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THE GEOMETRIC REALIZATION OF A SEMI-SIMPLICIAL COMPLEX 

(Received February 9, 1956) 

Corresponding to each (complete) semi-simplicial complex K,  a topological 
space I K 1 will be defined. This construction will be different from that used 
by Giever [4] and Hu [5] in that the degeneracy operations of K are used. This 
difference is important when dealing with product complexes. 

If K and K' are countable i t  is shown that I K X K' I is canonically homeo- 
morphic to I K / X I K' I . It follows that if K is a countable group complex 
then 1 I< 1 is a topological group. In particular I K(T, n)l is an abelian topologi- 
cal group. 

In  the last section it is shown that the space 1 K 1 has the correct singular 
homology and homotopy groups. 

The terminology for semi-simplicial complexes will follow John Moore [7]. 
I n  particular the face and degeneracy maps of K will be denoted by 8,:  K, + 

KnP1 and s,:K, -+ K,+1 respectively. 

1. The definition 

As standard n-simplex A, take the set of all (n + 2)-tuples (to , . . . , t,+~) 
satisfying 0 = to $ tl $ . . . 5 t,+l = 1. The face and degeneracy maps 

8%:An-1 -+ A n  

and si: A,+I -+ A, are defined by 

di(to , . . . , t,) = (to , . . . , ti , t i  , . . . , t,) 

Let K = Uito Ki  be a semi-simplicial complex. Giving K the discrete to- 
pology, form the topological sum 

I? = (KOX Ao) + (K1 X A1) + . . . + (K,, x 1,)+ . . . 

Thus I? is a disjoint union of open sets k ,  X A i  . An ecluivalence relation in R 
is generated by the relations 

for each k, E K, , 6,i1 E A,,i1 and for i = 0, 1, . . . , n .  The identification space 
I K 1 = a/(-)will be called the geometric realizatiolr of K. The equivalence 
class of (kn , 6,) will be denoted by 1 li,, , 6,, / . (The equivalence class I l ; ~ ,, 60 / 
may be abbreviated by I X.0 I .) 
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358 JOHN MILNOR 

THEOREM1. I K 1 is a CTY-complex hulling one n-cell corresponding to each 
non-degenerate n-simplex of K.  

For the definition of CTY-complex see Whitehead [8]. 
LEMMA1. Every simplex k, E K,  can be expressed in one and only one way as 

X., = sI, . . . S , ~ I Z , - ~  where k,-, is non-degenerate and 0 5 jl < . . . < j, < n. 
The indices j, which occur are precisely those j for which k, E S,K,,-~. 

The proof is not difficult. (See [3] 8.3). Similarly we have: 
LEMMA2. Every 6, E A, can be written in exactly one way as 6, = d,, . . . a,,6,-, 

where 6,!-, is an interior point (that is the coordinates t ,  of 6,-, satisfy to < tl < 
. . < t,-,+I) and 0 5 il < . . . < i, 5 n. 
By a non-degenerate point of I? 1~-ill be meant a point (k, , 6,,) with Ic,, non-

degenerate and 6, interior. 
LEMMA3. Each (k,, , 6,) e I? is equivalent to a unique non-degenerate point. 
Define the map X: l?  -+ I? as follows. Given k,, choose jl , . . . , j, , lz,-, as in 

Lemma 1 and set 

Define the discontinuous function p:l? + l? by choosing il . . . i, , 6,-, as in 
Lemma 2 and setting 

Sow the composition Xp:l? + a carries each point into an equivalent, riori- 
degenerate point. I t  can be verified that if x - x' then Xp(x) = Xp(xt); which 
proves Lemma 3. 

Take as n-cells of 1 K / the images of the non-degenerate slnlplexes of I?. By 
Lemma 3 the interiors of these cells partition I K 1 . Since the remaining con- 
ditions for a CW-complex are easily verified, this proves Theorem 1. 

LEMMA4. A semi-simplicial map f :  K --, Kt  induces a continuous map / K / --, 
l K t I .  

In fact the map I f 1 defined by / k, , 6, / -+ / f(k,), 6, 1 is clearly well defined 
and continuous. 

As an example of the geometric realization, let C be an ordered simplicial 
complex with space ( C / . (See [2] pp. 56 and 67). From C we car1 define a semi- 
simplicial complex K ,  where K, is the set of all (n + 1)-tuples (a0 , . . , an) 
of vertices of C which (1) all lie in a common simplex, and (2) satisfy a0 5 
a, . . . I- a,, . The operations d,  , s, are defined in the usual way. 

,\SSF;RTION. The space I C / is homeomorphic to the geometric realization 
I K j . In fact the point /(ao, . . . , a,); ( to ,  . . . , t,+l)l of / K / corresponds to 
the point of / C whose ath barycentric coordinate, a being a vertex of C, is 
the sum, over all i for which a, = a, of ttcl  - t, . The proof is easily given. 

2. Product complexes 

Let K X Kt be the cartesian product of two semi-simplicial complexes (that 
is (It' X K'), = K, X K;) .  The projection maps p:K X K' +K and p':K X 
Kt  i K' induce maps / p 1 and 1 pt I of the geometric realizations. A map 
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is defined by 7 = 1 p 1 X / p' 1 . 
THEOREM2. 7 is a one-one map of I K X K' I onto / K I X K' . If eithcr 

(a) K and K' are countable, or (b) one of the two CW-complexes I K , 1 K' I is 
locallg Jinite; then q is a homeomorphism. 

The restrictions (a) or (b) are necessary in order to prove that I K I X / K' 1 
is a CW-complex. (For the proof in case (b) see [8] p. 227 and for case (a) see 
[6] 2.1.) 

PROOF(Compare [2]p. 68). If xu is a poilit of 1 K X K' I with non-degenerate 
representative (k, X kk , 6,) we will first determine the non-degenerate repre- 
sentative of I p 1 (z") = 1 k, ,6 ,  1 . Since 6, is an interior point of A, , this repre- 
sentative has the form 

(kn-p , . . . sLpsn) where k,, = s,, . . . s,,k,-, 

(see proof of Lemma 3).  Similarly I p' l(x") is represented by 

where kh = sjq . . . sjlk',-, . The indices i, and ja must be distinct; for if i, = 

jB for some a ,  p then k, X 12: mould be ail element of sim(K,-1 X KL-I). 
However the point x" can be completely determined by its image. 

In fact given any pair (2, z') E 1 K I X I K' / define q(z, st ) E 1 K X K' 1 as 
fo l lo~~s .Let (k, , 6,) and (kf, , 6;) be the non-degenerate representatives: where 
6, = (to , . . . , to+l), 6: = (UO , ~ t , + ~ ) .  = wo < . . . < W,+I = 1 be , . . . Let 0 
the distinct numbers t, and uI  arranged in order. Set 6: = (wo, . . . , w,,,,). 
Then if p1 < . . . < p,-, are those integers p = 0, 1, . . . , n - 1 such that 
w,+, is not one of the t i ,  we have 6, = s,, . . . s,,,- ,6: . Similarly 6; = s,, . . . 
s,,,-, 6; where the sets ( p L Jand ( v, J are disjoint. Now define 

~ ( z ,x') = I . . . sGlka)X (svn-, . . . svl&),6: 1 .( s ~ ~ ~ - ~  

Clearly 

31 P 4 ( ~ ,2') = 1 Srn-a . . splka, 6: = i k a  , spI . . . S P , ~ - ~ ~ : L  

and 1 p' / q(z, 2') = x', which proves that qq is the identity map of I K X 
I K' 1 . On the other hand, taking x" as above we have 

To complete the proof it is only necessary to show that q is continuous. 
However it is easily verified that q is continous on each product cell of ( K ( X 
I K' I . Since we know that this product is a CTV-complex, this completes the 
proof 
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An important special case is the following. Let I denote the semi-simplicial 
complex consisting of a 1-simplex and its faces and degeneracies. 

COROLLIRY.A semi-simplicia1 homotopy h :K X I -+ K' induces an ordinary 
homotopy j K / X [0, 11 --t 1 K' / . 

In fact the interval [0, I] may be identified with I I I . The homotopy is 
now given by the composition 

3. Product operations 

Sow let K be a countable complex. Any semi-simplicial map p: K X K -+ K 
induces by Lemma 4 and Theorem 2 a continuous product 

If there is an element eo in KO such that s:eo is a two-sided identity in K, for 
each n, then it follows that I eo I is a two-sided identity in / K 1 ; so that 1 K 1 
is an H-space. If the product operation p is associative or commutative then 
it is easily verified that I p 1 75 is associative or commutative. Hence we have 
the following. 

THEOREM3. If K is a countable group complex (countable abeliatz, group com- 
plex), then 1 K / is a topological group (abelian topological group). 

Let K(a,  n) denote the Eilenberg 3IacLane semi-simplicial complex (see 
[I]). Since K(a, n) is an abelian group complex me have: 

COROLLARY.If a is a countable abelian group, then for n 2 0 the geometric 
realization / K(a,  n)l is an abelian topological group. 

I t  will be shown in the next section that 1 K(T, n ) /  actually is a space with 
one non-vanishing homotopy group. 

The above construction can also be applied to other algebraic operations. 
For example a pairing K X K' -+ K" between countable group complexes in- 
duces a pairing between their realizations. If K is a countable semi-simplicial 
complex of A-modules, where h is a discrete ring, then I K I is a topological 
A-module. 

4. The topology of I K / 
For any space X let S(X) be the total singular complex. For any semi-sim- 

plicial complex K a one-one semi-simplicial map i :K --t S(I K I) is defined by 

Let H,(K) denote homology with integer coefficients. 
LEJIJI-I 5 .  The inclusion K + S(I K I) induces an isomorphism H*(K) w 

H,(SI K 1 )  of homology groups. 
By the n-skeleton K'"' of K is meant the subcomplex consisting of all K, , i 5 

n and their degeneracies. Thus I K'"' I is just the n-skeleton of / K i considered 
as a CTY-complex. The sequence of subcomplexes 
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gives rise to a spectral sequence {E',,]; where Emis the graded group corre- 
sponding to H*(K) under the induced filtration; and 

E',, = H ~ + ~ ( K ' ~ 'mod K(~-") .  

I t  is easily verified that E',, = 0 for q Z 0, and that E',Ois the free abelian group 
generated by the non-degenerate p-simplexes of K. From the first assertion it 
follows that Eio= E;g = Hp(K). 

On the other hand the sequence 

S(l K'" I) c S(1 K"' I) c . . . 

gives rise to a spectral sequence (I?',,} where 8" is the graded group corre-
sponding to H*(S(I K I)). Since it is easily verified that the induced map E',, -
E',, is an isomorphism, it follolr-s that the rest of the spectral sequence is also 
mapped isomorphically; which completes the proof. 

n'ow suppose that K satisfies the I<an extension condition, so that al(K, Xo) 
can be defined. 

LEMMA6. If K is a Kan complex then the inclusion i induces an isomo~phism 
of m(K, 1i0) onto al(S(1 K I), i(Xo)) = al(l K 1 , I ko 1). 

Let K' he the Eilenherg subcomplex coilsisting of those simplices of K \\-hose 
vertices are all a t  ko . Then al(K, ko) can be considered as a group with one 
generator for each element of K: and one relation for each element of K: . 

The space I K' I is a CTIr-complex with one vertex. For such a space the 
group a1 is known to have one generator for each edge and one relation for 
each face. Comparing these tu-o descriptions it follo~vs easily that the homo- 
morphisnl al(K) = al(Kf)+ al(l K' 1) is an isomorphism. 

We may assume that K is connected. Then it is known (see [7] Chapter I, 
appendis C) that the iilclusion map K' --t K is a semi-simplicial homotopy 
equivalence. By the corollary to Theorem 2 this proves that the inclusion 
I K' I --t ' K 1 is a homotopy equivalence; which completes the proof of 
Lemma 6 .  

REMARK1. From Lemmas 5 and G it can be proved, using a relative Hure- 
wica theorem, that the honlomorphisms 

are isomorphisms for all n .  (The proof of the relative EIuren-icz theorem give11 in 
[9] $3 carries over to the semi-simplicial case 11-ithout essential change, making 
use of [7] Chapter I ,  appendices and C. This theorem is applied to the pair 
(S(1 I), K )  where K denotes the universal covering complex of K.)  

R E ~ ~ Y R I ;2 .  The space I K(a,  n)l has nttl homotopy group a, and other homo- 
topy groups trivial. This clearly follows from the preceding remark. Alterna- 
tively the proof given by Hu [5 ]  may be used without essential change. 

Sow let .T- he any topological space. There is a canonical map 
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defined by j(l k, , 6, 1 )  = k,(6,). 
THEOREM4. T h e  m a p  j: I S(X)I + X induces isomorphisms of the singular 

homology and homotopy groups. 
(This result is essentially due to Giever 141). 
The map j induces a semi-simplicial map j, :S(l S(X) I )  --t S(X).A map i in 

the opposite direction was defined at  the beginning of this section. The compo- 
sition j,i: S(X) + S(X) is the identity map. Together with Lemma 5 this im- 
plies that j induces isomorphisms of the singular homology groups of I S(X)I 
onto those of X. Together with Remark 1 it implies that j induces isomorphisms 
of the homotopy groups of I S(X) 1 onto those of X. This completes the proof. 
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