that are not necessarily implied, but which
are redundant in the sense that their addition preserves satisfiability. To guarantee that these
added clauses are redundant, we consider various efficiently decidable redundancy criteria
which we obtain by first characterizing clause redundancy in terms of a semantic implication
relationship and then restricting this relationship so that it becomes decidable in polynomial
time. As the restricted implication relation is based on unit propagation—a core technique
of SAT solvers—it allows efficient proof checking too. The resulting proof systems are
surprisingly strong, even without the introduction of new variables—a key feature of short
proofs presented in the proof-complexity literature. We demonstrate the strength of our proof
systems on the famous pigeon hole formulas by providing short clausal proofs without new
variables.

Keywords SAT · Propositional proof systems · Proof complexity · Proof checking · Pigeon
hole problem · Extended resolution · Clause redundancy

1 Introduction

Satisfiability (SAT) solvers are used to determine the correctness of hardware and software
systems [4,16]. It is therefore crucial that these solvers justify their claims by providing
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proofs that can be independently verified. This holds also for various other applications
that use SAT solvers. Just recently, long-standing mathematical problems were solved using
SAT, including the Erdős Discrepancy Problem [21], the Pythagorean Triples Problem [13],
and the computation of the fifth Schur number [10]. Especially in such cases, proofs are
at the center of attention and without them the result of a solver is almost worthless. What
the mathematical problems and the industrial applications have in common is that proofs
are often of considerable size—about 200 terabytes in the case of the Pythagorean Triples
Problem and even two petabytes for the fifth Schur number. As the size of proofs is influenced
by the strength of their underlying proof system, the search for shorter proofs goes hand in
hand with the search for stronger proof systems.

In this article, we introduce highly expressive clausal proof systems that can capture most
of the techniques used by modern SAT solvers. Informally, a clausal proof system allows the
addition of redundant clauses to a formula in conjunctive normal form (CNF).Here, a clause is
considered redundant if its addition preserves satisfiability. If the repeated addition of clauses
allows us to eventually add the empty clause—which is, by definition, unsatisfiable—then
the unsatisfiability of the original formula has been established.

Since the redundancy of clauses is not efficiently decidable in general, practical proof
systems only allow the addition of a clause if it fulfills some efficiently decidable criterion
that ensures redundancy. For instance, the popular DRAT proof system [30], which is the
de-facto standard in practical SAT solving, only allows the addition of so-called resolution
asymmetric tautologies [18]. Given a formula and a clause, it can be decided in polynomial
time whether the clause is a resolution asymmetric tautology with respect to the formula and
therefore the soundness of DRAT proofs can be checked efficiently.

We present various new redundancy criteria by introducing a characterization of clause
redundancy based on a semantic implication relationship between formulas. By replacing
the implication relation in this characterization with restricted notions of implication that
are computable in polynomial time, we then obtain powerful redundancy criteria that are
still efficiently decidable. These redundancy criteria not only generalize earlier ones such as
resolution asymmetric tautologies [18] or set-blocked clauses [19], but they are also closely
related to other concepts from the literature, including autarkies [24], safe assignments [29],
variable instantiation [1], and symmetry breaking [6].

Proof systems based on our new redundancy criteria turn out to be highly expressive, even
without allowing the introduction of new variables. This is in contrast to resolution, which is
considered relatively weak as long as the introduction of new variables via definitions—as
in the stronger proof system of extended resolution [9,26]—is not allowed. The introduction
of new variables, however, has a major drawback—the search space of variables and clauses
we could possibly add to a proof is clearly exponential. Finding useful clauses with new
variables is therefore hard in practice and resulted only in limited success in the past [2,23].

We illustrate the strength of our strongest proof system by providing short clausal proofs
for the famous pigeon hole formulas without introducing new variables. The size of the
proofs is linear in the size of the formulas and the clauses added in the proof contain at
most two literals. In these proofs, we add redundant clauses that are similar in nature to
symmetry-breaking predicates [6,7]. To verify the correctness of proofs in our new system,
we implemented a proof checker. The checker is built on top ofDRAT-trim [30], the checker
used to validate the unsatisfiability results of the recent SAT competitions [3]. We compare
our proofs with existing proofs of the pigeon hole formulas in other proof systems and show
that our new proofs are much smaller and cheaper to validate.

This invited article is an extended version of our CADE’17 best paper [14]. Apart from
several small improvements throughout the article, we extended the conference version by
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adding Sect. 7, which describes further interesting properties of the redundant clauses intro-
duced in this article. We also included a new discussion of open problems in Sect. 9.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF), which are defined
as follows. A literal is either a variable x (a positive literal) or the negation x of a variable x
(a negative literal). The complement l of a literal l is defined as l = x if l = x and l = x if
l = x . For a literal l, we denote the variable of l by var(l). A clause is a disjunction of literals.
If not stated otherwise, we assume that clauses do not contain complementary literals, i.e., a
literal and its complement. A formula is a conjunction of clauses. Clauses can be viewed as
sets of literals and formulas as sets of clauses. For a set L of literals and a formula F , we
define FL = {C ∈ F | C ∩ L �= ∅}. We sometimes write Fl to denote F{l}.

An assignment is a function from a set of variables to the truth values 1 (true) and 0
(false). An assignment is total with respect to a formula if it assigns a truth value to all
variables occurring in the formula, otherwise it is partial. We often denote assignments by
the sequences of literals they satisfy. For instance, x y denotes the assignment that makes x
true and y false. We denote the domain of an assignment α by var(α). A literal l is satisfied
by an assignment α if l is positive and α(var(l)) = 1 or if it is negative and α(var(l)) = 0. A
literal is falsified by an assignment if its complement is satisfied by the assignment. A clause
is satisfied by an assignment α if it contains a literal that is satisfied by α. Finally, a formula
is satisfied by an assignment α if all its clauses are satisfied by α. A formula is satisfiable
if there exists an assignment that satisfies it. Two formulas are logically equivalent if they
are satisfied by the same total assignments; they are satisfiability equivalent if they are either
both satisfiable or both unsatisfiable.

We denote the empty clause by ⊥ and the satisfied clause by �. Given an assignment
α and a clause C , we define C |α = � if α satisfies C , otherwise C |α denotes the result
of removing from C all the literals falsified by α. Moreover, for a formula F , we define
F |α = {C |α | C ∈ F and C |α �= �}. We say that a clause C blocks an assignment α if
C = {x | α(x) = 0}∪ {x | α(x) = 1}. A unit clause is a clause that contains only one literal.
The result of applying the unit-clause rule to a formula F is the formula F |α with α being
an assignment that satisfies a unit clause in F . The iterated application of the unit-clause rule
to a formula, until no unit clauses are left, is called unit propagation. If unit propagation on
a formula F yields the empty clause ⊥, we say that it derived a conflict on F . For example,
unit propagation derives a conflict on F = (x ∨ y) ∧ (y) ∧ (x) since F |x = (y) ∧ (y) and
F |xy = ⊥.

By F � F ′, we denote that F implies F ′, i.e., every assignment that satisfies F and assigns
all variables in var(F ′) also satisfies F ′. Furthermore, by F �1 F ′ we denote that for every
clause (l1∨· · ·∨lk) ∈ F ′, unit propagation derives a conflict on F∧(l1)∧· · ·∧(lk). If F �1 F ′,
we say that F implies F ′ via unit propagation. As an example, (x) ∧ (y) �1 (x ∨ z) ∧ (y),
since unit propagation derives a conflict on both (x) ∧ (y) ∧ (x) ∧ (z) and (x) ∧ (y) ∧ (y).
Similarly, F �0 F ′ denotes that every clause in F ′ is subsumed by (i.e., is a superset of) a
clause in F . Observe that F ⊇ F ′ implies F �0 F ′, F �0 F ′ implies F �1 F ′, and F �1 F ′
implies F � F ′.
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3 Clause Redundancy and Clausal Proofs

In the following, we introduce a formal notion of clause redundancy and demonstrate how it
provides the basis for clausal proof systems. We start by introducing clause redundancy [19]:

Definition 1 A clause C is redundant with respect to a formula F if F and F ∧ C are
satisfiability equivalent.

For instance, the clause C = x ∨ y is redundant with respect to the formula F = (x ∨ y)
since F and F ∧ C are satisfiability equivalent (although they are not logically equivalent).
This redundancy notion allows us to add redundant clauses to a formula without affecting its
satisfiability and so it provides the basis for so-called clausal proof systems.

In general, given a formula F = {C1, . . . ,Cm}, a clausal derivation of a clause Cn from
F is a sequence (Cm+1, ωm+1), . . . , (Cn, ωn) of pairs where Ci is a clause and ωi , called the
witness, is a string (for all i > m). Such a sequence gives rise to formulas Fm, Fm+1, . . . , Fn ,
where Fi = {C1, . . . ,Ci }.We call Fi the accumulated formula corresponding to the i th proof
step. A clausal derivation is correct if every clause Ci (i > m) is redundant with respect to
the formula Fi−1 and if this redundancy can be checked in polynomial time (with respect to
the size of the proof) using the witness ωi . A clausal derivation is a (refutation) proof of a
formula F if it derives the empty clause, i.e., if Cn = ⊥. Clearly, since every clause-addition
step preserves satisfiability, and since the empty clause is unsatisfiable, a refutation proof of
F certifies the unsatisfiability of F .

By specifying in detail what kind of redundant clauses—and corresponding witnesses—
can be added to a clausal derivation, we obtain concrete proof systems. This is usually done
by defining an efficiently checkable syntactic criterion that guarantees that clauses fulfilling
this criterion are redundant. A popular example for a clausal proof system is DRAT [30],
the de-facto standard for unsatisfiability proofs in practical SAT solving. DRAT allows the
addition of a clause if it is a so-called resolution asymmetric tautology [18] (RAT, defined in
the next section). As it can be efficiently checked whether a clause is a RAT with respect to
a formula, and since RATs cover many types of redundant clauses, the DRAT proof system is
very powerful.

The strength of a clausal proof system depends on the generality of the underlying redun-
dancy criterion. We say that a redundancy criterion R1 is more general than a redundancy
criterionR2 if, wheneverR2 identifies a clause C as redundant with respect to a formula F ,
then R1 also identifies C as redundant with respect to F . For instance, whenever a clause
is subsumed in some formula, it is a RAT with respect to that formula. Therefore, the RAT
redundancy criterion is more general than the subsumption criterion. In the next section, we
develop redundancy criteria that are even more general than RAT, thus giving rise to proof
systems that are stronger than DRAT.

4 Clause Redundancy via Implication

In the following, we introduce a characterization of clause redundancy that reduces the
question whether a clause is redundant with respect to a certain formula to a simple question
of implication. The advantage of this is that we can replace the logical implication relation
by polynomially decidable implication relations to derive powerful redundancy criteria that
are still efficiently checkable. These redundancy criteria can then be used to obtain highly
expressive clausal proof systems.
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Our characterization is based on the observation that a clause in a CNF formula can be
seen as a constraint that blocks those assignments that falsify the clause. Therefore, a clause
can be safely added to a formula if it does not constrain the formula too much. What we
mean by this is that after adding the clause, there should still exist other assignments (i.e.,
assignments not blocked by the clause) under which the formula is at least as satisfiable as
under the assignments blocked by the clause. Consider the following example:

Example 1 Let F = (x∨ y)∧(x∨z)∧(x∨ y∨z) and consider the (unit) clauseC = x which
blocks all assignments that falsify x . The addition of C to F does not affect satisfiability: Let
α = x and ω = x . Then, F |α = (y) ∧ (z) while F |ω = (y ∨ z). Clearly, every satisfying
assignment of F |α is also a satisfying assignment of F |ω, i.e., F |α � F |ω. Thus, F is at
least as satisfiable under ω as it is under α. Moreover, ω satisfies C . The addition of C does
therefore not affect the satisfiability of F . ��
This motivates our new characterization of clause redundancy presented next. The charac-
terization requires the existence of an assignment that satisfies the clause and so it is only
applicable to non-empty clauses. Note that for a given clause C , “the assignment α blocked
byC”, as defined above in Sect. 2, is in general a partial assignment and thusC actually rules
out all assignments that extend α:

Theorem 1 Let F be a formula, C a non-empty clause, and α the assignment blocked by C.
Then, C is redundant with respect to F if and only if there exists an assignment ω such that
ω satisfies C and F |α � F |ω.
Proof For the “only if” direction, assume that F and F ∧ C are satisfiability equivalent.
If F |α is unsatisfiable, then F |α � F |ω for every ω, hence the statement trivially holds.
Assume now that F |α is satisfiable, implying that F is satisfiable. Then, since F and F ∧C
are satisfiability equivalent, there exists an assignment ω that satisfies both F and C . Thus,
since ω satisfies F , it holds that F |ω = ∅ and so F |α � F |ω.

For the “if” direction, assume that there exists an assignment ω such that ω satisfies C
and F |α � F |ω. Now, let γ be a (total) assignment that satisfies F and falsifies C . We show
how γ can be turned into a satisfying assignment γ ′ of F ∧C . As γ falsifies C , it coincides
with α on var(α). Therefore, since γ satisfies F , it must satisfy F |α and since F |α � F |ω
it must also satisfy F |ω. Now, consider the following assignment:

γ ′(x) =
{

ω(x) if x ∈ var(ω),

γ (x) otherwise.

Clearly, sinceω satisfiesC , γ ′ also satisfiesC . Moreover, as γ satisfies F |ω and var(F |ω) ⊆
var(γ ) \ var(ω), γ ′ satisfies F . Hence, γ ′ satisfies F ∧ C . ��
This alternative characterization of redundancy allows us to replace the logical implication
relation by restricted implication relations that are polynomially decidable. For instance, we
can replace the condition F |α � F |ω by the restricted condition F |α �1 F |ω (likewise, we
could also use relations such as “�0 ” or “⊇” instead of “ �1 ”). Now, if we are given a clause
C—which implicitly gives us the blocked assignment α—and a witnessing assignment ω,
then we can check in polynomial time whether F |α �1 F |ω, which is a sufficient condition
for the redundancy of C with respect to F . We can therefore use this implication-based
redundancy notion to define proof systems. The witnessing assignments can then be used as
witnesses in the proof.

In the following, we use the propagation-implication relation “ �1 ” to define the redun-
dancy criteria of
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Fig. 1 Landscape of redundancy notions of non-empty clauses. R denotes all redundant clauses and IMP stands
for implied clauses. A path from X to Y indicates that X is more general than Y . The asterisk (∗) denotes that
the exact characterization implies the shown one, e.g., for every set-blocked clause, the property F |α ⊇ F |αL
holds, but not vice versa

LPR: literal-propagation redundancy,
SPR: set-propagation redundancy, and
PR: propagation redundancy.

Basically, the three notions differ in the way we allow the witnessing assignment ω to differ
from the assignment α blocked by a clause. The more freedom we give to ω, the more
general the redundancy notion we obtain. We show that LPR clauses—the least general of the
three—coincide with RAT. For the more general SPR clauses, we show that they generalize
set-blocked clauses (SBC) [19], which is not the case for LPR clauses. Finally, PR clauses
are the most general ones. They give rise to an extremely powerful proof system. The new
landscape of redundancy notions we thereby obtain is illustrated in Fig. 1. In the figure,
RUP stands for the redundancy notion based on reverse unit propagation [8,28], S stands for
subsumed clauses, RS for clauses with subsumed resolvents [18], and BC for blocked clauses
[17,22].

As we will see, when defining proof systems based on LPR (e.g., the DRAT system) or
SPR clauses, we do not need to explicitly add the redundancy witnesses (i.e., the witnessing
assignmentsω) to a proof. Thus, LPR and SPR proofs can just be seen as a sequence of clauses.
In particular, a proof system based on SPR clauses can have the same syntax as DRAT proofs,
which makes it “downwards compatible”. This is in contrast to proof systems based on PR
clauses, where in general witnessing assignments have to be added to a proof. Otherwise
redundancy of a clause can not be checked in polynomial time.

We start by introducing LPR clauses. In the following, given a (partial) assignment α and
a set L of literals, we denote by αL the assignment obtained from α by making all literals
in L true. If L contains only a single literal, we sometimes write αl to denote α{l}. In the
conference paper [14], we used a slightly different definition, saying that αL is obtained from
α by flipping the truth values of all literals in L . Since we only defined αL for assignments α

that falsify all the literals in L , nothing changes. We do, however, believe that the new notion
is more intuitive.

Definition 2 Let F be a formula, C a clause, and α the assignment blocked by C . Then, C is
literal-propagation redundant (LPR) with respect to F if there exists a literal l ∈ C such that
F |α �1 F |αl .
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Example 2 Let F = (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) and let C be the unit clause x . Then,
α = x is the assignment blocked by C , and αx = x . Now, consider F |α = (y)∧ (y ∨ z) and
F |αx = (z). Clearly, F |α �1 F |αx and therefore C is literal-propagation redundant with
respect to F . ��
The LPR definition is quite restrictive since it requires thewitnessing assignmentαl to disagree
with α on exactly one variable. Nevertheless, this already suffices for LPR clauses to coincide
with RATs [18]:

Definition 3 Let F be a formula andC a clause. Then,C is a resolution asymmetric tautology
(RAT) with respect to F if there exists a literal l ∈ C such that, for every clause D ∈ Fl ,
F �1 C ∪ (D \ {l}).
Theorem 2 A clause C is LPR with respect to a formula F if and only if it is a RAT with
respect to F.

Proof For the “only if” direction, assume that C is LPR with respect to F , i.e., C contains a
literal l such that F |α �1 F |αl . Now, let D ∈ Fl . We have to show that F �1 C ∪ (D \ {l}).
First, note that F |α is exactly the result of propagating the negated literals of C on F ,
i.e., applying the unit-clause rule with the negated literals of C but not performing further
propagations. Moreover, since αl falsifies l, it follows that D|αl ⊆ (D \ {l}). But then, since
F |α �1 D|αl , it must hold that F �1 C ∪ (D \ {l}), hence C is a RAT with respect to F .

For the “if” direction, assume that C is a RAT with respect to F , i.e., C contains a literal
l such that, for every clause D ∈ Fl , F �1 C ∪ (D \ {l}). Now, let D|αl ∈ F |αl for D ∈ F .
We have to show that F |α �1 D|αl . Since αl satisfies l and α falsifies C , D does neither
contain l nor any negations of literals in C except for possibly l. If D does not contain l, then
D|α = D|αl is contained in F |α and hence the claim immediately follows.

Assume therefore that l ∈ D. As argued for the other direction, propagating the negated
literals of C (and no other literals) on F yields F |α. Therefore, since F �1 C ∪ (D \ {l})
and D \ {l} does not contain any negations of literals in C (which could otherwise be the
reason for a unit propagation conflict that only happens because of C containing a literal
whose negation is contained in D \ {l}), it must be the case that F |α �1 D \ {l}. Now, the
only literals of D \ {l} that are not contained in D|αl are the ones falsified by α, but those are
anyhow not contained in F |α. Hence, F |α �1 D|αl and thus C is LPR with respect to F . ��
By allowing the witnessing assignments to disagree with α on more than only one literal,
we obtain the more general notion of set-propagation-redundant clauses, which we introduce
next. In the following, for a set L of literals, we define L̄ = {l | l ∈ L}.
Definition 4 Let F be a formula, C a clause, and α the assignment blocked by C . Then, C is
set-propagation redundant (SPR) with respect to F if there exists a non-empty set L ⊆ C of
literals such that F |α �1 F |αL .

Example 3 Let F = (x ∨ y) ∧ (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (x ∨ u) ∧ (u ∨ x), C = x ∨ u, and
L = {x, u}. Then, α = x u is the assignment blocked by C , and αL = x u. Now, consider
F |α = (y) ∧ (y ∨ z) and F |αL = (z). Clearly, F |α �1 F |αL and so C is set-propagation
redundant with respect to F . Note also thatC is not literal-propagation redundant with respect
to F .

Since L is a subset of C , we do not need to add it (or the assignment αL ) explicitly to an SPR
proof. By requiring that L must consist of the first literals of C when adding C to a proof

123



M. J. H. Heule et al.

(viewing a clause as a sequence of literals), we can ensure that the SPR property is efficiently
decidable. For instance, when a proof contains the clause l1 ∨· · ·∨ lk , we first check whether
the SPR property holds under the assumption that L = {l1}. If not, we proceed by assuming
that L = {l1, l2}, and so on until L = {l1, . . . , lk}. Thereby, only linearly many candidates
for L need to be checked. In contrast to LPR clauses and RATs, the notion of SPR clauses
generalizes set-blocked clauses [19]:

Definition 5 A clause C is set-blocked (SBC) by a non-empty set L ⊆ C in a formula F if,
for every clause D ∈ FL̄ , the clause (C \ L) ∪ L̄ ∪ D contains two complementary literals.

To show that set-propagation-redundant clauses generalize set-blocked clauses, we first char-
acterize them as follows:

Lemma 3 Let F be a clause, C a formula, L ⊆ C a non-empty set of literals, and α the
assignment blocked by C. Then, C is set-blocked by L in F if and only if, for every D ∈ F,
D|α = � implies D|αL = �.

Proof For the “only if” direction, assume that there exists a clause D ∈ F such that D|α = �
but D|αL �= �. Then, since α and αL disagree only on literals in L , it follows that D contains
a literal l ∈ L̄ and thus D ∈ FL̄ . Now, αL falsifies exactly the literals in (C \ L) ∪ L̄ and
since it does not satisfy any of the literals in D, it follows that there exists no literal l ∈ D
such that its complement l is contained in (C \ L) ∪ L̄ . Therefore, C is not SBC by L in F .

For the “if” direction, assume that C is not SBC by L in F , i.e., there exists a clause
D ∈ FL̄ such that (C \ L)∪ L̄ ∪ D does not contain complementary literals. Now, D|α = �
since α falsifies L and D ∩ L̄ �= ∅. Since D contains no literal l such that l ∈ (C \ L) ∪ L̄
and since αL falsifies exactly the literals in (C \ L) ∪ L̄ , it follows that αL does not satisfy
D, hence D|αL �= �. ��
Theorem 4 If a clause C is set-blocked by a set L in a formula F, it is set-propagation
redundant with respect to F.

Proof Assume that C is set-blocked by L in F . We show that F |α ⊇ F |αL , which implies
that F |α �1 F |αL , and therefore that C is set-propagation redundant with respect to F . Let
D|αL ∈ F |αL . First, note that D cannot be contained in FL , for otherwise D|αL = � and
thus D|αL /∈ F |αL . Second, observe that D can also not be contained in FL̄ , since that
would imply that D|α = � and thus, by Lemma 3, D|αL = �. Therefore, D /∈ FL ∪ FL̄
and so D|α = D|αL . But then, D|αL ∈ F |α. It follows that F |α ⊇ F |αL . ��
We thus know that set-propagation-redundant clauses generalize both resolution asymmetric
tautologies and set-blocked clauses. As there are resolution asymmetric tautologies that are
not set-blocked (and vice versa) [19], it follows that set-propagation-redundant clauses are
actually a strict generalization of these two kinds of clauses.

Note that F |α �1 F |αL is equivalent to F |α �1 FL̄ |αL . To see this, observe that if a
clause D|αL ∈ F |αL contains no literals from L̄ , then αL does not assign any of its literals,
in which case D|αL is also contained in F |α. We therefore do not need to check for every
D|αL ∈ F |αL whether F |α �1 D|α.

By giving practically full freedom to the witnessing assignments, i.e., by only requiring
them to satisfy C , we finally arrive at propagation-redundant clauses, the most general of the
three redundancy notions:

Definition 6 Let F be a formula, C a clause, and α the assignment blocked by C . Then, C
is propagation redundant (PR) with respect to F if there exists an assignment ω such that ω
satisfies C and F |α �1 F |ω.
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Example 4 Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z), C = x , and let ω = x z be the witnessing
assignment. Then, α = x is the assignment blocked by C . Now, consider F |α = (y) and
F |ω = (y). Clearly, unit propagation with the negated literal y of the unit clause y ∈ F |ω
derives a conflict on F |α. Therefore, F |α �1 F |ω and so C is PR with respect to F . Note
that C is not set-propagation redundant because for L = {x}, we have αL = x and so F |αL
contains the two unit clauses y and z, but it does not hold that F |α �1 z. The fact that ω

satisfies z is crucial for ensuring propagation redundancy. ��
Since the witnessing assignments ω are allowed to assign variables that are not contained in
C , we need—at least in general—to add them to a proof to guarantee that redundancy can
be efficiently checked.

We can now explicitly define the PR proof system as an instance of a clausal proof system
as defined on page 4:

Definition 7 Given a formula F = {C1, . . . ,Cm}, a PR derivation of a clause Cn from F is
a sequence (Cm+1, ωm+1), . . . , (Cn, ωn) where for every pair (Ci , ωi ), one of the following
holds: (1) ωi is an assignment that satisfies Ci and Fi−1 |αi �1 Fi−1 |ωi with αi being the
assignment blocked by Ci , or (2) Cn = ⊥ and Fn−1 �1 ⊥. A PR derivation of ⊥ from F is a
PR proof of F .

The LPR proof system and the SPR proof system are defined accordingly. Note that in the
definition above we treat the empty clause separately because only non-empty clauses can be
propagation redundant. If we allow the mentioned proof systems to delete arbitrary clauses,
we obtain the proof systems DLPR, DSPR, and DPR. We will not consider deletion in the rest
of the article.

5 Short Proofs of the Pigeon Hole Principle

In a landmark article, Haken [9] showed that pigeon hole formulas cannot be refuted by
resolution proofs that are of polynomial size with respect to the size of the formulas. In
contrast, Cook [5] proved that there are actually polynomial-size refutations of the pigeon hole
formulas in the stronger proof system of extended resolution. What distinguishes extended
resolution from general resolution is that it allows the introduction of new variables via
definitions. Cook showed how the introduction of such definitions helps to reduce a pigeon
hole formula of size n to a pigeon hole formula of size n − 1 over new variables. The
problem with the introduction of new variables, however, is that the search space of possible
variables—and therefore clauses—that could be added to a proof is exponential.

In the following, we illustrate how the PR proof system admits short proofs of pigeon hole
formulas without the need for introducing new variables. This shows that the PR system is
strictly stronger than the resolution calculus, even when we forbid the introduction of new
variables. A pigeon hole formula PHPn intuitively encodes that n + 1 pigeons have to be
assigned to n holes such that no hole contains more than one pigeon.1 In the encoding, a
variable xp,h intuitively denotes that pigeon p is assigned to hole h:

PHPn :=
∧

1≤p≤n+1

(xp,1 ∨ · · · ∨ xp,n) ∧
∧

1≤p<q≤n+1

∧
1≤h≤n

(x p,h ∨ xq,h)

1 We changed the definition of PHPn from putting n pigeons into n − 1 holes to putting n + 1 pigeons into n
holes in order to fix a discrepancy with the formulas in the evaluation.
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Clearly, pigeon hole formulas are unsatisfiable. The main idea behind our approach is similar
to that of Cook, namely to reduce a pigeon hole formula PHPn to the smaller PHPn−1.
The difference is that in our case PHPn−1 is still defined on the same variables as PHPn .
Therefore, reducing PHPn to PHPn−1 boils down to deriving the clauses xp,1 ∨ · · · ∨ xp,n−1

for 1 ≤ p ≤ n.
Following Haken [9], we use array notation for clauses: Every clause is represented by

an array of n + 1 columns and n rows. An array contains a “ ” (“ ”) in the pth column
and hth row if and only if the variable xp,h occurs positively (negatively, respectively) in
the corresponding clause. Representing PHPn in array notation, we have for every clause
xp,1 ∨ · · · ∨ xp,n , an array in which the pth column is filled with “ ”. Moreover, for every
clause x p,h ∨ xq,h , we have an array that contains two “ ” in row h—one in column p and
the other in column q . For instance, PHP3 is given in array notation as follows:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

1
2
3

1 2 3 4
1
2
3

1 2 3 4

. . .
1
2
3

1 2 3 4

. . .
1
2
3

1 2 3 4
1
2
3

1 2 3 4

We illustrate the general idea for reducing a pigeon hole formulaPHPn to the smallerPHPn−1

on the concrete formula PHP3. It should, however, become clear from our explanation that
the procedure works for every n > 1. If we want to reduce PHP3 to PHP2, we have to derive
the following three clauses:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

We can do so by removing the “ ” from the last row of every column full of “ ”, except for the
last column, which can be ignored as it is not contained in PHP2. The key observation is that
a “ ” in the last row of the pth column can be removed with the help of so-called “diagonal
clauses” of the form x p,n ∨ xn+1,h (1 ≤ h ≤ n − 1). We are allowed to add these diagonal
clauses since they are, as we will show, propagation redundant with respect to PHPn . The
arrays below represent the diagonal clauses to remove the “ ” from the last row of the first
(left), second (middle), and third column (right):

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

We next show how exactly these diagonal clauses allow us to remove the bottom “ ” from
a column full of “ ”, or, in other words, how they help us to remove the literal xp,n from a
clause xp,1 ∨ · · · ∨ xp,n (1 ≤ p ≤ n). Consider, for instance, the clause x2,1 ∨ x2,2 ∨ x2,3 in
PHP3. Our aim is to remove the literal x2,3 from this clause. Before we explain the procedure,
we like to remark that proof systems based on propagation redundancy can easily simulate
resolution: Since every resolvent of clauses in a formula F is implied by F , the assignment
α blocked by the resolvent must falsify F and thus F |α �1 ⊥. We explain our procedure
textually before we illustrate it in array notation:

First, we add the diagonal clauses D1 = x2,3 ∨ x4,1 and D2 = x2,3 ∨ x4,2 to PHP3.
Now, we can derive the unit clause x2,3 by resolving the two diagonal clauses D1 and D2
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with the original pigeon hole clauses P1 = x2,3 ∨ x4,3 and P2 = x4,1 ∨ x4,2 ∨ x4,3 as
follows: We obtain x2,3 ∨ x4,2 ∨ x4,3 by resolving D1 with P2. Then, we resolve this clause
with D2 to obtain x2,3 ∨ x4,3, which we resolve with P1 to obtain x2,3. Note that our proof
system actually allows us to add x2,3 immediately without carrying out all the resolution
steps explicitly. Finally, we resolve x2,3 with x2,1 ∨ x2,2 ∨ x2,3 to obtain the desired clause
x2,1 ∨ x2,2.

We next illustrate this procedure in array notation. We start by visualizing the clauses D1,
D2, P1, and P2 that can be resolved to yield the clause x2,3. The clauses are given in array
notation as follows:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

D1 D2 P1 P2 x2,3

We can then resolve x2,3 with x2,1 ∨ x2,2 ∨ x2,3 to obtain x2,1 ∨ x2,2:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

x2,3 x2,1 ∨ x2,2 ∨ x2,3 x2,1 ∨ x2,2

This should illustrate how a clause of the form xp,1∨· · ·∨xp,n (1 ≤ p ≤ n) can be reduced to
a clause xp,1∨· · ·∨ xp,n−1. By repeating this procedure for every column p with 1 ≤ p ≤ n,
we can thus reduce a pigeon hole formula PHPn to a pigeon hole formula PHPn−1 without
introducing new variables. Note that the last step, in which we resolve the derived unit clause
x2,3 with the clause x2,1 ∨ x2,2 ∨ x2,3, is actually not necessary for a valid PR proof of a
pigeon hole formula, but we added it to simplify the presentation.

It remains to show that the diagonal clauses are indeed propagation redundant with respect
to the pigeon hole formula. To do so, we show that for every assignment α = xp,n xn+1,h

that is blocked by a diagonal clause x p,n ∨ xn+1,h , it holds that for the assignment ω =
x p,n xn+1,h xp,h xn+1,n , PHPn |α = PHPn |ω, implying that PHPn |α �1 PHPn |ω. We also
argue why other diagonal and unit clauses can be ignored when checking whether a new
diagonal clause is propagation redundant.

We again illustrate the idea on PHP3. We now use array notation also for assignments,
i.e., a “ ” (“ ”) in column p and row h denotes that the assignment makes variable xp,h true
(false, respectively). Consider, for instance, the diagonal clause D2 = x2,3 ∨ x4,2 that blocks
α = x2,3 x4,2. The corresponding witnessing assignment ω = x2,3 x4,2 x2,2 x4,3 can be seen
as a “rectangle” with two “ ” in the corners of one diagonal and two “ ” in the other corners:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

D2 α ω

To see thatPHP3 |α andPHP3 |ω coincide on clauses xp,1∨· · ·∨xp,n , consider that whenever
α and ω assign a variable of such a clause, they both satisfy the clause (since they both have a
“ ” in every column in which they assign a variable) and so they both remove it from PHP3.
For instance, in the following example, both α and ω satisfy x2,1 ∨ x2,2 ∨ x2,3 while both do
not assign a variable of the clause x3,1 ∨ x3,2 ∨ x3,3:
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1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

x2,1 ∨ x2,2 ∨ x2,3 x3,1 ∨ x3,2 ∨ x3,3 α ω

To see that PHP3 |α and PHP3 |ω coincide on clauses of the form x p,h ∨ xq,h , consider the
following: If α falsifies a literal of x p,h ∨ xq,h , then the resulting clause is a unit clause for
which one of the two literals is not assigned by α (since α does not assign two variables in
the same row). Now, one can show that the same unit clause is also contained in PHP3 |ω,
where it is obtained from another clause: Consider, for example, again the assignment α =
x2,3 x4,2 and the corresponding witnessing assignment ω = x2,3 x4,2 x2,2 x4,3 from above.
The assignment α turns the clauseC = x3,2∨x4,2 into the unitC |α = x3,2. The same clause
is contained in PHP3 |ω, as it is obtained from C ′ = x2,2 ∨ x3,2 since C ′ |ω = C |α = x3,2:

1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4

α C C |α = C ′ |ω C ′ ω

Note that diagonal clauses and unit clauses that have been derived earlier can be ignored
when checking whether the current one is propagation redundant. For instance, assume we
are currently reducing PHPn to PHPn−1. Then, the assignments α and ω under consideration
only assign variables in PHPn . In contrast, the unit and diagonal clauses used for reducing
PHPn+1 to PHPn (or earlier ones) are only defined on variables outside of PHPn . They
are therefore contained in both PHPn |α and PHPn |ω. We can also ignore earlier unit and
diagonal clauses over variables in PHPn , i.e., clauses used for reducing an earlier column
or other diagonal clauses for the current column: If α assigns one of their variables, then ω

satisfies them and so they are not in PHPn |ω.
Finally, we want to mention that short SPR proofs (without new variables) of the pigeon

hole formulas can be constructed by first adding SPR clauses of the form x p,n ∨ xn+1,h ∨
xp,h ∨ xn+1,n and then turning them into diagonal clauses using resolution. We left these
proofs out since they are twice as large as the PR proofs and their explanation is less intuitive.
A recent result shows that the conversion of a PR proof into a DRAT proof requires only one
auxiliary variable [11]. We can thus construct short DRAT proofs without new variables from
short PR proofs without new variables. To do so, we first eliminate a single variable from
the original formula and then reuse that variable in the conversion algorithm. This is only
possible because DRAT allows clause deletion. We consider it unlikely that there exist short
proofs for the pigeon hole formulas in the RAT/LPR proof system, where no deletions are
allowed.

6 Evaluation

We implemented a PR proof checker on top of DRAT-trim [30]. The tool, formulas, and
proofs are available at https://www.cs.utexas.edu/~marijn/pr. Figure 2 shows the pseudo code
of the checking algorithm. The first “if” statement is not necessary but significantly improves
the efficiency of the algorithm. The worst-case complexity of the algorithm is O(n3), where
n is the size of the final formula. The reason for this is that there are n − m iterations of the
outer for-loop and for each of these iterations, the inner for-loop is performed |Fi | times,
i.e., once for every clause in Fi . Given that Fi contains i clauses, we know that the size of
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PRcheck (formula Fm = C1, . . . , Cm; PR proof (Cm+1, ωm+1), . . . , (Cn, ωn))
for i ∈ {m + 1, . . . , n} do

for D ∈ Fi−1 do
if D |ωi = and (D |αi = or D |ωi ⊂ D |αi) then

if Fi−1 |αi 1 D |ωi then return failure
Fi := Fi−1 ∪ {Ci}

return success

Fig. 2 Pseudo code of the PR-proof checking algorithm

F is bounded by n. It follows that the inner for-loop is performed mn times. Now, there is
a unit propagation test in the inner if-statement: If k is the maximal clause size and n is an
upper bound for the size of the formula, then the complexity of unit propagation is known
to be at most kn. Hence, the overall worst-case complexity of the algorithm is bounded by
mkn2 = O(n3).

This complexity is the same as for RAT-proof checking. In fact, the pseudo-code for RAT-
proof checking and PR-proof checking is the same apart from the first if-statement, which
is always true in the worst case, both for RAT and PR. Although the theoretical worst-case
complexity makes proof checking seem very expensive, it can be done quite efficiently in
practice: For the RAT proofs produced by solvers in the SAT competitions, we observed that
the runtime of proof checking is close to linear with respect to the sizes of the proofs.

Moreover, we want to highlight that verifying the PR property of a clause is relatively
easy as long as a witnessing assignment is given. For an arbitrary clausewithout a witnessing
assignment, however, it is an NP-complete problem to decide if the clause is PR [15]. We
therefore believe that in general, the verification of PR proofs is simpler than the actual
solving/proving.

The format of PR proofs is an extension of DRAT proofs: the first numbers of line i denote
the literals in Ci . Positive numbers refer to positive literals, and negative numbers refer to
negative literals. In case a witness ωi is provided, the first literal in the clause is repeated to
denote the start of the witness. Recall that the witness always has to satisfy the clause. It is
therefore guaranteed that the witness and the clause have at least one literal in common. Our
format requires that such a literal occurs at the first position of the clause and of the witness.
Finally, 0marks the end of a line. Figure 3 shows the formula and the PR proof of our running
example PHP3.

Table 1 compares our PR proofs with existingDRAT proofs of the pigeon hole formulas and
of formulas from another challenging benchmark suite of the SAT competition that allows
two pigeons per hole. For the latter suite, PR proofs can be constructed in a similar way as
those of the classical pigeon hole formulas. Notice that the PR proofs do not introduce new
variables and that they contain fewer clauses than their corresponding formulas. The DRAT
proof of PHPn contains a copy of the formula PHPk for each k < n. Checking PR proofs is
also more efficient, as they are more compact.

7 Properties of Propagation Redundancy

In the following, we discuss some properties of propagation redundancy and its restricted
variants of literal-propagation redundancy and set-propagation redundancy. We first prove
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CNF Formula

x1,1 ∨ x1,2 ∨ x1,3
x2,1 ∨ x2,2 ∨ x2,3
x3,1 ∨ x3,2 ∨ x3,3
x4,1 ∨ x4,2 ∨ x4,3

x1,1 ∨ x2,1
x1,2 ∨ x2,2
x1,3 ∨ x2,3
x1,1 ∨ x3,1
x1,2 ∨ x3,2
x1,3 ∨ x3,3

. . .

DIMACS File

p cnf 12 22
1 2 3 0
4 5 6 0
7 8 9 0

10 11 12 0
-1 -4 0
-2 -5 0
-3 -6 0
-1 -7 0
-2 -8 0
-3 -9 0
...

PR Proof File

-3 -10 -3 -10 1 12 0
-3 -11 -3 -11 2 12 0

-3 0
-6 -10 -6 -10 4 12 0
-6 -11 -6 -11 5 12 0

-6 0
-9 -10 -9 -10 7 12 0
-9 -11 -9 -11 8 12 0

-9 0
-2 0
-5 0

0

Lemmas

x1,3 ∨ x4,1
x1,3 ∨ x4,2

x1,3
x2,3 ∨ x4,1
x2,3 ∨ x4,2

x2,3
x3,3 ∨ x4,1
x3,3 ∨ x4,2

x3,3
x1,2
x2,2
⊥

Fig. 3 Left, ten clauses of PHP3 using the notation as elsewhere in this article and next to it the equivalent
representation of these clauses in the DIMACS format used by SAT solvers. Right, the full PR refutation
consisting of clause-witness pairs. A repetition of the first literal indicates the start of the optional witness

Table 1 The sizes (in terms of the number of variables and clauses) of pigeon hole formulas (top) and two-
pigeons-per-hole formulas (bottom) as well as the sizes and validation times (in seconds) for their PR proofs
(as described in Sect. 5) and their DRAT proofs (based on symmetry breaking [12])

Formula Input PR proofs DRAT proofs
#var #cls #var #cls Time #var #cls Time

hole10.cnf 110 561 110 385 0.17 440 3685 0.22

hole11.cnf 132 738 132 506 0.18 572 5236 0.23

hole12.cnf 156 949 156 650 0.19 728 7228 0.27

hole13.cnf 182 1197 182 819 0.21 910 9737 0.34

hole20.cnf 420 4221 420 2870 0.40 3080 49,420 2.90

hole30.cnf 930 13,981 930 9455 2.57 9920 234,205 61.83

hole40.cnf 1640 32,841 1640 22,140 13.54 22,960 715,040 623.29

hole50.cnf 2550 63,801 2550 42,925 71.72 44,200 1,708,925 3158.17

tph8.cnf 136 5457 136 680 0.32 3520 834,963 5.47

tph12.cnf 300 27,625 300 2300 1.81 11,376 28,183,301 1396.92

tph16.cnf 528 87,329 528 5456 11.16 Not available, too large

tph20.cnf 820 213,241 820 10,660 61.69 Not available, too large

that if a clauseC is either LPR,SPR, orPRwith respect to a formula F , then every superclause of
C (i.e., every clause D such that C ⊆ D) is also LPR, SPR, or PR (respectively) with respect
to F . After this, we show how propagation-redundant clauses can be shortened based on
unit propagation. Finally, we present an observation that clarifies the relationship between
propagation-redundant clauses and their corresponding witnessing assignments.

Our strategy for showing that the superclauses of LPR, SPR, and PR clauses are also LPR,
SPR, and PR is as follows: Assume, for instance, that C is a PR clause with respect to F and
let α be the assignment blocked by C . We then know that there exists an assignment ω such
that F |α �1 F |ω. To show that every superclauseC ′ ofC is also propagation redundant with
respect to F , we extend α so that it becomes the assignment α′ blocked by C ′. After this, we
extend ω to an assignment ω′ such that F |α′ �1 F |ω′. The following example shows that
we cannot simply extend α without extending ω:
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Example 5 Let F = (x ∨ y) ∧ (x ∨ y) and let α = x and ω = x . Then, F |α and F |ω both
contain only the unit clause y and so it holds that F |α �1 F |ω. If we only extend α to αy,
then F |αy contains no clauses and thus F |αy �1 F |ω. However, if we also extend ω to ωy,
then we again have F |αy �1 F |ωy. ��
In the following, we present several statements that help us extend ω in the right way. We
start with a simple observation about the relation between unit propagation and variable
assignments. If a formula is unsatisfiable, then the formula remains unsatisfiable after we
assign some of its variables. A similar property holds when unsatisfiability can be shown by
unit propagation: If unit propagation derives a conflict on a formula, then we can assign truth
values to arbitrary variables of the formula and unit propagationwill still derive a conflict. This
property will be useful belowwhen we prove other properties about propagation redundancy:

Proposition 5 If unit propagation derives a conflict on a formula F, then it derives a conflict
on F |x for every literal x.

Proof Assume unit propagation derives a conflict on F . Then, there must exist a sequence
C1, . . . ,Ck of clauses from F such that C1 is the unit clause a1, C2 |a1 is the unit clause
a2, and so on until Ck−1 |a1 . . . an−2 = ak−1, and finally Ck |a1 . . . ak−1 = ⊥. Now, if the
variable var(x) does not occur in any of the clauses C1, . . . ,Ck , then Ci |x = Ci for each
i ∈ 1, . . . , n and thus unit propagation derives a conflict on F |x . Assume now that var(x)
occurs in C1, . . . ,Ck and let Ci be the clause with the smallest i such that var(x) ∈ Ci .
Then, C1, . . . ,Ci−1 ∈ F |x and so unit propagation derives the unit clauses a1, . . . , ai−1 on
F |x . We proceed by a case distinction.
x ∈ Ci : In this case, Ci /∈ F |x , but we know that Ci |a1 . . . ai−1 = ai = x since var(x)
cannot occur in a1, . . . , ai−1. But then the assignment a1 . . . ai−1ai , derived by unit propa-
gation on F , is the assignment a1 . . . ai−1x , derived by unit propagation on F |x . Hence, unit
propagation on F |x derives a conflict using the clausesC1|x, . . . ,Ci−1 |x,Ci+1 |x, . . .Ck |x .
x ∈ Ci : In that case, Ci |a1 . . . ai−1 must be the unit clause x . It follows that Ci ⊆ a1 ∨ · · · ∨
ai−1 ∨ x and thus Ci |x ⊆ a1 ∨· · ·∨ai−1. Hence, unit propagation on F |x derives a conflict
with the clauses C1,C2, . . . ,Ci |x since it derives all the unit clauses a1, . . . , ai−1. ��
InExample 5,we presented a formula F with two assignmentsα andω such that F |α �1 F |ω.
After extending α to αx , however, we could observe that F |αx �1 F |ω. The problem in the
example is that in contrast to F |α, the formula F |αx does not contain the unit clause x
anymore while F |ω still contains x as a clause. Hence, F |αx does not imply F |ω. However,
as the next statement tells us, it is guaranteed that F |αx implies all those clauses of F |ω that
contain neither x nor x .

In the rest of this section, given a clause C = (c1 ∨ · · · ∨ cn), we write ¬C for the
conjunction c1 ∧ · · · ∧ cn of unit clauses. In the following statement, the requirement that α
must not falsify x makes sure that αx is well-defined:

Lemma 6 Let F be formula, let α, ω be assignments such that F |α �1 F |ω, and let x be a
literal that is not falsified by α. Then, F |αx �1 D|ω for every clause D|ω ∈ F |ω such that
var(x) /∈ var(D|ω).

Proof Assume that F |α �1 F |ω and let D|ω ∈ F |ω be a clause such that var(x) /∈ D|ω.
Since F |α �1 D|ω, we know that unit propagation derives a conflict on F |α∧¬(D|ω), with
¬(D|ω) being the conjunction of the negated literals of D|ω. Since var(x) /∈ var(D|ω), it
follows that D|ω = D|ωx . Thus, (F |α ∧ ¬(D|ω))|x = F |αx ∧ ¬(D|ω). But then, since
unit propagation derives a conflict on F |α ∧ ¬(D|ω), we know, by Proposition 5, that unit
propagation derives a conflict on F |αx ∧ ¬(D|ω). It follows that F |αx �1 D|ω. ��
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Using Lemma 6, we can show that every literal that is neither falsified by α nor by ω can just
be appended to both α and ω:

Lemma 7 Let F be formula, α and ω assignments, and x a literal that is neither falsified by
α nor by ω. Then, F |α �1 F |ω implies F |αx �1 F |ωx.
Proof Suppose F |α �1 F |ω and let D|ωx ∈ F |ωx for D ∈ F . We show that F |αx �1
D|ωx . If x ∈ D|ω, then D|ω = D|ωx ∨ x . Hence, unit propagation derives a conflict on
F |α ∧ ¬(D|ωx) ∧ x , with ¬(D|ωx) being the conjunction of the negated literals of D|ωx .
But then unit propagation derives a conflict on F |αx ∧ ¬(D|ωx) and thus F |αx �1 D|ωx .
If x /∈ D, then D|ωx = D|ω. Now, we know that F |α �1 D|ω and hence F |α �1 D|ωx .
Thus, by Lemma 6, it follows that F |αx �1 D|ωx . ��
Assume that a clause C is LPR with respect to a formula F . Let D be a superclause of C ,
α be the assignment blocked by C , and αx1 . . . xk the assignment blocked by D. Then, we
know that there exists a literal l ∈ C such that F |α �1 F |αl . But then Lemma 7 tells us
that F |αx1 . . . xk �1 F |αl x1 . . . xk and thus D is LPR with respect to F . The same argument
applies to SPR clauses (but not to PR clauses in general) and thus we get:

Theorem 8 If a clause C is LPR (SPR) with respect to F, then every superclause of C is LPR
(SPR, respectively) with respect to F.

To show that the corresponding statement also holds for PR clauses that are not SPR clauses,
we need to show some additional properties of PR clauses. The next statement, which is a
simple consequence of Lemma 6, tells us that the extension of α to αx is harmless ifω already
falsifies x :

Lemma 9 Let F be formula, let α and ω be assignments, and let x be a literal that is not
falsified by α. Then, F |α �1 F |ωx implies F |αx �1 F |ωx.
Proof Assume that var(x) occurs in a clause D ∈ F . If x ∈ D, then D|ωx does not contain
x . If x ∈ D, then D is satisfied by ωx and thus D|ωx /∈ F |ωx . Thus, by Lemma 6,
F |αx �1 F |ωx . ��
Putting everything together, we can now show that we can always extend α if we just extend
ω accordingly:

Lemma 10 Let F be a formula, let α and ω be two assignments such that F |α �1 F |ω,
and let α′ be an assignment such that α ⊆ α′. Then, there exists an assignment ω′ such that
ω ⊆ ω′ and F |α′ �1 F |ω′.

Proof Suppose α′ is an assignment such that α ⊆ α′. Then, α′ is of the form αx1 . . . xk
where n ∈ 0, . . . , n. Now, starting with x1, we stepwise extend α with x1, . . . , xk to finally
obtain αx1 . . . xk . We just have to extend ω to an assignment ωk accordingly to ensure that
F |αx1 . . . xk �1 F |ωk . We start with ω0 = ω and proceed as follows for i ∈ 1, . . . , n: If
var(xi ) ∈ var(ω), define ωi = ωi−1. In contrast, if var(xi ) /∈ var(ω), define ωi = ωi−1xi .

By a simple induction on i we can now show F |αx1 . . . xi �1 F |ωi for every i ∈ 0, . . . , k:
The base case, F |α �1 F |ω, holds by assumption. The induction hypothesis states that
F |αx1 . . . xi−1 �1 F |ωi−1. Now, for the induction step, if ω(xi ) = 0, then ωi is of the
form ωi−1xi . In this case, by Lemma 9, F |αx1 . . . xi �1 F |ωi−1xi . If var(xi ) /∈ var(ω) or
ω(xi ) = 1, thenωi is of the formωi−1xi . In that case, byLemma7, F |αx1 . . . xi �1 F |ωi−1xi
. ��
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As immediate consequence we obtain one of our main statements:

Theorem 11 If a clause C is PR with respect to F, then every superclause of C is PR with
respect to F.

Next, we show that we can remove certain literals from propagation-redundant clauses with-
out violating their property of being propagation redundant. The idea is as follows: Let C
be a clause that is propagation redundant with respect to a formula F and let αx1 . . . xk
be the assignment blocked by C . Now, if unit propagation on F |α derives the unit clauses
x1, . . . , xk , then the clause that blocks only α—and not the whole assignment αx1 . . . xk—is
propagation redundant with respect to F too. To show this, we first introduce the notion
of propagation extensions. Note that in the following definition, by a consistent set of unit
clauses, we mean a set of unit clauses that does not contain two complementary unit clauses
x and x :

Definition 8 Let F be a formula, let α be an assignment, and let {x1, . . . , xk} be a consistent
set of unit clauses derived by unit propagation on F |α. Then, αx1 . . . xk is a propagation
extension of α on F .

Example 6 Let F = (x ∨ y) ∧ (y ∨ z) and let α = x . Unit propagation on F |α derives the
unit clauses y and z. Hence, the assignments αy, αz, and αyz are propagation extensions of
α on F . Now consider the formula F ∧ z. Then, unit propagation on (F ∧ z)|α derives the
unit clauses y, z, and z. Thus, the propagation extensions of α on F ∧ (z) are the assignments
αz and αyz as well as all the propagation extensions of α on F . ��
If F |α+ �1 F |ω for some propagation extension α+ of an assignment α, we can simply
shorten α+ to α without modifying ω and it will still hold that F |α �1 F |ω:
Lemma 12 Let F be a formula, α an assignment, and α+ a propagation extension of α on
F. Then, F |α �1 F |ω if and only if F |α+ �1 F |ω.
Proof The “only if” direction is an immediate consequence of Lemma 10. For the “if”
direction, assume that F |α+ �1 F |ω and let D|ω ∈ F |ω. We know that unit propagation
derives a conflict on F |α+∧¬(D|ω)where¬(D|ω) is the conjunction of the negated literals
of D|ω. Since unit propagation derives F |α+ from F |α, it follows that unit propagation
derives a conflict on F |α ∧ ¬(D|ω). Hence, F |α �1 D|ω and thus F |α �1 F |ω. ��
Using Lemma 12, we can now show that the removal of propagated literals from PR clauses
is harmless:

Theorem 13 Let C be a clause that is PR with respect to a formula F and let α+ be the
assignment blocked by C. If α+ is a propagation extension of an assignment α on F, then the
clause that blocks α is PR with respect to F.

Proof Assume that α+ is a propagation extension of an assignment α on F and let C− be the
clause that blocks α. Then, α+ is of the form αx1 . . . xk where x1, . . . xk are all the literals
derived by unit propagation on F |α. Since C is propagation redundant with respect to F , we
know that there exists some assignment ω such that ω satisfies C and F |αx1 . . . xk �1 F |ω.
Hence, by Lemma 12, F |α �1 F |ω. Now, ifω satisfiesC−, thenC− is propagation redundant
with respect to F .

Assume thus that ω does not satisfy C−. Then, since ω satisfies C , it must falsify a literal
in x1, . . . , xk . Let xi be the first literal (i.e., the one with the smallest index) of x1, . . . , xk
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that is falsified by ω. Then, there exists a clause D ∈ F such that D|αx1 . . . xi−1 is the unit
clause xi and thus ω falsifies D. Hence, F |α �1 ⊥. But then, C− is trivially PR with respect
to F since it holds for every assignment τ (and in particular for every τ that satisfies C) that
F |α �1 F |τ . ��
We can prove a corresponding result about LPR clauses: If we remove propagated literals
from an LPR clause, then the resulting clause is also an LPR clause. As we will see later, this
is not the case for SPR clauses. We start with two lemmas:

Lemma 14 Let F be a formula, α and ω assignments, and x a literal such that F |α �1 x.
Then, F |α �1 F |ωx implies F |α �1 F |ω.
Proof Suppose to the contrary that there exists a clause D|ω ∈ F |ω such that F |α �1 D|ω.
Then, D must contain x , for otherwise ωx would not satisfy D, which would in turn imply
F |α �1 F |ωx . Therefore, the clause¬(D|ω), being the conjunction of the negated literals of
D|ω, must contain x . But then, since unit propagation on F |α derives x , it follows that unit
propagation derives a conflict on F |α∧¬(D|ω). Hence, F |α �1 D|ω and thus F |α �1 F |ω.

��
Lemma 15 Let F be a formula, α an assignment, α+ a propagation extension of α on F, and
l a literal. Then, F |α+ �1 F |αl+ implies F |α �1 F |αl .
Proof Assume that α+ is a propagation extension of α. Then, α+ is of the form ατ where
τ make the literals true that have been derived by unit propagation on F |α. To show that
F |α �1 F |αl , we distinguish two cases:
var(l) ∈ var(α): In this case, F |ατ �1 F |αlτ and thus F |α �1 F |αlτ . Now, since F |α �1 x
for every literal x satisfied by τ , we use Lemma 14 to repeatedly remove from αlτ all
assignments made by τ to obtain F |α �1 F |αl .
var(l) ∈ var(τ ): In that case, F |ατ �1 F |ατl . Since unit propagation on F |α derives l, there
exists a clause D ∈ F such that ατl—which satisfies l—falsifies D. Hence, D|ατl = ⊥, and
since F |ατ �1 D|ατl , it follows that unit propagation derives a conflict on F |ατ . But then
unit propagation must derive a conflict on F |α and thus F |α implies every clause via unit
propagation. We thus conclude that F |α �1 F |αl . ��
The following Theorem is now an immediate consequence of Lemma 15:

Theorem 16 Let C be a clause that is LPR with respect to a formula F and let α+ be the
assignment blocked by C. If α+ is a propagation extension of an assignment α on F, then the
clause that blocks α is LPR with respect to F.

The corresponding property does not hold for SPR clauses, as illustrated by the following
example:

Example 7 Let F = (x∨y)∧(x∨y),C = x∨y, and L = {x, y}. Then,α+ = x y, which is the
assignment blocked by C , is a propagation extension of the assignment α = x . Moreover,
since F |αL

+ contains no clauses, we have F |α+ �1 F |αL
+ and thus C is set-propagation

redundant with respect to F . However, F |α �1 F |αx and thus the subclause x of C is not
set-propagation redundant with respect to F . ��
We conclude this section with an observation about the witnessing assignments of
propagation-redundant clauses. In the case of propagation redundancy, the domain of the
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witnessing assignment ω is not constrained to a particular set of variables. Thus, if we are
given a clause C and we want to find a corresponding assignment ω that witnesses the prop-
agation redundancy of C , we would have to consider assignments over all possible sets of
variables. It turns out, however, that there is always a witnessing assignment that assigns all
variables occurring in C , and possibly more. Thus, if α is the assignment blocked by C , we
only need to consider assignments ω such that var(α) ⊆ var(ω). The reason for this is that
we can extend every witness ω to the variables of var(α):

Proposition 17 Let F be a formula, α and ω assignments, and x a literal such that var(x) ∈
var(α) \ var(ω). Then, F |α �1 F |ω implies F |α �1 F |ωx.

Proof Let D|ωx ∈ F |ωx . We show that F |α �1 D|ωx . Clearly, x is not contained in D
for otherwise D|ωx = �. Therefore, the only possible difference between D|ω and D|ωx
is that x is contained in D|ω but not in D|ωx . Now, since var(x) ∈ var(α), we know that
var(x) /∈ F |α. But then, F |α �1 D|ωx if and only if F |α �1 D|ω. It thus follows that
F |α �1 F |ωx . ��

8 RelatedWork

Here, we discuss how the concepts in this article are related to variable instantiation [1],
autarkies [24], safe assignments [29], and symmetry breaking [6]. If F |x � F |x holds for
some literal x , then variable instantiation, as described by Andersson et al. [1], allows to
make the literal x true in the formula F . Analogously, our redundancy notion identifies the
clause x as redundant.

As presented by Monien and Speckenmeyer [24], an assignment ω is an autarky for a
formula F if it satisfies all clauses of F that contain a literal to which ω assigns a truth value.
If an assignment ω is an autarky for a formula F , then F is satisfiability equivalent to F |ω.
Similarly, propagation redundancy PR allows us to add all the unit clauses satisfied by an
autarky, with the autarky serving as a witness:2 Let ω be an autarky for some formula F ,
C = x for a literal x satisfied by ω, and α = x the assignment blocked by C . Notice that
F |α ⊇ F |ω and thus C is PR with respect to F .

According to Weaver and Franco [29], an assignment ω is considered safe if, for every
assignment α with var(α) = var(ω), it holds that F |α � F |ω. If an assignment ω is safe,
then F |ω is satisfiability equivalent to F . In a similar fashion, our approach allows us to
block all the above-mentioned assignments α �= ω. Through this, we obtain a formula that
is logically equivalent to F |ω. Note that safe assignments generalize autarkies and variable
instantiation. Moreover, while safe assignments only allow the application of an assignment
ω to a formula F if F |α � F |ω holds for all assignments α �= ω, our approach enables us
to block an assignment α as soon as F |α � F |ω.

Finally, symmetry breaking [6] can be expressed in theDRATproof system [12] but existing
methods introduce many new variables and duplicate the input formula multiple times. It
might be possible to express symmetry breaking without new variables in the PR proof
system. For one important symmetry, row-interchangeability [7], the symmetry breaking
using PR without new variables appears similar to the method we presented for the pigeon
hole formulas.

2 In the conference version [14] of this article, we wrongly stated that we can add all falsified unit clauses
instead of the satisfied ones.
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9 Open Problems and FutureWork

In amore recent paper,we showed that there exists a polynomial-timeprocedure that translates
PR proofs to DRAT proofs by introducing one new variable [11]. Moreover, we proved that
extended resolution polynomially simulates the DRAT proof system [20]. The combination
of these two results demonstrates that extended resolution polynomially simulates the PR
proof system and therefore also its restricted variants. An open question is how the PR proof
system without new variables relates to other strong proof systems for propositional logic
that do not introduce new variables, such as Frege systems. Other open questions are related
to the space and width bounds of the smallest PR proofs, again without new variables, for
well-known other hard problems such as Tseitin formulas [26,27] or pebbling games [25].

On the practical side, we want to pursue some ideas to improve SAT solving by learning
short PR clauses. Our first approach, called satisfaction-driven clause learning, general-
izes the well-known conflict-driven clause learning paradigm by checking whether certain
assignments—encountered during solving—can be pruned from the search space by adding
PR clauses [15]. Our current implementation can find short proofs of pigeon hole formulas,
although the solver can only find a subset of all possible PR clauses. Moreover, we are still
searching for efficient heuristics that help solvers with finding short PR clauses in general
formulas. Another problemwe are currently exploring is the minimization of conflict clauses
by checking if a subset of a conflict clause is propagation redundant with respect to the for-
mula under consideration. Finally, we want to implement a formally-verified proof checker
for PR proofs.

10 Conclusion

We presented a clean and simple characterization of clause redundancy that is based on
an implication relation between a formula and itself under different partial assignments.
Replacing the implication relation by efficiently decidable notions of implication, e.g., the
superset relation or implication via unit propagation, gives then rise to various polynomially-
checkable redundancy criteria. One variant yields a proof system that turns out to coincide
with RAT, which together with deletion is the de-facto standard in SAT solving.We conjecture
the proof systems based on the other two variants to be stronger if the introduction of new
variables is not allowed.We showed that thesemore general proof systems admit short clausal
proofs without new variables for the famous pigeon hole formulas. Experiments show that
our proofs are much smaller than existing clausal proofs and that they are also much faster
to check. Our new proof systems concisely simulate many other concepts from the literature
such as autarkies, variable instantiation, safe assignments, and certain kinds of symmetry
reasoning.
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