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Mathematics is full of unsolved problems. Many well educated people
believe that mathematics is really a closed subject where everything is already
known. Perhaps it would be good to explain already early in school how false
this is. Let me illustrate this by the following example. At the international
congress in Cambridge, England in 1912'. Landau gave the talk in analytic
number theory and he stated first of all four problems “Unangreifbar beim
heutigen Stand der Wissenschaften”— unattackable by the present state of
science (Landau talked in German). The four problems which every baby
can understand are still unattackable. Here they are: (1) Every even number
> 2 is the sum of two primes. (2) There are infinitely many prime twins
i.e. primes whose difference is 2. (3) between two consecutive squares there
always is a prime. (4) There are infinitely many primes of the form n? + 1.

Landau, by the way, was active in the founding of the Hebrew University.

Let me state some simple solved and unsolved problems in number theory
and geometry.

Prove that if a; < as < ... < a,y1 < 2n is any set of n + 1 integers not
exceeding 2n than for some i and j a; | a;, i.e. you can not give n+1 integers
< 2n no one of which divides the other. A little more difficult is the follovvlng
result which I proved in 1932 (more than 60 years ago): If a; < as < .
an infinite sequence of integers no one of which divides any other, then there

!The Intrnational Mathematical Union, which is the organization of the mathemati-
cians of the world, holds its international congress every four years. This year (1994) there
will be such a congress in August in Ziirich, Switzerland — Editor’s remark.



is an absolute constant? ¢ for which
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I conjectured that® then in fact
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This simple conjecture is still open and I offer 1000 shekels for a proof or
disproof.

Let a; < as < ... < a, <n be a set of integers satisfying? [a, aj] > nie.
no integer < n is a multiple of two a-s. I conjectured that then
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2,3,5, n = 5 shows that the conjecture is best possible. Schinzel and Szekeres
proved this conjecture (Acta Scienciarum Szeged 1959). I further conjectured
that forn > ng°® % ai < 1. In fact only two sets are known for which >~ al > 1
(n=>5,a =2, a3 = 3, a3 =5and 3,4,5,7,11n = 11). Schinzel and Szekeres
proved that my conjecture, if true, is best possible. For every ¢ > 0 and
n > ng(e) they found integers a; < ag < ... < ay < n, [a;,a;] > n for which
> al > 1 —e. Try to find another set of integers a; < as < ... < ap < n,
la;,a;] > n, 3>+ > 1. I am not at all sure if there is any such set.

There is a Vzery simple question the solution of which can be left to the
reader: Let 1 < a; < as < ... < a2 < 2n be n+ 2 integers not exceeding
2n; prove that the equation a; + a; = a¢, 1 < j < £ is always solvable. The
integers n <t < 2n show that this simple result is best possible.

2Sometimes constants which appear in formulas really depend on some parameters.
On the other hand, one speaks about “absolute constants” when they do not depend on
anything, so they are just numbers and one could give an explicit value. One does not
do so either because computing the value is difficult or because the important fact is that
there is such a constant, not its numerical value — Editor’s remark.

3p always refers to prime numbers. It is known that the series on the right-hand side
converges — Editor’s remark.

4[a,b] denotes the least common multiple of @ and b — Editor’s remark.

5This expression means: there exists some ng such that for n > ny — Editor’s remark.



More than 20 years ago in one of our papers with A. Sarkozy we state the
following conjecture: Let 1 < a1 < as < ... < ani2 < 3n be n + 2 integers
not exceeding 3n; prove that there always are three of them a; < a; < a;, for
which a; | (a; + ai) i.e. the smallest one divides the sum of the two larger
ones. The integers 2n <t < 3n show that this simple conjecture, if true, is
best possible. Perhaps we overlook a simple argument but we have not been
able to settle this question.

Now let me state a more serious problem which attracted the attention
of many great mathematicians. Schur conjectured more than 60 years ago
that if we divide the integers into k classes then for every ¢ at least one of
the classes contains an arithmetic progression of length® ¢. Van der Waerden
proved this conjecture. Denote by f(k, ¢) the smallest integer for which, if we
divide the integers 1 < ¢t < f(k, /) into k classes, at least one of the classes
contains an arithmetic progression of length ¢. Van der Waerden proved
that f(k, /) exists, but he got a very large upper bound for f(2,/), in fact
his f(2,/) increased at least as fast as the so called Ackermann function.”
More details about this problem can be found in a book of R. L. Graham,
B. Rothschild and J. Spencer entitled “Ramsey Theory” see the second edi-
tion. R. L. Graham offered 1000 dollars for the proof that
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F0 <22 (0 times) (1)

(1) is still open but a few years ago S. Shelah of the Hebrew University found
a somewhat weaker upper bound for f(2,¢) and f(k,¢). Graham gave a
consolation prize of 500 dollars to Shelah and the conjecture (1) is still open
and in fact it is quite possible that

f2,0 <2 (2)

for some £. R Rado and I proved that f(2,¢) > 22 and Berlekamp proved
f(2,0) > 2°/0. As far as I know it is not yet known if f(2,/)/2* — oco. It
would be very desirable to decide if f(2,¢) > (2 + ¢)* is true.

About 60 years ago Turan and I conjectured a significant sharpening of
Van der Waerden’s theorem.

5The length of an arithmetic progression is the number of its elements. Thus 7,11, 15
in of length 3 — Editor’s remark.

"About the Ackermann function, see the article by Prof. M. Sharir in “Etgar—Gilyonot
Matematika” No. 29-30 — Editor’s remark.



In fact we conjectured that you do not have to divide the integers into two
classes to get a long arithmetic progression but every large set of integers will
already contain a long arithmetic progression. More precisely: Let r4(n) be
the smallest integer for which every set of integers 1 < a1 <as < ... <a; <
n,t = ry(n) contains an arithmetic progression of ¢ terms. We conjectured
that for every /¢

re(n)/n — 0 (3)

Schur’s conjecture (for k = 2) would already follow from r,(n) < §. It is
easy to see that

Tg(a—i-b) < Tg(d)—#?“g(b) (4)

and (4) easily implies by an old argument of Fekete that limr,(n)/n exists.
The whole difficulty was to prove that the limit is 0. This was eventually ac-
complished by Szemerédi, Acta Arithmetica 1975 and Fiirstenberg obtained
a different proof (Fiirstenberg is a professor at the Hebrew University). I
offered a prize of 1000 dollars for a proof of (3) and Szemerédi got the well
deserved prize.

There is a problem for which I offer 3000 dollars. Is it true that if
a; < ag < ...issuch that > a—lé = oo then the a’s contain for every ¢ an arith-
metic progression of length ¢. This is open even for ¢ = 3. The conjecture
would imply that the primes contain infinitely many arithmetic progressions
of length ¢ since Euler proved in 1735 that Y %, p prime, diverges.

Now I would like to talk about geometry. First let me state the Erdos-
Mordell inequality for triangles.

81t is known that there are infinitely many triples of primes which form an arithmetic
progression, i.e. p + g = 2r is solvable for infinitely many primes, but it is not yet known
if there are infinitely many quadruples of primes p1, pa, p3, p4 which form an arithmetic
progression.
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I conjectured this in 1932 and Mordell proved it two years later; the
interested reader can find it e.g. in the book of Fejes-Toth. Let A BC be
a triangle; O a point in its interior; X,Y,Z are the perpendiculars dropped
from O. Prove OA+ OB+ OC > 2(0X +OY + 0Z); equality only if A BC
is equilateral and O its center; the proof is not entirely trivial. It might be
worth while to find the point O for which % is minimal or the point
for which OA+ OB + OC — 2(0X + OY + OZ) is minimal. I am not sure
if this leads to an interesting problem.

Next Anning and I proved that if xq,zs, ... is an infinite set of points in
the plane and all the distances d(z;,z;) are integers then the points are on
a line. For a very simple proof see my paper in the Bull. Amer. Math. Soc.
1945.

Ulam made the following beautiful and no doubt very difficult conjecture:
Let x1,x5,... be a set of points in the plane and suppose the set zq,... is
everywhere dense. Prove that the distances d(z;,z;) can not all be rational.
Probably a set for which all distances are rational must be very restricted.
It is not yet known whether for every k there are k points in the plane in
general position i.e. no three on a line and no four on a circle so that all
the distances d(z;, z;) are integers. In fact, I do not think that 7 points are
known with this property.

Let there be given n points in the plane. Denote by f(n) the smallest
integer for which the n points determine at least f(n) distinct distances. I



conjectured in my paper in the Amer. Math. Monthly 1946 that

fln) > ﬂ:@ (5)

If true (5) is best possible except for the value of c.

I offer 500 dollars for a proof or disproof of (5).

I also conjectured that if zq,...,x, forms a convex polygon then the
number of distinct distances d(z;, x;) is at least [g}, equality for the regular
polygon. This conjecture was proved by my colleage at the Technion Altman
(Amer. Math. Monthly 1963). I further conjectured that in a convex n-gon
there always is a vertex x; so that the number of distinct distances from z;
is at least 7. This conjecture is still open.

Is it true that in a convex m-gon there is always a vertex which has no
four other vertices equidistant from it?

Let x1,...,z, be n points in the plane no three on a line. Szemerédi
conjectured that these points determine at least {%] distinct distances. This
would be a significant extension of the theorem of Altman, but the problem
is still open. Szemerédi only proved that they determine at least ¢ distinct
distances.

Let xi,...,x, be n points in the plane not all on a line. Sylvester (and
later independently I) conjectured that there is always a line which goes
through exactly two of these points. This conjecture was first proved by
Gallai.? Join every two of the points; prove that you get at least n distinct
lines.

Two more problems: E. Klein observed that among 5 points not all on
a line there always are four which are the vertices of a convex quadrilateral.
She asked: Let f(n) be the smallest integer for which among any f(n) points
no three on a line there always are n of them which are the vertices of a
convex n-gon. Probably f(n) = 2""2 4 1. Szekeres and I proved

2”2+1§f(n)§<2n_4>

n—2

f(5) =9 is known but f(6) = 17 is still open.

9The simplest proof is due to L. M. Kelly. Probably for n > ny the number of Gallai
lines is > 4 (i.e. the number of lines which go through exactly two of our points). This is
still open. J. Csima and E. T. Sawyer proved that the number of Gallai lines is > %.



I asked about 20 years ago: Let xy,...,z, be n points in the plane;
consider all the circles of radius 1 which pass through three of our points.
Denote by g(n) the maximum number of distinct unit circles with this prop-
erty. (Circles of radius 1 are called unit circles.) I conjectured
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My colleage Elekes in Hungary has a very ingenious proof for g(n) > en?/?

(Combinatorica Vol. 4 1984). g(n)/n* — 0 is still open.

Finally, let f(n) be the largest integer for which you can find n points
Z1,..., T, so that every z;, 1 <i < n should have f(n) other z;’s equidistant
from it. In particular is f(n) > n® (e positive) possible?



