
8

Issues in Platform-Independent
Support for Multimedia Desktop
Conferencing and Application
~h · u_. arlng

O. Kim, P. Kabore, J.P. Favreau and H. Abdel- Wahab
Multimedia (3 Digital Video Technologies Group
Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, Md 20899, USA
(okim,kabore,favreau,wahab)@snad.ncsl.nist.gov

Abstract
Although Multimedia desktop conferencing and application sharing among ge­
ographically dispersed users are increasingly popular modalities, their spread
is inhibited by platform-dependency problems. In this paper, an approach
which exploits the use of the Java programming language to accommodate
different hardware and window systems is investigated and a prototype is
implemented. Our approach is based on replicated tool architecture in which
each participant runs a copy of the application and the activity of each user
is multicast to all the participants in the conference. The problems associated
with this approach such as view synchronization and replicated object man­
agement are among the issues addressed in our research. In addition, we are
developing standard functions and mechanisms that allow conference partici­
pants to seamlessly use the audio and video features available on most PC's
and workstations. Our research on multimedia stream synchronization and
adaptation, the incorporation of reliable multicasting and the development of
distributed control algorithms are expected to result in increased conference
quality, performance and robustness.

Keywords
High Bandwidth Applications, Multimedia Communications, Java, Inter­

operability, Computer Supported Cooperative Work, Desktop Conferencing,
Multicasting, Distributed Systems.

A. Tantawy (ed.), High Performance Networking VII
© Springer Science+Business Media Dordrecht 1997

116 Part Three Multimedia Traffic

1 INTRODUCTION

With the proliferation of high bandwidth computer networks and powerful
multimedia workstations, it is now feasible to build collaborative systems
that allow users to have real-time interaction with each other and remotely
work together as a team. In addition to using audio and video we believe
that it is very productive if all participants simultaneously have full access
to their shared computer-stored materials and have the ability to share and
manipulate them together.

Most current existing collaborative systems require the participants in a
conference to use the same window system. For example, XTV (Abdel-Wahab
et al. 1991, Abdel-Wahab et al. 1994) and Suite (Dewan et al. 1993) are
based on the X window system and require that the participant's machines
run the X server. Other systems such as WTV (Adams 1995) have tried to
replicate the functionality of XTV replacing the X windows with Microsoft
Windows. Ideally, each participant in a collaborative conference should be
able to use whatever platform he or she prefers. For example, some may use
PCs running MS Windows 95. Others may use workstations running different
version of UNIX and X windows, yet others may use PowerPC Macintoshs.
Before the introduction of Java, this sort of collaboration was enormously
difficult to achieve. Java programs are compiled to an architecture neutral
byte-code format and thus can run on any system that implements a Java
virtual machine and its abstract window system. Java provides a fortuitous
opportunity for the Computer Supported Cooperative Work (CSCW) (Grudin
1994) community to overcome a barrier which hitherto hindered the wide
spread use of collaboration technology.

To overcome the platform-dependency problem for application sharing in
heterogeneous platforms, NIST (National Institute of Standards and Technol­
ogy) and ODU (Old Dominion University) are jointly conducting a research
project to investigate mechanisms for sharing multimedia applications among
participants on not only heterogeneous windowing and operating systems, but
on different hardware platforms.

We have developed mechanisms to intercept, distribute and recreate the
user events that allow single-user Java applications to be shared, without
modifications, among conference participants. These mechanisms can be run
transparently on any system implementing Java. The mechanisms incorpo­
rate the services of network communications, conference management and
floor control management. The network communications services include dis­
tribution of the data among conference participants; conference management
includes joining and leaving a session; and floor control includes participant's
control and interaction with the application during a session.

In this paper, we refer to the prototype which has been developed as the
Java Collaborative Environment (JCE). We are now in the process of aug-

Issues in plat/orm-independent suppon for multimedia desktop 117

Host A

(modified java.awY

Manager

I ----------------

To/from all other
participants

Figure 1 Overall System Architecture.

HostB

menting JCE to include both audio and video in an integrated platform­
independent desktop conferencing system.

The remainder of the paper is organized as follows: Section 2 describes
the JCE system architecture and provides an overview of its major compo­
nents and functions. Section 3 discusses the problems associated with execut­
ing multiple replicated copies of the same programs. In Section 4 we show
some applications for event logging: late-joining and playback. Section 5 con­
centrates on communications issues such as the use of reliable multicasting,
conference information service and conference control. Support for platform­
independent audio and video is discussed in Section 6. The quality of session
attributes such as multi-media synchronization and adaptation are presented
in Section 7. Finally, Section 8 gives our conclusions and future work.

2 JCE SYSTEM ARCHITECTURE

The J CE is a framework for shared interactive multimedia applications. Figure
1 depicts the overall system architecture, and the relationship and communica­
tion paths among all processes of the system, for a given conferencing session.
The Java applications denoted as Java App 1 (and 2) in Figure 1 are not
part of the system. They are collaboration-unaware single-user applications

118 Part Three Multimedia Traffic

developed using the standard java.awt package (AWT 1995). Participants can
invoke one or more applications in a given conference. Our model is based on
the replicated architecture (Steinmetz et al. 1995) in which an instance of each
application runs locally at each participant's site and the activity of each user
is distributed to all the participants in a conference.

As shown in Figure 1 the JeE provides a modified java.awt class library
for use at runtime and consists of three components: the Session Control
Manager and its Interface, the Event Controller, and the Session Server. These
components are discussed in the next two subsections.

2.1 Modified Java Windowing Package

In the standard java.awt package (AWT 1995), Component class is the su­
perclass of all the GUI components and it contains the user event handling.
The unmodified handleEvent method in Component class processes the user
events. We have modified this handleEvent method to provide a mechanism
that intercepts the user events from each application, and sends them to the
Session Server, giving all participants the same application state.

The following code fragments show the modified handleEvent method in
Component class, with modifications shown in italic.

import EventController;

public class Component implements ImageObserver {
II existing code

}
}

public boolean handleEvent(Event evt) {

if (!EventController.sender(evt))
return false;

switch(evt.id) {
II remaining existing code

}

return false;

This approach allows Java single-user applications to be shared, and enables
their simultaneous viewing and collaboration among conference participants.

Issues in platform-independent suppon for multimedia desktop 119

2.2 System Components

The Session Control Manager (SCM) and the Session Interface combined
provide the user with a graphical interface offering the following options: to
call, join or leave a session; to start applications; and to request or release
a floor. Each participant is given an SCM process that exchanges control
information with the Server for the duration of the session.

The Event Controller is the core of the collaboration mechanisms. It is
composed of two processes: the event Sender and Consumer. When an ap­
plication is started an Event Controller for the application is automatically
instantiated by the Session Control Manager. When two or more applications
are shared, two or more Consumers are created as shown in Figure 1. The
Sender is declared as a static (Le., class) method of the Event controller, so
only one Sender method exists for all applications. The Sender method first
checks the intercepted event to determine whether or not it should be sent to
the Session Server, since events originating from shared applications are al­
ways forwarded. The Consumer processes receive events redistributed by the
Session Server from other participants, and post them to the local instance of
the application as if they were originated locally. This process is completely
transparent to the application, i.e., the application is unaware that it is being
shared.

The Session Server in Figure 1 provides three distinct functions: distribu­
tion of all messages to all participants; group management for a given session,
including joining or leaving a session; and server floor control management.

2.3 Alternative Implementations

Besides the modifications to the standardjava.awt package (AWT 1995) which
allow existing single-user applications to be shared, as detailed above, we have
also developed an alternative collaboration mechanism to intercept the user
events, which is the extensions to the standard java package. The extensions
called collawt allow application developers to develop new collaboration appli­
cations or modify existing single-user applications (Abdel-Wahab et al. 1996a).
The advantages of each approach are noted below.

Advantages of Modified Library

The existing and new single-user applications can be shared transparently, so
that application developers do not have to be concerned about whether the
applications are collaboration-aware whereas under extended approach, new
collaborative applications importing collawt need to be developed, or existing
applications modified, if this is possible, to enable collaboration.

120 Part Three Multimedia Traffic

Further, since Component class is the super class of all the GUI compo­
nents, the JeE need not be updated when new GUI components are developed
and introduced. In contrast, the extended libraries must be updated to account
for the new components.

Advantages of Eztended Library

This method provides more efficiency and flexibility in object event handling
in shared applications. Each GUI component in collawt, derived from the
Component superclass, handles its own user events, thus eliminating those
events coming from other than shared applications such as the Session Control
Manager.

Moreover, the extended library requires that no change needs to be made to
the environment by changing the java CLASSPATH variable, whereas the
use of the modified library requires that the new java.awt package must be
installed and used at runtime.

3 REPLICATION MANAGEMENT

Most applications need to create or use objects during execution, for instance,
the environment variables, the initialization dot files, and the files storing
multimedia data. These objects must be replicated and available at each site
before the invocation of an application for the correct operation of the JeE
system. There are three types of objects to be replicated and managed: envi­
ronment, operational and final objects.

3.1 Environment Objects

In order to enforce WYSIWIS (What You See Is What I See), each replica
of the shared application must have the same operating environment (e.g.,
in UNIX/X systems terminology, each site should have the same environ­
ment variables, same initialization files and the same X resource files) . Before
the invocation of each copy of the shared application at each site, we must
ensure that all sites have identical operating environments. Since each appli­
cation may have a specific and different operating environment from other
applications, any solution to this problem requires obtaining specific informa­
tion about each application. This can be achieved by having an environment
profile for each shared application that contains the operating environment
specification and default locations where the values of these resources can be
obtained, replicated and installed at each participant's site prior to the exe­
cution of the application. It is prudent to save and later restore the original

Issues in platform-independent support/or multimedia desktop 121

operating environment so that the user can run the application in single-user
mode according to his/her own preferred settings of the application. This con­
cept of common operating environment and profile for each shared application
is important to guarantee full WYSIWIS behavior. This does not preclude the
participants from sharing applications in which users see the same data in dif­
ferent ways such as local selection of font styles and sizes according to each
user's preference.

3.2 Operational Objects

The second set of objects needed during the life-time of shared applications is
the operational files. These files may include data, images, audio clips, video
clips, etc. that are needed during the execution of the program. If these files
are known and available in advance, then we can specify an operational profile
for each application that contains a list of these files and a default location
where it can be obtained. Prior to the execution of the application, these
files are distributed and installed in the appropriate "well-known" directories.
Again, one ought not to destroy or alter the original copies of these files so
they can be restored upon the termination of the shared application.

3.3 Final Objects

The third set of objects is the newly created files or the files to be modified
during the shared application life-span. In this case a final profile is used to
list these files and specify whether each participant should keep a copy. It may
be necessary (e.g., for integrity or security reasons) to specify for some files
that only one site should keep a copy and that all other copies of these files
should be deleted.

4 LATE COMERS, RECORDING AND PLAYBACK

Saving the user input events to each shared application by the conference
server is called event logging and this is similar to transaction logging in
database systems. There are many applications for event logging in JCE:

1. Late Comers: Participants who join an ongoing conference after the start of
at least one shared application are called Late-Comers (Chung et al. 1993).
Although in JCE, participants may join the conference any time after it
starts, they may not have the same view for those shared applications which
started before they joined. To bring the late-comers views in synchroniza­
tion with all other participants, we may send all the logged events to their

122 Part Three Multimedia Traffic

instances of those shared applications. However, saving all the user events
from all participants can be very inefficient, since a significant amount of
memory space and network band with are required. Therefore, only the user
action events such as keyboard events and drawing lines meaningful to each
shared application are stored and indexed. The mouse motion events such
as MOUSE_MOVE and MOUSE_ENTER are not logged.

2. Recording/Playback: Event logging is considered to be a form of session
recording. To playback a recorded session, all it takes is to start an instance
of each involved application and feed it with the events saved in the log
file. The playback may be seen by a single person or by all the participants
in a conference like any other "live" shared application. This can be very
useful in many applications such as:

• To investigate why an application has crashed and the sequence of events
that has led to it.

• To use it as a teaching aid by recording the steps of interaction with an
application which users may view at a later time.

5 COMMUNICATION AND DISTRIBUTED CONTROL ISSUES

This section is devoted to issues of system performance, usability and ro­
bustness. To increase the system performance as the number of participants
increases we should use reliable multicasting for data transport instead of the
current server-based (star-topology) TCP connections. To make it easy for
participants to use the system and join anyon-going conferences or start new
conferences, we should use the services provided by CIS, a real-time, internet­
based Conferencing Information Server, as discussed in Section 5.2. A robust
conferencing system should not depend on one central process for its control
so a set of distributed algorithms must be developed to replace the functions
performed by the current conference server.

5.1 Use of Reliable Multicasting

In our current implementation, all the participants are connected to the server
with TCP connections (Postel 1981) as shown in Figure 2. If one participant
needs to send a message to all other participants, he or she sends it to the
server which in turn distributes it to all participants, one at a time, using
the TCP connections. This may be acceptable if the number of participants
is small (e.g., 4 or 5). However, as the number of participants increases, the
system performance degrades and the session quality is reduced, as measured
by several parameters, such as view synchronization, to be discussed in Section
7.1.

Issues in platform-independent support for multimedia desktop 123

• UDP Socket for Multicasting

TCP Connection

C Client

Figure 2 Communications among Clients and Server.

The use of reliable multicasting (e.g., RMP provided by Berkeley jWest Vir­
ginia (Whetten et ai. 1994)) greatly improves both the performance and the
quality of session. To use multicasting, each participant and the server will
have a UDP socket in addition to the existing TCP sockets as shown in Fig­
ure 2. TCP connections are used for one to one communications among the
participants and the server. In the current J CE implementation if the server is
down the whole conference will be terminated and can not continue. However,
as discussed in Section 5.3, we plan to distribute the server functions among
all the participants and eliminate the need for TCP connections. At that time
we will have a truly distributed conferencing system that is not subject to a
single point of failure.

5.2 The Conferencing Information Service

In order to facilitate the process of joining a conference, a conferencing in­
formation service (CIS) (Abdel-Wahab et al. 1996c) is utilized. This service
allows a conference to advertise specific information about itself to help po­
tential participants find out information about the conference and allow them
to join. In order to use CIS, a conferencing system like JCE needs to im­
plement the CIS advertisement protocol and provide an interface that allows
users to browse through the information about various conferences and join
any selected conference. This interface may be implemented as a stand-alone
application or as a Java applet that can be used within an Internet browser.

124 Part Three Multimedia Traffic

5.3 Distributed Management of Conference Resources

In our current architecture the server plays a central and vital role in con­
necting the participants, using the star-topology TCP connections shown in
Figure 2, and performing various conference management functions such as
floor management. As we have seen earlier, we can use reliable multicasting to
replace the role of the server to distribute messages among the participants.
We have developed a couple of distributed algorithms that are needed to:

1. maintain an up-to-date list of conference participants and to announce this
list to the Conferencing Information Server; and

2. to grant the floor to at most one participant at a time.

6 PLATFORM-INDEPENDENT AUDIO AND VIDEO SUPPORT

Beside shared applications, audio followed by video in this order are important
to support full and effective collaboration among participants. In our project,
we provide audio support as a standard feature, since the Internet bandwidth
may now reasonably support the transport of audio conversations.

Almost all PCs and Workstations now have audio devices (microphone and
speakers), though they are often not compatible with each other and may use
different audio formats. Thus, our task here is to ensure that all participants
can talk and hear each other without worrying about the heterogeneity of their
respective audio devices. Our approach to resolving this issue is to identify the
most common audio format and configuration of audio devices and save it as
a Common Audio Format and Configuration (CAFC) file for each operating
platform. Whenever a participant joins a session, his/her audio devices are
examined to see if they can be configured to the specifications stored in the
CAFC file for the specific operaing environment. If it is determined that a
participant's device cannot be configured or does not support the common
audio format specified in the CAFC file, then an appropriate action such as
format translation or quality of service degradation for that participant is
taken.

Despite advances in compression technology, video communication requires
high bandwidth and not many PCs or workstations are equipped with video
cards and cameras, which are still expensive components relative to the basic
price of the host machines and must be purchased and installed separately.
However, we expect in the near future that Internet bandwidth will increase
and the video hardware cost will decrease to the point where desktop video
communication will become as common as audio. In a two-party system, it
is customary to display the other person's video image. When there are mul­
tiple participants, however, determining which participant's video image is
to be displayed at which time is a matter to be decided by each specific ap­
plication. For example, in the Interactive Remote Instruction (IRI) system

Issues in plat/orm-independent support for multimedia desktop 125

(Abdel-Wahab et al. 1996b) used for distance learning, the teacher's image is
always displayed on each student's workstation and only those students en­
gaged in active discussion with the teacher are displayed, in smaller windows.

In a general desktop conferencing system, we would like to provide general
mechanisms and protocols that users can configure according to their partic­
ular needs and preferences. For example, if someone speaks, his image may be
displayed by clicking a button if so desired. In a formal meeting where there
is a chairman, the group may decide that the chairman's image be always
displayed. This issue of determining how many images to display, the quality
and size of each image, and when these images are to be displayed is one of
the goals of our project. Our other major goal is to support interoperation
among many different and diverse video devices by providing Java programs
as interface for multiple cards using different hardware platforms. If some par­
ticipants have no, or incompatible video capabilities, they can still participate
in the conference using only the audio channels.

To achieve maximum efficiency, in our implementation, we intend to use the
traditional IP multicasting to send audio data among the participants (Casner
et al. 1992). In addition, the standard IGMP (Internet Group Management
Protocol) (Stevens 1994, Deering 1989) will be used to manage the process of
joining and leaving a conference.

7 SYNCHRONIZATION AND ADAPTATION ISSUES

In order to improve the conference quality as perceived by the participants
we must address the following issues and search for innovative solutions.

7.1 View Synchronization

As we described earlier, the JCE is based on the replicated model (Steinmetz
et al. 1995); that is - for n participants there are n copies ofthe same applica­
tion running concurrently, possibly on different hardware (e.g., from powerful
workstations to low-end PCs) and software (e.g., operating systems and win­
dow systems). Some of the n participants may be connected by a high-speed
Intranet, while others are connected to the global Internet with relatively
slow links. In this networking environment, it is inevitable that there will be
a skew or lack of synchronization among what all the participants see in the
shared application windows. Our objective is to reduce these synchronization
problems to a minimum and bring it to an acceptable human tolerance level
to preserve the concept of WYSIWIS. This problem does not exist in a two­
party conferencing system. However, when a large number of participants is
involved, the problem is significant and requires an innovative solution. One
such solution is to sense and measure the state of each replica of the shared
application. The gathered feedback data can then be used to slow down the

126 Part Three Multimedia Traffic

flow of events to the faster participants or to speed up the delivery of events
to the slower sites.

7.2 Multi-Stream Synchronization

An important problem in multimedia applications (e.g., remote learning, video
conferencing and information-on-demand) is the temporal synchronization of
continuous and discrete media that have the same or different sources. Streams
can be captured at the transmitter and a temporal relation between them
established. The playback times, at the destination, for the corresponding
streams may differ due to communication and network delays, or the dif­
ference between two consecutive schedule times of a process, for example.
Temporal synchronization requires the preservation of the temporal depen­
dencies among various media at the destination. For example, consider the
following scenario. In a collaborative session, at time to, a participant speaks,
then, at a later time tt, he/she starts a shared Java application (e.g., white­
board). On other participant's workstations, it is not sufficient just to play the
streams, temporal synchronization must also be maintained. Within [to, ttl,
the speaker's audio and video need to be synchronized, and the time indepen­
dent stream generated by the Java application should be synchronized with
the other two continuous streams.

There are two particular issues that need to be addressed for temporal
synchronization: intrastream synchronization and interstream synchronization
(Steinmetz et al. 1995). Intrastream synchronization policies eliminate jitter
when playing a periodic stream. Interstream synchronization policies support
orchestrated multimedia presentations, preserving the time dependencies be­
tween streams when captured. The relations that specify the temporal depen­
dencies between streams are called synchronization specification (Steinmetz et
al. 1995). In live synchronization, the application at the transmitter is respon­
sible for providing the synchronization specification, while the application at
the destination is responsible for providing a synchronized presentation ac­
cording to this information.

The objective of our work is to provide a flexible and robust solution for the
temporal interstream synchronization of time dependent (audio, video) and
time independent (text, graphics, shared windows) streams in a multimedia
application.

7.3 Inter-Stream Adaptation

In collaborative multimedia systems, there is a need for overall control, be­
yond the level of quality of service (QoS) of individual streams. The quality of
the conference as perceived by the end user, must be determined by the end

Issues in platform-independent support for multimedia desktop 127

application. At every instant in time, the quality of the conference depends on
the priorities of the on-going streams, from the user's perspective, as well as
on the actual QoS offered by the system to each of these streams. The main
objective is to keep a collaborative session going, with acceptable overall qual­
ity. This is achieved by employing a monitoring mechanism at the application
level for monitoring the perceived QoS of each stream. For example, a two
way audio-video application may choose to degrade the quality of video only,
while keeping the audio quality at the same high level.

A system which is not aware of this inter-stream correlation, may degrade
the performance of all streams with an equal proportion in an attempt to react
to the overload situation in a fair way. Moreover, the same application may
have different priorities for different streams, at every instant in time. Building
on the same example mentioned above, if there were a conversation between
two physicians, and at a certain point in the conference, the video image of
one of the participants was replaced by a VCR tape playback of an operation,
then the application may prefer a degradation in the quality of the audio
rather than that of the video in reaction to any overload situations. In such
complex collaborative applications, a compromise in the quality of one stream
in favor of another may not only be due to temporary overload situations,
but also to inherent capacity constraints in the system. For instance, a video
conferencing application supporting several simultaneous participants, may
not find enough network bandwidth, or system processing capability, to send
a full motion video stream of each participant at 30 frames per second. As
an alternative, each participant may receive a full motion video stream for
the speaker, and a lower frame rate video streams for other participants. The
previous examples suggest that, in collaborative multimedia systems, there is
a need for overall control, beyond the level of QoS of individual streams, for
a particular application.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have described our current ongoing research and the major
issues and problems associated with developing platform-independent desktop
conferencing systems that integrate application sharing, audio, video and con­
ference management functions. Among those issues addressed in some detail
are replication management, accommodating late comers, session recording
and playback, scalability through the use of reliable multicasting in both re­
liable and unreliable (raw IP) forms, global internet conference information
service, the integration of audio and video, and the synchronization and adap­
tation of multimedia streams.

In addition, we have demonstrated the important role of Java by imple­
menting the Java Collaborative Environment (JCE) prototype for applica­
tion sharing among diverse systems such as UNIX workstation-based and PC
Windows-based systems. The merits of the two alternative collaborative mech-

128 Part Three Multimedia Traffic

anisms developed in J CE, the modified and the extended approaches are also
discussed. Our next goal is to use JCE from Internet browsers such as the
Netscape Navigator and the Microsoft Internet Explorer. Due to some of the
limitation imposed by Internet browsers and Java Applets for security and
other reasons, the participants may not be able to perform certain functions.
However, we would like to maximize what can be done through the World­
Wide Web, identify those functions that cannot be performed through it and
help the users to perform these functions via a parallel stand-alone interface.

REFERENCES

Abdel-Wahab, H. and Feit, M. (1991) XTV: A Framework for Sharing X
Window Clients in Remote Synchronous Collaboration, Proceedings,
IEEE TriComm '91: Communications for Distributed Applications f1
Systems, Chapel Hill, North Carolina, pp. 159-167, April 1991.

Abdel-Wahab, Hand Jeffay, K. (1994) Issues, Problems and Solutions in
Sharing X Clients on Multiple Displays, Journal of Internetworking
Research f1 Experience. pp. 1-15, Vol. 5, No.1, March 1994.

Abdel-Wahab, H., Kvande, B., Nanjangud, S., Kim, 0 ., and Favreau, J.P.
(1996a) Using Java for Multimedia Collaborative Applications, Pro­
ceedings, PROMS'96: Third International Workshop On Protocols for
Multimedia Systems, 1996.

Abdel-Wahab, H., Maly, K., Youssef, A., Stoica, E., Overstreet, C.M., Wild,
C., and Gupta, A. (1996b) The Software Architecture and Interpro­
cess Communications of IRI: an Internet-based Interactive Distance
Learnmg System, WETICE'96, Stanford, California, June 1996.

Abdel-Wahab, H., Stoica, I., and Sultan, F. (1996c) The Design and Imple­
mentation of an Internet Conference . Information System, To appear
in Journal of Internetworking Research f1 Experience, 1996.

Abstract Windowing Toolkit (A WT) package, Java Developers Kit (JDK) Ver­
sion 1.0 API, (1995) Sun Microsystems Inc. Mountain View, CA 94043

Adams, D. (1995) WTV: An MS Windows based Collaborative System, Mas­
ter's Project Report, Department of Computer Science, Old Dominion
University, Dec. 1995.

Casner, S., and Deering, S.E. (1992) First IETF Internet Audiocast, Computer
Communication Review vol. 22, no. 3, (July), 1992

Chung, G., Jeffay, K., and Abdel-Wahab, H. (1993) Accommodating Late­
comers in Shared Window Systems, IEEE Computers, pp. 72-74, Vol.
26, No.1, January 1993.

Deering, S. (1989) Host Extensions for IP Multicasting, IETF RFC 1112, 1989.
Dewan, P. and Chouldhary, R.(1993) A high-level and flexible framework for

implementing multiuser interfaces, ACM Transaction on Information
Systems, Vol. 10, No.4, 345-380, (October 1993).

Grudin, J . (1994) Computer-Supported Cooperative Work: History and Focus,

Issues in platform-independent support for multimedia desktop 129

IEEE Computer, Vol. 27, No.5, 19-26, (May 1994).
Postel, J. (1981) Transmission Control Protocol, IETF RFC 793, 1981.
Steinmetz, R. and Nahrstedt, K. (1995) Multimedia: Computing, Communi­

cations fj Applications Prentice-Hall, 1995.
Stevens, W.R. (1994) TCP/IP fllustrated, Volume 1, Addison-Wesley, 1994.
Whetten, B., Montgomery, T. and Kaplan, S. (1994) A High Performance To­

tally Ordered Multicast Protocol, Theory and Practice in Distributed
Systems, Springer Verlag LCNS 938, 1994.

9 BIOGRAPHY

Ms. Okhee Kim is a computer scientist at the Information Technology Labora­
tory (ITL) ofthe National Institute of Standards and Technology (NIST). She
has been working at NIST since 1985, conducting research and development
activities on multimedia collaboration, EDI tool development, GOSIP test­
ing program, and the Transport performance measurement. She received her
Masters Degree in Computer Science from New York Institute of Technology
in New York, 1985.

Paul Kabore is a guest researcher at the ITL ofNIST since June 1996. Before
joining NIST, he was an assistant professor at the University Henri Poincare
of Nancy, France and a research assistant at the CRIN/INRIA laboratory
of Nancy. He received his M.S. in computer science from Institut Africain
d'Informatique of Libreville, Gabon in 1991 and a Ph.D in computer science
from the University Henri Poincare of Nancy, France in 1995.

Jean-Philippe Favreau is the Group Manager of the Multimedia and Digital
Video Technologies Group at the ITL of NIST. He is currently leading the
Secretariat for Federal ED!. Dr. Favreau has been working at NIST since
January 1985, managing projects and conducting research and development
activities on multimedia technologies. He received his Ph.D. in Computer
Science from the University of Bordeaux, France, in June 1986 and his Master
in Business Administration from the University of Maryland, College Park,
in December 1991.

Hussein Abdel-Wahab received the Ph.D in 1976 and the MS in 1973 both
from the University of Waterloo in Computer Communications and the BS in
Electrical Engineering from Cairo University in 1969. Currently he is a full
professor of computer science at Old Dominion University. In addition he is an
adjunct professor of computer science at the University of North Carolina at
Chapel Hill and a faculty at ITL of NIST. His current research interests are in
the areas of networked multimedia and collaborative systems with emphasis
on distance learning applications.

