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Clustering has become a common trend in very long instruction words (VLIW) architecture to solve the problem of area, energy
consumption, and design complexity. Register-file-connected clustered (RFCC) VLIW architecture uses the mechanism of global
register file to accomplish the inter-cluster data communications, thus eliminating the performance and energy consumption
penalty caused by explicit inter-cluster data move operations in traditional bus-connected clustered (BCC) VLIW architecture.
However, the limit number of access ports to the global register file has become an issue which must be well addressed; otherwise
the performance and energy consumption would be harmed. In this paper, we presented compiler optimization techniques for an
RFCC VLIW architecture called Lily, which is designed for encryption systems. These techniques aim at optimizing performance
and energy consumption for Lily architecture, through appropriatemanipulation of the code generation process tomaintain a better
management of the accesses to the global register file. All the techniques have been implemented and evaluated. The result shows
that our techniques can significantly reduce the penalty of performance and energy consumption due to access port limitation of
global register file.

1. Introduction

very long instruction words (VLIW) architecture [1] typically
has multiple functional units (FUs), which allows multiple
instructions to be executed in parallel. This feature offers a
significant opportunity to enhance the instruction level par-
allelism (ILP), also largely enhancing the processing ability,
which is very desirable in encryption application domain.
However, if centralized register file is used, when the number
of FUs in the VLIW architecture grows large, there will be a
strong pressure on the register file.

First, the number of needed registers becomes huge, when
the number of FUs grows large. Typically, large register file is
area consuming and will lead to more energy consumption.

Second, the number of accesses to the register file
becomes huge, when the number of FUs grows large, either
read or write. This will unavoidably lead to access conflicts
when there are no sufficient access ports to the register file.
Some of the FUsmight need to wait until others finish access-
ing the register file.This will lead to performance degradation

andmore energy consumption.Theproblem is thatwe cannot
solve it by simply increasing the number of access ports to
the register file because that will both increase the design
complexity of the register file, and lead to significant growth
in area and energy consumption of the register file.

So, clustering becomes a common trend in the design of
VLIW architecture due to its ability to alleviate power-, ther-
mal-, and complexity-related problems of unclustered VLIW
architecture.

In a clustered VLIW architecture, the FUs and register
files are divided into several smaller groups. Each group is
called a cluster. FUs can directly access data stored in registers
of its own cluster. However, inter-cluster data access needs
some specific mechanism.

Traditional clustered VLIW architectures use buses to
connect different clusters. In the bus-connected clustered
VLIW (BCC VLIW) architecture, when an inter-cluster data
communication occurs, an explicit datamoving instruction is
inserted in the original instruction queue. The data moving
instruction accesses data stored in the remote cluster and
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moves it to one of the registers in the local register file. The
execution of this additional data moving instruction needs
resources, consumes additional energy, and has nonzero
latency. The insertion of these additional data moving
instructions might lead to extension of total execution time,
which in turn might cause performance degradation, and an
increase of energy consumption.

Register-file connected clustered VLIW (RFCC VLIW)
architecture has been developed to overcome this perfor-
mance and energy consumption penalty related to BCC
VLIW architecture [2]. In RFCC VLIW architecture, local
register file of each cluster can only be accessed by the FUs in
that cluster, same mechanism as in BCC VLIW architecture.
Thedifference is that there is also a global register file inRFCC
VLIW, which can be accessed by all the FUs through the
access ports of its own cluster, either read or write. So, when
an inter-cluster data communication is needed, the FUwhich
generates the data writes it in the global register file, and the
FU needing that data reads the data from the global register
file.

Compared to the BCCVLIWarchitecture, the advantages
of RFCC VLIW architecture are (1) zero latency for inter-
cluster data communications; (2) noneed for additional inter-
cluster data moving instruction. Thus, using RFCC VLIW
architecture can avoid performance degradation and energy
penalty due to inter-cluster data moving instruction as in
BCC VLIW.

However, for the consideration of design complexity, area,
and energy efficiency of the global register file, the number of
access ports to the global register file from each cluster should
be limited. Thus, the accesses to the global register file must
be well managed; otherwise, there will be conflicts when the
number of simultaneously accesses to the global register file
exceeds the number of access ports.The conflicts lead to delay
of some accesses to the global register file, which means the
delay of execution of some instructions. This may lead to the
extension of the whole execution time, which means perfor-
mance degradation and more energy consumption.

So, we need to minimize the situation where access con-
flicts to the global register file happen for RFCCVLIW archi-
tecture, for the sake of performance enhancement and energy
consumption reduction.

The problem can be solved by (1) minimizing the number
of accesses to global register file or (2) balancing the distribu-
tion of the access to global register file among the whole exe-
cution time so as tominimize the situationwhere the number
of simultaneously accesses exceeds the port limitation. And,
in order tominimize the number of accesses to global register
file, we could (1) minimize unnecessary inter-cluster data
communications and (2) minimize unnecessary global reg-
ister allocation.

The main contributions of this work are (1) force-bal-
anced-two-phase (FBTP) instruction scheduling algorithm
to minimize unnecessary inter-cluster data communications
and balance the distribution of the access to global register file
among the whole execution time; (2) localization-enhanced
(LE) register allocation mechanism to minimize unnecessary
global register allocation.

The Lily architecture is of RFCC VLIW architecture. It
is designed for real-time video encryption system, which
demands high performance and low energy consumption at
the same time. We have implemented the presented tech-
niques in LilyCC compiler designed for Lily architecture.

This paper is organized as follows: Section 2 will discuss
the Lily architecture; in Section 3, we will give an introduc-
tion to LilyCC compiler; the FBTP instruction scheduling
algorithm is presented in Section 4; Section 5 describes LE
register allocation mechanism for RFCC VLIW architecture;
related works will be discussed in Section 6; we will discuss
the experimental framework and results in Section 7; and
finally we give conclusions in Section 8.

2. Architecture of Lily

The details of the Lily architecture can be found in [3], so we
only give a brief description here. The Lily architecture is a
scalable RFCC VLIW architecture. The scalability includes
the number of cluster, the number and type of FUs in each
cluster, the number and width of registers in the local register
file, the number and width of registers in the global register
file, the number of read and write access ports to the global
register file of each cluster, and the instruction set.

The Lily architecture is dedicated for fixed-point pro-
cessing, and does not support float-point processing. There
are three different types of FUs presented in current design,
which areUnitA,UnitM, andUnitD, respectively.UnitA can
execute arithmetic instructions, logical instructions, and shift
instructions. Unit M can execute multiplication instructions,
as well as some arithmetic and logical instructions. Unit D is
in charge of memory access and process controlling and can
execute some arithmetic and logical instructions.

The Lily architecture has a combined instruction set of
both 16-bit instructions and 32-bit instructions, to provide
better flexibility.They can be distinguished by the second and
third least significant bits of the instruction code. Designer
using Lily architecture can customize their own instruction
set by choosing instructions from the default instruction set.
Lily instruction set includes specific instructions for speeding
up the multimedia signal processing, instruction dedicated
for encryption operation, and SIMD instructions.

An example of Lily architecture is shown in Figure 1. It has
two clusters, and there are three FUs in each cluster, one of
each type. Each cluster has its own local register file, com-
posed of 24 registers of 32 bits.The global register file consists
of 8 registers of 32 bits. There are two read access ports and
one write access port to the global register file from each clus-
ter.

There are 4 bits in the instruction code of the 16-bit in-
struction dedicated to register access, so they can access only
16 registers. So, in this example, 16-bit instruction can access
only 4 of 8 global registers, and 12 of 24 local registers 32-bit
instruction has 5 bits for register access, so they can access all
the 8 global registers and the 24 local registers in this case.

3. LilyCC Compiler

LilyCC [3] is designed based on Open64 compiler.The archi-
tecture of LilyCC is illustrated in Figure 2. In LilyCC, we have
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Figure 1: An example of the Lily architecture.

implemented four different optimization levels, which areO0,
O1, O2, and O3, respectively.

LilyCC is composed of three parts. The front end takes
application programs written in C/C++/Fortran languages as
input, performs syntax and semantics checking and analysis,
and translates the application programs into intermediate
representation (IR) structures.Themiddle end contains opti-
mization phases like loop nest optimization, global optimiza-
tion, and so on.Theback end, or the code generator, translates
the IR structure into final assembly code and emits them.
Many target-dependent optimization phases, including con-
trol flowoptimization, extended block optimization, and soft-
ware pipelining, are performed in the back end.

LilyCC compiler is retargetable.The information of hard-
ware architecture is stored in themachine description files. To
retarget to a new architecture, the machine description files
must be implementedfirst.Themachine descriptionfiles con-
tain information of the instruction set architecture (ISA), the
application binary interface (ABI), and the processor model
of the target architecture.

The code generator of LilyCC can be divided into five
major phases: code expansion, global register allocation,
instruction scheduling, local register allocation, and code
emission.

LilyCC compiler supports automatic vectorization. A lot
of existing approaches in research perform automatic vector-
ization at a late stage of the compilation process, that is, in the
back end, because more information is available at the back
end, such as amore precise data flowof the input programand
the info about the underling target hardware. However, the
disadvantage is that the data parallelism in loops cannot be
effectively exploited by these techniques, so the code quality
can be less optimal.
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Figure 2: Structure of LilyCC compiler.
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The automatic vectorization technique used in LilyCC is
similar as the one used in [4], which is a high-level auto-
matic vectorization technique to generate vectorized code by
examining the loop code. It runs in the early stage of the
compilation process, just after the input source code program
has been transformed into the IR structure. As this approach
only needs simple knowledge of the target machine’s instruc-
tion set architecture, it is easily retargetable.

4. FBTP Instruction Scheduling Algorithm

In order to enhance performance and energy efficiency,
instruction scheduling process for RFCC VLIW architecture
has three tasks: (1) minimizing the number of inter-cluster
data communications; (2) balancing the distribution of inter-
cluster data communications tominimize the situationwhere
the number of concurrent inter-cluster data communications
exceeds the number of registers in the global register file or
the number of read or write ports to the global register file
from one cluster at a single clock cycle; (3) minimizing the
number of execution cycles.

In FBTP instruction scheduling algorithm, the three tasks
are achieved by the following.

(1) Dividing the instruction scheduling process into
two phases: Predecision phase and main scheduling
phase. The first phase outputs a preliminary cluster
assignment decision for all the instructions. The sec-
ond phase performs cycle scheduling according to
the cluster assignment decisions from the first phase.
Although the decisions of cycle scheduling and cluster
assignment are made in separate phases, the main
interactions between cluster assignment and cycle
scheduling are actually estimated and considered.

(2) Using gravitation force (GF) Array to describe the
data dependence relations between instructions, and
using repulsion force (RF) Array to describe the
resource availability. The two forces are balanced to
conduct the cycle scheduling and cluster assignment,
so as to minimize the number of inter-cluster data
communications and the number of execution cycles.

(3) Transforming the distribution of inter-cluster data
communications into data dependence relations
between instructions and resource availability, when
calculating GF array and RF array, in order to min-
imize the number of concurrent inter-cluster data
communications.

4.1. The Predecision Phase. The procedure of Predecision
phase is shown in Algorithm 1. The input of the Predecision
phase is the Data Dependence Graph (DDG). DDG can be
denoted as DDG = {𝑁, 𝐸}, where 𝑁 is the set of instructions
in DDG and 𝐸 is the set of edges in DDG. In Predecision
phase, all the instructions will be prescheduled to a Schedule-
Point (𝑝, 𝑞), where 𝑝 denotes the cluster, and 𝑞 denotes
the clock cycle. The cluster assignment decision for all the
instructions is the output of the Pre-Decision phase, while the
clock cycle pre-scheduled for each instruction is used only

in this phase for estimating and considering the interactions
between cluster assign and cycle schedule.

As soon as Possible (ASAP) scheduling and as late as
possible (ALAP) scheduling are performed to get the earliest
possible execution cycle 𝑇

𝑒
and the latest possible Execution

Cycle𝑇
𝑙
for each instruction in the ready list.Then an instruc-

tion is selected from the ready list according to predefined
rules.

Gravitation force (GF) values and repulsion force (RF)
values are calculated for that instruction at every possible
schedule point.Then theGF values andRF values are normal-
ized to calculate the Balance Force (BF) values.The algorithm
finds out the schedule point with the maximize BF value, and
schedules the instruction to it.

The process is repeated until all the instructions are suc-
cessfully pre-scheduled. The details of this algorithm will be
discussed in the following.

4.1.1. Calculation of GF Value. Gravitation force value
GF(𝑖, 𝑥, 𝑦) indicates the tightness of data dependence relation
between Instruction 𝑖 and Schedule-Point (𝑥, 𝑦). The calcula-
tion of GF values only applies to the possible schedule point
of Instruction 𝑖.

There are three factors that will influence the GF value.

(i) The number of data dependence relations from each
cluster. For the purpose of minimizing the number
of inter-cluster data communications, we would like
instructions having data dependence relations to be
placed in the same cluster. For example, when Instruc-
tion 𝑖 is to be prescheduled, if there are three data
dependence relations from Cluster A and only one
data dependence relation fromCluster B, then, assign-
ing Instruction 𝑖 to Cluster Awould be a better choice,
because we only have one inter-cluster data commu-
nications.

(ii) The span of the data dependence relations. If the
number of active inter-cluster data communications
exceeds the number of registers in the global register
file, then some instructions must delay their write
access to the global register file. So, if an inter-cluster
data communication is unavoidable, then we would
like it to be a short one. For example, if both Instruc-
tion 𝑗 from Cluster A and Instruction 𝑘 from Cluster B
have data dependence relations with Instruction 𝑖 and
Instruction 𝑗 is scheduled two clock cycles before
Instruction 𝑘, then when Instruction 𝑖 is to be pre-
scheduled, it is preferred to pre-schedule Instruction 𝑖

to Cluster A, because in that case, we will get a shorter
inter-cluster data communications.

(iii) The number of active inter-cluster data communica-
tions at Schedule-Point (𝑥, 𝑦) of instructions from the
neighborhood of Instruction 𝑖. the neighborhood of
Instruction 𝑖, 𝐵(𝑖) is defined as the set of instructions
that have data dependence relationswith Instruction 𝑖.
And an active inter-cluster data communication from
Instruction 𝑗means that (1) Instruction 𝑗 is not inClus-
ter 𝑥 (2) the inter-cluster data communication from
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Input:
Data Dependence Graph, 𝐺 = {𝑁, 𝐸};
Ready list, 𝑅 = 𝑁;

Output:
Preliminary cluster assignment decision for each instruction;

(1) while (𝑅 ̸= 𝜙) do
(2) Perform ASAP scheduling and ALAP scheduling
(3) Select Instruction i from 𝑅

(4) Find the neighborhood of Instruction i,
𝐵(𝑖) = {𝑗|𝑗 ̸= 𝑖, 𝑗 ∈ 𝑁, and edge < 𝑖, 𝑗 > 𝑜𝑟 < 𝑗, 𝑖 >∈ 𝐸}

(5) Calculate GF Array for Instruction i

𝛿 (𝑗, 𝑥) =

{
{
{
{

{
{
{
{

{

1, if 𝑗 is scheduled in cluster 𝑥
1

𝑁
𝑐
(𝑗)

, if 𝑗 is not scheduled

0, otherwise

𝜆(𝑗, 𝑥, 𝑦) =

{
{
{

{
{
{

{

𝑛, if 𝑗 has n active inter-cluster data communication at 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒-𝑃𝑜𝑖𝑛𝑡 (𝑥, 𝑦)
1

𝑁
𝑐
(𝑗)

, if 𝑗 is not scheduled

0, otherwise

𝑡(𝑗) = {

𝑘, if 𝑗 is scheduled in clock cycle 𝑘
𝑇
𝑒
(𝑗), if 𝑗 is not scheduled

𝑊(𝑖, 𝑗, 𝑥, 𝑦) =

󵄨
󵄨
󵄨
󵄨

𝑡(𝑗) − 𝑦

󵄨
󵄨
󵄨
󵄨

GF(𝑖, 𝑥, 𝑦) = ∑

𝑗

[𝛿(𝑗, 𝑥) − 𝜆(𝑗, 𝑥, 𝑦)]𝑊(𝑖, 𝑗, 𝑥, 𝑦),

𝑗 ∈ 𝐵(𝑖), 𝑇
𝑒
(𝑖) ≤ 𝑦 ≤ 𝑇

𝑙
(𝑖)

(6) Calculate RF Array for Instruction i
𝑀(𝑗) = [𝑇

𝑙
(𝑗) − 𝑇

𝑒
(𝑗) + 1]

𝛾(𝑗, 𝑥, 𝑦) =

{
{
{
{

{
{
{
{

{

1, if 𝑗 is scheduled in cluster 𝑥 cycle y
1

𝑀(𝑗)𝑁
𝑐
(𝑗)

, if 𝑗 is not scheduled

0, otherwise
RF(𝑖, 𝑥, 𝑦) = ∑

𝑗

𝛾(𝑗, 𝑥, 𝑦) + 𝛽(𝑥, 𝑦),

𝑗 ̸= 𝑖, 𝑗 ∈ 𝑁, 𝑇
𝑒
(𝑗) ≤ 𝑦 ≤ 𝑇

𝑙
(𝑗), 𝑇

𝑒
(𝑖) ≤ 𝑦 ≤ 𝑇

𝑙
(𝑖)

(7) Normalize GF Array and RF Array
(8) Calculate the BF Array for Instruction i

BF(𝑖, 𝑥, 𝑦) = GF(𝑖, 𝑥, 𝑦) − RF(𝑖, 𝑥, 𝑦)
(9) Pre-schedule Instruction i to Schedule-Point (𝑝, 𝑞) with the maximize value of BF Array
(10) Delete Instruction i from R.
(11) end while

Algorithm 1: Predecision phase.

Instruction 𝑗 goes toCluster 𝑥, and (3) the inter-cluster
data communication is not finished at Cycle 𝑦.

When calculating gravitation force, these three factors
must all be taken into consideration.

In Step 5 of Algorithm 1, 𝛿(𝑗, 𝑥) denotes the possibility
that Instruction 𝑗 from the neighborhood of Instruction 𝑖 is
in Cluster 𝑥. It is mainly used to estimate the influence of the
number of data dependence relations from each cluster on
GF value.𝑊(𝑖, 𝑗, 𝑥, 𝑦) denotes the weight of the edge between
Instruction 𝑖 and Instruction 𝑗, which is defined as the span of
that edge. It is used to estimate the influence of the second
factor on GF value. 𝑡(𝑗) is the execution time of Instruction 𝑗.
𝑁
𝑐
(𝑗) denotes the number of clusters that Instruction 𝑗 can be

scheduled in. 𝜆(𝑗, 𝑥, 𝑦) is the number of active inter-cluster
data communications from Instruction 𝑗, which is a member
of the neighborhood of Instruction 𝑖, to Cluster 𝑥 at Cycle 𝑦. It
is mainly used to estimate the influence of the third factor on
GF value.

4.1.2. Calculation of RF Value. Repulsion force value
RF(𝑖, 𝑥, 𝑦) represents the resource availability when Instruc-
tion 𝑖 is to be prescheduled to Schedule-Point (𝑥, 𝑦). There are
two factors that will influence the RF value.

(i) The available resources in each cluster. For the pur-
pose of minimizing the number of execution cycles,
we need to distribute instructions evenly in each
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cluster, which means we would like to pre-schedule
instructions to cluster which has more available
resources.

(ii) The existed inter-cluster data communications in each
cluster. As we know, for the purpose of balance the
distribution of inter-cluster data communications, it
is beneficial to pre-schedule instructions to cluster
which has smaller number of existed inter-cluster data
communications.

In step 6 of Algorithm 1, 𝑀(𝑗) is the mobility of Instruc-
tion 𝑗, which indicates the possibility of Instruction 𝑖 to move
between different cycles. 𝛾(𝑗, 𝑥, 𝑦) denotes the possibility that
Instruction 𝑗 is in Schedule-Point (𝑥, 𝑦). ∑

𝑗
𝛾(𝑗, 𝑥, 𝑦) repre-

sents current resource occupation at Schedule-Point (𝑥, 𝑦).
It is used to calculate the influence of the first factor on RF
value.𝛽(𝑥, 𝑦) is the number of existed active inter-cluster data
communications from other clusters to Cluster 𝑥 at Cycle 𝑦.
It is used to calculate the influence of the second factor on RF
value.

4.1.3. Calculation of BF Value. As discussed before, instruc-
tion scheduling process for RFCC VLIW architecture has
three tasks: (1) minimizing the number of inter-cluster data
communications; (2) balancing the distribution of inter-
cluster data communications tominimize the situationwhere
the number of concurrent inter-cluster data communications
exceeds the number of registers in the global register file or
the number of read or write ports to the global register file
from one cluster at a single clock cycle; (3) minimizing the
number of execution cycle.

In order to fulfill the first task, the instruction should be
prescheduled to the schedule point that has the largest GF
value. For the third task, the instruction should be presched-
uled to the schedule point with the least RF value. And for
the second task, we would like to schedule instruction to the
schedule point with the largest GF value and the least RF
value. So, we should take into account bothGF andRF values.

Thus, we have introduced balance force (BF) to compre-
hensively consider the influence of both GF values and RF
values. In order to calculate BF values, both GF values and RF
values of all the possible schedule points must be normalized
first. Then the BF values is calculated as indicated in step 8 of
Algorithm 1.

4.2. Main Scheduling Phase. After the Predecision phase, the
preliminary decision of cluster assignment of all the instruc-
tions is delivered to the second phase. The main scheduling
phase is a modified version of the list-scheduling algo-
rithm [5]. The commonly used heuristics—scheduling those
instructions on the critical path first—is used to guide the
selection order of instructions from the ready list. Here,
instruction with mobility of zero is defined as on the critical
path.

As the set of instructions withmobility of 0 would change
dynamically during the schedule process, thus in order to
greedily ensure that instructions with mobility of 0 always be
selected first, after scheduling of each instruction, the algo-
rithm must update the earliest possible execution cycle and

the latest possible execution cycle for all the unprocessed
instructions. This could guarantee that the stretching of
critical paths is minimal and subject to the finite resource
constraints of target machine.

4.3. Complexity of the FBTP Algorithm. In FBTP algorithm,
let 𝑛 be the number of instructions. For each instruction, it
will take at most 𝑂(𝑛) effort to calculate the GF value and at
most𝑂(𝑛) effort to calculate the RF value.Thus, it will take at
most𝑂(2𝑛

2

) effort to finish the Predecision stage. In themain
scheduling, it will take at most 𝑂(𝑛) effort to finish the cycle
scheduling procedure.

Thus the worst-case complexity of FBTP algorithm is
𝑂(𝑛

2

), whereas the worst-case complexity of list schedule is
𝑂(𝑛

2 log 𝑛).

5. Localization-Enhanced Register
Allocation Mechanism

The localization-enhanced (LE) register allocation mech-
anism for RFCC VLIW architecture is presented in
Algorithm 2. It is used as an enhancement engine for register
allocation in basic block (BB). The main purpose of this
mechanism is to guide the register allocation process so as to
avoid unnecessary allocation of global register. In this
mechanism, we guarantee that only two kinds of variables
have the privilege to be allocated to the global register: (1) the
variables active at the exit of a BB, to provide generality; (2)
the variables of which their def and uses have different
clusters.

Let 𝑛 be the number of instructions. Then the worst-case
complexity of LE mechanism is 𝑂(𝑛).

6. Related Work

Since the introduction of VLIW [1] in 1983, there have
been many researches reported. Payá-Vayá et al. [6] have
presented a forwarding-based approach to increase the code
compaction of VLIWmedia processors, so as to enhance the
performance and to reduce the number of needed read/write
ports to the register file. Wang and Chen [7] have introduced
an architecture-dependent register allocation and instruction
scheduling algorithm for VLIW architecture. Uchida et al. [8]
have present an energy-aware SA-based instruction schedul-
ing for fine-gained power-gated VLIW processors.

As clustering has become a common trend, there emerged
a lot of works concerning either the instruction scheduling or
the register allocation of clustered architectures.

Zalamea et al. [9] have presented an instruction schedul-
ing, algorithm for clustered VLIW architecture, which uses
limited backtracking to reconsider previously taken deci-
sions, thus providing the algorithm with additional possibil-
ities for obtaining high throughput schedules with low spill
code requirements. Codina et al. [10] have introduced amod-
ulo scheduling framework for clustered ILP processors that
integrates the cluster assignment, instruction scheduling, and
register allocation steps in a single phase. The proposed
framework includes a mechanism to insert spill code on
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Input:
The variable needs to be allocated, V;
Living range of that variable;

Output:
Register allocation of variables V;

(1) if V is active at the exit of BB, and global register 𝑔 is available at that time then
(2) Allocate V to 𝑔

(3) Update preferred register for related variables
(4) end if
(5) if V has preferred register 𝑝 𝑟 then
(6) if 𝑝 𝑟 is a global register then
(7) if 𝑝 𝑟 is available, and one of the uses has different cluster from the def of V then
(8) Allocate V to 𝑝 𝑟

(9) Update preferred register for related variables
(10) end if
(11) else
(12) if 𝑝 𝑟 is available, and all the uses has same cluster as the def of V then
(13) Allocate V to 𝑝 𝑟

(14) Update preferred register for related variables
(15) end if
(16) end if
(17) else
(18) if One of the uses has different cluster from the def of V then
(19) if Global register 𝑔 is available then
(20) Allocate V to 𝑔

(21) Update preferred register for related variables
(22) else
(23) Insert spill and restore instructions
(24) end if
(25) else
(26) if Local register 𝑙 is available then
(27) Allocate V to 𝑙

(28) Update preferred register for related variables
(29) else
(30) Insert spill and restore instructions
(31) end if
(32) end if
(33) end if

Algorithm 2: Localization-enhanced register allocation mechanism.

the fly and heuristics to evaluate the quality of partial sched-
ules considering simultaneously inter-cluster communica-
tions, memory pressure, and register pressure. Later, they
have exploited a concept of virtual cluster to assist the instruc-
tion scheduling for clustered architecture [11].

In 2001, Aleta et al. [12] have presented a graph-parti-
tioning-based instruction scheduling for clustered architec-
ture. In 2009, they [13] have presented another graph-based
approach, called AGAMOS, to modulo-schedule loops on
clustered architectures, which uses a multilevel graph parti-
tioning strategy to distribute the workload among clusters
and reduces the number of inter-cluster communications at
the same time. Arafath and Ajayan [14] have implemented an
integrated instruction partitioning and scheduling technique
for clustered VLIW architectures, which is a modified list
scheduling algorithm using the amount of clock cycles
followed by each instruction and the number of successors of
an instruction to prioritize the instructions. Zhang et al. [15]

presented a phase coupled priority-based heuristic schedul-
ing algorithm, which converts the instruction scheduling
problem into the problem of scheduling a set of instructions
with a common deadline.

Xu et al. [16] have presented their study on the design
of inter-cluster connection network in clustered DSP pro-
cessors. The approach starts with determining the minimum
number of buses required in polynomial time for any given
schedules and then further determines an underlying inter-
cluster connection scheme with the number of buses deter-
mined in the previous step. They have also given a computa-
tion and communication coscheduling algorithm to generate
schedules which lead to fewer minimum buses required for
the inter-cluster connection network. Nagpal and Srikant
[17] have presented their instruction scheduling algorithm
which exploits the limited snooping capability of snooping-
based clustered VLIW architectures to reduce the register file
energy consumption.
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Huang et al. [18] have introduced a worst-case-execution-
time-aware re-scheduling register allocation (WRRA) ap-
proach, which is used to achieve worst-case-execution-time
(WCET) minimization for real-time embedded systems with
clustered VLIW architecture. In this approach, the effects
of register allocation, instruction scheduling, and cluster
assignment on the quality of generated code are all taken
into account for WCET minimization. Yang et al. [19] have
presented a triple-step data-dependence-graph-based (TDB)
scheme for clustered VLIW architecture, which performed a
backtracking optimization after instruction schedule to bring
further improvement.

However, these researches are all focused on BCC VLIW
architecture. The efforts focusing on the optimization for
RFCC VLIW architecture are not much.

Zhou et al. [20] have presented a two-dimension force-
directed (TDFD) scheduling algorithm for RFCC VLIW
architecture. It is used as the default instruction scheduling
algorithm in LilyCC compiler. However, TDFD simply con-
sidered the balancing of influences of data dependence rela-
tions and available resources on instruction scheduling, but
has not actually taken into account the influence of limitation
on access ports to the global register file on the instruction
scheduling.

7. Results and Discussions

7.1. Experimental Framework. To evaluate the effectiveness of
our algorithm, we used a suite of 20 applications from differ-
ent benchmark sets. The characteristics of these application
codes can be found in [21, 22]. The domain we focused on is
the multimedia processing, which depends heavily on the
capability to performDSP applications.We chose these appli-
cations for their qualified representative in the DSP scope.

All analyzed benchmarks were validated against precom-
piled binaries in the original benchmark suite.We have built a
simulator for Lily architecture, based onGem5 [23] simulator.
This simulator is used to run the compiled benchmarks and to
collect data.The energy model used in our simulator is based
on [24].We have conducted a series of RTL simulations, using
Cadence EDA tool chain to extract the parameters needed for
construction of the energy model.

The effectiveness of our proposed techniques are com-
pared with several state-of-the-art techniques, including
TDFD [20] (LilyCC’s default instruction scheduling algo-
rithm), AGAMOS [13], and TDB [19] algorithms.

7.2. Results and Discussions

7.2.1. Evaluation of the Influence of the Number of Global
Registers on Performance and Energy Consumption. In order
to evaluate the influence of the number of global registers,
we have defined three configurations. All the three configura-
tions have two clusters. Each cluster has one Unit A, one Unit
M, and oneUnit D. And there are 2 read ports and 1 write port
to the global register file for each cluster. The first configura-
tion has 4 global registers in the global register file, the second
one has 8 global registers, and the third one has 16 global
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Figure 3: Evaluation of performance with different scales of global
register file.

registers. Figure 3 shows the evaluation of performance when
the scale of global register file varies. The result shown in the
figure is the performance enhancement with respect to the
default LilyCC scheduler TDFD.

In all the situations, FBTP outperforms TDFD. The per-
formance enhancement for the first configuration is in gen-
eral less than the other two configurations.The reason is that,
in the first configuration, the number of global registers is too
small. So the chance that global register access conflicts hap-
pen is high, and there is not much space for optimization.

And it can also be noticed that the differences between the
performance enhancement for configuration 2 and for con-
figuration 3 are not much. Actually, if the number of global
registers is larger than themaximumnumber of possible con-
current inter-cluster data communications, there will be no
extra gain. The results of comparison of energy consumption
shown in Figure 4 also indicate this.

7.2.2. Evaluation of the Influence of the Number of Access
Ports to the Global Register File on Performance and Energy
Consumption. When evaluating the influence of the number
of access ports to the global register file on performance and
energy consumption, we choose 4 configurations. All the
configurations have 2 clusters. Each cluster is composed of
one Unit A, one Unit M, and one Unit D.There are 8 registers
in the global register file. The first configuration has 1 read
port and 1write port in each cluster.The second configuration
has 2 read ports and 1write port in each cluster.The third con-
figuration has 3 read ports and 2 write ports in each cluster.
The fourth configuration has 4 read ports and 2 write ports in
each cluster.

The comparison of performance enhancement with
respect to TDFD is shown in Figure 5. From the picture, we
can see that when the number of access ports to the global
register file grows, the performance enhancement improves.
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Figure 4: Evaluation of energy consumption with different scales of
global register file.
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Figure 5: Evaluation of performance with different configurations
of access ports.

However, the area, design complexity, and energy consump-
tion cost related to the access ports must also be taken into
consideration when designing the processor. The differences
of performance enhancement between configuration 3 and
4 are much smaller compared to the differences between
configuration 1 and 2. So, configuring each cluster of 2 read
ports and 1 write port might be a reasonable choice.

The energy consumption of FBTP compared with TDFD
is shown in Figure 6.

7.2.3. Evaluation of the Influence of the Number of Clusters on
Performance and Energy Consumption. Wediffer the number
of clusters, to verify the effectiveness of our technique. We
have chosen 4 configurations.

The first configuration has 2 clusters, and each cluster is
composed of one Unit A, one Unit M, and one Unit D. And
there are 8 registers in the global register file. Each cluster has
2 read and 1 write access ports to the global register file.
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Figure 6: Evaluation of energy consumption with different config-
urations of access ports.
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Figure 7: Evaluation of performancewith different numbers of clus-
ters.

The second configuration has 4 clusters, and each cluster
is composed of one Unit A, one Unit M, and one Unit D. And
there are 8 registers in the global register file. Each cluster has
2 read and 1 write access ports to the global register file.

The third configuration has 6 clusters, and each cluster is
composed of one Unit A, one Unit M, and one Unit D. And
there are 16 registers in the global register file. Each cluster
has 2 read and 1 write access ports to the global register file.

The fourth configuration has 8 clusters, and each cluster
is composed of one Unit A, one Unit M, and one Unit D. And
there are 16 registers in the global register file. Each cluster
has 2 read and 1 write access ports to the global register file.

The result shown in Figure 7 is the performance enhance-
ment compared to the default LilyCC scheduler TDFD.
The blue bar represents the performance enhancement of
AGAMOS compared to TDFD. The red bar represents the
performance enhancement of TDB compared to TDFD.
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Figure 8: Evaluation of energy consumptionwith different numbers
of clusters.

The green bar represents the performance enhancement of
FBTP compared to TDFD.

In all the situations, FBTP outperforms other schedulers.
Although AGAMOS and TDB are schedule algorithms opti-
mized for clustered architecture, they are not quite suit for
RFCC VLIW. TDFD is designed for RFCC VLIW; however,
it simply considered the balancing of influences of data
dependence relations and available resources on instruction
scheduling but has not actually taken into account the influ-
ence of limitation on access ports to the global register file on
the instruction scheduling. So, the effectiveness of TDFD on
RFCC VLIW is limited. It can be concluded from the figures
that the effectiveness of FBTP is not affected by the varying
of the number of clusters. The results of energy reduction
compared to TDFD are shown in Figure 8.

8. Conclusions

In this paper, we have presented an instruction scheduling
algorithm for RFCCVLIW architecture which is called FBTP
algorithm. FBTP tries to ease the penalty of performance
and energy consumption of RFCC VLIW architecture due to
limitation of access ports to the global register file.The goal is
achieved through (1) dividing the instruction scheduling into
two phases, to make decisions of cycle scheduling and cluster
assignment in separate phases, but considering the main
interactions between cluster assign and cycle scheduling in
the process; (2) using gravitation force (GF) value to describe
the data dependence relations between instructions, and
using repulsion force (RF) value to describe the resource
availability; (3) balancing those two forces to conduct the
cycle scheduling and cluster assignment, so as to minimize
the number of inter-cluster data communications and the
number of execution cycles; (4) transforming the distribution
of inter-cluster data communications into data dependence

relations between instructions and resource availability, when
calculating GF value and RF value, in order to minimize the
number and scale of concurrent inter-cluster data communi-
cations.

We have also presented an LE register allocation mech-
anism for RFCC VLIW architecture. The LE mechanism is
used as an enhancement engine for register allocation in BB,
to avoid unnecessary use of global registers, thus to ease the
pressure of global register file.

The result shows that our algorithms can largely enhance
the performance and reduce the energy consumption. The
influence of different types of configure parameters on the
effectiveness of the algorithms is evaluated.The performance
enhancement compared to default LilyCC scheduler TDFD
can up to 38.65%, while the energy consumption reduction
compared to default LilyCC scheduler TDFD can up to
26.43%.
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