
A Survey of Equal Sums of Like Powers

By L. J. Lander, T. R. Parkin and J. L. Selfridge

Introduction. The Diophantine equation

(1)       xi + X2k + ■ ■ ■ + xA = yi + y2 + • • • + ynk,       1 < m < n ,

has been studied by numerous mathematicians for many years and by various

methods [1], [2]. We recently conducted a series of computer searches using the

CDC 6600 to identify the sets of parameters k, m, n for which solutions exist and to

find the least solutions for certain sets. This paper outlines the results of the compu-

tation, notes some previously published results, and concludes with a table showing,

for various values of k and m, the least n for which a solution to (1) is known.

We restrict our attention to fc < 10. We assume that the Xi and y¡ are positive

integers and x, ^ y¡. We do not distinguish between solutions which differ only in

that the a\- or y¡ are rearranged. We will refer to (1) as (fc. m. n) and say that a

primitive solution to (fc. m. n) is one in which no integer > 1 divides all the numbers

xi, Xi, • • •, xm, yi, ?/2, • • •, yn. Putting

m n

z = X>/' = 2Zyjk,
1 1

we order the primitive solutions according to the magnitude of z and denote the rth

primitive solution to (fc. m. n) by (fc. m. n)r. Where we refer to the range covered in

a search for solutions, we mean the upper limit on z. The notation (xi, Xi, ■ • ■, xm)k

= iVh 2/2, • • •> Vn)k means 2~li xik = 2~li V*- Any parametric solution discussed

does not include all solutions unless otherwise stated.

Squares and Cubes. For fc = 2 the general solution of the Pythagorean equation

(2. 1. 2) is well known [3]. Many solutions in small integers and various parametric

solutions have been given for (2. 1. n) with n > 3. The general solution of (2. 2. 2) is

known [4]. Solutions to (2. 2. n) with n > 3 and (2. m. n) with m > 3 are numerous.

The impossibility of solving (fc. 1. 2) with fc > 3 is Fermat's last theorem, which

has been established for fc < 25000 [5]. The general solution of (3. 1. 3) in rationals

is attributed to Euler and Vieta [6] and also produces all solutions to (3. 2. 2) if the

arguments are properly chosen. There are many solutions in small integers and

various parametric solutions to (3. 1. n) with n > 4 and to (3. m. n) with m > 2 [7].

Fourth Powers.

(4. 1. n)—For n = 3, no solution is known. M. Ward [8] developed congruential

constraints which, together with some hand computing, allowed him to show that

xA = 2/i4 + i/24 + j/34 has no solution if x < 10,000. The authors extended the search

on the computer using a similar method and verified that there is no solution for

x < 220,000. Ward showed that if x4 = j/i4 + ?/24 + j/34 is a primitive solution, it may

be assumed that x, yi = 1 (mod 2), y2, j/3 = 0 (mod 8) and either x — yi or x + 7/1
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is = 0 (mod 1024). Also x ^ 0 (mod 5) or else all yt would be = 0 (mod 5) since n4

= 0 or 1 according as u = 0 or u jk 0 (mod 5). The computer program generated

all numbers M = (a;4 — j/i4)/2048 with 0 < t/i < x, x prime to 10 and yi = ±x (mod

1024). Tests were applied to M = (î/2/8)4 + (î/3/8)4 to reject cases in which a solution

would not be primitive or M could not be the sum of two biquadrates. If M passed

all the tests, its decomposition was attempted by trial using addition of entries in a

stored table of biquadrates (27500 entries for x < 220,000 = 8-27500). The tests

were :

(1) M must be = 0, 1 or 2 (mod 16) and (mod 5) ;

(2) M must not be = 7, 8 or 11 (mod 13) and must not be = 4, 5, 6, 9, 13, 22

or 28 (mod 29) ;

(3) x and yx must not both be divisible by an odd prime p = 3, 5 or 7 (mod 8)

for if so, p4 divides M, p divides y2 and y3 and the solution is not primitive;

(4) M must not have a factor p where p is an odd prime not = 1 (mod 8) unless

p4 also divides M. In this case p divides y2 and j/3, and in the decomposition by trial

M can be replaced by M/p4 (here tests were made only for p < 100).

Of approximately 19,200,000 initial values of M, only 22,400 required the trial

decomposition.

Table I

Primitive solidions of (4. 1.4) for z < (8002)4

z = Xi* EÍJ//

Xl Vi Hi U'i y* Ref.

1
2
:;
4
5

353
651

2487
2501
2829

30
240
435

1130
850

120
340
710

1190
1010

272
430

1384
1432
1546

315
599

2420
2365
2745

[9]
[34]
[10]
[10]
[10]

6
7
8
9

10

3723
3973
4267
4333
4449

2270
350
205

1394
699

2345
1652
1060
1750
700

2460
3230
2650
3545
2840

3152
3395
4094
3670
4250

[10]
[10]
[10]

11
12
13
14
15

4949
5281
5463
5491
5543

380
1000
410
955
30

1660
1120
1412
1770
1680

1880
3233
3910
2634
3043

4907
5080
5055
5400
5400

[H]

16
17
18
19
20

5729
6167
6609
6801
7101

1354
542
50

1490
1390

1810
2770
885

3468
2850

4355
4280
5000
4790
5365

5150
5695
5984
6185
6368

21
22
23

7209
7339
7703

160
800

22.30

1345
3052
3196

2790
5440
5620

7166
6635
6995
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For n = 4, R. Norrie [9] found the smallest solution (353)4 = (30,120, 272, 315)4.

J. 0. Patterson [34] found (4.1.4)2 and J. Leech [10] found the next 6 primitive solu-

tions on the EDSAC 2 computer. S. Brudno [11] gave another primitive solution, the

14th in our Table I. The authors exhaustively searched the range 8002" using Leech's

method finding in all the 23 primitives listed in Table I. No parametric solution has

been found for (4. 1. 4) although the general solution is known for (3. 1. 3) and a

parametric solution (discussed later) is known for (5. 1.5).

Table II

Primitive solutions of (4. 2. 2) for 7. 5 X 1015 < z < 5. 3 X 1016

z = xi4 + x24 = yi4 + î/24

*32

33

34

35

36

37

38

**39

40

11

42

43

44

15

46

Xi X2

6262

5452

3401

5277

3779

3644

1525

2903

1149

5121

5526

6470

6496

261

581

8961

9733

10142

10409

10652

11515

12234

12231

12653

13472

13751

14421

14643

14861

15109

I h Vi

7234

7528

7054

8103

8332

5960

3550

10203

7809

9153

11022

8171

11379

8427

8461

8511

9029

9527

9517

9533

11333

12213

10381

12167

12772

12169

14190

13268

14461

14723

7 98564

9 85755

10 71400

12 51457

13 07827

17 75781

22 40674

22 45039

25 63324

33 62808

36 68751

45 00187

47 75551

48 77442

52 11273

45223 00177

13638 85937

42234 80497

36160 92402

22453 98097

85225 58321

37332 52161

16406 17602

34950 11682

84147 85537

70593 08977

64129 98081

49900 03857

72266 31682

11403 26882

* For solutions to (4.2.2) for i = 1 to 31 see Lander and Parkin [18].

** This solution was found by Euler [37].

For n > 5 there exist many solutions in small integers. (4. 1. 5)i is (5)4 =

(2, 2, 3, 4, 4)4. Several parametric solutions to (4. 1. 5) are known due to E. Fau-

quembergue [12], C. Haldeman [13], and A. Martin [14].

(4. 2. n)—For n = 2 the least solution is (59,158)4 = (133,134)4. Euler [15] gave

a two-parameter solution and A. Gérardin [16] gave an equivalent but simpler form

of this solution. Several of the smaller primitive solutions were found by Euler, A.
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Werebrusow, and Leech [17] and a recent computer search by Lander and Parkin

[18] extended the list of known primitives to 31. More recently we have increased

this to a total of 46 primitives by a complete search of the range 5.3 X 1016 and the

15 new primitives are listed in Table II. The general solution is not known.

For n > 3 there are many small solutions. (4. 2. 3)i is (7, 7)4 = (3, 5, 8)4. Several

parametric solutions are known for (4. 2. 3) due to Gérardin [19] and F. Ferrari [20].

(4. m. n)—For m > 3, solutions in small integers are numerous. Parametric solu-

tions to (4. 3. 3) were given by Gérardin [21] and Werebrusow [22]. (4. 3. 3)i is

(2, 4, 7)4= (3, 6, 6)4.

Fifth Powers.

(5. 1. n)—For n = 3, no solution is known. Lander and Parkin [23], [24] found

(5. 1. 4)i to be (144)5 = (27, 84, 110, 133)5. This disproved Euler's conjecture [25]

that (fc. 1. n) has no solution if 1 < n < fc. No further primitive solutions to (5.1. 4)

exist in the range up to 7655.

For n = 5, S. Sastry and S. Chowla [26] obtained a two-parameter solution yield •

ing (107)5 = (7, 43, 57, 80, 100)6 as its minimal primitive; this solution is (5. 1. 5)a.

Lander and Parkin [24] found (5.1. 5)i and (5.1. 5)2 to be (72)5 = (19,43,46,47,67)6
and (94)5 = (21, 23, 37, 79, 84)6. More recently we searched the range up to 5996 and

found in all the twelve primitive solutions given in Table III.

Table III

Primitive solutions of (5. 1. 5) for z < 5995

z = xi6 = X)î 2//

1

2

3

4

5

6

7

8

9

10

11

12

Xi

72

94

107

365

415

427

435

480

503

530

553

575

2/1

19

21

7

78

79

4

31

54

19

159

218

2

2/2

43

23

43

120

202

2(3

105

91

201

172

276

298

2/3

46

37

57

191

258

139

139

101

347

200

385

351

2/4

47

79

80

259

261

296

314

404

388

356

409

474

2/5

67

84

100

347

395

412

416

430

448

513

495

500

Ref.

[24]

[24]

[26]
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For n > 6 there are solutions in moderately small integers. (5. 1. 6)i is (12)5 =

(4, 5, 6, 7, 9, 11)5 found by A. Martin [27]. The first eight primitive solutions to

(5. 1. 6) are given in [24]. (5. 1. 7)i is (23)5 = (1, 7, 8, 14, 15, 18, 20)5.

(5. 2. n)—No solution is known for n < 3. An exhaustive search by the authors

verified that there is no solution to (5. 2. 2) in the range up to 2.8 X 1014 or to

(5. 2. 3) in the range up to 8 X 1012. Sastry's parametric solution for (5. 1. 5) men-

tioned above gives for certain values of its arguments solutions to (5. 2. 4), the

smallest being (12, 38)6 = (5, 13, 25, 37)6 which is (5. 2. 4)2. K. Subba Rao [28]

found (3,29)5 = (4,10,20, 28)5 which is (5. 2. 4)i. Table IV lists the ten primitives
which exist in the range up to 2 X 1010.

Table IV

Primitive solutions of (5. 2. 4) for z < 2 X 1010

z = £!*/- ZÍ2//

1

2

3

4

5

0

7

S

9

10

■ Cl X2

3

12

28

fil

IG

31

14

63

29

38

52

64

85

96

99

97

25      106

54      111

2/1 Vi !)3 2/-1

4

5

26

5

6

56

44

11

48

58

10

13

29

25

50

63

58

13

57

76

20

25

35

62

53

72

67

37

28

37

50

63

82

80

94

99

76     100

79      102

205 11392

794 84000

3974 14400

19183 38125

44381 01701

81823 56127

95104 38323

95797 76800

1 33920 21401

1 73097 46575

Ref.

[28]

[26]

For n > 5 there are solutions in moderately small integers; (5. 2. 5)i is (1, 22)5 =

(4,5, 7,16, 21)6 due to Subba Rao [28]. We give the first six primitives for (5. 2. 5) in

Table V.
(5. 3. n)—The first solution known for n = 3 was (49, 75, 107)5 = (39, 92, 100)6

due to A. Moessner [35]; this is (5. 3. 3)&. H. P. F. Swinnerton-Dyer gave two sepa-

rate two-parameter solutions [36]. We give the 45 primitives in the range up to 8 X

1012 in Table VI. For n > 4, solutions in small integers are plentiful. (5. 3. 4)i is

(3, 22, 25)6 = (1, 8, 14, 27)5 due to Subba Rao [28]. A two-parameter solution to

(5. 3. 4) was given by G. Xeroudakes and A. Moessner [29].

(5. m. n)—If m > 4, there are many solutions in small integers. (5. 4. 4)i is

(5, 6, 6, 8)5 = (4, 7, 7, 7)5 due to Subba Rao [28]. Several parametric solutions to

(5.4. 4) were found by Xeroudakes and Moessner [29]. The first triple coincidence of

four fifth powers is 1479604544 = (3,48,52,61)5 = (13,36,51,64)6 = (18,36,44,66)5.
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In the subsequent discussion we adopt a notation borrowed from the field of par-

titions, writing xr to signify the term x repeated r times in the expression in which it

appears. Table VII uses this notation, giving (fc. m. n)i where known and references

solutions in other tables. Table VII also shows for certain (fc. m. n) the range which

has been searched on the computer exhaustively.

For the remainder of the equations (fc. m. n) which are discussed we note in the

text only the limits searched, interesting features, and methods employed ; specific

solutions are given in Table VII.

Sixth Powers.

(6.1. n)—No solution is known for n < 6. We consider the cases of n = 6,7 and 8

in descending order. To solve (6. 1. 8), x6 = 2^12/¿6> note that w6 = 0 or 1 (mod 9)

according as m = Oorw ^ 0 (mod 3). Then if a; = 0 (mod 3), all y i = 0 (mod 3) and

the solution is not primitive. Therefore take x and exactly one of the y i (say yi) prime

to 3. Then (a;6 — ?/i6)/36 = ^2 (2/>/3)6 is an integer (which is true if and only if yi =

±x (mod 243)) to be decomposed by trial as the sum of 7 sixth powers. In Table VIII

we give the 14 smallest primitives found by this method; (6. 1. 8)1 is (251)6 =

(8,12, 30, 78, 102, 138, 165, 246)6.

Table V

Primitive solutions of (5. 2. 5) for z < 2. 8 X 108

2 -.£!*/ -£•»/

■ri Xi 2/1 y* y» y* yt

*i

2

3

4

5

6

1

23

16

24

30

36

22

29

38

42

44

42

4

9

10

4

5

11

14

22

15

6

7

14

26

29

17

26

16

18

31

35

19

27

21

30

33

36

45

44

51 53633

269 47492

802 83744

1386 53856

1892 16224

1911 57408

: The first solution is due to Subba Rao [28].

For (6.1.7), a;6 = 2~2i7 2/»6> note that w6 = 0 or 1 (mod 8) according as u is even or

odd. Then for a primitive solution, x and exactly one of the y i are odd. The argu-

ment for (6. 1. 8) modulo 9 applies and x is prime to 6, yi (say) is prime to 3, and

either 7/1 is odd or another y (say y2), is odd. In the first case yi = ±x (mod 243) and

(mod 32) and (a:6 — ?/i6)/66 = 2~L\ (2/¿/6)6 is an integer to be decomposed by trial as

the sum of 6 sixth powers. In the second case 2/1 = dbx (mod 243), y2 = ±x (mod

32) and (a;6 — t/16 — j/26)/66 = 2~ll (2/¿/6)6 must be an integer (certain combinations

x, y 1,2/2 satisfying the congruences are rejected) which is decomposed by trial as the

sum of 5 sixth powers. The only solution for x < 1536 is (6. 1. 7)i, (1141)6 =

(74, 234, 402, 474, 702, 894, 1077)6 which is obtained in the second case.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



452 L.   J.   LANDER,   T.   R.   PARKIN  AND   J.   L.   SELFRIDGE

Table VI

Primitive solutions of (5. 3. 3) for z < 8 X 1012

z = Y.3 xf = Z! 2//

1
2
3
4

*5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

.ï-i

24
18
21
56
49
26
38
73
39
13
28
65
63
68
43
74
39
44
58
18
19
5

27
151
59

157
2
3

97
99

132
106
40

136
193
107
31

102
116
30

119
108
114
172
123

Xi

28
44
43
67
75
85
47
96
56
35
32
94
67

137
109
113
142
55

101
31

168
145
106
166
139
193
97

121
181
105
154
137
168
158
229
229
173
118
124
39

232
181
211
206
137

Xi

67
66
74
83

107
118
123
119
136
142
155
152
169
170
181
182
186
201
204
215
216
224
229
233
248
234
258
264
274
286
283
288
289
294
282
293
307
310
310
331
328
348
364
364
373

2/1

3
13
8

53
39
53

1
68
3

17
91
42
9

36
13
(il
28
18

113
10
11

153
12

126
23

147
35

163
67
30
80

201
3

71
179
93

7
49
21
65
89
53
52

102
13

2/2

54
51
62
72
92
90
89

106
97
95
94

129
131
140
159
129
167
152
145
183
183
157
122
208
184
218
125
185
227
179
219
219
215
249
259
259
201
270
235
224
289
246
298
303
259

2/8

62
64
68
81

100
116
118
114
131
138
150
140
159
169
161
179
172
190
195
191
209
214
228
216
239
219
257
250
258
281
270
261
279
268
266
277
303
271
294
321
301
338
339
337
361

14
19
20
22
28
32
36
45
60
62
64
89
99

106
115
130
174
193
194
204
214
234
268
280
288
289
291
397
449
531
682
691
729

13752
14191
23700
58398
66810
73265
84616
40903
71668
77882
95168
96361
02010
17013
97974
03336
04458
87486
44723
94319
40152
80466
31599
12718
07237
47575
17249
83259
72267
57802
19238
29996
99241
15192
09353
32137
20348
68334
32347
33103
23488
27877
75705
15935
65305

98099
38368
99168
97526
39431
12069
37018
35168
30151
32400
61675
42881
53499
58025
92893
44849
41607
01600
14293
03094
82243
82374
96832
82720
88966
48174
93057
82668
67782
02300
97099
35401
22017
15168
50774
94149
39551
85600
67200
34850
61399
53637
13699
15232
14393

* This solution was found by A. Moessner [35].
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Table VII

(fc. m. n)i and summary of results

Range
(fc. m. n) Searched Solutions Known*

4. 1. 3 2.34 X 1021       None known
4. 1. 4 4.1 X 1015 (353)4 = (30, 120, 272, 315)4

See Table I, 23 solutions
4. 1. 5 (5)4 = (22, 3, 42)4
4. 2. 2 5.3 X 1016 (59, 158)4 = (133, 134)4

See Table I in [18], and Table II, 46 solutions
4. 2. 3 (72)4 = (3, 5, 8)4
4. 3. 3 (2, 4, 7)4 = (3, 62)4
5. 1. 3 2.6 X 1014 None known
5. 1. 4 2.6 X 1014 (144)5 = (27, 84, 110, 133)5
5. 1. 5 7.7 X 1013 (72)6 = (19, 43, 46, 47, 67)5

See Table III, 12 solutions
5. 1. 6 (12)5 = (4, 5, 6, 7, 9, ll)5
5. 1. 7 (23)6 = (1, 7, 8, 14, 15, 18, 20)5
5. 2. 2 2.8 X 1014 None known
5. 2. 3 8 X 1012 None known
5. 2. 4 2 X 1010 (3, 29)5 = (4, 10, 20, 28)5

See Table IV, 10 solutions
5. 2. 5 2 X 108 (1, 22)6 = (4, 5, 7, 16, 21)5

See Table V, 6 solutions
5. 3. 3 8 X 1012 (24, 28, 67)5 = (3, 54, 62)5

See Table VI, 45 solutions
5. 3. 4 (3, 22, 25)5 = (1, 8, 14, 27)5
5. 4. 4 (5, 62, 8)5 = (4, 73)6
6. 1. n 3.16 X 1027       None known for n < 6
6. 1. 7 1.3 X 1019 (1141)6 = (74, 234, 402, 474, 702, 894, 1077)6
6. 1. 8 5.8 X 1016 (251)6 = (8, 12, 30, 78, 102, 138, 165, 246)6

See Table VIII, 14 solutions
6. 1. 9 (54)6 = (1, 17, 19, 22, 31, 372, 41, 49)6
6. 1. 10 (39)6 = (2, 4, 7, 14, 16, 262, 30, 322)6
6. 1. 11 (18)6 = (2, 53, 72, 92, 10, 14, 17)6
6. 2. n 4 X 1012 None known for n < 6
6. 2. 7 (56, 91)6 = (18, 22, 36, 58, 69, 782)6
6. 2. 8 (35, 37)6 = (8, 10, 12, 15, 24, 30, 33, 36)6
6. 2. 9 (6, 21)6 = (1, 52, 7, 133, 17, 19)6
6. 2. 10 (122)6 = (l3, 42, 7, 9, ll3)6
6. 3. 3 2.5 X 1014 (3, 19, 22)6 = (10, 15, 23)6

See Table IX, 10 solutions
6. 3. 4 2.9 X 1012 (41, 58, 73)6 = (15, 32, 65, 70)6

See Table X, 5 solutions
6. 4. 4 (22, 92)6 = (3, 5, 6, 10)6

7. 1. n 1.95 X 1014       None known for n < 7
7. 1. 8 (102)7 = (12, 35, 53, 58, 64, 83, 85, 90)7
7. 1. 9 (62)7 = (6, 14, 20, 22, 27, 33, 41, 50, 59)7
7. 2. 8 (10, 33)7 = (5, 6, 7, 152, 20, 28, 31)7
7. 3. 7 (26, 302)7 = (72, 12, 16, 27, 28, 31)7
7. 4. 5 (12, 16, 43, 50)7 = (3, 11, 26, 29, 52)7
7. 5. 5 (82, 13, 16, 19)7 = (2, 12, 15, 17, 18)7
_     _   _    See Table XI, 17 solutions_

* All solutions shown are (k. m. n)i unless otherwise marked.
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Table VII icont.)

Range
(fc. m. n) Searched Solutions Known

7. 6. 6 (2, 3, 62, 10, 13)7 = (l2, 72, 122)7
8. 1. 11 (125)8 = (14, 18, 442, 66, 70, 92, 93, 96, 106, 112)8
8. 1. 12                                          (65)8 = (82, 10, 243, 26, 30, 34, 44, 52, 63)8
8. 2. 9 (11, 27)8 = (2, 7, 8, 16, 17, 202, 242)8
8. 3. 8 (8, 17, 50)8 = (6, 12, 162, 382, 40, 47)8
8. 4. 7 (6, 11, 20, 35)8 = (7, 9, 16, 222, 28, 34)8
8. 5. 5 (1, 10, 11, 20, 43)8 = (5, 28, 32, 35, 41)8
8. 6. 6 (3, 6, 8, 10, 15, 23)8 = (5, 92, 12, 20, 22)8
8. 7. 7 (1, 3, 5, 62, 8, 13)8 = (4, 7, 92, 10, 11, 12)8
8. 8. 8 (1, 3, 73, 102, 12)8 = (4, 52, 62, 113)8
9. 1. 15 (26)9 = (22, 4, 62, 7, 92, 10, 15, 18, 212, 232)9
9. 2. 12 (15, 21)9 = (24, 32, 4, 7, 16, 17, 192)9
9. 3. 11 (13, 16, 30)9 = (2, 3, 6, 7, 92, 192, 21, 25, 29)9
9. 4. 10 (5, 12, 16, 21)9 = (2, 62, 9, 10, 11, 14, 18, 192)9
9. 5. 11 (7, 8, 14, 20, 22)9 = (3, 52, 92, 12, 152, 16, 212)9
9. 6. 6 (1, 132, 14, 18, 23)9 = (5, 9, 10, 15, 21, 22)9
10. 1. 23 (15)10 = (l5, 2, 3, 6, 76, 94, 10, 122, 13, 14)10
10. 2. 19 (9, 17)10 = (25, 5, 6, 10, 116, 122, 153)10
10. 3. 24                                        (11, 152)10 = (1, 2, 3, 410, 7, 87, 10, 12, 16)10
10. 4. 23                                        (113, 16)10 = (l5, 22, 32, 4, 64, 73, 8, 102, 142, 15)10
10. 5. 16                                        (32, 8, 14, 16)10 = (l4, 2, 42, 6, 122, 135, 15)10
10. 6. 27                                        (22, 8, 11,122)10 = (1, 34, 42, 52, 67, 79, 10, 13)10
*10. 7. 7                                        (1, 28, 31, 32, 55, 61, 68)10 = (17, 20, 23, 44, 49, 64,

_67T_

* Moessner [35]; not known to be (10. 7. 7)i.

For (6. 1. 6), x6 = 2~ll 2/¿6 note that w6 = 0 or 1 (mod 7) according as u = 0 or

u fé 0 (mod 7). Then for a primitive solution, x and exactly one of the y i (say yi) are

prime to 7. This implies yi = ±x, ±qx or ±q2x where q = 34968 is a primitive sixth

root of unity (mod 76 = 117649). Now the foregoing arguments modulo 8 and

modulo 9 apply, and there are five cases.

(1) If yi= ±1 (mod 6) then 2/1 = ±z (mod 243) and (mod 32) and (x6 - 2/i6)/426

= 2~Ll (2/i/42)6 is an integer to be decomposed by trial as the sum of 5 sixth

powers.

(2) If t/i = ±2 (mod 6) then 2/1 = ±x (mod 243) and another of the y i (say y2),

is odd. Then y2 = 0 (mod 3-7), y2 = ±x (mod 32), and (a-6 - yf - í/26)/426 =

2~ls (2/>/42)6 is the sum of 4 integral sixth powers.

(3) If 2/1 = 3 (mod 6) then 2/1 = ±x (mod 32) and another of the yt (say y2), is

prime to 3, y2=0 (mod 2-7), and 2/2= ±a; (mod 243). Incase (2), (a;6 — 2/16 — 2/26)/426

is an integer and is the sum of 4 sixth powers.

(4) If j/i = 0 (mod 6), another of the j/¿ (say y2), is prime to 3, y2 — 0 (mod 7)

and y2 = ±x (mod 243). If y2 is odd, then y2 = ±x (mod 32) and as in cases (2)

and (3) (x6 — 2/16 — î/26)/426 is the sum of 4 sixth powers. If y2 is even, we have case

(5).
(5) Another of the y i (say 2/3), is odd, 2/3 = 0 (mod 3-7), 2/3 = ±x (mod 32),

and (a:6 — 2/16 — 2/26 — 2/36)/426 = 2~1\ (2/t/42)6 is an integer to be decomposed as the

sum of 3 sixth powers.
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The search for a solution to (6. 1. 6) was carried exhaustively by this method

through the range x < 38314 and there is no solution in this range.

A. Martin [30] gave a solution to (6. 1. 16); Moessner [31] gave solutions to

(6. 1. n) for n = 16, 18, 20 and 23. For n > 11, it is not difficult to find solutions in

small integers.

Table VIII

Primitive Solutions of (6. 1. 8) for z < 7 X 1016

z = xi6 = zZ\ 2/¿6

Xl 2/1 2/2 2/8 2/4 2/« 2/« 2/7 2/8

1

2

3

4

5

6

7

S

9

10

11

12

13

14

251

431

440

440

455

493

499

502

547

559

581

583

607

623

48

93

219

12

12

m

16

61

170

60

57

33

12

12

111

93

255

66

48

78

24

96

177

102

146

72

90

30

156

195

261

138

222

144

60

156

276

126

150

122

114

78

186

197

267

174

236

228

156

228

312

261

360

192

114

102

188

303

289

212

333

256

204

276

312

270

390

204

273

138

228

303

351

288

384

288

276

318

408

338

402

390

306

165

240

303

351

306

390

435

330

354

450

354

444

534

492

246

426

411

351

441

426

444

492

534

498

570

528

534

592

(6. 3. n)^Subba Rao [32] found the solution (3, 19, 22)6 = (10, 15, 23)6 which is

(6. 3. 3)i. In Table IX we give the remaining 9 primitive solutions which exist in

the range up to 2. 5 X 1014. It is interesting to note that each of the solutions except

the sixth is also a solution to (2. 3. 3). Table X gives the five primitive solutions to

(6. 3. 4) which exist in the range up to 2. 9 X 1012.

(6. m. n)—If m is > 4, solutions in small integers can be found readily. Subba

Rao [32] gave (6.4. 4) i (see Table VII). The first triple coincidence of 4 sixth powers

is 1885800643779 = (1, 34, 49, 111)6 = (7,43, 69, HO)6 = (18, 25, 77, 109)6.

Seventh Powers.

(7. 2. 10)2 is (2, 27)7 = (4, 8,13,142,16,18,22,232)7 = (72,9,13,14,18,20,222,23)7

which is a double primitive and reduces to the solution (7. 5. 5)2.
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Table IX

Primitive solutions of (6. 3. 3) for z < 2.5 X 1014

z =  El x,* = Ei 2//

l

*1

2

3

4

5

6

7

8

D

10

.('i #2 •C:¡

3

36

33

32

37

25

51

71

111

75

19

37

47

43

50

62

113

92

121

142

22

67

74

81

81

138

136

147

230

245

Vi 2/2 2/8

10

15

23

3

11

82

40

1

26

14

15

52

54

5Ô

65

92

125

132

169

163

23

65

73

80

78

135

129

133

225

243

9

17

28

30

696

842

1082

15304

22464

1604 26514

52008 90914

62771 73474

98246 41354

06202 62890

38068 13393

70669 28346

47536 54794

47319 28882

65092 02194

* The first solution is due to K. Subba Rao [32].

Table X

Primitive solutions of (6. 3. 4) for z < 2.9 X 1012

z = E! x/ = £4 2//

Xi ■c-i • C;; 2/1 2/2 2/3 2/4

41
61
61
11
26

58
62
74
88
83

73
85
85
90
95

15
52
26
21
23

32
56
56
74
24

65
69
71
78
28

70
83
87
92

101

19
48
59
99

106

41530 23074
54701 25570
28763 80162
58468 58345
23411 79770

(7. 5. n)—Table XI lists the 17 primitive solutions to (7. 5. 5) which exist in the

range up to 4. 0 X 1012.

Eighth Powers.

(8. 1. n)—We found a parametric solution to (8.1.17), (28*+4 + l)8 = (28*+4 - l)8

+ (27i+4)8 + (2t+1)8 + 7[(25*+3)8 + (23*+2)8] which for fc = 0 yields (8. 1. 17)i. This

was the solution used by Sastry [26] in developing a parametric solution to (8. 8. 8).

The computer program used in searching for solutions to (8. 1. n) was based on the

congruences x8 = 0 or 1 (mod 32) according as x = 0 or 1 (mod 2) so that primitive

solutions to x8 = 2^A 2// with n < 32 must have x and (say) 2/1 both odd. Then x8 —

2/i8 is divisible by 28 which implies x = ±2/1 (mod 32), and (x8 — 2/i8)/256 is decom-

posed as the sum of n — 1 eighth powers by trial.

Solutions to (8. 5. 5) and (8. 9. 9) were found by A. Letac [33].
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Ninth and Tenth Powers. Computations performed by the authors for (9.m.n)

and (10. m. n) are the basis for the data shown in the last two columns of Table XII,

Table XI

Primitive solutions of (7. 5. 5) for z < 4.0 X 1012

z = Ei */ = E! V?

Xi x2 ■I':! X.-, 2/1      2/2 2/3 2/4 y s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

4
11
6
3
4

16
3

16
15
19
13
9
9

23

8
12
12
13
5

33
4

17
18
24
16
11
15
27
13
38

13
14
18
20
17
30
33
21
26
18
43
35
43
19
40
41
39

16
16
21
22
24
36
33
39
33
43
46
35
45
34
49
45
39

19
23
26
27
38
44
44
45
49
48
51
56
55
59
56
59
60

2
7
9

10
14
2

18
14
10
8
9
9
3
5
7
2

12
7

10
13
26
8

26
23
12
11
36
19
19
10
39
10
25

15
9

22
13
32
27
34
33
30
32
40
28
37
16
45
47
34

17
20
23
25
32
39
38
41
43
44
48
44
51
48
51
52
53

18
22
24
26
33
43
43
43
46
47
50
55
53
57
53
55
57

1
1

11
41
44
51
72
86

161
185
216
254
258
305
318

12292
37807
05004
42708
94751
95120
74015
27015
95521
02822
05272
61046
79475
22443
30231
71400
82375

50016
87943
37728
22835
43393
68269
74051
66916
00131
52818
89337
27259
68747
49046
01035
57494
95951

Table XII

Least n for which a solution to (fc. m. n) is known

fc

m 10

1
2
3
4
5
6
7

2
2

3
2

4
4
3

7
7
3

11
9
8
i
5

15
12
11
10
11
6

23
19
24
23
16
27

except for a solution to (10. 7. 7) given by A. Moessner [35]. Due to computer word

length limitations the calculations were not extended to large values of the argu-

ments.

Additional References. A. Gloden gave a parametric solution of (5. 4. 4) in [38],

two parametric solutions of (7. 5. 5) in [39], [40], and a parametric solution of

(8. 7. 7) in [41]. A. Moessner gave numerical solutions of (5. 2. 4) and (5. 3. 3) in

[42]. In [43] Moessner gave three parametric solutions of (6. 4. 4) and parametric

solutions of (8. 7. 7) and (9. 10. 10). Two numerical solutions of (7. 4. 5) due to A.

Letac are found in [39]. S. Sastry and T. Rai solved (7. 6. 6) parametrically [44].
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G. Palamà [45] gave numerical solutions of (9. 11. 11) and (11. 10. 12). In [46]

Moessner and Gloden solved (8. 6. 6) and (8. 6. 7) numerically.

Concluding Remarks. Let N(k,m) be the smallest n for which (k.m.n) is solvable.

In Table XII we show the upper bound to N based on the results just presented.

Each column is terminated when a solution to (fc. m. m) has been found. It appears

likely that whenever (fc. m. m) is solvable, so is (fc. r. r) for any r>m. Some questions

are:

(a) Is N(k, to + 1) < N(k, m) < N(k +1, to) always true?

(b) Is (fc. to. n) always solvable when m + n > fc?

(c) Is it true that (fc. to. n) is never solvable when to + n < fc?

(d) For which fc, to, n such that to + n = fc is (fc. m. n) solvable?

The results presented in this paper tend to support an affirmative answer to (c).

Question (d) appears to be especially difficult. The only solvable cases with to + n

= fc known at present are (4. 2. 2), (5.1. 4) and (6. 3. 3).

In this paper we have made a computational attack on the problem of finding a

sum of n fcth powers which is also the sum of a smaller number of fcth powers. In

many of the cases considered, especially for the larger values of fc, we have undoubt-

edly not obtained the best possible results, but the amount of computing needed to

do this would seem to be overwhelming.

We believe that the main result of this paper is the presentation of results on a

family of Diophantine equations which have largely been considered separately in

the past. We hope that this presentation offers greater insight into the nature of the

function N(k, to) and that future efforts will be directed toward reducing the up-

per bounds for this function.
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