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Reduced space sequence alignment
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Abstract

Motivation: Sequence alignment is the problem of finding the
optimal character-by-character correspondence between two
sequences. It can be readily solved in O(r?) time and o)
space on a serial machine, or in O(n) time with O(n) space
per O(n) processing elements on a parallel machine.
Hirschberg’s divide-and-conquer approach for finding the
single best path reduces space use by a factor of n while
inducing only a small constant slowdown to the serial
version.

Results: This paper presents a family of methods for
computing sequence alignments with reduced memory that
are well suited to serial or parallel implementation. Unlike
the divide-and-conquer approach, they can be used in
the forward—backward (Baum—Welch) training of linear
hidden Markov models, and they avoid data-dependent
repartitioning, making them easier to parallelize. The
algorithms feature, for an arbitrary integer L, a factor
proportional to L slowdown in exchange for reducing space
requirement from O(n°) to O(n{/r_z). A single best path
member of this algorithm family matches the quadratic time
and linear space of the divide-and-conquer algorithm.
Experimentally, the O(n'>)-space member of the family is
15-40% faster than the O(n)-space divide-and-conquer
algorithm.

Availability: The methods will soon be incorporated in the
SAM hidden Markov modeling package http://www.cse.ucs-
c.edufresearch/compbio/sam.html.

Contact: wzrph@cse.ucsc.edu

Introduction

Sequence comparison and alignment are common and
compute-intensive tasks which benefit from space-efficient
execution. Sequence comparison rates the difference or
similarity between two sequences. For the most related
sequences, one then wants to see an alignment, showing
where the sequences are similar, by graphically lining up
matching elements, and how they differ, shown by gaps and
mismatches.
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Good alignments and sequence comparisons come from
solutions of an appropriately chosen optimization problem.
The problem formulation defines a set of edit primitives,
including match, insert and delete, and assigns them values or
costs in a distance function. Optimization then maximizes the
total match value (Needleman and Wunsch, 1970) or
minimizes the total cost of mismatches and insert and
delete gaps.

Dynamic programming organizes sequence comparison by
comparing shorter subsequences first, so their costs can be
made available in a table (Figure 1) for the next longer
subsequence comparisons. The final entry becomes the
comparison rating. Exact sequence comparison is an O(n?)
serial time dynamic programming algorithm, where n is the
length of the longest sequence. Masek and Paterson (1983)
describe an O(n?/ log n) algorithm for strings of equal length
from a finite alphabet with restrictions on the cost function,
but it has a large constant factor and is not amenable to
parallelization. Distance calculation is governed by a
simple recurrence. The cost of transforming a reference
string b into another string a is the solution of a recurrence
whose core is:

€i—1,-1 t+dist(a,, ) match
Cl—l.] + diSt(ais d’)
Cry—-1 + diSt(¢, b)

insert
delete

¢;, = min

where dist(a;, b;) is the cost of matching a; to b;, dist(a;, ¢) is
the gap cost of matching a, with no character in b, and
dist (¢, b)) is the cost of not matching b; to anything in a. Edit
distance, the number of insertions or deletions required to
change one sequence to another, can be calculated by setting
dist(a;, ¢) = dist(¢, b;) = 1, and dist(a;, b;) = 0if a; = b; or 2
otherwise.

Sequence comparison using affine gap penalties involves
three interconnected recurrences of a similar form
(Gotoh, 1982). The extra cost for starting a sequence of
insertions or deletions will, for example, make the
second alignment of Figure 1 preferred over the alignment
with four gaps. In the most general form of sequence
comparison, profiles or linear hidden Markov model
(Gribskov et al., 1990; Krogh er al., 1994), all transition
or gap costs (g) between the three states (match,
insert or delete) and character distance cost are position
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Fig. 1. Dynamic programming example to find least cost edit of ‘BACK-
TRACK' into ‘“TRACEBACK’ using Sellers’ evolutionary distance metric
(Sellers, 1974). Below the dynamic programming table are two possible
alignments and an illustration of the data dependencies. Diagonals can be
vectorized or computed in parallel.

dependent:
C%’ = mi"(Cﬂl,j-l + gM-‘M’ C{—l.]—l +g7M,
21+ &™) + dist(a,, b))
c,l‘j =min(c)_| +g", di+g.
¢ty + 87" + dist(a,. ¢)
cpy =min(cf_ + 8" iy, + &0,
it +877P) + dist(e, b))

Local alignment (Smith and Waterman, 1981), which finds
the most similar subsequences of two sequences, adds a
fourth, constant term to each minimization (such as zero)
representing the cost of starting the correspondence at an
internal (i, j) pair, in which case highly similar regions must,
for the equations above, have negative cost. To allow the
correspondence to end anywhere within the dynamic
programming matrix, the matrix is searched for the best
final score. By negating signs, dynamic programming can be
presented using similarity and maximization (more common
in biology) rather than cost and minimization (more common
in computer science).

An alignment based on a given cost function is the
reconstruction of an optimal path through the dynamic

programming matrix. The standard means of reconstructing
the path is to record the decisions made in each minimization
during the forward pass, and then use these choices to find an
optimal path from the lower right (cf,)+1‘,,+,) to upper left (cg 0)
during the backward or traceback phase. Storing these
choices will require at most six bits per (i, j) cell. However,
having to store one byte from each comparison requires O(n?)
space, leading to the need for more space-efficient
alternatives.

In searching for a reduced-space alignment algorithm, we
have two primary implementation targets: hidden Markov
modeling and a new parallel processor currently under
development. The most computationally intensive step of
the former is a sequence of training iterations that uses an
alignment-like calculation on the dynamic programming
matrix that requires a summation of all possible paths through
the dynamic programming matrix, adding and multiplying
probabilities rather than minimizing and adding costs (Krogh
et al., 1994). When training on sequences and models over
n = 2000 elements long, the O(nz) space requirement causes
virtual memory page thrashing on a serial workstation, while
the MasPar parallel computer code is unable to run because of
each processing element’s limited memory (64 kilobytes).
The algorithms presented in this paper will enable the new
parallel processor, called Kestrel, to perform sequence
alignment and hidden Markov model (HMM) training despite
having only a tiny 256 bytes of local memory per processing
element (Hirschberg et al., 1996).

Related work

Hirschberg (1975) discovered the first linear-space algorithm
for sequence alignment, which Myers and Miller (1988) then
popularized and extended. In reducing space from O(n®) to
O(n), these algorithms introduce a small constant (1.8 for
Myers and Miller) slowdown to the O(n®) time algorithm. The
core of these algorithms is a divide-and-conquer strategy in
which an optimal midpoint of an # x n alignment is computed
by considering column n/2 as computed by both the forward
cost function on the sequences and the inverse cost function
on the transposed sequences. At each point along this column,
the sum of the forward and reverse costs will be the minimum
cost of all alignment passing through that point. Minimizing
over all members of the column will produce a point through
which the optimal alignment will pass. This enables the
division of the problem into two subproblems of combined
size n2/2, which can then be solved recursively.

Edmiston et al. (1988) proposed an extension to Hirsch-
berg’s algorithm for use on parallel processors by dividing the
problem into H segments rather than Hirschberg’s original
two segments. Huang (1989) further improved the paralleli-
zation by noting that if one partitions along a pair of diagonals
rather than a column, the problem will be reduced to equally
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sized subproblems, a critical issue in creating a load-balanced
parallel algorithm. That is, if the diagonal i+j=n is
considered, the minimizing point in that diagonal, (i, j ), will
divide the problem into an upper i’ x j' segment and a lower
(n—i"Yx(n—j'"y=j'xi segment.

Huang’s parallelization of Hirschberg’s algorithm, and the
related parallelization of Edmiston’s algorithm, are best
suited to MIMD (multiple instruction stream, multiple data
stream) parallel processing with shared memory or unit-time
message passing systems. Although the workload is evenly
partitioned in these parallelizations, after an (i', j') determi-
nation, the sequences must be repartitioned into half-sized
subsets with the first i/ and j’ characters of each sequence
going to the first processor of one-half of the processing
elements (PEs) over several time steps, and the remainder
going to the first processor of the other half. A simple ring
network would enable this for the first partitioning, but the
recursive partitionings will require a multitude of sub-rings
or, in fact, a fully connected graph.

If there is only a small amount of memory in each of P
processing elements, complete copies of the sequences
cannot be stored in each PE, meaning that the data must be
moved through the parallel processor, making repartitioning
particularly costly.

Ibarra et al. (1992) solved many of these problems for
performing sequence alignment on a one-way linear array of
finite state machines, a restrictive, and hence realistic,
machine model in which data can only flow from left
to right. Their parallelization of Hirschberg’s algorithm
balances the computation by performing problem division on
the larger of the two dimensions of the dynamic programming
sub-matrix during any given recursive call. Also, the
sequence repartitioning time overhead is eliminated by
skewing the computation, moving data forward to use up
new processing elements for each recursive call. Thus,
their algorithm requires O(n + m) processing cells, rather
than O(m) cells, where n and m are the sequence lengths,
but requires just O(n+ m) time even when only left-to-
right communication is available. This method is an
excellent solution when sufficient processing elements are
available.

In the serial case, our goal is to find a simple reduced-space
algorithm that can be used with forward—backward HMM
training. In the parallel case, our goal is to find a simple
reduced-space algorithm that does not have the data-
dependent computation (which can result in repartitioning
delays on a parallel processor) of the divide-and-conquer
algorithm or require the additional PEs of Ibarrra’s method,
and which can be efficiently implemented on linearly
connected processor arrays with limited amounts of
memory, nearest-neighbor unit-time communication, and
broadcast instructions. These two goals can be solved with
a single family of algorithms.

System and methods

The serial experimental work of this paper was performed on
a Sun Microsystems UltraSparc Station Model 140 with 64
megabytes of memory. The programs were written in ANSI C
and were compiled using the Gnu C compiler version 2.7.2
and optimization level 3.

The parallel results used a MasPar MP-2204 parallel
computer with a DEC Alpha 3000/300X front end. Each of
the 4096 processing elements has 64 kilobytes of memory.
The parallel programs were written in MPL, the MasPar’s
parallel C language. The MPL code was compiled using
MasPar’s MPL compiler version 3.3.21 at its highest
optimization level.

Algorithm

In the following discussion, let n be the length of the longest
of the two sequences compared and m be the length of the
shorter. In the linear HMM case, m will be the length of the
model; studying a short motif, m may be below 100, while
sequence length n may range into the thousands or tens of
thousands. Let mM be the total amount of memory available,
i.e. memory use is measured in the number of rows, each of
length m, that can fit in memory.

Basic algorithm

The basic alignment algorithm includes two parts (Figure 2).
In the first part, the c; ; values for each state and each (i, j) pair
are calculated according to the recurrence equations
described above. During this calculation, the decision bit of
each minimization is saved in memory. In the second part (the
traceback phase), a chain of states from cf,)H_,,“ to cﬁo 1s
constructed by following the path of the minimizations. The
total time required by the algorithm is 2 mn, assuming that
each forward and backward cell calculation requires unit
time. If only the best path must be traced back (as is done in
Figure 2 for simplicity), at most mn + m + n = O(mn) time is

for i—~1to n
ComputeAndSave (row[s], Trace[]);
/* Traceback */
t—n+1
j—n+1
state — delete
while (i>0]5>0)
print state (i,7) = state
nextstate — minstate (1, j,state)
case state:
delete: j— j —1
insert: t— 1 -1
match: {— {1 —1; j— 7 -1
endcase
state «— nextstate;
endwhile

Fig. 2. Basic algorithm. The subroutine call performs the dynamic
programming recurrence, saving the choice made in each minimization.
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required. The memory used to store the minimization choices
is called traceback memory, and must include n rows of O(m)
elements.

Two-level algorithm

The simple alignment algorithm’s limitation to M =n, or
O(nm) memory, can be overcome with checkpoints and
recalculation. To recalculate efficiently the comparisons of a
row in the dynamic programming matrix, the state of
computation shortly before that time is needed. By appro-
priately selecting when to save these checkpoints of state
information, which include all cost totals required to calculate
future rows, alignments can be performed efficiently in limited
space.

For the remainder of this discussion, we assume that M is
measured by the number of checkpoints that memory can
hold, and that there is a one-to-one correspondence between
checkpoint and traceback storage. The space efficiency of the
algorithm could be improved by noting that storing choices
requires less memory than storing checkpoints (six bits as
opposed to three words per column) for alignment operations
other than forward—backward HMM training.

Fixed memory partition. Suppose that the available memory
is divided into a space for alignment traceback calculation,
Mice, and a space to store checkpoints, M ... Because
traceback cannot commence until the final ¢, , value of the
matrix is computed, only the final block of traceback
information for M, rows needs to be saved. The first
M. comparison outcomes can be discarded because they
can be recalculated from the initial conditions. The state of
the last computation of this segment must be saved as a
checkpoint.

After state has been saved, the next M. rows can be
computed and another checkpoint saved. These comparison
outcomes can also be discarded because they can be
recomputed from the first saved checkpoint. This process is
repeated until the sequences have been compared. To find an
optimal alignment, a traceback is performed on the last M, ;..
rows. The previous M., comparison outcomes are recom-
puted from checkpoint information, and a traceback is
performed on those rows. We call this a 2-level method
because of the hierarchy in calculating values: checkpoints
combined with simple (level-1) forward and traceback
calculations (Figure 3).

The performance of the 2-level fixed partition algorithm is
simple to analyze. The greatest number of rows that can
be calculated with M e + Mirace memory locations is
M ice M epeck + 1), which for a given amount of memory M
is optimized by Mecx = Mimee = M/2. Converting rows to n,
the amount of space required for sequences of length n and m
is O(m\/r_l), while the time required for the calculation is

M «~ size of memory; 1 — 0; cycle — 0;
SaveState (row[0], Check[cycle]);
for cycle — 1 to [n/Miracel — 1;
for k—ito i+ Mirace — 1;
ComputeCosts (row[k]);
SaveState (row[i + M¢race — 1], Check|cycle]);
t— 1+ Myraces

for k—1to n;
ComputeAndSave (row[k], Trace[k mod My ,ce + cycle]);
Traceback (Traceli mod My ,ce + cycle] ...
Trace[nmod My ace + cycle]);

endcycle — cycle;
for cycle «~ endcycle to 0
1t =~ Mirace ;
RetrieveCheckpoint (Check[cycle], row[i — 1]);
for k—itto 1+ Miace — 1;
ComputeAndSave (row([k], Trace[k mod My 4ce + cycle]);
Traceback (Trace[t mod My ,ce + cycle] ...
Trace[(i + Myrace — 1) mod My ace + cycle]);

Fig. 3. Two-level fixed memory partition. The subroutine calls, respectively,
save a row into the row-wide memory, compute the recurrence without saving
any state information, compute the recurrence saving choice information,
determine the optimal path, and restore a previously stored checkpoint.

approximately 3nm = O(nm), assuming that each forward or
backward cell calculation requires unit time, and full HMM-
style traceback is used rather than the illustrated best
path. Thus, with a constant factor of 1.5 slowdown,
memory requirements have been reduced asymptotically by

O(\/n).

Moving memory partition. The previous algorithm does not
use the checkpoint memory efficiently. When memory is not
holding a checkpoint, it should be available for use in
traceback computation. The division between checkpoint
memory and computation memory can move forward as more
checkpoint memory is needed and recede after those
checkpoints have been used (Figure 4). If there is enough
memory to hold 32 checkpoint values, then the first 32 rows
of the dynamic programming matrix can be computed and
thrown away, saving the state at the last (32nd) row. After
the state is saved, there are, looking forward to the traceback
part of the algorithm, only 31 locations available for
traceback so only 31 steps should be computed. These
actions repeat until the end of the sequence. During the
traceback phase of the algorithm, each iteration has the
reverse effects on the available memory. With each traceback
iteration, a section of the dynamic programming table is
recreated from a checkpoint that is no longer taking up
memory.

The 2-level algorithm with a moving partition and mM
memory can compute Eﬁli = MM + 1)/2 rows and, as
with the previous algorithm, execution time is
approximately 3nm = O(nm). Thus, moving partitions have
the same asymptotic performance as fixed partitions, but can
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M «~ size of memory; 1 — 0; cycle « 0;
offset +— 0;
SaveState (row[0], Mem[cycle]);
while (i+ M -1<n)
cycle — cycle +1;
for k—ito 14+ M-—1;
ComputeCosts (row[k]);
SaveState (row(t + M — 1], Mem|[cycle]);
M~M-1;
offset — offset +M;

for k —ito n;
ComputeAndSave (row[k], Mem[k— offset]);
Traceback (Mem[i— offset] ... Mem{n—offset});

endcycle — cycle;
for cycle — endcycle to 0
offset «— offset—M;
M~ M +1;
t—1—-M,;
RetrieveCheckpoint (Mem[cycle], row[i — 1]);
for k—ito 1+ M-1;
ComputeAndSave (row[k], Mem[k—offset]);
Traceback (Mem[i— offset] ... Mem[i + M — 1- offset]});

Fig. 4. Two-level algorithm with moving partition.

calculate twice as many rows. They will be assumed from
here on.

Multilevel algorithm

A multilevel version of the 2-level algorithm can extend
memory use even further. The memory is dynamically
divided into sections for level-3 checkpoints, level-2
checkpoints and the basic calculation. Similar to the previous
algorithms, after storing a level-3 checkpoint, the 2-level
algorithm is used to calculate as many rows as possible before
storing the next level-3 checkpoint.

The 3-level algorithm (Figure 5) will, as it is filling its
checkpoint memory, call the 2-level algorithm with a range of
workspaces from M down to 1; thus, the number of rows this
algorithm can compute in mM memory is:

ii(w 1) (M+2)M+ 1M
2 6

i=1

This yields as asymptotic space requirement of O(m{/ﬁ).
While each traceback calculation is performed exactly once,
forward calculations are performed up to three times each
{once at each level), giving a parallel running time of
4nm = O(nm).

In general, the number of rows that can be computed with
an L-level algorithm and mM memory is:

M

r(M) = ZrL—l(i)

1=1

o o o o
1lo o o o o
L1 ]3X
2/ e -0 -0-o0-
3]o o o o o "
L1 3X
4 [c 3 -] - =0 = O~
L2 {5
5| o——e—e -o- Ll
6lo o o o o =
L1 2X
7| ® -0 -0-o0-
2X
3| o—e < -
L3 11x
9|0 o o o o 1

Fig. 5. Example computation of 10 rows using three memory locations and
the 3-level algorithm. The solid rows are level-3 checkpoints, while the
dashed are level-2 checkpoints. The level-2 checkpoints at rows 4 and 7 do
not acutually need to be saved. The memory partitions correspond to the row
at the base of the partition diagram. The numbers next to the memory
diagrams indicate the number of times the forward calculation is redone.

This recurrence, when ri(M) = M, is solved by:

M+L -1
r(M) =
L

M +L—1)
M =D
_ M+L-1..M
- L...1

At one extreme is L =1, the basic algorithm that
requires O(2nm) time and O(nm) memory. At L =2, we
have the 2-level algorithm, which requires O(3nm) time and
O( \/r—lm) memory. For small L, r;(M) is bounded by
OWM*/LY) = OM"/L"), and the L-level algorithm can be
calculated in O((L + 1)nm) = O(Lnm) time. Changing these
to be in terms of n, the L-level algorithm requires O(Lnm)
time and O(mL \L/ﬁ) space.

At the other extreme is L = n. Here, r,(2) = n + 1, and two
memory rows are used to calculate an alignment of any length
by repeating the forward calculation from ¢y up to each row
in turn, using O(nzm) parallel time. Consider calculating n
diagonals with M = 3. Setting r, (3) =L +2)(L + 1)/2
equal to n and solving for L gives us L < +/2n. That is,
with 3m memory locations, sequence alignment can be
performed with an O(y/n) time penalty. In general, for any
small M, r,(M) = OLMIM!) = O /MM), and there is an
O(Mn) space algorithm with an O( "\’/ﬁ) runtime penalty.

Thus, the equation for r (M) provides a tableau of
design points in the space—time tradeoff. Suppose
L = logn. The algorithm requires O(nmlogn) time and
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O(mlogn ‘°8\"/r_1) = O(mlog n) space. Thus, memory require-
ments can be reduced by a factor of O(n/logn) with an
O(log n) slowdown.

Single best path

The algorithms so far have been designed for use with the
forward—backward HMM training algorithm, in which the
backward, or traceback, part of the algorithm is a repeat of the
full dynamic programming of the forward section based on
the c;; values. If only the single best path through the
dynamic programming matrix is required, such as is used in
aligning two sequences, or creating a multiple alignment from
HMM, the checkpoint algorithms have better performance.

First, assume that diagonal, rather than row, checkpoints
are used. In the case of the 2-level algorithm, there will be
n 4+ m diagonals with O(/n + m) checkpoints with a spacing
of O(y/n + m) (with moving memory partitions, the spacing
is not constant). Each diagonal has a length of at most m.

The price of diagonal checkpoints is two memory
inefficiencies. First, there are n + m diagonals, rather than n
rows, so more checkpoint locations are required. Second, the
computation of a diagonal requires values from the previous
two diagonals, i.e. (i — 1,j) and (i, j — 1) refer to the previous
diagonal, while (i —1,j — 1) refers to the diagonal before
that. In the simplest case, each checkpoint can include two
diagonals, and a factor of two memory penalty. For a minor
savings, with increased complexity, one can save four costs
and one choice, rather than six costs, for each (i,j) pair and
still be able to restart the calculation (Figure 6). Here, all
circled values are required in the calculation of diagonal two;
the three values in the (0, 1) location will be used, with
different transition costs, by (0, 2) and (1, 1) on diagonal two
and (1, 2) on diagonal three with a third set of transition costs.
The choice made in calculating the (1, 1) match value must be
saved for traceback.

During the recalculation step, we do not need to recalculate
an entire diagonal-length subsection of the dynamic pro-
gramming array (a block y/n+4m by m). The maximum
distance of any path between a pair of diagonals is the spacing
between those two diagonals, or \/n + m when L = 2. That

Fig. 6. The circled values in the above dependency diagram must be saved to
enable recalculation of the i + j = 2 diagonal.

is, if there is a spacing of 4 between diagonals, and the single
best path is known to pass through (10, 30) on the i + j = 40
diagonal, then the path must hit the i+ j = 36 diagonal
somewhere between (10, 26) and (6, 30). Thus, we can
recalculate only the region of interest, a \/r_ux \/ﬁ lower
triangle dynamic programming matrix, ignoring anything
outside this range. This calculation will be repeated, once
per checkpoint, or /n+m times. The total time for
the forward pass will be nm, while the time for the
recalculations will be +/n+ m(y/n+ m)?, giving a total
time of nm + \/n + m(n + m) = O(nm).

Extending this to multilevel calculation, and simplifying to
n = m, the time to calculate the single best path through the
dynamic programming matrix is the sum of the forward
dynamic programming time n* and the backward time. At
level L, there are \‘/ﬁ checkpoints at a spacing of n/ \"/1_1, and
the traceback path is calculated using the L — 1 algorithm on
this &=V x p&-DL problem:

Ty < n?+ {/nT,_, D)

and T;(n) = om?) by induction when L < log n. Thus, when
looking for the single best path, there is no time penalty with
the checkpoint method when the number of levels is O(log n).

The space requirements of the single best path algorithm are
also reduced. Here, the space for the 1-level algorithm, S;(n), is
n?. The 2-level algorithm requires space for the \/; diagonal
checkpoints, n\/ﬁ memory locations, as well as space for
computing a single \/; x \/r_z block using the next lower level.
Thus, S2(n) = nv/n + $1(y/n) = n\/n +n = O(n/n). Writ-

ing this as a recurrence,

Sy < ni/n+8,_, D)

and S;(n) = O(n{/ﬁ) by induction when L = 1.

Applying these results to logn levels, this combined
checkpointing and divide-and-conquer algorithm requires O(n)
space and O(nm) time to find the single best path, matching the
asymptotic performance of Hirschberg’s technique.

Parallel algorithm

Dynamic programming is readily parallelizable: values along
the diagonals of the dynamic programming matrix can be
calculated simultaneously, leading to the typical mapping of
Figure 7. Here, m PEs are assigned to the characters in
sequence a while the n characters of sequence b shift through
the array, one PE per time step. The final calculation of c;;
takes place in PEj at time step 6 using a3 and b, while ¢35
and ¢; are computed during time step 5.

As with single best path alignment, the parallel algorithms
must checkpoint diagonals (Figure 8).
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4 T=0
b1 T=1
PE, PE, PEj
bo —
T=2
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T=5
T=6

PEy PE, PE, PE;

Fig. 7. Mapping dynamic programming to a linear processor array. Arrows
indicate dependencies between calculations; the b; value will travel from PE|
at time 3 to PEj; at time 6. On the right, the array is shown at time step 2 (PE,
is not shown).

The 2-level algorithm for a parallel processor requires O(rm)
PEs, 0(\/71) space per PE, and 2(m+n)+m+n = 0O(n)
time. Unlike the serial case, in the parallel case, the traceback
phase requires asymptotically the same amount of time as the
forward phase.

The major problem of mapping the divide-and-conquer
algorithm, or the single best path algorithm above, to a linear
array of PEs arc the data-dependent and arbitrary patterns of
sequence movement. The 2-level algorithm, on the other
hand, only requires linear shifts of the moving sequence
through the array: initially, one sequence is shifted entirely
through the array as a complete forward calculation is
performed and several checkpoints are saved. For each of the

M «~ size of memory;: — 0; cycle — 0;
offset «— O;
SaveState (diag[0], Mem[cycle]);
while (1+ M -1<2n+1)
cycle « cycle +1;
for k—ito i+ M-1;
ComputeCosts (diag[k]);
SaveState (diagi + M — 1], Mem[cycle]);
t—i+ M;
M—M-1;
offset — offset +M;

for k—1ito 2n+1;
ComputeAndSave (diag[k], Mem[k— offset]);
Traceback (Mem[i— offset] ... Mem[2n + 1—offset]);

endcycle ~ cycle;
for cycle — endcycle to 0
offset — offset—M;
M—M+1;
t—i—-M,;
RetrieveCheckpoint (Mem[i], diag[: — 1]);
ShiftCharactersBackward (M)
for k—ito i+ M~-1;
ComputeAndSave (diag(k], Mem[k—offset));
Traceback (Mem[i~ offset] ... Mem[i + M — 1—offset]);

Fig. 8. The parallel version of the 2-level algorithm with moving partition
requires calculation on the diagonals.

segments of the traceback calculation, the sequence is first
shifted backwards through the array to the start of the
previous segment, then forward for the recalculation. Because
each processing element always computes the same column,
the data movement is entirely regular and data independent.
Additionally, the number of backward sequence shifts needed
to start a new segment is proportional to the number of
diagonals in that segment: the asymptotics of the algorithm do
not change.

On a linear processor array, the logn-level algorithm
requires O(m) PEs, O(logn) space per PE, and O(nlogn)
time. The \/;-level algorithm requires three memory
elements per PE and O(n'?®) time. The per-PE memory
requirements of the simple algorithm, as well as the 2-level,
3-level and log(n)-level algorithms, are shown in Figure 9.

Implementation

We implemented the 2-level alignment algorithm, the divide-
and-conquer algorithm and, for comparison, the basic on?)
space algorithm. We implemented both row and diagonal
versions of the checkpoint algorithm, with and without the
restricted traceback.

To test the parallel variants, we implemented the 2-level
and the basic algorithm on a MasPar parallel computer.

The left graph of Figure 10 shows the execution times,
normalized to the basic algorithm, for the serial code,
comparing the 2-level algorithm with row checkpoints with
and without restrictions [the restricted 2-level row-based
algorithm does not achieve the same asymptotic O(nm) time,
but can work well in practice], diagonal checkpoints with and
without restriction, and Hirschberg’s method. The runs were
done on an unloaded workstation, and slowdown in CPU time
and wall clock time closely correlated up to 2000-long
sequences. The 2-level diagonal-restricted algorithm per-

10408 - ™
Lelogin) o
100000 |- . T
§ 10000 L3 1
; 1000 - 1
- 'r/‘
100 F
L=1
10

100 1000
Space per PE or Column (M)

Fig. 9. Approximate alignable sequence length (n = m) as a function of M for
the algorithms. With fewer than m PEs, multiply the space requirements by
the virtual processor ratio, m/P.
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Fig. 10. Normalized CPU time (left) and real time (right) over the basic alignment algorithm for the three reduced-space alignment algorithms on a workstation.
The horizontal axis is logarithmic on the left and linear on the right, while the vertical is linear on the left and logarithmic on the right.

forms ~60% faster than the divide-and-conquer algorithm,
and even requires less CPU time than the standard algorithm
for long sequences. Two aspects of the diagonal algorithm
contribute to its performance. First, there is much less
function call overhead in comparison to the divide-and-
conquer approach. Second, calculating along the diagonals,
the compiler is able to extract more parallelism from the
computation. For this reason, a comparison of the row-based
divide-and-conquer with the row-based restricted alignment
algorithm (which performs 15-20% faster) is more equitable.

The prime advantage of the space-saving algorithms is
seen for sequences over 2000 characters in real-time
measurement, which includes the cost of virtual memory.
The results in the right graph of Figure 10 are dramatic: in
terms of real time, the normalized execution time moves from
0.9-1.9 at length 2000 to 0.06—0.14 at length 7000. That is,
because of memory efficiency, these algorithms are 7-16
times faster than the basic algorithm. As with the shorter
sequences, the unrestricted algorithms are ~20% slower than
the divide-and-conquer algorithm, while the 2-level row-
restricted algorithm is ~16% and the 2-level diagonal-
restricted algorithm is ~45% faster than the divide-and-
conquer algorithm. For the 7000 x 7000 alignments, the wall
clock times are 8 min for the basic algorithm, 68 s for the 2-
level diagonals, 64s for 2-level rows, 56s for divide and
conquer, 47s for 2-level rows with restricted alignment, and
31s for 2-level diagonals with restricted alignment.

As with any recursive algorithm, the divide-and-conquer
algorithm could be slightly speeded up, without an asympto-
tic change in space requirements, by solving, for some &,
all k x k subproblems using the basic, non-recursive algo-
rithm, in which case it would begin to take on the flavor
of the checkpoint algorithms. We did not do this. Similarly,
the multilevel algorithm could be tuned to fit in cache.
All performance numbers in this paper are for using the
minimum amount of memory required to perform the

algorithm. Performance can be increased if more memory is
available.

Figure 11 shows execution time, normalized to the basic
algorithm, as a function of sequence length for performing an
nxn sequence alignment on the 4096-PE MasPar. The
slowdown is a factor of 1.85, partly because this implementa-
tion uses the memory-saving technique of Figure 6. Saving
two diagonals would be faster. For the 4000 x 4000 align-
ments, the execution time was 3.0s for the basic algorithm
and 5.4 s for the 2-level algorithm, seven times faster than the
serial 2-level unrestricted algorithm.

Discussion

This paper has considered sequence alignment on work-
stations and parallel processors. The simplest algorithm
reduces the amount of memory required for sequence
alignment by an O( \/l_l) factor with a 20-30% slowdown in
execution time for short sequences and, because of the
memory efficiency, a factor of 10 or more speedup for long
sequences. Multilevel variants of the algorithm can further

3 —r
28 +
26
24
22 ¢ 1

Parallel 2-Level Algorithm -

2f ——
18}
16}
14}

Normalized CPU time (standard=1.0)

12
1

10 100 1000
Sequence length (n by n alignment)

Fig. 11. Normalized CPU time over basic alignment algorithm for the 2-level
parallel algorithm.

52

6102 AeIN G0 U0 1sonB Aq £00872/St/1/€ | AOBISAE-O[OILE/SORULIONUIONG/WOY"dNO"0ILISPEDE//:SARY WO PAPEOIUMOQ



Reduced space sequence alignment

reduce memory requirements to O(mlogn) space and
O(nmlogn) execution time, or to O(m) space and
O(nm\/;) time. When only the single best path is required,
there is no time penalty for the family of checkpoint
algorithms, and the logn-level algorithm only requires
O(m) space, matching the linear space and quadratic time
of Hirschberg’s algorithm.

Unlike the divide-and-conquer approach, our multiple path
algorithms require no problem-dependent partitioning or data
movement, and as such are especially appropriate for simple
parallel computers with broadcast instructions, in particular
linear or mesh-connected processor arrays. Additionally,
because of their close relation to the basic algorithm, they are
more appropriate for extending the capabilities of existing
serial and parallel applications.

One of the most intriguing aspects of this family of
algorithms is the breadth of choice. For a given sequence
length, the number of levels, and hence the performance
penalty, can be chosen according to the amount of available
memory in a processing element or cache. Experimental
evaluation will be able to optimize the method for any
architecture’s memory hierarchy.

The algorithms are particularly appropriate to HMM
systems such as SAM (Hughey and Krogh, 1996). SAM’s
core forward-backward (Baum—Welch) training phase
requires information about all possible alignments of each
sequence to the model, rather than just the best alignment.
Thus, Hirschberg’s algorithm and its successors, which only
locate the best (or several best) possible alignment, could not
be used to improve memory performance.

Although this paper has only considered global alignment,
the method applies equally well to similarly formed
recurrences, such as local alignment and k-best alignment.

An overview of the Kestrel project and the SAM sequence
alignment and modeling software system is located at the
University of California, Santa Cruz, computational biology
group’s World-Wide Web page at http://www.cse.ucsc.edu/
research/compbio.
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