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A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC) is proposed in this
paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented
by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression.
Multilinear regressionmodel is introduced for distributed lossless compression in order to improve the quality of side information.
Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed
algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed
algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is
competitive with that of the state-of-the-art compression algorithms for hyperspectral images.

1. Introduction

Hyperspectral images compression has received more and
more attention in the field of remote sensing. Different
from panchromatic images, hyperspectral images are three-
dimensional data cube. The spectral resolution of hyper-
spectral images has achieved nanometer grade, which is
widely used in geological survey, environment observing, and
military scout.With the incessant increase of the spectral and
spatial resolution, the data volume of hyperspectral images
expands rapidly, which brings heavy pressure for storage and
transmission of hyperspectral images. With respect to the
onboard hyperspectral images compression, there is a serious
contradiction between data acquirement and transmission.
Lossless compression may preserve the image information
perfectly with a very low compression ratio, while lossy
compression may generate images at different quality levels
according to the practical requirements. Therefore, it is
necessary to develop an efficient algorithm for onboard
hyperspectral images compression, which can realize both
lossless and lossy compression.

Onboard compression systems exhibit limited storage
memory, computational capacity, and power consumption.
Such systems prefer compression algorithms that have an
excellent compression performance, a low complexity, and
resiliency against errors that are caused by a bad channel envi-
ronment. The most classical lossy compression methods for
hyperspectral images are of a three-dimensional approach,
in which some transform (e.g., a wavelet transform, discrete
cosine transform, or Karhunen-Loeve transform) is used
for spectral decorrelation followed by a two-dimensional
transform for spatial decorrelation [1–3]. Although this
method and other methods can achieve good performance,
their complexity is too high and the memory requirement
is too large to be implemented onboard. In general, lossless
compression algorithms for hyperspectral images are based
on spectral linear prediction. Magli also introduced Kalman
filter to implement the spectral linear prediction [4]. Tang
et al. introduced ground classification to improve the lossless
compression performance [5], which has high encoder com-
plexity and poor error resilience. Distributed source coding
(DSC) has received increased attention in the past few years
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and has provided separate encoding and joint decoding,
whichmoves the computational complexity from the encoder
to the decoder, thus meeting the requirements of onboard
compression [6, 7]. The basis of distributed lossless compres-
sion is the Slepian-Wolf theory [8], while that of distributed
lossy compression is theWyner-Ziv theory [9]. Compression
algorithms based on DSC can be carried out by means
of binary error-correcting codes or multilevel coset codes.
At present, some DSC compression algorithms have been
proposed gradually. For the aspect of binary error-correcting
codes, Pan et al. proposed a low-complexity DSC algorithm
based on the discrete cosine transform; the experimental
results demonstrated that the performance of the proposed
algorithm is comparable to that of the distributed algorithm,
that is, based on informed quantization [10]. Tang et al.
proposed a distributed lossy compression algorithm based
on spectral prediction and wavelet transform that computed
the syndrome of each bitplane by using LDPC (low density
parity check) code, the difficulty of which lies in estimating
the correlation between bitplanes quickly and accurately [11].
Cheung et al. studied the problems of correlation estimation
subject to complexity constraints and its impact on coding
efficiency [12]. The resulting model-based approach for lossy
compression of hyperspectral images achieved both accurate
estimation results and good compression performance. For
the aspect of multilevel coset codes, Magli et al. proposed
s-DSC and v-DSC [13]. On the basis of s-DSC, Abrardo
et al. proposed DSC-based lossless compression algorithms,
called A1, A2, and A3, providing both low complexity and
error resilience [14]. Abrardo et al. also proposed a DSC
lossy compression algorithm based on informed quantiza-
tion, which provides competitive lossy compression perfor-
mance [15]. Nian et al. proposed a lossless and near lossless
compression algorithm based on DSC, which only obtains
excellent compression performance at high bit rate [16, 17].
At present, although the distributed compression algorithm
has low encoder complexity, its compression performance is
lower than that of traditional classical algorithms. Further-
more, existed distributed compression algorithm can only
realize lossless compression. In order to satisfy the different
quality requirements of onboard hyperspectral images, this
paper presents a low-complexity compression algorithm for
hyperspectral images based on DSC, which can perform
both lossless and lossy compression. Experimental results
demonstrate the effectiveness of the proposed algorithm,
making it suitable for onboard compression.

This paper is organized as follows: Section 2 describes the
proposed distributed lossless compression; Section 3 presents
the proposed distributed lossy compression algorithm of
hyperspectral images; experimental results are demonstrated
in Section 4; and the conclusions are given in Section 5.

2. Distributed Lossless Compression

2.1. Introduction of DSC. DSC introduces the coset partition-
ing manner to realize lossless compression. The data space
is divided into a great deal of subsets with no intersection
between arbitrary two subsets, and each pixel must belong

to one of the subsets. Let Ω be the data space, which is
divided into several subsets with the number of 𝑍, and the
aforementioned description can be expressed as

Ω = C
1

∪ C
2

⋅ ⋅ ⋅ ∪ C
𝑧
,

C
𝑖
∩ C
𝑗

= Φ (𝑖 ̸= 𝑗) ,

(1)

where Φ is an empty aggregate. DSC encoder realizes
data compression only by means of binary error-correcting
codes or multilevel coset codes. Binary error-correcting
codes demonstrate excellent performance by decomposing
the source into a series of bitplanes and compressing each
bitplane with Turbo, LDPC, Trellis, or other channel codes.
Because binary error-correcting codes neglect the correlation
between bitplanes, the compression performance is not sat-
isfactory. Generally, the compression performance of multi-
level coset codes is better than that of binary error-correcting
codes with a much lower complexity [13]. Suppose the source
is represented on 𝑛 bits; then the multilevel coset codes
adopt the principle of (𝑛, 𝑘) linear codes, partitioning the
set of 2𝑛 possible values into 2𝑟 (𝑟 = 𝑛 − 𝑘) cosets with 2

𝑘

elements in each coset, and the Euclidian distance between
the adjacent elements of each coset is 2

𝑟. A Slepian-Wolf
encoder only needs to transmit the label of the coset to which
each pixel belongs to the decoder; the decoder then employs
the correlated side information to reconstruct the pixel in the
corresponding coset indexed by the received coset label.

2.2. Distributed Lossless Compression. A DSC encoder can
compress each source only when an exact knowledge of the
correlation is available at the encoder. However, in many
practical applications, correlation information may not be
available beforehand. Therefore, it is necessary to establish
an efficient correlation model subject to the complexity
constraints to construct high-quality side information. As
we know, the spectral curves of hyperspectral images are
nonlinear, and thus, a nonlinear model is suitable for the cor-
relation estimation of hyperspectral images. Unfortunately,
nonlinear model of hyperspectral images is difficult to be
established. Because the current band is typically correlated
with a few previous bands, multilinear regression model can
be introduced to construct the high-quality side information
of the current band. For the algorithm proposed in this
paper, each band of the hyperspectral images is divided into
nonoverlapping blocks with a size of 𝑁 × 𝑁. Each block
is processed independently, which offers several advantages:
first, it can adapt to the local spatial features of a hyperspectral
image; second, it can provide error resilience; and finally, it
can be easily parallelized. Let 𝑥

𝑘,𝑖,𝑗
denote the pixel of the

current block in 𝑖th line, 𝑗th pixel, and 𝑘th band, with 𝑘 =

1, 2, . . . , 𝐿 and 𝑖, 𝑗 = 1, 2, . . . , 𝑁. The pixel 𝑥
𝑘,𝑖,𝑗

is predicted
linearly from the decoded pixels 𝑥

𝑘−1,𝑖,𝑗
, 𝑥
𝑘−2,𝑖,𝑗

, . . . , 𝑥
𝑘−𝑃,𝑖,𝑗

of
the previous blocks tomake the constructed side information
as similar as possible to 𝑥

𝑘,𝑖,𝑗
with respect to the standard of

minimummean-squared error. Let 𝜇
𝑘
be the average value of

the current block, and let 𝜇
𝑘−𝑙

(𝑙 = 1, 2, . . . , 𝑃) be the average



Mathematical Problems in Engineering 3

value of the colocated block in the 𝑙th band. The constructed
side information of the current block is then expressed as

𝑥
𝑘,𝑖,𝑗

=

𝑃

∑

𝑙=1

𝛼
𝑙
(𝑥
𝑘−𝑙,𝑖,𝑗

− 𝜇
𝑘−𝑙

) + 𝜇
𝑘
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁, (2)

where 𝛼
𝑘

= [𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑃
]
𝑇 are the prediction coefficients

minimizing the energy of the prediction errors which can be
written as
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where
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The optimal 𝛼
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can be computed as follows:
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where
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The corresponding errors are written as

𝑒
𝑘,𝑖,𝑗

= 𝑥
𝑘,𝑖,𝑗

− 𝑥
𝑘,𝑖,𝑗

. (7)

It should be noted that the correct reconstruction can be
obtained only when the Euclidian distance between the
adjacent elements in the same coset is twice as large as the
maximum absolute error, which can be expressed as

2
𝑟−1

> max
𝑖,𝑗=1,2,...,𝑁

(
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑘,𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
) . (8)

Hence, the corresponding rate of the block is given as

𝑟 = ⌊log
2

( max
𝑖,𝑗=1,2,...,𝑁

(
󵄨󵄨󵄨󵄨󵄨
𝑒
𝑘,𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
))⌋ + 2. (9)

3. Distributed Lossy Compression

3.1. Scalar Quantization Strategy. Compared with distributed
lossless compression, distributed lossy compression employs
quantization strategy to quantize the original hyperspec-
tral images followed by distributed lossless compression,
which can introduce distortion for the original hyperspectral
images. Therefore, the performance of quantization strategy
is crucial for distributed lossy compression. In order to keep

the encoder low complexity, practical scalar quantization
manner is performed on each block. Let 𝑞

𝑘
denote the

quantizer step size of the current block in the 𝑘th band. The
quantized values of the current block and its side information
are given as

𝑦
𝑘,𝑖,𝑗

= round(

𝑥
𝑘,𝑖,𝑗

𝑞
𝑘

) , 𝑦
𝑘,𝑖,𝑗

= round(

𝑥
𝑘,𝑖,𝑗

𝑞
𝑘

) .

(10)

Let 𝑥
𝑘,𝑖,𝑗

be the reconstructed value of𝑥
𝑘,𝑖,𝑗

, and 𝜇
𝑘
is the aver-

age value of the corresponding reconstructed block in the 𝑘th
band.The side information of the current block is constructed
by the reconstructed version of the corresponding blocks in
the previous bands, which is written as

𝑥
𝑘,𝑖,𝑗

=
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where 𝛼̂
𝑘
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1
, 𝛼̂
2
, . . . , 𝛼̂

𝑃
) are the quantized versions of 𝛼

𝑘
. As

aforementioned, in order to ensure the correct reconstruc-
tion, the following condition must be satisfied:
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thus, the optimal quantized step can be computed as follows:

𝑞
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and 𝑐 is a positive integer. For most blocks, the value of 𝑐

equals one. If any block fails to satisfy (12), the value of 𝑐 is
to add one every time until (12) is satisfied. The final output
bit rate can be computed as

𝑅
𝑘

= ⌈log
2

[

max
𝑖,𝑗=1,2,...,𝑁

󵄨󵄨󵄨󵄨󵄨
𝑒
𝑘,𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞
𝑘

− 𝑐
]⌉ + 1. (15)

It should be noted that the quantization strategy introduces
no loss for the original hyperspectral images when 𝑞

𝑘
= 1; in

this case, the distributed lossy compression algorithm turns
to the distributed lossless compression algorithm.

3.2. Rate Distortion for Low Bit-Rate Compression. As can be
seen from (9), the minimum value of the coding rate is 2; in
other words, the bit rate acquired by the above quantization
algorithm cannot be lower than 2, which can be regarded as
a near lossless compression. In order to achieve low bit-rate
compression, we perform an effective rate-distortion (RD)
algorithm on the proposed compression algorithm to obtain
the low bit rate. For a certain block, if its energy of prediction
errors is low, whichmeans that the prediction performance of
this block is perfect, the encoding process of this blockmay be
neglected, otherwise, the encoding process must be executed
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[18]. This working manner provides an appropriate tradeoff
between the distortion introduced byneglecting the encoding
process and the corresponding rate saving. In practice, the
energy of the prediction errors of the block which is shown
as (16) is used to determine whether the block should be
neglected:

𝐷 =

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑒
2

𝑘,𝑖,𝑗
. (16)

If the distortion 𝐷 is higher than the threshold, which means
that the prediction error has too much energy, neglecting
the encoding process will result in a poor compression
performance. On the contrary, if 𝐷 is below the threshold,
neglecting the encoding process of this blockwill have limited
impact on the compression performance. In this situation, the
prediction errors of this block are set to be zero and only the
predictor parameters are written in the encoding stream. By
setting different values of the threshold, we can change the
output bit-rate flexibly.

4. Results and Discussion

Hyperspectral images acquired by the AVIRIS sensor in 1997
were employed in our experiments. AVIRIS was devised
by the JPL (jet propulsion laboratory) of NASA (National
Aeronautics and Space Administration, USA), and it covers
the 0.41–2.5 𝜇m spectrum range in 10 nm bands. This instru-
ment contains four spectrometers that are flown at a 20 km
altitude with a 17m spatial resolution. The four scenes are
Cuprite, Jasper Ridge, Lunar Lake, and Low Altitude, which
are widely used for compression testing and the evaluation
of hyperspectral images. The radiance data of the above four
scenes were represented in 16 bits; each image has 512 lines,
224 bands, and 512 pixels/line. In this paper, the four scenes
with image size of 256× 256× 224 are used in our experiment.

The proposed algorithm can realize both lossless and
lossy compression. We first evaluated the lossless compres-
sion performance of the proposed algorithm with several
existed classical algorithms. In general, the multiband linear
prediction model is expected to improve the quality of side
information; however, it also increases the computational
complexity. Therefore, a reasonable number 𝑃 should be
typically selected that guarantees both a high quality for the
constructed side information and a low complexity for the
multilinear regression model. Figure 1 shows the prediction
performance and the computational complexity with various
values of 𝑃, where 𝑃 = 0 refers to the average entropy
over all the bands for each scene. As shown in Figure 1,
the multilinear regression model using two previous bands
provides both high prediction performance and low compu-
tational complexity. Note that as the number of 𝑃increases,
the computational complexity increases rapidly while the
prediction gain tends to decrease because bands further away
from the current band in the wavelength domain are less
correlated. Therefore, the optimal number of 𝑃 is selected to
be 2.

For the proposed algorithm, the block size is also influen-
tial for the compression performance. We use bpppb (bit per
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Figure 1: Prediction performance and complexity with various 𝑃

values.

pixel per band) to measure the lossless compression perfor-
mance. Figure 2 gives the lossless compression performance
with different block size (𝑁 = 8, 16, 32, 64, 128, 256). It can be
seen that the best compression performance is obtainedwhen
𝑁 = 16. With the increase of the 𝑁 number, the compression
performance decreases rapidly. For the proposed algorithm,
small block canmake full use of the spatial correlation, which
is beneficial to achieve better compression performance.
However, small block size also introduces large additive
information, such as predictive coefficients and average value
of corresponding block. Although large block introduces little
additive information, it cannot make full use of the spatial
correlation, which leads to a bad compression performance.

The proposed distributed lossless compression algo-
rithm is compared with several classical algorithms, such as
JPEG-LS, 3D CALIC [19], KSP (kalman spectral prediction)
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Figure 2: Lossless compression performance with different block
size.

[4], LUT (look-up table) [20], s-DSC [13], and A1 [14],
which are shown in Table 1. JPEG-LS is an excellent lossless
compression standard. 3D CALIC, KSP, and LUT are three
traditional classical algorithms. s-DSC and A1 are two clas-
sical distributed lossless compression algorithms. As can be
seen, JPEG-LS performs poorly due to the lack of spectral
correlation elimination. LUT has the highest compression
performance, and KSP also has the excellent performance by
using Kalman filter to eliminate the spectral correlation. The
performance of 3D CALIC is much better than JPEG-LS but
worse than KSP. s-DSC is only better than JPEG-LS, and A1
is much better than s-DSC.The performance of the proposed
algorithm (DSC-lossless) is slightly better than A1. However,
there is also a gap between the proposed algorithm and the
above two traditional algorithms.

The complexity of the proposed algorithmshas been com-
pared with that of existing algorithms, which are reported in
Table 2 and are normalized with respect to the complexity
of JPEG-LS. As can be seen, LUT is slightly more complex
than JPEG-LS; 3D CALIC and KSP are both more complex
than JPEG-LS. Because only LSBs are transmitted without
any entropy coding of the predictive errors, the proposed
DSC-Lossless has very low encoder complexity, even lower
than JPEG-LS, while providing better compression perfor-
mance than the other two distributed lossless compression
algorithms. Despite that the complexity of s-DSC is signifi-
cantly small, which is slightly higher than DSC-lossless, the
performance of s-DSC is much worse than DSC-lossless.

In this paper, we use bpppb and signal to noise ratio (SNR)
tomeasure the lossy compression performance. Figure 3 gives
the comparison of lossy compression performance of various
algorithms with different bit rate, where DSC-lossy is the
proposed algorithm and the other algorithms are the classical
algorithms for hyperspectral images compression. JPEG2000

Table 1: Comparison of lossless compression performance of vari-
ous algorithms.

Cuprite Jasper Ridge Lunar Lake
JPEG-LS 7.62 8.16 7.55
3D CALIC 5.18 5.14 5.19
KSP 4.88 4.95 4.89
LUT 4.65 4.95 4.71
s-DSC 6.08 6.25 6.23
A1 5.50 5.60 5.51
DSC-lossless 5.42 5.51 5.40

Table 2: Comparison of complexity of various algorithms.

Algorithm Complexity
JPEG-LS 1
LUT 1.14
3D CALIC 28.4
KSP 25.2
s-DSC 0.89
DSC-lossless 0.78

is an excellent compression standard which is primary used
for still image compression.DWT-JPEG2000 is also a popular
compression algorithm which removes spectral redundancy
by using a 9–7 biorthogonal wavelet transform followed
by JPEG2000 for spatial compression. Similar with DWT-
JPEG2000, KLT-JPEG2000 removes spectral redundancy by
using KLT transform followed by JPEG2000 for spatial
compression. For the hyperspectral images compression, it
is very important to remove its spectral correlation. As can
be seen from Figure 3, despite JPEG2000 has the perfect
compression performance for still images, its compression
performance for hyperspectral images is the worst because
it do not remove the spectral correlation. KLT-JPEG2000
has the best compression performance due to the excellent
performance of removing spectral correlation. Note that
because the filter coefficients of DWT are fixed, its perfor-
mance of removing spectral correlation is moderate. DWT-
JPEG2000 employs DWT to remove the spectral correlation,
and the performance ofDWT-JPEG2000 is better than that of
JPEG2000 while worse than that of KLT-JPEG2000. It should
be noted that the performance of the proposed DSC-lossy
is comparative to that of DWT-JPEG2000. The performance
of DSC-lossy is worse than that of DWT-JPEG2000 at low
bit rate while better than that of DWT-JPEG2000 at high bit
rate; this is because that the multilinear regression model has
serious error accumulation at low bit rate, while at high bit
rate this disadvantage can be neglected.

In terms of encoder complexity, the results are reported
in Table 3 and normalized with respect to the complexity
of JPEG2000. The complexity of KLT-JPEG2000 is the high-
est, although KLT-JPEG2000 provides the best compression
performance. DWT-JPEG2000 has the modest complex-
ity, which is faster than that of KLT-JPEG2000 but lower
than that of JPEG2000, but there is a performance gap
with KLT-JPEG2000. The proposed algorithm has similar
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Figure 3: Comparison of RD performance of various algorithms.

Table 3: Comparison of encoder complexity of various algorithms.

Algorithm Complexity
JPEG2000 1
DWT-JPEG2000 1.78
KLT-JPEG2000 4.12
DSC-lossy 0.96

compression performance with DWT-JPEG2000, but its
encoder complexity is the lowest. Furthermore, the proposed
algorithm can be easily parallelized by having encoding

blocks compressed at the same time, which is suitable for
the implementation on an FPGA (field-programmable gate
array).

5. Conclusion

Although existing classical algorithms can provide excellent
compression performance for hyperspectral images, they are
not suitable for onboard compression due to the high encoder
complexity and poor error resilience. This paper proposes
a low-complexity compression algorithm for hyperspectral
images based on distributed source coding. Multilinear
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regression model is introduced to improve the compression
performance of distributed lossless compression algorithm,
and optimal scalar quantization is proposed to perform
distributed lossy compression. In order to achieve low bit-rate
compression, an effective rate-distortion algorithm is also
performed on the proposed distributed lossy algorithm.
Experimental results show that the proposed algorithm
has competitive compression performance and low encoder
complexity, making it suitable for onboard compression. In
order to further improve the performance of the proposed
algorithm at low bit rate, powerful RD algorithm should be
paid more attention.
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