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Chapter 1
Introduction
This course explains models of randomness in systems. Speci�cally, we study detection, esti-mation, Markov chains, Poisson processes, and renewal processes. We choose these particulartopics because of their many applications in communications, signal processing, control, andmore general decision making under uncertainty.We assume that you have taken an undergraduate course in Probability and that you havea good understanding of Linear Algebra. To help you, we include one appendix on each ofthese topics. We also review them briey in the �rst lectures.For convenience of the students and of the instructor, each chapter corresponds approx-imately to one eighty-minute lecture. Together, the notes cover a one-semester course. Wedeliberately left some redundancy in the notes that corresponds to repetitions in lectures. Sim-ilarly, some details are left for students to �ll in. We believe that students bene�t by doingsome of the work instead of being presented with complete derivations.The di�culty that we always face when teaching this course is that it covers two sets oftopics usually not well represented in a single textbook. The �rst set of topics concerns mostlydetection and estimation, including Wiener and Kalman �lters. We deal with second-orderproperties of random variables and with linear systems. The main idea here is projectionin a space of square-integrable random variables. The tools are algebraic. These topics aretraditional in electrical engineering because of their many applications in communication theoryand signal processing.The second set of topics concerns Markov chains and renewal processes. Here the toolsare mostly probabilistic, such as properties of individual trajectories and coupling arguments.These topics are important in computer science and in operations research. For instance, theyare essential to queuing theory, stochastic scheduling, searching algorithms, learning models,and Markov decision theory.We regularly use two di�erent textbooks to cover the material because we have yet to �ndone that does a good job of presenting both. These notes are not meant to be complete, so werefer regularly to textbooks.In the rest of this introduction we outline some of the key ideas of the course.
1.1 Detection
The detection problem is to guess the value of some random variable X in a �nite set givensome observation Y whose distribution depends on X. For instance, Y is the output of somesensor and X is either 1 or 0 to represent the occurrence of a house �re or its non-occurrence,11



12 CHAPTER 1. INTRODUCTIONrespectively. As another example, X 2 f0; 1; 2; 3g is the symbol that a transmitter sends and Yis the signal that a receiver gets. As yet another example, X = 0 indicates that some machineis working correctly and X = 1 that it is somehow defective; Y is a set of measurements thatone performs on the output of the machine. In a medical setting, X = 1 could indicate thata given patient has a speci�c form of cancer and X = 0 that she does not; in that context, Ycould be the output of a cat scan or some biological measurement. As a more complex examplein speech recognition, X represents the sequence of syllables that someone pronounces and Yis the measurements made after processing the sound that a microphone captures.As these examples suggest, many practical situations correspond to detection problems.The mathematical formulation of such a problem speci�es the conditional distribution of Ygiven X. This conditional distribution is a model of the \observation channel." It speci�eshow the observation relates to the value X to be detected. There are two essentially di�erentformulations of the problem that di�er in what we assume known about X.In the Bayesian formulation , the prior distribution of X is known. That is, we know theprobability that X takes any speci�c value. Since we know also the conditional distributionof Y given X, we know the joint distribution of X and Y . Using this joint distribution, wecan calculate the conditional distribution of X given Y . From this conditional distribution,we can determine how to calculate the value of X̂ based on Y that minimizes some averagecost E(c(X; X̂)). For example, one may want to minimize the probability of guessing a wrongvalue, which corresponds to c(X; X̂) being equal to one when X 6= X̂ and to zero otherwise.In a communication application, this problem corresponds to minimizing the error rate of thereceiver.In the non-Bayesian formulation, we do not know the prior distribution of X. Such aformulation is motivated by many applications where that distribution is di�cult to guess orwhere the system must operate satisfactorily under a wide range of possible prior distributionsof X. For instance, what is the probability that your house will be on �re at noon nextTuesday? Clearly, if the design of your �re alarm relies on knowing that probability accurately,it is not likely to work satisfactorily. Similar considerations apply to medical tests and manyother situations. One standard formulation, when X 2 f0; 1g, is to minimize the probability ofguessing X = 0 when in fact X = 1 subject to an upper bound on the probability of guessingX = 1 when in fact X = 0. In the medical setting, the �rst error is a \false negative" and thesecond is a \false positive." As you expect, there is a tradeo� between the probabilities of thesetwo types of error. Thus, one may want to limit the rate of false positive to 5%, say, and thendesign the most sensitive test that minimizes the probability of false negative subject to thatconstraint. The acceptable probability of false positive depends on the context. For instance,when screening blood donations for HIV, one may accept a larger probability of false positivethan when testing people.
1.2 Estimation
The estimation problem is to guess the value of X, in some subset of the real line or of somehigher-dimensional space, given some observation Y whose distribution depends on X. Thisproblem is similar to the detection problem; the key di�erence being that here X takes valuesin a continuous set instead of a �nite one.As an example, X could be the amplitude of a signal that a transmitter sends and Y themeasured signal amplitude at a wireless receiver. In that situation, Y di�ers from X becauseof attenuation, noise, and various multi-path e�ects. As another example, X is the average



1.3. GAUSSIAN RANDOM VARIABLES 13power of the noise at a receiver and Y is a set of transmitted and corresponding received signalamplitudes. As a prediction example, X is the snow depth at the base of Sugar Bowl nextJanuary 15 and Y is the set of available information from weather reports to date.Such estimation problems occur in many �elds of application. For the most part we focus onBayesian formulations where the prior distribution ofX is known. We study static and dynamicformulations. In a static formulation, the joint distribution of X and Y is speci�ed and weestimate X based on Y . One issue is whether we can perform arbitrary calculations based onY to estimate X or whether we are restricted to linear operations. In many applications, oneconsiders the latter case and one derives the linear least squares estimator of X given Y . Therestriction to linear estimators is made because it greatly simpli�es the calculations. Moreover,the best linear estimator depends only on second-order statistics whereas the best nonlinearestimator generally depends on higher-order statistics that may be di�cult to obtain.In the dynamic formulation, both X and Y may change over time. For instance, say thatXn is the location at time n of some automobile. Yn is the output of a GPS sensor at timen. One wishes to estimate Xn given all the values of Ym for m � n. Here, the key idea isto derive a recursive estimator where the estimate at time n depends only on Yn and on theestimate at time n � 1. Thus, a recursive estimator updates the estimate based on the latestmeasurements instead of performing a new calculation every time based on all the accumulatedmeasurements. The Kalman Filter is such a recursive estimator for linear systems.
1.3 Gaussian Random Variables
Gaussian random variables play a special role in our discussion of detection and estimation.This special role has three principal causes. The �rst is that Gaussian random variables occurnaturally as sums of many small almost independent random variables. Thus, the thermal noisein a conductor tends to be Gaussian because it is the sum of contributions of many electronswhose motions are almost independent. Similarly, noise due to electromagnetic interferencetends to be Gaussian.A second cause for the importance of Gaussian random variables is that a linear combinationof independent Gaussian random variables is again Gaussian. This fact, obviously consistentwith the �rst cause, simpli�es greatly the analysis of linear systems with Gaussian noise. Wecall jointly Gaussian random variables that are linear combinations of independent Gaussianrandom variables.The third cause is that the joint distribution of jointly Gaussian random variables is com-pletely speci�ed by second order statistics. In particular, jointly Gaussian random variablesthat are uncorrelated are independent. This property reduces the analysis of Gaussian randomvariables to simple algebraic calculations.
1.4 Markov Chains and Renewal Processes
A Markov chain models the random evolution of some object in a discrete set X . For instance,one can approximate the number of telephone calls in progress in a given o�ce building by aMarkov chain. The de�ning property of a Markov chain is that its evolution starts afresh fromits value at any given time. Thus, in the telephone example, the evolution of the number oftelephone calls after 1:00 pm depends obviously on the number, say X0 of calls in progress atthat time. However, given X0, the values of that number of calls after 1:00 pm are independentof the values before 1:00 pm. (This statement is only approximately true, but the example



14 CHAPTER 1. INTRODUCTIONconveys the main idea.) As another example, imagine a ea that jumps on a chessboard andassume that the ea jumps randomly at each step, without remembering its previous jumps.The position of that ea at successive steps is a Markov chain.Designate by Xt 2 X the location of the object at time t. We call Xt the state of theMarkov chain at time t. The questions of interest concern the fraction of time that the statehas a particular value and the probability that the state has a given value at some time t. Arelated question is the average time it takes for the state to reach a given set of values. Forinstance, imagine that Xt represent the number of packets stored in a given Internet router,assuming that this can be modeled by a Markov chain. If the router transmits packets at aconstant rate, there is a direct relationship between Xt and the delay of the packets throughthe router. Similarly, knowing the fraction of time that the router is full tells us the likelihoodthat the router must drop incoming packets. Accordingly, �nding out the statistics of Xt is ofdirect relevance to estimating the performance of the router.Think of the process of replacing a speci�c light bulb whenever it burns out. Assume forsimplicity that the bulb is always on until it burns out and is replaced. The lifetimes of thesuccessive bulbs are independent and identically distributed. Designate by Nt the number ofbulbs that one has to use up to time t, for t � 0. Under these assumptions, Nt is a renewalprocess . We focus on two related questions. The �rst one is how long one can expect to waituntil the bulb burns out. To be more precise, choose a large time t and let �(t) be the randomtime one has to wait after time t until the bulb burns out. We explain that if the lifetimedistribution is not concentrated on multiples of some constant, then the distribution of �(t)converges as t increases. Interestingly, the mean value of �(t) converges to a value that is largerthan half the lifetime of a bulb. The second question concerns the expected number of bulbsone needs between time t and t+ L for t; L > 0. We explain that, under the same assumptionas before, this expected value converges to �L as t increases. Here, � is the reciprocal of theaverage lifetime of a bulb. Thus, � is the average replacement rate of the bulbs.



Chapter 2
Mathematical Preliminaries
To make sure we all have the necessary background we start by reviewing some concepts fromSet Theory, Real Numbers, Probability, and Linear Algebra.
2.1 Summary
Here are the main points reviewed in this chapter:
� Set, set operations, function
� Inverse image of a set; commutes with set operations
� Countable set; real numbers are not countable; a countable union of countable sets iscountable
� Convergence of sets
� Convergence of real numbers; of a nondecreasing upper-bounded sequence; of a Cauchysequence
� De�nition of random variable and counterexample
� Almost sure convergence of random variables does not imply that of expectations
� Using the Borel-Cantelli Lemma to prove a.s. convergence
� Projection property of conditional expectation
� Using elementary row operations to solve Ax = 0
� Basis and dimension of a linear subspace
� A Hermitian matrix can be diagonalized by a unitary matrix15



16 CHAPTER 2. MATHEMATICAL PRELIMINARIES2.2 Set Theory
You recall that a set is a well-de�ned collection of objects. That is, a set is de�ned if one candetermine whether any given object belongs to the set or not. Hence, the notions of element andsubset of a set. One then de�nes basic set operations such as union, intersection, complement,and di�erence. The next concept is that of function f de�ned from a set 
 into another setS: the function assigns an element f(!) of S to each element ! of 
. We designate such afunction by f : 
! S.If f : 
 ! S and B � S, then f�1(B) := f! 2 
 j f(!) 2 Bg is the inverse image of Bunder f(�). You can show that the inverse image commutes with set operations. For instance,f�1(\i2IBi) = \i2If�1(Bi) and f�1((A nB) [Dc) = (f�1(A) n f�1(B)) [ (f�1(D))c.A set 
 is countable if one can enumerate its elements as 
 = f!1; !2; : : :g. The rationalnumbers are countable, the real numbers are not. A countable union of countable sets iscountable.For n � 1, let An � 
 and let also A � 
. We write An # A if An+1 � An; 8n � 1 and if\1n=1An = A. We de�ne An " A similarly. More generally, we say that the sets An converge toA and we write An ! A if [1m=nAm # A and [nm=1 " A.
2.3 Real Numbers
Let S � <. We say that x 2 < is a lower bound of S if x � y for all y 2 S. If x 2 S is a lowerbound of S, we write x = minS and we say that x is the minimum of S. The completenessaxiom of real numbers states that if a set S of real number has a lower bound x, then it has agreatest lower bound y and we write y = inf S and we say that y is the in�mum or the greatestlower bound of S. We have the similar de�nitions for the maximum maxS and the supremumsupS or lowest upper bound. Thus, 0 = min[0; 1] = inf(0; 1] but (0; 1] does not have a minimumelement.Let x 2 < and xn 2 < for n � 1. We say that xn converges to x and we write xn ! x if forall � > 0 there is some n(�) such that jxn � xj � �;8n � n(�). We also write xn !1 if for allc 2 < these is some n(c) such that xn � c for all n � n(c).An important fact is that a nondecreasing sequence that is bounded from above mustconverge.The sequence fxn; n � 1g is Cauchy if supk;m�n jxk � xmj ! 0 as n!1. One has xn ! xwith x �nite if and only if the sequence is Cauchy. For a proof, see Lemma 21.1
2.4 Probability
We review in Appendix A the basic notions of Probability Theory. Here we highlight a fewideas.Let 
 = f1; 2; 3; 4g and assume that each element has probability 1/4. Consider the eventsA = f1; 2g; B = f1; 3g; C = f1; 4g. These events are pairwise independent but not mutuallyindependent. Indeed, P (A \ B) = P (A)P (B) and similarly for the other pairs of sets, butP (A \ B \ C) 6= P (A)P (B)P (C). Thus, P [A j B \ C] 6= P (A). The point of this example isthat one should not confuse the statements `A and B are independent' and `knowing that Boccurs does not tell us anything about how A occurs.'Consider a probability space f
;F ; Pg with 
 = [0; 1];F = f[0; 0:5]; (0:5; 1]; ;;
g; P ([0; 0:5]) =0:3: Let also X : 
 ! < be de�ned by X(!) = !. Then X is not a random variable



2.5. LINEAR ALGEBRA 17X�1([0; 0:2]) = [0; 0:2] =2 F . In particular, the probability that X � 0:2 is not de�ned. Whatis going on here is that X is not F-measurable: the probability space f
;F ; Pg is not `rich'enough to `measure' X.Let f
;F ; Pg be [0; 1] with the uniform probability. For n � 1, let Xn(!) = n1f! � 1=ng.Note that Xn(!)! 0 as n!1, for all ! 6= 0. Thus, P (Xn ! 0) = 1 and we write Xn a:s:��! 0and we say that Xn converges to 0 almost surely. Note however that E(Xn) = 19 E(0) = 0.See Lebesgue's theorem in Appendix A.Recall Borel-Cantelli and assume that E(X2n) � �=n2. Fix any � > 0 and note thatP1n=1 P (jXnj > �) � P1n=1E(X2n)=�2 < 1, so that P (jXnj > �; i.o.g = 0. This shows thatXn a:s��! 0.Recall also that E[XjY ] is some function g(Y ) with the property that E((X�g(Y ))h(Y )) =0 for all h(�). That is, X�E[XjY ] ? fh(Y ); h(�) is a function g. Thus, E[XjY ] is the projectionof X onto the subspace of function of Y . Also, the projection of a point onto an hyperplaneis the closest element of the hyperplane to that point. Thus, E[XjY ] is the function g(Y ) ofY that minimizes E((X � g(Y ))2). These facts are the projection property and the minimummean squares estimator property of conditional expectation.
2.5 Linear Algebra
Appendix B reviews the main ideas of Linear Algebra. Here are some points that we usefrequently.The elementary row operations (eros) consist of either adding to a row of a matrix a multipleof another row or of interchanging two rows. Consider then the homogeneous equations Ax = 0where A 2 <m�n and x 2 <n. By performing eros, we can bring the matrix A to a row echelonform where row k has the form [0; : : : ; 0; �; : : : ; �] and its �rst nonzero term, called its pivot,corresponds to column n(k) where n(k) is strictly increasing. The eros do not change thesolutions of Ax = 0. Moreover, if A has the row echelon form, then we can solve the equationsbottom up. Consider the last row L. Each term m > n(L) corresponds to an element of xthat we can set arbitrarily. The pivot then corresponds to an element of x uniquely determinedfrom the previously selected values. Continuing in this way, we �nd that the free variables of xare the non-pivot elements. This argument shows that if n > m, then there must be non-pivotelements and there are in�nitely many solutions to Ax = 0. See Problem 2.6 for an illustration.A basis of some linear subspace V is a collection of linearly independent vectors of that spacesuch that each element can be written as a linear combination of the basis vectors. Assume thatthere is a basis A = [a1j � � � jam]. Then any collection fv1; : : : ; vng � V with n > m must belinearly dependent. Indeed, vi = Awi for i = 1; : : : ; n. Hence, 0 =Pni=1 xivi =Pni=1 xiAwi =A(Pni=1 xiwi) is equivalent to 0 = Pni=1 xiwi, which is a system of m equations with n > mvariables, and we know from the previous discussion that it has in�nitely many solutions. Itfollows that all bases must have the same number of elements, which is called the dimensionof the subspace.The following result is important in the study of Gaussian random variables.
Theorem 2.1. Diagonalization of Hermitian MatrixLet H 2 Cn�n be a Hermitian matrix, i.e., such that H = H�.The eigenvalues �1; : : : ; �n of H are real (they are not necessarily distinct);H has n orthonormal eigenvectors fu1; : : : ; ung that form a basis for Cn. That is, u�iuj =1fi = jg.



18 CHAPTER 2. MATHEMATICAL PRELIMINARIESIf P = [u1j : : : jun], then P �HP = � = diag(�1; : : : ; �n)
and H = P�P � = nX

i=1 �iuiu�i :In particular, H maps a unit hypercube with sides ui into a box with orthogonal sides Puiand volume det(H). The matrix P is said to be unitary because P �P = I.The key idea of the proof of this theorem is as follows. The eigenvalues of H are the rootsof det(�I �H) = 0. This is an equation of degree n; it admits n roots, not necessarily distinct.Assume Hu1 = �1u1 and that jju1jj = 1. Then u�1Hu1 = (u�1Hu1)� = �1jju1jj2, so that �1 isreal. Also, the subspace V1 orthogonal to u1 is such that if v 2 V1, then Hv 2 V1. One canthen continue the construction with V1. For details, see Theorem B.6.
2.6 Solved Problems
Problem 2.1. Show that f�1(\i2IBi) = \i2If�1(Bi).Solution:

By de�nition, ! 2 f�1(\i2IBi) if and only if
f(!) 2 \i2IBi;i.e., if and only if f(!) 2 Bi;8i 2 I;i.e., if and only if ! 2 f�1(Bi);8i 2 I;i.e., if and only if ! 2 \i2If�1(Bi):Hence, f�1(\i2IBi) = \i2If�1(Bi):Problem 2.2. Exhibit a bounded set of real numbers that has a minimum but no maximum.Solution:For instance [0; 1).Problem 2.3. Prove that an upper-bounded set of real numbers has a supremum.Solution:This cannot be proved; it is an axiom, part of the de�nition of real numbers. For instance, thisproperty is not true for rational numbers: think of the successive decimal expansions of p2.By de�nition, the set or of real numbers is the smallest complete (i.e., containing the suprema)set that contains all the rational numbers.Problem 2.4. Show that an upper-bounded nondecreasing sequence must converge.



2.6. SOLVED PROBLEMS 19Solution:Let fxn; n � 1g be that sequence; it is bounded by b. Let x be the supremum of the sequence.The claim is that xn ! x. We show this by contradiction. If xn does not converge to x, thenthere is some � > 0 such that x� xn � � for all n � 1. This contradicts the fact that x is thesupremum since x� � is an upper bound that is smaller than x.Problem 2.5. Let fXn; n � 1g be i.i.d. random variables with mean zero and variance 1.Show that Yn = (X1 + � � �+Xn)=n2 converges almost surely to 0.Solution:Note that E(Y 2n ) = 1=n2, so that PnE(Y 2n ) < 1. We then conclude as in our discussion ofBorel-Cantelli.Problem 2.6. Use elementary row operations to solve� 3 2 11 2 2 �x = 0:
Solution:Replace row 2 (r2) by r1� 3� r2 to get� 3 2 10 �4 �5 �x = 0:
Choose x3 arbitrarily. The second equation then implies that �4x2 � 5x3 = 0, so that x2 =�(5=4)x3. The �rst equation then states that 3x1+2x2+x3 = 0, so that 3x1�(5=2)x3+x3 = 0,so that x1 = (3=2)x3. We conclude that

xT = [32 ;�54 ; 1]x3:
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Chapter 3
Gaussian Random Variables
3.1 SummaryHere are the key ideas:
� De�nition 1: W = N(0; 1) if fW = � � � (3.1).
� Fact 1: W = N(0; 1) i� gW (s) = � � � (3.2).
� Theorem 1: If fXn; n � 1g are i.i.d. with E(Xn) = 0 and E(X2n) = 1, then (X1 + � � � +Xn)=pn!D N(0; 1). (Related idea: Exercise 3.)
� De�nition 2: X = N(�; �2) if X = �+ �W where W = N(0; 1).
� Fact 2: X = N(�; �2) i� fX = � � � (3.3).
� Fact 3: X = N(�; �2) i� gX = � � � (3.4).
� De�nition 3: X Jointly Gaussian (JG) if aTX is Gaussian for all vector a.
� Fact 4: fX1; : : : ; Xng i.i.d. N(0; 1)) X is J.G.
� Fact 5: fX1; : : : ; Xng i.i.d. N(0; 1)) �+AX is J.G.

3.2 Why a special attention to Gaussian RVs?
� They are common (CLT, see later).
� They are a `worst case' (max. entropy given variance).
� They are easy (conditional densities, conditional expectation).
� Preserved by linear systems.
� Elegant solutions of LQG control, Kalman and Wiener Filters.
� Very useful as models of communication links.21



22 CHAPTER 3. GAUSSIAN RANDOM VARIABLES3.3 Standard Gaussian Random Variable
De�nition 3.1. N(0; 1)By de�nition, W = N(0; 1) if

fw(w) = 1p2� expf�w22 g; w 2 <: (3.1)
Exercise 1. Check that fW is a pdf.
Fact 3.1. MGF of N(0; 1)

gW (s) := E(esW ) = expfs22 g; s 2 C: (3.2)
Exercise 2. Check that formula.Observe that gW (�s) is the Laplace Transform of pW . The MGF characterizes the pdf. Itis useful to calculate moments (see below). The MGF of the sum of independent RVs is theproduct of their MGFs. (Convolution of densities becomes product of MGFs.)
3.4 A quick glance at CLT
Theorem 3.1. CLT Assume fXm;m � 1g are i.i.d. with E(Xm) = 0; var(Xm) = 1. Then

1pn nX
m=1Xm � N(0; 1):

Proof: (Rough sketch...)Note that
E(expfs( 1pn nX

m=1Xm)g) = E(expf 1pnsX1g)n
� [E(1 + spnX1 + s22nX21 )]n � expfs22 g:

The following exercise shows the stability of the Gaussian distribution. It is another lookat the CLT.
Exercise 3. Assume that X;Y are i.i.d., zero-mean, unit-variance. Assume also thatX + Yp2 =D X:
Show that X = N(0; 1).



3.5. GENERAL GAUSSIAN: N(�; �2) 23Solution:(1) Let g(s) = gX(s) = gY (s). Then
g(s) = g( sp2)2 = � � � g( sn)2n

� (g(0) + g0(0) sn + g00(0) s22n)2n= (1 + s22n)2n ! expfs22 g:We used the facts that g0(0) = 0 and g00(0) = 1.(2) Second solution. Let fX;Xn; n � 1g be i.i.d. Then,
X =D X1 +X2p2 =D X1+X2p2 + X3+X4p2p2=D 12fX1 + � � �+X4g=D 12n fX1 + � � �+X2ng ! N(0; 1):

3.5 General Gaussian: N(�; �2)

De�nition 3.2. By de�nition, Z = N(�; �2) if we can write Z = �+�W where W = N(0; 1).
Fact 3.2. X = N(�; �2) if and only if

fZ(z) = 1�fW (z � �� ) = 1�p2� expf�(z � �)22�2 g: (3.3)
Fact 3.3. X = N(�; �2) if and only if

gZ(s) = expfs�+ s2�22�2 g: (3.4)
Remember this basic representation result contained in the de�nition: one can write aN(�; �2) as a linear transformation of aN(0; 1). We will see the corresponding multi-dimensionalversion of this result later.

3.6 De�nition: Jointly Gaussian, jpdf, MGF.
The cute idea about JG RVs is that any linear combination is again G. As a consequence, theoutput of a linear system whose input is JG is again JG. This clean de�nition leads to cleanconsequences.



24 CHAPTER 3. GAUSSIAN RANDOM VARIABLESDe�nition 3.3. Jointly GaussianA collection fX1; : : : ; Xng of RVs are jointly Gaussian ifnX
m=1 amXm is a Gaussian RV

for any real numbers fam;m = 1; : : : ; ng.We can translate this de�nition in vector notation. Let X be the column vector withcomponents fX1; : : : ; Xng. We say that X is JG if aTX is Gaussian for all a 2 <n.Fact 3.4. Let X be independent N(01) RVs. They are JG.
Proof: Let Y = aTX. We show that Y is Gaussian by computing gY (s). We �nd

gY (s) = E(es(Pn
m=1 aiXi)) = �nm=1E(samXm)= �nm=1 expfs2a2m2 g = e 12 s2�2

where �2 =Pnm=1 a2m.According to (3.4), this shows that Y = N(0; �2).
Here is a very useful fact:Fact 3.5. Let X be a vector of n i.i.d. N(0; 1) RVs. Then

�+AX (3.5)
is a vector of JG RVs.
Proof: aT (�+AX) = aT�+ (Aa)TX is Gaussian for all a.

As we will see in Lecture 4, all JG random variables are of the form (3.5). Thus, nothingterribly mysterious. What is quite cute is that from a fairly abstract de�nition (De�nition 3.3)one can derive a very concrete representation (3.5). That result will be a key topic in Lecture4.
3.7 Solved Problems
Problem 3.1. Suppose X1; X2; : : : are i.i.d. random variables with �nite variance. If N is ar.v. taking values in a bounded subset of the nonnegative integers, is independent of fXig, showthat E NX

i=1 Xi! = E(N) � E(X1) ; (3.6)
Var NX

i=1 Xi! = E(N) �Var(X1) +Var(N) � (E(X1))2 :
Give an example where (3.6) fails when N is not independent of fXig.



3.7. SOLVED PROBLEMS 25Solution:
1. Say that K is a constant for which N < K. Then,

E NX
i=1 Xi! = E E " NX

i=1 Xi�����N
#!

= E E " KX
i=1 1fi � Ng�����N

#!

= E KX
i=1fi � NgE[XijN ]!

= E NX
i=1 E(Xi)!

= E(N)E(X1)
For a case where the above fails, let P (Xi = 1) = 1 � P (Xi = �1) = 1=2. De�ne N asfollows: N = 1 if X2 = �1, N = 2 if X2 = 1. Then E(N)E(X1) = 0, but

E NX
i=1 Xi! = E " NX

i=1 Xi�����X2 = �1# 12 + E " NX
i=1 Xi�����X2 = 1# 12

= E(X1)12 + E(X1 + 1)12 = 1=2 :
2. Applying part 1 for fXig and fX2i g, yields

Var NX
i=1 Xi! = E NX

i=1 Xi!2 � E NX
i=1 Xi!!2

= E NX
i=1 X2i !+ 2E0@ NX

i=1
NX
j>i XiXj

1A� (E(N)E(X1))2
Now,

E0@ NX
i=1

NX
j>i XiXj

1A = E0@ KX
i=1

KX
j>i 1fj � NgXiXj

1A
= E0@ KX

i=1
KX
j>i 1fj � NgE[XiXj jN ]1A

= (E(X1))2E KX
i=1(N � i)1fi � Ng!

= (E(X1))2E(N(N � 1))=2 :
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Var NX

i=1 Xi! = E(N)E(X21 ) + (E(X1))2E(N(N � 1))� (E(N)E(X1))2
= E(N)Var(X1) + (E(X1))2Var(N) :Problem 3.2. Let X be a r.v. taking values in a bounded subset of the nonnegative integers.Show that E(X) =P1i=0 P (X > i).Solution:Let K be a constant with X < K.

E(X) = E 1X
i=0 1fX > ig! = E KX

i=0fX > ig!
= KX

i=0 P (X > i) = 1X
i=0 P (X > i) :

Problem 3.3. Find two Gaussian random variables X and Y that are uncorrelated, i.e.,E(XY ) = E(X)E(Y ), but not independent.Solution:Let X =D N(0; 1) and Z independent of X such that P (Z = 1) = P (Z = �1) = 0:5. Also, letY = XZ. Note that Y =D N(0; 1). Indeed,P (Y � x) = P (Y � x; Z = 1) + P (Y � x; Z = �1) = P (X � x; Z = 1) + P (X � �x; Z = �1)= 0:5P (X � x) + 0:5P (X � �x) = P (X � x):Also, E(XY ) = E(X2Z) = E(X2)E(Z) = 0 = E(X)E(Y ), so that X and Y are uncorrelated.Finally, X and Y are not independent since P (jXj < 1; jY j > 1) = 0 6= P (jXj < 1)P (jY j > 1).Problem 3.4. Let X1; X2; X3 be (mutually) independent U [0; 1] r.v., i.e., uniformly distributedin the interval [0; 1]. Compute E[(X1 +X2)2jX2 +X3].Solution:We �rst note that,E[(X1 +X2)2jX2 +X3] = E(X21 ) + 2E(X1)E[X2jX2 +X3] + E[X22 jX2 +X3]:Next, we �nd the distribution of X2 given X2 + X3. Observe that (X2; X3) picks a pointuniformly from the unit square [0; 1]� [0; 1]. Therefore, given X2+X3 = c, the point (X2; X3)is chosen uniformly from the line segment f(u; c � u) : u 2 Rg \ [0; 1] � [0; 1]. Thus, themarginal distribution of each coordinate, and X2 in particular, is uniformly distributed on itsrange. Thus, given X2 + X3 = c � 1 then X2 = U [0; c]. In this case, E[X2jX2 + X3 = c] =E(U [0; c]) = c=2 and E[X22 jX2 +X3 = c] = E(U [0; c]2) = c2=3. Thus, on X2 +X3 � 1,
E[(X1 +X2)2jX2 +X3] = (X2 +X3)23 + X2 +X32 + 13 :On the other hand, on X2+X3 > 1, we have X2 = U [X2+X3� 1; 1]. But, E[U [X2+X3�1; 1]jX2+X3] = (X2+X3)=2 and E[U [X2+X3�1; 1]2jX2+X3] = (X2+X3+(X2+X3�1)2)=3.Thus, E[(X1 +X2)2jX2 +X3] = (X2 +X3)23 + X2 +X36 + 23 ;on X2 +X3 > 1.



3.7. SOLVED PROBLEMS 27Problem 3.5. Show that if X;Y; Z are mutually independent, then f(X;Y ) and g(Z) areindependent for any choice of real-valued functions f; g that make them random variables.Show that this may not be the case if X;Y; Z are only pairwise independent.Solution:Let A;B be Borel subsets of R. Then,
P (f(X;Y ) 2 A; g(Z) 2 B) = P ((X;Y ) 2 f�1(A); Z 2 g�1(B))= P ((X;Y ) 2 f�1(A))P (Z 2 g�1(B))= P (f(X;Y ) 2 A)P (g(Z) 2 B) ;where the last step from the �rst to the second line is justi�ed because (X;Y ) and Z areindependent. Thus, f(X;Y ); g(Z) are independent.To demonstrate that pairwise dependence is not su�cient, consider a r.v. U taking valuesin f1; 2; 3; 4g with equal probability. Let X be the indicator of the event fU = 1 or 2g, Y theindicator of fU = 1 or 3g, and Z of fU = 1 or 4g. It is easy to check that X;Y; Z are pairwiseindependent, but not mutually independent. E.g., if X = 1; Y = 1, then Z = 1. Hence, we seethat on the event XY = 1, Z = 1 must hold, so XY is not independent of Z.
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Chapter 4
Jointly Gaussian Random Variables
4.1 Summary
Here are the key ideas and results:
� De�nition 1: Notation for covariance matrix: (4.1)
� De�nition 2: N(�;K)
� Fact 3: If X = N(�;K), then gX = (4.2)
� Theorem 1: For JG, ?) independence

4.2 Simple Algebra
Recall the following ideas for random vectors:
De�nition 4.1. Covariance Matrix

KX;Y := cov(X;Y) := E((X� E(X))(Y � E(Y))T ) = E(XYT )� E(X)E(Y)T : (4.1)
For complex vectors, one replaces T by �.
You will note that the covariance matrix is the matrix of covariances. The matrix KY;Y issometimes denoted by KY. Some authors prefer � to K.

Fact 4.1. For any random vectors X;Y and matrices A;B; �; � one has
cov(�+AX; � +BY) = Acov(X;Y)BT :29



30 CHAPTER 4. JOINTLY GAUSSIAN RANDOM VARIABLES4.3 De�nition of Jointly GaussianRecall (see D3 in L3) that X are JG if aTX is Gaussian for all vector a. We introduce a bit ofnotation:
De�nition 4.2. We write X = N(�;K) to indicate that X is JG with mean � and covarianceK := E((X� �)(X� �)T ).Here is an immediate result.
Fact 4.2. Assume that X = N(�;K). Then

AX+ b = N(A�+ b; AKAT ):
4.4 MGF of JG Random Variables
Fact 4.3. Assume that X = N(�;K) is JG. Then

gX(�) := E(e�TX) = expf�T�+ 12�TK�g: (4.2)
Proof:Note that Y := �TX = N(�T�; �TK�) and gX(�) = gY (1).

The main point of the Joint MGF E(e�TX) is the following.
Theorem 4.1. The Joint MGF E(e�TX) determines uniquely the joint pdf fX(�).

The Joint MGF is the n-dimensional Laplace transform of the joint pdf. As in the onedimensional case, it has a unique inverse. That is, if two joint pdf have the same Joint MGF,they must be identical.
4.5 Uncorrelated JG are independent!The following result is very useful.
Theorem 4.2. JG RVs are independent i� they are uncorrelated The JG random variables Xare independent i� they are uncorrelated.
Proof:) Independent implies uncorrelated, for arbitrary RVs.



4.6. CONDITIONAL EXPECTATION: AN EXAMPLE 31( Assume X are JG and uncorrelated, so that K = diagf�21; : : : ; �2ng and
�T�+ 12�TK� = NX

m=1[sm�m + 12s2m�2m]:Then, by (4.2), gX(�) = �nm=1esm�m+ 12 s2m�2m = �nm=1gXm(sm);since Xm = N(�m; �2m) for m = 1; : : : ; n. This implies that gX(�) is the same as that ofindependent N(�i; �2i ) random variables. Indeed, if the random variables Xm were independentN(�m; �2m), then we would �nd thatgX(�) = E(e�TX) = E(ePm smXm) = �nm=1gXm(sm):By Theorem 4.1, this implies that the random variables X are independent.

Note that the MGF of JG X is completely speci�ed by � and K. Consequently, fX isalso completely speci�ed by � and K. Accordingly, it is not surprising that independence isdetermined by the covariance matrix �. Taking the inverse LT, the joint pdf is also determineduniquely by � and K; we discuss the explicit formulas in L5.
4.6 Conditional Expectation: An ExampleHere is a little example that illustrates the power of Theorem 4.2.Assume that (X;Y )T = N(0;K) with

K = � 3 11 1 � :We calculate E[XjY ] as follows. First we �nd a number � such thatX � �Y ? Y:That is, since the random variables are zero mean,0 = E((X � �Y )Y ) = E(XY )� �E(Y 2) = 1� �;where we found the numerical values by looking at K. We conclude that � = 1, so thatX � Y ? Y:Second, since X � Y and Y are JG (being linear combinations of the JG random variablesX and Y ), we conclude from Theorem 4.2 that X ��Y and Y are independent (since they areuncorrelated). Now,E[XjY ] = E[X � Y + Y jY ] = E[X � Y jY ] + E[Y jY ] = E(X � Y ) + Y = Y:In this derivation, the second identity comes from the following two properties of conditionalexpectation: P1: X;Y independent ) E[XjY ] = E(X);P2: E[Xg(Y )jY ] = E[XjY ]g(Y ):We will extend this example to the general vector case in L5.



32 CHAPTER 4. JOINTLY GAUSSIAN RANDOM VARIABLES4.7 Solved Problems
Problem 4.1. Let ~X = A ~W , and ~Y = B ~W , where W = N(~0; In�n), A 2 Rn�n; B 2Rn�n;detA 6= 0;detB 6= 0. What is the conditional pdf f ~Xj~Y (�j�), of ~X given ~Y ?Solution:Since B is nonsingular, we see that ~W = B�1~Y , so that ~X = AB�1~Y . Thus, given ~Y = ~y,the random variable ~X takes the value AB�1~y with probability one and its density is a Diracimpulse at that value.Problem 4.2. Suppose (X;Y1; Y2) is a zero-mean jointly Gaussian (JG) random vector, withcovariance matrix

K = 24 4 2 12 4 21 2 1
35 :

Find the conditional pdf fXjY1;Y2(�j�) of X given (Y1; Y2). Calculate E[XjY1; Y2].Solution:The complication here is that K~Y is singular. This means that the vector ~Y does not have adensity. In fact,
E(Y1 � 2Y2)2 = var(Y1)� 4cov(Y1; Y2) + 4var(Y2) = 4� 8 + 4 = 0;which shows that Y1 = 2Y2. Thus we should consider fXjY1 . Now,X � aY1 ? Y1if 0 = E((X � aY1)Y1) = cov(X;Y1) � avar(Y1) = 2 � a, i.e., if a = 2. In that case, X � 2Y1and Y1 are independent. But, X = X � 2Y1 + 2Y1, so that given Y1 = y1 the random variableX is N(2y1; �2) where�2 = var(X � 2Y1) = var(X)� 4cov(X;Y1) + 4var(Y1) = 4� 8 + 16 = 12:We conclude that

fXjY1;Y2 [xjy1; y2] = 1p2�12 expf� 124(x� 2y1)2g; if y1 = 2y2:
Also, this expression is meaningless if y1 6= 2y2.Along the way, we found that E[XjY1; Y2] = E[XjY1] = 2Y1 since X = (X�2Y1)+2Y1 andX � 2Y1 is zero-mean and independent of Y1.



Chapter 5
Representation of Jointly Gaussian
Random Variables
5.1 Summary
Here are the key ideas and results:
� Example in Section 5.2 of E[XjY ] for (X;Y ) JG.
� Theorem 1: If (X;Y) are N(0;K) with jKj 6= 0, then, fXjY[�jy] = N(Ay;�) where A;�are given by (23.2).
� Theorem 2: Under same assumptions, E[XjY] = � � � (5.2).
� Theorem 3: K is a covariance matrix i� it is positive semi-de�nite; thenK = R2 = Q�QTfor some orthogonal matrix Q and R = Q�1=2QT
� Theorem 4: If X = N(�;K) with jKj 6= 0, then fX = � � � (23.1)
� Fact 1: Sum of squares of two i.i.d. N(0; 1) is exponentially distributed.

5.2 Example - Continued
Recall our little example from the end of L4:Assume that (X;Y )T = N(0;K) with

K = � 3 11 1 � :We found that X�Y ? Y , so that X�Y and Y are independent. We used that to calculateE[XjY ] = E[X � Y + Y jY ] = Y .There is another useful consequence of the independence of X � Y and Y : Given thatY = y, we see that X = (X � Y ) + Y jY=y= N(y; �2)where �2 = var(X � Y ) = var(X) + var(Y )� 2cov(X;Y ) = 3 + 1� 2 = 2:33



34 CHAPTER 5. REPRESENTATION OF JOINTLY GAUSSIAN RANDOM VARIABLESThat is, fXjY [�jy] = N(y; 2):Here are a few key observations:
� The mean of X given Y = y depends on y (it is E[XjY = y] = y).
� However, the variance of X given Y = y does not depend on y! Again, this fact followsfrom the independence of X � Y and Y . The `noise' X � Y that is added to Y to get Xdoes not depend on Y .
� The variance of X given Y is smaller than the variance of X. (Here, it is 2 instead of 3.)
We generalize these observations in the next section.

5.3 Conditional Densities
Theorem 5.1. Conditional DensitiesAssume that (X;Y) are N(0;K) with jKj 6= 0. Then, given Y = y, X = N(Ay;�) where

A = KXYK�1Y and � = KX �KXYK�1Y KY X : (5.1)
Proof:First note that jKY j 6= 0. Second, observe that

Z := X�AY ? Y if KXY = AKY ; i.e., A = KXYK�1Y :
Then, X = AY + Z where Z and Y are independent. Also,

� := KZ = E(X�AY)(X�AY)T )= KX �AKY X �KXYAT +AKYAT= KX �KXYK�1Y KY X :

One interesting observation is that the variance � ofX given thatY = y does not depend onthe value of y. Another observation is the reduction of the variance KX due to the observation.We can also derive the following consequence.
Theorem 5.2. Conditional ExpectationUnder the same assumptions as Theorem 5.1,

E[XjY ] = KXYK�1Y Y: (5.2)
Exercise 4. Extend the results of Theorems 5.1 and 5.2 to nonzero-mean random variables.



5.4. COVARIANCE MATRICES 355.4 Covariance MatricesAssume that K is a covariance matrix. That means that K = E(XXT ) for some zero-meanrandom vector X. Here are some basic properties.
Theorem 5.3. Properties of Covariance MatrixAssume that K is a covariance matrix. That matrix must have the following properties.(1) K is positive semi-de�nite. That is, aTKa � 0 for all a 2 <n.(2) K is positive de�nite if and only if jKj 6= 0.(3) The eigenvalues of K are real and nonnegative. Let � = diag(�1; : : : ; �n) be the eigen-values of K repeated according to their multiplicity. Then jKj = �1�2 � � ��n. There is anorthonormal matrix Q such that KQ = Q�.(4) If K is positive de�nite, then K�1 = Q��1QT .(5) There is a unique positive semi-de�nite matrix R such that K = R2 and

R = Q�1=2QT :
(6) A positive semi-de�nite symmetric matrix K is a covariance matrix. It is the covariancematrix of RX where X = N(0; I).

Proof:(1) Assume K = E(XXT ) for some zero-mean random vector X. For a 2 <n one has
aTKa = E(Y 2) where Y = aTX:Hence aT�a � 0.(2)-(4) Since K is positive semi-de�nite, (2)-(4) follow from Theorem 6 in [?].(5) The issue is uniqueness. The matrix R is such that R = V �1=2V T where K = V �V T .Thus, V are the eigenvectors of K and �1=2 is �xed.(6) is immediate.

The above theorem tells us about the shape of fX, as stated in the next result, illustratedin Figure 5.1.
Theorem 5.4. Assume that X = N(0;K). If jKj = 0, the RVs X do not have a joint density.If jKj 6= 0, then fX(�) = 1(2�)n=2jKj1=2 expf�12�TK�1�g: (5.3)

Also, the level curves of fX are ellipses whose axes are the eigenvectors of K and dimensionsscaled by the square roots of the eigenvalues of K.
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Figure 5.1: The N(0;K) probability density function.
Proof:The expression for fX follows from the representation X = RY and the observation that if� = Ry, then y = R�1� and yTy = �TR�2� = �K�1�.The level curves are sets of � such that �TK�1� = yTy = c where � = Ry. Thus, y belongsto a circle with radius pc and � belongs to an ellipse whose axes are the eigenvectors ui of R.(See Section VIII in [?].)

5.5 Generating a N(0; 1)- Random Variable.In this section, we explain a cute result that can be used to generate Gaussian random variables.We start with some general ideas.
5.5.1 Generating Random VariablesFor well chosen values of �; �;N , the sequence Xn de�ned below looks like i.i.d. U [0; 1]:Yn+1 = (�Yn + �)mod(N); Xn+1 = Xn+1=N:Assume then that U =D U [0; 1]. We can generate a RV X with cdf FX(:) by computingX = F�1X (U):Indeed, P (X � x) = P (U � FX(x)) = FX(x), as desired. For instance,

X = � 1� ln(U)
generates a random variable with

P (X � x) = P (� 1� ln(U) � x)= P (ln(U) � ��x) = P (U � e��x) = 1� e��x:That is, X is exponentially distributed with rate � (i.e., with mean ��1).



5.5. GENERATING A N(0; 1)- RANDOM VARIABLE. 37
5.5.2 Generating Gaussian Random VariablesThe general method discussed in the previous section does not work well for generating aN(0; 1) RV X because FX does not have a close form and neither does its inverse. Of course,we could tabulate F�1X , but that is not very elegant. Instead, one uses the following fact.
Fact 5.1. Let X, Y be i.i.d. N(0; 1). Then Z = X2 + Y 2 is exponentially distributed withmean 2.By the way, one says that pZ = jj(X;Y )jj2 has a Raleigh distribution. Thus a Raleigh-distributed random variable is the square root of an exponentially-distributed random variable.This distribution is important in wireless system (Raleigh fading).
Proof:We calculate the MGF of Z as follows:

E(esZ) = 12� Z 10
Z 10 es(x2+y2)e�x2=2�y2=2dxdy

= 12� Z 10
Z 2�0 esr2�r2=2rdrd� = Z 10 re(s�1=2)r2dr

= 12s� 1 Z 10 de(s�1=2)r2 = 11� 2s:
On the other hand, if V is exponentially distributed with mean 2, then

E(sV ) = Z 10 esv 12e�v=2dv= 12(s� 1=2) Z 10 de(s�1=2)v = 11� 2s:
Comparing these expressions shows that Z = X2 + Y 2 =D V .
One method to generate the random variables X and Y is then to generate Z as an expo-nentially distributed random variable, then to calculate

X = pZ cos(�) and Y = pZ sin(�)
where � is U [0; 2�] and is independent of Z. This procedure yields two i.i.d. N(0; 1) randomvariables X and Y .
Exercise 5. Assume that X1 and X2 are two i.i.d. random variables and that their jointdistribution is invariant under rotation. Show that the random variables are Gaussian.

Once we can generate i.i.d. N(0; 1) random variables, we know how to generate anyN(�;K)random vector.



38 CHAPTER 5. REPRESENTATION OF JOINTLY GAUSSIAN RANDOM VARIABLES5.6 Solved Problems
Problem 5.1. Suppose ~Y is zero-mean JG with covariance matrix

K = 24 2 1 01 2 �30 �3 6
35 :

Find a matrix A such that ~Y = A~Z where ~Z = N(0; I).Solution:Here again, the complication is that K is singular so that the vector ~Y does not have a density.This implies that ~Y is a linear combination of fewer than 3 independent Gaussian randomvariables. To �nd the appropriate linear combination, we use the fact that K is Hermitian.Consequently, by Theorem 2.1, we can write K = P�P T where P TP = I. Thus, K = AATwhere A = P�1=2. We can then write ~Y = A~Z where ~Z = N(0; I). We leave you the calculationof P and A.



Chapter 6
Detection
6.1 Summary
Here are the key ideas and results:
� Formulation of the detection problem in Section 6.2.
� Maximum Aposteriori Probability detector (MAP), in Section 6.3.
� Maximum Likelihood detector (ML), in Section 6.3.
� Examples: two basic models of binary detection.

6.2 Detection
The detection problem can be formulated as follows. (X;Y ) are random variables where Xtakes values in a �nite set f1; 2; : : : ; Ng. One observes Y and one wants to guess the value ofX. This estimate is a function of the observations, and we denote it by g(Y ). The \goodness"of each estimate is speci�ed by a cost function c(x; z) that associates a cost in guessing z whenthe true value is x.The detection problem is the following: choose a function g(�) such that it minimizes

E(c(X; g(Y ))) : (6.1)
One interpretation of this problem is the following. Consider the case where one has todetect a sequence of i.i.d. values X1; X2; : : :. Say that for each Xi, one observes Yi. If thedecision rule g(�) is used, then this will incur an average cost of

limn!1 1n nX
i=1 c(Xi; g(Yi)) :

By the law of large numbers, this is the same as (6.1).The key in minimizing (6.1) is to minimize E[c(X; z)jY = y] over z, for each value y of theobservation Y . If z0 is the optimum, then if we de�ne g0(�) by g0(y) = z0, then g0(�) mini-mizes (6.1), as well, for if h(�) is any other function, then E(c(X;h(Y ))) = E(E[c(X;h(Y ))jY ]) �E(E[c(X; g0(Y ))jY ]) = E(c(X; g0(Y ))). 39



40 CHAPTER 6. DETECTIONNow,
E[c(X; z)jY = y] =Xi c(i; z)P [X = ijY = y]

=Xi c(i; z)fY jX(yji)P (X = i)fY (y) :
Thus, to minimize (6.1) one can equivalently solve

minz X
i c(i; z)P (X = i)fY jX(yji) ; (6.2)

in the case Y is a continuous r.v., and
minz X

i c(i; z)P (X = i)P [Y = yjX = i] ; (6.3)
when Y is discrete.
6.3 Minimizing the probability of wrong detection
Assume X; g(Y ) 2 f1; : : : ; Ng. A common cost function for this case is c(x; z) = 1fx 6= zg.It corresponds to minimizing P (X 6= g(Y )), the probability of wrong detection. By (6.3), wesolve,

argminz X
i (1� 1fi 6= zg)P (X = i)P [Y = yjX = i] = argmaxz P (X = z)P [Y = yjX = z]

= argmaxz P [X = zjY = y] : (6.4)
The last expression is the posterior distribution of X, by incorporating the information in-cluded in the observation y. For this reason, we call this rule the Maximum Aposteriori Prob-ability (MAP) detector. The optimum z as a function of the observation y, is denoted byMAP[XjY = y]. Notice that in general, it depends on the knowledge (or a stipulation) of theprior distribution of X.In some cases, the postulation of a prior may be quite arbitrary. Indeed, one assumes heknows the distribution of what he intends to estimate. Because of this, a distribution free rulemight be desirable. One way to do this, is simply by agreeing on the use of a certain prior.When this is the uniform prior, P (X = i) = 1=N for all i = 1; : : : ; N , one then must solve

maxz P [Y = yjX = z] :
Intuitively, this rule spits back the value z of X under which the observation is most likely.The resulting rule is called the Maximum Likelihood (ML) detector, and the estimate of X itprovides, the ML estimate (MLE) denoted by MLE[XjY = y].
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Figure 6.1: When X = 0, with probability � the wrong output Y will be produced. Similarly,with probability � the input X = 1 is wrongly produced at the output.
6.4 Binary detection models
Consider the case of the binary channel depicted in Figure 1.Since P [Y = 0jX = 0] = 1 � �; P [Y = 0jX = 1], the MLE given Y = 0 is 1, if � > 1 � �,and 0 otherwise.To compute the MAP, one needs to further decide on a prior. Let pi := P (X = i); i = 0; 1.Using the �rst line in (6.4), given Y = 0, the MAP estimate is 1, if p1� > p0(1 � �), and 0otherwise.Notice that MAP[XjY = 0] = MLE[XjY = 0], when p0 = p1, as explained in the previoussection. When p0 > p1, MAP favors 0 more than ML does.Now, let us consider a model with continuous observations Y . In particular, when X = 0,

fY jX(yj0) = 1p2��e� y22�2 ;
while when X = 1, fY jX(yj1) = 1p2��e� (y��)22�2 ;
for some �; � > 0.MLE[XjY = y] = 1 or 0, depending on whether the so-called likelihood-ratio fY jX(yj1)=fY jX(yj0) >1 or < 1. This happens if y > �=2 or < �=2, respectively.For computing MAP [XjY = y], we have,

P [X = 1jY = y] = fY jX(yj1)p1fY (y) and P [X = 0jY = y] = fY jX(yj0)p0fY (y) :
Therefore, we should compare the likelihood-ratio fY jX(yj1)=fY jX(yj0) with p0=p1 instead of 1which we used in MLE. Plugging the expressions for fY jX(�j�) above, we get that MAP[X|Y=y]chooses 1 if y > �2� log p0p1 + �2 ;
and 0 otherwise.



42 CHAPTER 6. DETECTION6.5 Solved Problems
Solution:Given some observation ~y = (y1; : : : ; yn) 2 f0; 1gn, the likelihood ratio �(~y) is

�(~y) = P [~Y = ~yjX = 1]P [~Y = ~yjX = 0] = pPn
i=1 yi1 (1� p1)n�Pn

i=1 yipPn
i=1 yi0 (1� p0)n�Pn

i=1 yi : (6.5)
The Neyman-Pearson test is to choose Z = 1 with probability �(~y) given by

�(~y) =
8><>:
1; if �(~y) > �;; if �(~y) = �0; otherwise,

for �;  given by P [Z = 1jX = 0] = � , P [�(~Y ) > �jX = 0] + P [�(~Y ) = �jX = 0] = �.From (6.5) we see that Pni=1 Yi is a su�cient statistic.Problem 6.1. Repeat Problem 1 for the following situation. When X = 0, Y1; : : : ; Yn are i.i.d.U [0; 2] r.v's. When X = 1, they are U [0; 3].What was the su�cient statistic? Explain.Solution:Let 3 � yi � 0 for all i = 1; : : : ; n. Then,
�(~y) = f~Y jX(~yj1)f~Y jX(~yj0) = 3�n2�n1fmaxi yi � 2g =

((2=3)n ; if maxi yi � 21 ; otherwise : (6.6)
Set � = (2=3)n, and  = �. Then,

P [Z = 1jX = 0] = P [�(~Y ) > �jX = 0] + P [�(~Y ) = �jX = 0] = 0 + 1 = � :
From (6.6) we see that maxi Yi is a su�cient statistic.Problem 6.2. Repeat Problem 2 for the case where Yi = N(1; 1) when X = 0, and Yi = N(0; 4)when X = 1.What was the su�cient statistic? Explain.Solution:

�(~y) = f~Y jX(~yj1)f~Y jX(~yj0) = 12n nY
i=1 exp((3y2i � 8yi + 4)=8) : (6.7)

Since �(~y) is a continuous r.v.,  is not needed, and � is (uniquely) determined by P [�(Y ) >�jX = 0] = �.From (6.7) we see that Pi(3Y 2i � 8Yi) is a su�cient statistic.Problem 6.3. Let U; V be two independent U [0; 1] r.v's.
1. Compute X = L[cos(U)jU + V ], the linear least squares error estimator of cos(U) givenU + V .
2. Compute Y = E[cos(U)jU + V ]



6.5. SOLVED PROBLEMS 433. Compare E((X � U2)2) and E((Y � U2)2).Solution:
1.

L[cos(U)jU + V ] = Cov(cos(U); U + V )Var(U + V ) (U + V )
+ E(cos(U))� Cov(cos(U); U + V )Var(U + V ) E(U + V )

Now, Cov(cos(U); U + V ) = Cov(cos(U); U) + Cov(cos(U); V )= E(U cos(U))� E(U)E(cos(U)) ;by independence of U; V . But,
E(U cos(U)) = Z 10 u cos(u)du = sin(1)� Z 10 sin(u)du= sin(1) + cos(1)� 1 ;so Cov(cos(U); U + V ) = cos(1) + 0:5 sin(1)� 1. Also, Var(U + V ) = Var(U) +Var(V ) =1=6, and E(cos(U)) = Z 10 cos(u)du = sin(1) :

2. Notice that (U; V ) is uniformly distributed on the unit square. On U + V = s, (U; V ) =(U; s�U) is uniformly distributed, so U is U [0; s] if s < 1, and U [s�1; 1] if s � 1. Hence,if s � 1, E[cos(U)jU + V ] = Z 1
s�1 cos(u)2� s du = sin(1)� sin(s� 1)2� s ;

and E[cos(U)jU + V ] = Z s0 cos(u)s du = sin ss ;
if s < 1.3. From theorem proved in class, we expect E((X � cos(U))2) � E((Y � cos(U))2).
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Chapter 7
Binary Detection under AWGN
7.1 SummaryHere are the key ideas and results:
� Section 7.3: binary detection with vector observations under AWGN. The ideas fromChapter 6 carry over to the case of vector observations.
� De�nition: Su�cient statistic, in Section 7.3.1.
� BER calculations and system design, in Section 7.4.

7.2 Example: system design under power constraintsLet us consider the basic (scalar observation) model of binary detection in Chapter 6, underGaussian noise: Y = �X +W ;where X 2 f0; 1g is the r.v. we want to guess, W is noise N(0; �2), and Y is the observation.Assume X has the distribution P (X = 0) = p0, P (X = 1) = p1.In Chapter 6 we saw that X̂ := MAP[XjY = y] = 1 or 0 depending on whether Y > � or< �, respectively, where � := �2 + �2� log p0p1 :Then, P (X 6= X̂) = P [X 6= X̂jX = 0]p0 + P [X 6= X̂jX = 1]p1= P (N(0; �2) � �)p0 + P (N(�; �2) � �)p1= P �N(0; 1) � ��� p0 + P �N(0; 1) � � � �� � p1 :
When p0 = p1 we have the further simpli�cation

P (X 6= X̂) = P �N(0; 1) � �2�� : (7.1)
Now, if we wanted to design our communication system such that the bit-error-rate (BER)is less than, say 10�10, then we could use (7.1), to calculate the average energy per bit required45



46 CHAPTER 7. BINARY DETECTION UNDER AWGNto achieve this. (Note that P (N(0; 1) � 6) � 10�10.) For example, if the amplitude of thesignal at the sender is A, and G the channel gain, then � = AG. Since no signal is sent whenX = 0, which happens half of the time (p0 = p1 = 1=2), the average energy per bit is p = 12A2.Thus, p�2 � 72G2 ;gives a lower bound in terms of the power of the noise.
7.3 Binary detection with vector observations
The key ideas in L7 carry over to the vector case: Let X 2 f0; 1g as before, ~�0; ~�1 2 Rn and

~Y = ~�i + ~Z ; when X = i ;
where ~Z = N(0;K). This can model a variety of situations. One can think of ~Y as the receivedsignals at an antenna array, each coordinate corresponding to the output of a di�erent antenna.Another way to look at this model, is by considering ~�0; ~�1 as waveforms, corrupted by noisewith an autocorrelation structure speci�ed by matrix K.Let's compute MLE[Xj~Y = ~y] for the case that jKj 6= 0.

f~Y jX(~yj1)f~Y jX(~yj0) = exp��12(~y � ~�1)TK�1(~y � ~�1) + 12(~y � ~�0)TK�1(~y � ~�0)�
= exp�( ~�1 � ~�0)TK�1~y � 12 ~�1TK�1 ~�1 + 12 ~�0TK�1 ~�0� : (7.2)

The last expression is the likelihood-ratio. Usually, we work with the exponent, the so calledlog-likelihood-ratio (LLR)
( ~�1 � ~�0)TK�1~y � 12 ~�1TK�1 ~�1 + 12 ~�0TK�1 ~�0 ; (7.3)

which we denote by LLR[Xj~Y = ~y].Thus, MLE[Xj~Y = ~y] = (1; if LLR[Xj~Y = ~y] > 00; otherwise
For MAP[Xj~Y = ~y] one needs to compare f~Y jX(~yj1)p1 with f~Y jX(~yj0)p0. Hence,

MAP[Xj~Y = ~y] = (1; if LLR[Xj~Y = ~y] > log(p1=p0)0; otherwise.
Whereas we started with a nonlinear problem, that of minimizing the probability of incorrectdetection, we see that we get simple linear rules. To see why this happens, notice that whenK = I, from (7.2), one chooses i = 0 or i = 1 depending on which of ~�0, ~�1 is closest to theobservation vector ~y, in the sense of Euclidean distance j~y � ~�ij. Hence, the decision rule isspeci�ed by the two halfspaces divided by the line of equidistant points from ~�0; ~�1.
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7.3.1 Su�cient statisticNotice that even though the dimensionality n of the observations might be high, what is actuallysu�cient in determining the LLR -and hence MAP and MLE-, is a linear function of Y . Sucha function is called a su�cient statistic. More precisely, we will call ~g(~Y ) a su�cient statistic1,if f~Y jX(~yjx) = F (~g(~y); x)G(~y) ;
for some real functions F;G. There can be many su�cient statistics; a trivial one is ~Y itself.In the de�nition, X;x may be also vectors.
7.3.2 Matched �lterOne common way to compute ~�iT~y needed in the su�cient statistic, is by a matched �lter.Note that ~�iT~y = nX

t=1 �i(t)yt =
nX
t=1 hi(n� t)yt ;

where ~�i = (�i(1); : : : ; �i(n))T , and hi(t) = �i(n� t). Thus, ~�iT~y can be computed by passing~y through a �lter with an impulse response hi(�) \matched" to the signal ~�i.
7.4 Bit error rate calculations
Assume K = �2I, for simplicity. The probability of incorrect detection is
P (error) = P �LLR[Xj~Y ] > log p0p1 jX = 0� p0 + P �LLR[Xj~Y ] < log p0p1 jX = 1� p1 : (7.4)

Hence, we need to determine the distribution of LLR(Xj~Y ). ~Y is jointly Gaussian, and
E[LLR(~Y )jX = 0] = ( ~�1 � ~�0)T ~�0�2 + ~�0T ~�02�2 � ~�1T ~�12�2= 1�2 ( ~�1 � ~�0)T ~�0 � 12�2 ( ~�1 + ~�0)T ( ~�0 � ~�1)= � 12�2 k ~�1 � ~�0k22

Similarly, we �nd Var(LLR(~Y )jX = 0) = k ~�1 � ~�0k22�2 :Both the variance and conditional mean depend only on the ratio k ~�1 � ~�0k2=� =: .Thus, (7.4) becomes
P (error) = P �N(0; 1) � 1 log p0p1 + 2� p0 + P �N(0; 1) � �1 log p0p1 + 2� p1 :Observe that BER depends on the energy in the di�erence of the two signals, ~�1 and ~�0, andhow these compare to the power of the noise �2.

1This is one of many equivalent de�nitions, that su�ces for our purposes.



48 CHAPTER 7. BINARY DETECTION UNDER AWGNWhen p0 = p1, the above simpli�es to
P (error) = P �N(0; 1) � 2� :

Usually one wants to minimize this, under some power constraint. Part of the problem is todetermine the signals ~�i. One way to do this is to set ~�0 = 0, i.e. allocate no power to thissignal, and transmit any ~�1 at full power.
7.5 Example: relation with the scalar caseAssume that a symbol is a bit-string of �xed length n, where each of the n bits is pickedindependently. Independent noise W = N(0; In�n) corrupts each bit in a symbol. What is theMAP detector?In this case, we have 2n possible symbols in the set f0; 1gf1;:::;ng =: S, but we don't needto have 2n matched �lters for implementing MAP. One has,MAP[ ~Xj~Y = ~y] = argmax~z2S f~Y j ~X(~yj~z)P ( ~X = ~z)

= argmax~z2S
 nY
i=1 fYijXi(yijzi)!

0@ nY
j=1P (Xj = zj)1A

= argmax~z2S nY
i=1 fYijXi(yijzi)P (Xi = zi) ;

where the second line follows from independence of the Xi's. Thus, MAP[ ~Xj~Y = ~y] willestimate the i-th bit of ~X as X̂i = MAP[XijYi = yi].



Chapter 8
Hypothesis Testing; Estimation 1
8.1 Summary
Here are the key ideas and results:
� The Hypothesis Testing problem is to maximize P [Z = 1jX = 1] subject to P [Z = 1jX =0] � � where Z is based on Y and fY jX is known.
� The solution of the HT problem is given by the Neyman-Pearson theorem 8.1.
� Some composite HT problems have a simple solution; most do not.
� g(Y ) is su�cient for X if X and Y are conditionally independent given g(Y ).

8.2 Binary Hypothesis Testing
So far we have considered the Bayesian detection problem of minimizing E(c(X; g(Y))) whenboth pX and fYjX are known. Recall that, when X 2 f0; 1g the optimum decision has theform g(Y) = h(�(Y)) where �(y) = fYjX [yj1]=fYjX [yj0] is the likelihood ratio. In particular,if �(y) = f(k(y)), then k(Y) is a su�cient statistic for detecting X given Y.In this section we explore the detection problem when pX , the prior, is not known. Westart with the case when X 2 f0; 1g.
8.2.1 FormulationDe�nition 8.1. Binary Hypothesis Testing ProblemOne is given fY jX . For each observed value y of Y , one chooses �(y) 2 [0; 1] and one letsZ = 1 with probability �(y) and Z = 0 otherwise. One is also given � 2 (0; 1). The objectiveis to choose � to

minimize P [Z = 0 j X = 1] subject to P [Z = 1 j X = 0] � �: (8.1)
One interpretation is that X = 1 means that your house is on �re. In that case the problemis to design the alarm system to detect a �re with the largest probability compatible with aprobability of false alarm at most equal to �. 49
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8.2.2 Neyman-Pearson TheoremThe key result is the following.
Theorem 8.1. Neyman-PearsonThe solution to the binary hypothesis testing problem is as follows:

�(y) =
8><>:

1; if �(y) := fY jX [yj1]fY jX [yj0] > �0; if �(y) < �; if �(y) = � (8.2)
where � > 0 and  2 [0; 1] are the only values such that

P [Z = 1 j X = 0] = � when P [Z = 1 j Y = y] = �(y): (8.3)
The interpretation of the result is that if �(y) > �, then one is pretty sure that X = 1because the observed value would be much less likely if X = 0. In that case, one safely decidesZ = 1. If �(y) < �, one decides Z = 0. If �(y) = �, one edges the bet by deciding Z = 1 withprobability �(y). The threshold � is an adjustment of the `sensitivity' of the alarm: the lower�, the most likely the alarm is to sound. The randomization  is designed to achieve exactlythe probability of false alarm.Before looking at the proof, let us examine two representative examples.

8.2.3 Two ExamplesExample 8.1. We consider the binary symmetric channel. That is, one is given some � 2[0; 0:5) and, for x; y 2 f0; 1g, one has
P [Y = y j X = x] = � 1� �; if x = y�; if x 6= y:

We �nd �(y) = P [Y = yjX = 1]P [Y = yjX = 0] = � 1��� ; if y = 1�1�� ; if y = 0Since �(1) > �(0), we see that the solution of the hypothesis testing problem must be of thefollowing form: P [Z = 1jY = 1] = 1 and P [Z = 1jY = 0] = 0where 0 and 1 are chosen in [0; 1] so that (23.4) holds. Now,
P [Z = 1jX = 0] = P [Z = 1jY = 1]P [Y = 1jX = 0] + P [Z = 1jY = 0]P [Y = 0jX = 0]= 1�+ 0(1� �):

The values of 0 and 1 depend on �. One �nds that
(0; 1) = ( (0; �� ); if � � �(���1�� ; 1); if � > �:



8.2. BINARY HYPOTHESIS TESTING 51Example 8.2. In this example, Y = X+V where X and V are independent and V = N(0; 1).Here, �(y) = expf�12(y � 1)2g= expf�12y2g = expfy � 12g:Since �(y) is increasing in y, we see that the solution of the hypothesis testing problem has thefollowing form:
�(y) = 8<: 1; if y > y00; if y < y0; if y = y0where y0 = ��1(�). However, since P [Y = y0jX = x] = 0 for x 2 f0; 1g, one can ignore thelast possibility. Accordingly, the solution is
�(y) = � 1; if y > y00; if y < y0:

The value of y0 is such that P [Z = 1jX = 0] = �, i.e.,
� = P [Y > y0jX = 0] = P (V > y0):

We now turn to the proof of Theorem 8.1.
8.2.4 Proof of Neyman-Pearson TheoremDe�ne Z as indicated by the theorem and let V be some random variable that corresponds toanother choice �0(y) instead of �(y). We assume that V satis�es the bound on the false alarmprobability, i.e., that P [V = 1jX = 0] � �. We show that P [V = 1jX = 1] � P [Z = 1jX = 1].To do this, note that �(Y )(Z � V ) � �(Z � V ). Hence,

E[�(Y )(Z � V )jX = 0] � �E[Z � V jX = 0] � 0:But E[�(Y )(Z � V )jX = 0] = E[Z � V jX = 1]:Indeed,
E[�(Y )(Z � V )jX = 0] = Z �(y)[�(y)� �0(y)]fY jX [yj0]dy

= Z fY jX [yj1]fY jX [yj0] [�(y)� �0(y)]fY jX [yj0]dy
= Z [�(y)� �0(y)]fY jX [yj1]dy = E[Z � V jX = 1]:

Hence, 0 � E[Z � V jX = 1] = P [Z = 1jX = 1]� P [V = 1jX = 1];as was to be shown.
For an intuitive discussion of this result, see [10], page 126.
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8.2.5 Important ObservationsOne remarkable fact is that the optimal decision is again a function of the likelihood ratio.Thus, as in the Bayesian case, if �(y) = f(k(y)), the optimal decision for the hypothesistesting problem is a function of the su�cient statistic k(Y).We used two simple but useful observations in the examples. The �rst one is that when�(y) is increasing in y, the decision rule is a threshold on Y . The second is that when Y has adensity, there is no need to randomize by introducing some .
8.2.6 Composite HypothesesWe have considered only the case X 2 f0; 1g. The general case would be that X takes values insome set X and one wishes to determine if X 2 A � X or X =2 A. Say that one selects Z = 1to mean that one thinks that X 2 A. One would then attempt to maximize P [Z = 1jX 2 A]subject to the constraint that P [Z = 1jX =2 A] � �. This general problem does not admita simple answer. For instance, the likelihood ratio P [Y = yjX 2 A]=P [Y = yjX =2 A] is notde�ned since we do not have a prior distribution of X. However, some problems have a simpleanswer. We give one example.Example 8.3. One knows that, given X, Y = N(X; 1) and we want to determine whetherX = �0 or X > �0. First note that if the alternatives are X = �0 or X = �1 > �0, then theoptimal decision would be Z = 1fY > y0g with P [Y > y0jX = �0] = �. Thus, the value of y0does not depend on �1. It follows that this decision rule is optimal for the composite problem.
8.3 Conditional Independence and Su�cient StatisticsThe notion of conditional independence is useful to clarify the concept of su�cient statistics.De�nition 8.2. Conditional IndependenceThe random variables X and Z are conditionally independent given the random variable Yif P [X 2 A;Z 2 BjY ] = P [X 2 AjY ]P [Z 2 BjY ]; 8A;B: (8.4)Note the following simple fact:Fact 8.1. If X and Z are conditionally independent given Y , then g(X) and h(Z) are condi-tionally independent given Y , for any functions g(�) and h(�).The following fact is a direct consequence of the de�nition.Fact 8.2. X and Z are conditionally independent given Y if and only if

E[g(X)h(Z)jY ] = E[g(X)jY ]E[h(Z)jY ]; 8g(�); h(�): (8.5)
Proof:The result is immediate from (8.4) if g(X) =Pi ai1fX 2 Aig and h(Z) =Pj bj1fZ 2 Bjg.The general case follows by approximation.

From this property, one �nds the following result.



8.4. SOLVED PROBLEMS 53Fact 8.3. Assume that X and Z are conditionally independent given Y . ThenE[XjY;Z] = E[XjY ]:Proof:We must show that E(f(Y;Z)E[XjY ]) = E(f(Y;Z)X); 8f(�):Assume that f(Y;Z) = g(Y )h(Z). ThenE(f(Y;Z)E[XjY ]) = E(g(Y )h(Z)E[XjY ]) = E(E[g(Y )h(Z)E[XjY ]jY ])= E(E[g(Y )h(Z)XjY ]); by (8.5)= E(f(Y;Z)X):The general case follows by linearity and approximation. For instance, approximate f(Y;Z)by polynomials.
Here is a di�erent twist on the notion of su�cient statistic.De�nition 8.3. Su�cient Statisticg(Y ) is a su�cient statistic for X if X and Y are conditionally independent given g(Y ).
Let us revisit the detection problem in the light of this de�nition. Recall thatMAP [XjY = y] = argmaxxP [X = xjY = y]:Now, with z = g(y),P [X = xjY = y] = P [X = xjY = y; g(Y ) = z] = P [X = xjg(Y ) = z];so that MAP [XjX = y] = h(z):The connection with likelihood ratios is as follows. Assume that X and Y are conditionallyindependent given g(Y ). Then, with z = g(y),

fY jX [yjx] = fg(Y )jX [zjx]fY jg(Y )[yjz];so that �(x; y) := fY jX [yjx]fY jX [yjx0] = fg(Y )jX [zjx]fg(Y )jX [zjx0] = �(x; z):It follows that the solution of the HT problem, the MLE, and the MAP are all functions ofthe su�cient statistic.
8.4 Solved Problems
Problem 8.1. When X = 0, Y1; : : : ; Yn are i.i.d. Bernoulli r.v's with P [Ym = 1jX = 0] = p0.When X = 1, we have P [Ym = 1jX = 1] = p1, instead. (1 > p1 > p0 > 0.)Find the Neyman-Pearson test, to minimize P [Z = 0jX = 1] subject to P [Z = 1jX = 0] ��. What was the su�cient statistic? Explain.
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Chapter 9
MMSE and LLSE
9.1 Summary
Here are the key ideas and results:
� The MMSE of X given Y is E[XjY].
� The LLSE of X given Y is L[XjY] = E(X)+KX;YK�1

Y (Y�E(Y)) if KY is nonsingular.
� Theorem 9.3 states the properties of the LLSE.
� The linear regression approximates the LLSE when the samples are realizations of i.i.d.random pairs (Xm; Ym).

9.2 Estimation: Formulation
The estimation problem is a generalized version of the Bayesian decision problem where the setof values of X can be <n. In applications, one is given a source model fX and a channel modelfYjX that together de�ne fX;Y. One may have to estimate fYjX by using a training sequence,i.e., by selecting the values of X and observing the channel outputs. Alternatively, one may beable to observe a sequence of values of (X;Y) and use them to estimate fX;Y.De�nition 9.1. Estimation ProblemsOne is given the joint distribution of (X;Y). The estimation problem is to calculate Z =g(Y) to minimize E(c(X;Z)) for a given function c(�; �). The random variable Z = g(Y) thatminimizes E(jjX�Zjj2) is the minimum mean squares estimator (MMSE) of X given Y. Therandom variable Z = AY + b that minimizes E(jjX � Zjj2) is called the linear least squaresestimator (LLSE) of X given Y; we designate it by Z = L[XjY].
9.3 MMSE
Here is the central result about minimum mean squares estimation. You have seen this before,but we recall the proof of that important result.
Theorem 9.1. MMSEThe MMSE of X given Y is E[XjY]. 55



56 CHAPTER 9. MMSE AND LLSEProof: You should recall the de�nition of E[XjY], a random variable that has the property
E[(X� E[XjY])h1(Y)] = 0; 8h1(�); (9.1)

or equivalently E[h2(Y)(X� E[XjY])] = 0; 8h2(�): (9.2)By E(X) = E[E[XjY]], the interpretation is that X � E[XjY] ? h(Y) for all h(�). ByPythagoras, one then expect E[XjY] to be the function of Y that is closest to X, as illustratedin Figure 9.1.

{r(Y), r(.) = function}

X

E[X|Y] = g(Y)

h(Y)

Figure 9.1: The conditional expectation as a projection.
Formally, let h(Y) be an arbitrary function. Then

E(jjX� h(Y)jj2) = E(jjX� E[XjY] + E[XjY]� h(Y)jj2)= E(jjX� E[XjY]jj2) + 2E((E[XjY]� h(Y))T (X� E[XjY])) + E(jjE[XjY]� h(Y)jj2)= E(jjX� E[XjY]jj2) + E(jjE[XjY]� h(Y)jj2) � E(jjX� E[XjY]jj2):
In this derivation, the third identity follows from the fact that the cross-term vanishes in view of(9.2). Note also that this derivation corresponds to the fact that the triangle fX; E[XjY]; h(Y)gis a right triangle with hypothenuse (X; h(Y)).
Example 9.1. You recall that if (X;Y) are jointly Gaussian with KY nonsingular, then

E[XjY] = E(X) +KX;YK�1
Y (Y � E(Y)):

You also recall what happens when KY is singular. The key is to �nd A so that KX;Y =AKY = AQ�QT . By writing
Q = [Q1jQ2];� = � �1 00 0 �

where �1 corresponds the part of nonzero eigenvalues of KY, one �nds
KX;Y = AQ�QT = A[Q1jQ2] � �1 00 0 � � QT1QT2

� = AQ1�1QT1 ;
so that KX;Y = AKY with A = KX;YQ1��11 QT1 .
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Theorem 9.2. LLSEL[XjY] = E(X) + KX;YK�1

Y (Y � E(Y)) if KY is nonsingular. L[XjY] = E(X) +KX;YQ1��11 QT1 (Y � E(Y)) if KY is singular.
Proof: Z = L[XjY] = AY + b satis�es X � Z ? BY + d for any B and d with E(X) =E[L[XjY]]. If we consider any Z0 = CY + c, then E((Z � Z0)T (X � Z)) = 0 since Z � Z0 =AY + b� CY � c = (A� C)Y + (b� c) = BY + d. It follows that

E(jjX� Z0jj2) = E(jjX� Z+ Z� Z0jj2)= E(jjX� Zjj2) + 2E((Z� Z0)T (X� Z)) + E(jjZ� Z0jj2)= E(jjX� Zjj2) + E(jjZ� Z0jj2) � E(jjX� Zjj2):Figure 9.2 illustrates this calculation. It shows that L[XjY] is the projection of X on the setof linear functions of Y. The projection Z is characterized by the property that X � Z isorthogonal to all the linear functions BY + d. This property holds if and only if (from (9.1))
E(X� Z) = 0 and E((X� Z)YT ) = 0;which are equivalent to E(X�Z) = 0 and cov(X�Z;Y) = 0. The comparison between L[XjY]and E[XjY] is shown in Figure 9.3.

{r(Y) = CY + d}

X

Z = L[X|Y]

Z’

Figure 9.2: The LLSE as a projection.

{CY + d}

X

E[X|Y]
{g(Y)}

L[X|Y]

Figure 9.3: LLSE vs. MMSE.
The following result indicates some properties of the LLSE. They are easy to prove.Theorem 9.3. Properties of LLSE(a) L[AX1 +BX2jY] = AL[X1jY] +BL[X2jY].(b) L[L[XjY;Z] j Y] = L[XjY].(c) If X ? Y, then L[XjY] = E(X).(d) Assume that X and Z are conditionally independent given Y . Then, in general,L[XjY;Z] 6= L[XjY ].



58 CHAPTER 9. MMSE AND LLSEProof: (b): It su�ces to show that
E(L[XjY;Z]� L[XjY]) = 0 and E((L[XjY]� L[XjY;Z])YT ) = 0:We already have E(X�L[XjY;Z]) = 0 and E(X�L[XjY]) = 0, which implies E(L[XjY;Z]�L[XjY]) = 0. Moreover, from E((X� L[XjY;Z])YT ) = 0 and E((X� L[XjY])YT ) = 0, it isobtained E((L[XjY]� L[XjY;Z])YT ) = 0.(d): Here is a trivial example. Assume that X = Z = Y 1=2 where X is U [0; 1]. ThenL[XjY;Z] = Z. However, since Y = X2, Y 2 = X4, and XY = X3, we �nd

L[XjY ] = E(X) + E(XY )� E(X)E(Y )E(Y 2)� E(Y )2 (Y � E(Y ))
= 12 + �14 � 12 � 13��15 � 19��1�Y � 13�= 316 + 1516Y:We see that L[XjY;Z] 6= L[XjY ] because

Z 6= 316 + 1516Y = 316 + 1516Z2:

Figure 9.4 illustrates property (b) which is called the smoothing property of LLSE.

{CY + d}

X

L[X|Y, Z]
{AY + BZ + c}

L[X|Y]

Figure 9.4: Smoothing property of LLSE.
9.5 ExamplesWe illustrate the previous ideas on a few examples.Example 9.2. Assume that U; V;W are independent and U [0; 1]. Calculate L[(U + V )2 jV 2 +W 2].Solution: Let X = (U + V )2 and Y = V 2 +W 2. Then

KX;Y = cov(U2 + 2UV + V 2; V 2 +W 2) = 2cov(UV; V 2) + cov(V 2; V 2):Now, cov(UV; V 2) = E(UV 3)� E(UV )E(V 2) = 18 � 112 = 124and cov(V 2; V 2) = E(V 4)� E(V 2)E(V 2) = 15 � 19 = 445 :



9.6. LINEAR REGRESSION VS. LLSE 59Hence, KX;Y = 112 + 445 = 31180 :We conclude that
L[(U + V )2 j V 2 +W 2] = E((U + V )2) +KX;YK�1Y (Y � E(Y )) = 76 + 3132 �Y � 23� :Example 9.3. Let U; V;W be as in the previous example. Calculate L[cos(U + V )jV +W ].Solution: Let X = cos(U + V ) and Y = V +W . We �nd

KX;Y = E(XY )� E(X)E(Y ):Now, E(XY ) = E(V cos(U + V )) + 12E(X):Also,
E(V cos(U + V )) = Z 10

Z 10 v cos(u+ v)dudv = Z 10 [v sin(u+ v)]10dv
= Z 10 (v sin(v + 1)� v sin(v))dv = �Z 10 v � d cos(v + 1) + Z 10 v � d cos(v)
= �[v cos(v + 1)]10 + Z 10 cos(v + 1)dv + [v cos(v)]10 � Z 10 cos(v)dv= � cos(2) + [sin(v + 1)]10 + cos(1)� [sin(v)]10= � cos(2) + sin(2)� sin(1) + cos(1)� sin(1):Moreover,

E(X) = Z 10
Z 10 cos(u+ v)dudv = Z 10 [sin(u+ v)]10du = Z 10 (sin(u+ 1)� sin(u))du= �[cos(u+ 1)]10 + [cos(u)]10 = � cos(2) + cos(1) + cos(1)� cos(0) = � cos(2) + 2 cos(1)� 1:In addition, E(Y ) = E(V ) + E(U) = 1:and KY = 16 :

9.6 Linear Regression vs. LLSEWe discuss the connection between the familiar linear regression procedure and the LLSE.One is given a set of n pairs of numbers f(xm; ym);m = 1; : : : ; ng, as shown in Figure 9.5.One draws a line through the points. That line approximates the values ym by zm = �xm+ �.The line is chosen to minimizenX
m=1(zm � ym)2 = nX

m=1(�xm + � � ym)2: (9.3)



60 CHAPTER 9. MMSE AND LLSEThat is, the linear regression is the linear approximation that minimizes the sum of the squarederrors. Note that there is no probabilistic framework in this procedure.To �nd the values of � and � that minimize the sum of the squared errors, one di�erentiates(9.3) with respect to � and � and sets the derivatives to zero. One �ndsnX
m=1(�xm + � � ym) = 0 and nX

m=1xm(�xm + � � ym) = 0:
Solving these equations, we �nd

� = A(xy)�A(x)A(y)A(x2)�A(x)2 and � = A(y)� �A(x):
In these expressions, we used the following notation:

A(y) := 1n nX
m=1 ym; A(x) := 1n nX

m=1xm; A(xy) := 1n nX
m=1xmym; and A(x2) := 1n nX

m=1x2m:Thus, the point ym is approximated by
zm = A(y) + A(xy)�A(x)A(y)A(x2)�A(x)2 (xm �A(x)):

Note that if the pairs (xm; ym) are realizations of i.i.d. random variables (Xm; Ym) =D(X;Y ) with �nite variances, then, as n!1, A(x)! E(X), A(x2)! E(X2), A(y)! E(Y ),and A(xy)! E(XY ). Consequently, if n is large, we see that
zm � A(Y ) + cov(X;Y )var(X) (xm � E(X)) = L[Y jX = xm]:

See [4] for examples.

xm

ym

zm

Figure 9.5: Linear Regression.



Chapter 10
Kalman Filter - 1
10.1 Summary
Here are the key ideas and results:
� We are looking for recursive estimators.
� One key idea is that if E(X) = E(Y) = E(Z) = 0 and if Y ? Z, then L[XjY;Z] =L[XjY] + L[XjZ].
� An application is Kalman Filter.

10.2 Updating a LLSE
In this section we derive how to update a LLSE. Let X;Y;Z be three random vectors. Can weexpress L[XjY;Z] in terms of L[XjY] and Z? Here is the key result.
Theorem 10.1. Assume that the random vectors X;Y;Z are zero-mean and such that Y ? Z.Then L[XjY;Z] = KX;YK�1

Y Y +KX;ZK�1
Z Z = L[XjY] + L[XjZ]: (10.1)

Moreover, cov(X� L[XjY;Z]) = cov(X� L[XjY])�KX;ZK�1
Z KZ;X: (10.2)

Proof:If you look at Figure 10.1, you should see (10.1).To verify (10.2), we do the algebra:
cov(X� L[XjY;Z]) = cov(X�KX;YK�1

Y Y �KX;ZK�1
Z Z)= cov(X�KX;YK�1

Y Y) + cov(KX;ZK�1
Z Z)� 2cov(X�KX;YK�1

Y Y;KX;ZK�1
Z Z)= cov(X� L[XjY]) +KX;ZK�1

Z KZ;X � 2KX;ZK�1
Z KZ;X= cov(X� L[XjY])�KX;ZK�1

Z KZ;X;as was to be shown.
61



62 CHAPTER 10. KALMAN FILTER - 1

{CY + d}

X

L[X|Y, Z]
{AY + BZ + c}

L[X|Y] Z

0

Figure 10.1: Updating an LLSE with additional uncorrelated observations.
10.3 Kalman FilterThe setup is that Xn describes the state of a system whose dynamics are linear. One observesYn, a noisy version of a linear observation of Xn. The problem is to calculate recursivelyX̂n := L[XnjY1; : : : ; Yn]. By recursively, we mean that X̂n+1 should be a function of X̂n andYn+1. The key idea is then to update the LLSE X̂n with the new observation Yn+1.For ease of notation, we consider a linear system with matrices that do not depend on time.That is, Xn+1 = AXn +Vn and Yn = CXn +Wn; n � 1;where fX1;Vn;Wn; n � 1g are all orthogonal and zero-mean with cov(Vn) = KV andcov(Wn) = KW.Theorem 10.2. Kalman Filter̂

Xn = L[XnjY1; : : : ; Yn] = L[XnjY n]
is obtained by the Kalman Filter:

X̂n = AX̂n�1 +Rn(Yn � CAX̂n�1)
where

Rn = SnCT [CSnCT +KW ]�1;Sn = A�n�1AT +KV ;�n = (I �RnC)Sn:
Thus, Sn+1 = KV +ASnAT �ASnCT [CSnCT +KW ]�1CSnAT :Moreover, the matrices Sn and �n have the following signi�cance:

Sn = cov(Xn �AX̂n�1);�n = cov(Xn � X̂n):
Proof:Let
Un = Yn�L[YnjY n�1] = Yn�L[CXn+WnjY n�1] = Yn�CL[XnjY n�1] = Yn�CAX̂n�1 = CXn+Wn�CL[XnjY n�1]



10.4. SOLVED PROBLEMS 63Then, by (10.1),X̂n = L[XnjY n] = L[XnjY n�1] + L[XnjUn] = AX̂n�1 +RnUn = AX̂n�1 +Rn(Yn � CAX̂n�1)where Rn = cov(Xn; Un)cov(Un)�1:Now, cov(Xn; Un) = cov(Xn; CXn +Wn � CL[XnjY n�1])= cov(Xn � L[XnjY n�1]; CXn +Wn � CL[XnjY n�1]) = SnCT :Also, cov(Un) = cov(CXn +Wn � CL[XnjY n�1]) = CSnCT +KW :Thus, Rn = SnCT [CSnCT +KW ]�1:In addition,Sn = cov(Xn � L[XnjY n�1]) = cov(AXn�1 + Vn�1 �AX̂n�1) = A�n�1AT +KV :Finally, by (10.2),�n = cov(Xn�L[XnjY n]) = cov(Xn�L[XnjY n�1])�cov(Xn; Un)cov(Un)�1cov(Un; Xn) = Sn�RnCSn:
See [8] for a more detailed discussion.

10.4 Solved Problems
Problem 10.1. Give an example of linear system Xn+1 = AXn + Vn; Yn = CXn +Wn, whereCov(Xn � L[XnjY0; : : : ; Yn�1])!1; as n!1 :Solution:Let Xn+1 = Xn + Vn; Yn =Wn, for i.i.d. N(0; 1) noise (Vn) and (Wn). Also, let X0 = N(0; 1).Then, Cov(Xn � L[XnjY n�1]) = Var(Xn � E(Xn)) = n :Problem 10.2. In the setting of the previous problem, give an example where

Cov(Xn � L[XnjY0; : : : ; Yn�1])! 0; as n!1 :Solution:Consider Xn+1 = Xn; Yn = Xn +Wn, where noise is as in the previous problem.Then,
Cov(Xn � L[XnjY n�1]) � Cov Xn � 1n nX

i=1 Yi
!

= Cov 1n nX
i=1 Wi! = 1n



64 CHAPTER 10. KALMAN FILTER - 1Problem 10.3. Give an example of (A;B) not reachable, with state space R2.Solution:A = I2; B = (1; 0)T . Then,
rank[B AB] = rank� 1 10 0 � = 1 < 2 :

Problem 10.4. Give an example of (A;C) not observable, with state space R2.Solution:A = I2; C = (1; 0). Then,
rank[CT ATCT ] = rank� 1 10 0 � = 1 < 2 :

Problem 10.5. Let X;V;W be r.v's with V ?W . Show that Var(X + V �L[X + V jX +W ])is increasing in Var(X).Solution:Without loss of generality, we can assume that (X;V;W ) is JG. (E.g., take (X0; V0;W0) JGwith the same mean and covariance matrix as (X;V;W ).) Let � = N(0; �2), independent ofV;W , and de�ne X 0 = X + �. Then, Var(X 0) > Var(X), andVar(X 0 + V � L[X 0 + V jX 0 +W ]) � Var(X 0 + V � L[X 0 + V jX 0 +W; �])= Var(X + � + V � L[X + V jX +W; �]� �)= Var(X + V � L[X + V jX +W ]) :Problem 10.6. Consider the (scalar) system,Xn+1 = anXn + Vn ;where (a0; a1; : : :) are i.i.d. N(�; �2), independent of (X0; V0; V1; : : :). As usual, assume (V0; V1; : : :)are i.i.d. independent of X0.Find conditions on �; �2 so that Cov(Xn)! K as n!1, for some constant K <1.Solution:Assume Vn = N(0;KV ) for all n, E(X0) = 0.Var(Xn+1) = Var(anXn + Vn)= Var(anXn) +KV= E(a2n)Var(Xn) +KV= (�2 + �2)Var(Xn) +KV :Thus, Var(Xn) converges if �2 + �2 < 1, diverges for �2 + �2 > 1. If �2 + �2 = 1 it convergesif and only if KV = 0.Problem 10.7. Consider the (scalar) system,Xn+1 = aXn + VnYn = cnXn +Wn ;under the usual independence assumptions. Further, assume c0; c1; : : : are i.i.d. with mean �and variance u2, independent of the noise and X0.Derive recursive equations for X̂n = L[XnjY0; : : : ; Yn].



10.4. SOLVED PROBLEMS 65Solution:X̂n+1 = L[Xn+1jY n; Yn+1] = aX̂n + L[Xn+1jU ], where U = Yn+1 � E(Yn+1jY n). Now,U = Yn+1 � E(Yn+1jY n)= cn+1aXn + cn+1Vn +Wn+1 � a�X̂n ;so X̂n+1 = aX̂n +Rn(Yn+1 � a�X̂n), where Rn = E(Xn+1U)=E(U2). Now,
E(U2) = a2Var(cn+1Xn � �Xn) + �2a2Var(Xn � X̂n) + E(c2n+1V 2n )= a2u2E(X2n) + �2a2�n + (�2 + u2)KV +KW= �2Sn + u2(KV + a2E(X2n)) +KW ;

where we de�ned �n = E((Xn � X̂n)2); Sn = a2�n +KV . In addition,
E(Xn+1U) = E((aXn + Vn)(cn+1aXn + cn+1Vn +Wn+1 � a�X̂n))= a2E(Xn((cn+1Xn � �Xn)) + a2�E(Xn(Xn � X̂n)) + �KV= a2��n + �KV = Sn� :Finally, �n+1 = E((aXn + Vn � aX̂n � EnU)2)= a2�n +KV +R2nE(U2)� 2aRnE(U(Xn � X̂n))� 2RnE(VnU)= (1� �Rn)Sn ;where we have usedE(U(Xn � X̂n)) = E((cn+1aXn � �aXn + a�(Xn � X̂n))(Xn � X̂n))= a�E((Xn � X̂n)2) = a��n ;and E(VnU) = �KV .Problem 10.8. Consider the (scalar) system

Xn+1 = aXn + Vn
Yn = (cXn +Wn w.p. 1� p\error" w.p. p

The interpretation of \error" is that an observation is lost or discarded independently, withprobability p > 0.How would you calculate E[XnjY0; : : : ; Yn]?Solution:AssumeX0; (Wn); (Vn) are independent Gaussian. Introduce the measurement Y 0n = Cn[Xn 0]T+[1 0]TWn, where Cn = ([c 0] ,on Yn = \error"[0 1] ,on Yn 6= \error" :Notice that the (optimal) KF estimate for E[XnjY n] does not depend on Cn+1; Cn+2; : : :, so wedon't loose anything by not knowing whether Yn = \error" or not, ahead of time. Thus, the



66 CHAPTER 10. KALMAN FILTER - 1estimate E[Xnj(Y 0)n] = E[XnjY n] is as good as the estimate provided by an \oracle" KF whereall Cn's are known ahead of time. Thus, X̂n = E[XnjY n] is given by the KF corresponding tothe system where one knows Cn ahead of time, i.e., assumes they are constants.Observe that X̂n is not necessarily equal to L[XnjY n], as the latter must be a nonrandomlinear combination of Y0; : : : ; Yn.Problem 10.9. Suppose �0; �1; : : : are i.i.d. N(�; �2) for some unknown parameter � -� isknown- which we wish to estimate by observing the sequence �0; �1; : : : given as �n+1 = a�n+�n,�0 = 0.How to estimate � using Kalman �ltering?Solution:The idea is to consider the system with state Xn = (�; �n), so
Xn+1 = � 1 01 a �Xn + � 01 �Vn ;Yn = [0 1]Xn :Thus, the state estimator given by the KF is

X̂n+1 = � 1 01 a � X̂n +Rn(�n+1 � [1 a]X̂n) ;
where Rn is calculated by the KF recursive equations for this system.



Chapter 11
Kalman Filter: Convergence
11.1 SummaryHere are the key ideas and results of this important topic.
� A system is observable if its state can be determined from its outputs (after some delay).
� A system is reachable if there are inputs to drive it to any state.
� We explore the evolution of the covariance in a linear system in Section 11.3.
� The error covariance of a Kalman Filter is bounded if the system is observable.
� The covariance increases if it starts from zero.
� If a system is reachable and observable, then everything converges and the stationary�lter is asymptotically optimal.In the following sections, we explore what happens as n ! 1. Speci�cally, we want tounderstand if the error covariance �n blows up or if it converges to a �nite value. First, werecall some key notions about linear systems.

11.2 Observability and Reachability
Lemma 11.1. Cayley-HamiltonLet A 2 <m�m and det(sI �A) = �0 + �1s+ � � �+ �m�1sm�1 + sm. Then

�0I + �1A+ � � �+ �n�1Am�1 +Am = 0:
In particular, spanfI; A;A2; : : :g = spanfI; A; : : : ; Am�1g.For a proof, see B.2 in Appendix B.De�nition 11.1. Observability and ReachabilityThe linear system Xn+1 = AXn;Yn = CXn; n � 1 (11.1)is observable if X1 can be determined exactly from fYn; n � 1g. We then say (A;C) isobservable. 67



68 CHAPTER 11. KALMAN FILTER: CONVERGENCEThe linear system Xn+1 = AXn + CUn; n � 1 (11.2)is reachable if, for every state X, there is a sequence of inputs fUn; n � 1g that drives thesystem from X1 = 0 to state X. We say that (A;C) is reachable.
Fact 11.1. (a) (A;C) is observable if and only if [CT jATCT j � � � j(Am�1)TCT ] is of full rank.(b) (A;C) is reachable if and only if (AT ; CT ) is observable, i.e., if and only if [CjACj � � � jAm�1C]is of full rank. In that case, m�1X

p=0 ApCCT (Ap)T is positive de�nite.
Proof: To see (a) note that (11.1) implies that Yn = CXn = CAn�1X1. Consequently, ob-servability is equivalent to the null space of [CjCAjCA2j � � � ] being f0g. Accordingly, this isequivalent to the matrix [CT jATCT j(A2)TCT j � � � ] being of full rank. The conclusion thenfollows from Lemma 11.1.For (b), observe that (11.2) implies that

Xn = An�1X1 + n�1X
k=1An�k�1CUk = n�1X

k=1An�k�1CUk:
Therefore, the system is reachable if and only if [CjACjA2Cj � � � ] is of full rank. The conclusionthen follows again from Lemma 11.1.
11.3 System AsymptoticsOur discussion is borrowed from [8]. First, let us examine the evolution of the unobservedsystem Xn+1 = AXn +Vn; n � 1;where fX1;Vn; n � 1g are all orthogonal and zero-mean with cov(Vn) = KV and Kn =cov(Xn). Note that Kn+1 = AKnAT +KV: (11.3)The following theorem describes the evolution of Kn. Recall that a matrix A 2 <m�m is saidto be stable if its eigenvalues all have magnitude strictly less than 1.Theorem 11.1. (a) If A is stable, then there is a positive semide�nite matrix K such thatKn ! K as n!1. Moreover, K is the unique solution of the equation

K = AKAT +KV: (11.4)
(b) Let KV = QQT . Assume that (A;Q) is reachable. Then A is stable if and only if theequation K = AKAT +QQT

has a positive de�nite solution K.



11.4. FILTER ASYMPTOTICS 69Proof: (a) By induction we see that the solution of (11.3) is
Kn = An�1K1(An�1)T + n�2X

p=0ApKV(Ap)T : (11.5)
If A is stable, then j(Ap)i;j j � C�p for some �nite C and some � 2 (0; 1), as it can beseen by considering the SVD of A. This implies that the �rst term in (11.5) vanishes andthe sum converges to some K = P1p=0ApKV(Ap)T that is clearly positive semide�nite. Theconvergence also implies (11.4). It remains to show that (11.4) has a unique solution. Let K 0be another solution. Then � = K 0 � K satis�es � = A�AT . Recursive substitutions showthat � = An�(An)T . Letting n!1 shows that � = 0 and the solution of (11.4) is unique.(b) If A is stable, we know from (a) that (11.4) has a unique positive semide�nite solutionK =P1p=0ApQQT (Ap)T . Since (A;Q) is reachable, the null space of [QT jQTAT jQT (A2)T j � � � ]is f0g. This implies K is positive de�nite.To show the converse, assume that K is a positive de�nite solution of (11.4). Then weknow that K = AnK(An)T +Pn�1p=0 ApQQT (Ap)T ; n � 1. Let � be an eigenvalue of AT witheigenvector v. Then AT v = �v and

v�Kv = j�j2nv�Kv + v�0@n�1X
p=0ApQQT (Ap)T1A v:

ButPn�1p=0 ApQQT (Ap)T is positive de�nite from the reachability of (A;Q), which implies thatthe last term in the above identity is positive. Consequently, it must be that j�j < 1.
The statements of the theorem should be intuitive. If the system is stable, then the statetries to go to 0 but is constantly pushed by the noise. That noise cannot push the state veryfar and one can expect the variance of the state to remain bounded. The convergence is a littlebit more subtle. If the system is reachable, then the noise pushes the state in all directions andit is not surprising that the variance of the state is positive de�nite if the system is stable. Ifthe system is not stable, the variance would explode.

11.4 Filter AsymptoticsWe now explore the evolution of Kalman Filter.Theorem 11.2. Let KV = QQT . Suppose that (A;Q) is reachable and (A;C) is observable.If S1 = 0, then �n ! �; Rn ! R;Sn ! S; as n!1:The limiting matrices are the only solutions of the equations� = (I �RC)S;R = SCT (CSCT +KW)�1; and S = A�AT +KV:Equivalently, S is the unique positive semide�nite solution of
S = A(S � SCT �CSCT +KW��1CS)AT +KV: (11.6)

Moreover, the time-invariant �lter Zn = AZn�1+R(Yn�CAZn�1) satis�es cov(Zn�Ẑn)! �,as n!1.



70 CHAPTER 11. KALMAN FILTER: CONVERGENCEComments: The reachability implies that the noise excites all the components of the state.The observability condition guarantees that the observations track all the components of thestate and imply that the estimation error remains bounded. Note that the state could growunbounded, if A is unstable, but the estimator tracks it even in that case. The time-invariant�lter has the same asymptotic error as the time-varying one.Proof: The proof has the following steps. For two positive semide�nite matrices S and S0, wesay that S � S0 if S0�S is positive semide�nite. Similarly, we say that the positive semide�nitematrices fSn; n � 1g are bounded if Sn � S for some positive semide�nite matrix S.
� (a) The matrices Sn are bounded.
� (b) If S1 = 0, then Sn is nondecreasing in S1.� (c) If S1 = 0, then Sn " S, where S is a positive semide�nite matrix.
� (d) The matrix A�ARC is stable.
� (e) For any S1, Sn ! S.
� (f) Equation (23.8) has a unique positive semide�nite solution S.
� (g) The time-invariant �lter has the same asymptotic error covariance as the time-varying�lter.We outline these steps.(a) The idea is that, because of observability, Xn+m is a linear function of fYp;Vp;Wp; p =n; : : : ; n +m � 1g. The covariance Sn+m must be bounded by that of Xn+m given fYp; p =n; : : : ; n+m�1g, which is a linear combination of the covariances of 2m random variables andis therefore uniformly bounded for all n.(b) That is, if S1 is replaced by S01 � S1, then Sn is replaced by S0n � Sn. The proof of thisfact is pretty neat. One could try to do it by induction, based on the algebra. That turns outto be tricky. Instead, consider the following argument. Since we worry only about covariances,we may assume that all the random variables are jointly Gaussian. In that case, increasing S1to S01 > S1 can be done by replacing X1 by X01 = X1 + �1, where �1 = N(0; S01 � S1) and isindependent of fX1;Vn;Wn; n � 0g. Now, let X0n be the system state corresponding to X01and Y0n be the corresponding observation. Note that X0n+1 = Xn+1 +An�1. Consequently,L[X0n+1jYn; �1] = L[Xn+1jYn] +L[Xn+1j�1] +L[An�1jYn] +L[An�1j�1] = L[Xn+1jYn] +An�1and Sn+1 = cov(X0n+1 � L[X0n+1jYn; �1])while S0n+1 = cov(X0n+1 � L[X0n+1j(Y0)n]):Since, for each n � 1, one can express Y0n as a linear function of (Yn; �1), it follows thatSn+1 � S0n+1.(c) Note that S1 = 0 � S2. From part (b), Sn � Sn+1. However, Sn � B, for somepositive semide�nite B. Thus, Sn(i; i) := eTi Snei � Sn+1(i; i) � B(i; i). This implies thatSn(i; i) " S(i; i) for some nonnegative S(i; i). Similarly, �(n) := Sn(i; i)+ 2Sn(i; j)+Sn(j; j) =(ei+ej)TSn(ei+ej) � �(n+1) � (ei+ej)TB(ei+ej). This implies that �(n) " �. We concludethat Sn(i; j) must converge to some S(i; j). Hence Sn(i; j)! S(i; j).



11.4. FILTER ASYMPTOTICS 71(d) Simple algebraic manipulations show thatS = (A�ARC)S(A�ARC)T +ARKWRTAT +KV:Assume that (A�ARC)T v = �v with j�j > 1 and nonzero v. Thenv�Sv = v�(A�ARC)S(A�ARC)T v+v�ARKWRTAT v+v�KVv = j�j2v�Sv+v�ARKWRTAT v+v�KVv:Since j�j > 1, it is obtained that v�Sv = v�ARKWRTAT v = v�KVv = v�QQT v = 0, whichimplies Qv = 0 and (A;Q) is not reachable.(e) We borrow this proof from [7]. The notation is the same as before. Consider the system�n+1 = AT �n + CT �n +Wn. The problem is to �nd the �k(�k) for k = 1; : : : ; n to achieve
�n(�) = min E[n�1X

k=1f�TkKV�k + �Tk KW�kg+ �TnS1�n j �1 = �]:
By considering all possible choices for �1 and assuming that the cost is minimized over f2; : : : ; n+1g, one sees that�n+1(�) = min�f�TKV� + �TKW� + E(�n(AT � + CT � +W1))g:A direct calculation (see below) allows to verify that

�n(�) = �TSn� + n�1X
k=1 trace (SkKV)and the minimizing values of �n are given by�n�k = �[CSkCT +KW]�1CSkAT �n�k:Instead of using this optimal control, one uses"n�k = �[CSCT +KW]�1CSAT �n�k:In that case, the cost is �TGn� whereGn+1 = �Gn�T +ARKWRTAT +KV; with G1 = S1 and � = A�ARC:Since � is stable from part (d), we see that Gn converges to S (Theorem 11.1). Now,

�n(�) = �TSn� + n�1X
k=0 trace (SkKV) � �TGn�;

for all �. This implies that Sn � Gn. Recall that if S1 = 0, then the resulting covariancematrices, S0n, are such that S0n " S. Moreover, we see that S0n � Sn � Gn with S0n " S andGn ! S. It follows that Sn ! S.In the calculations above, we used the fact that, if A1 is symmetric and invertible, thenmin�f�TA0� + �TA1� + 2�TA2�g = �T [A0 �AT2A�11 A2]�and is achieved by � = �A�11 A2�;as a direct calculation shows.(f) Assume that S0 is another positive semide�nite solution of (23.8). If S1 = S0, thenSn = S0. However, we know from (e) that Sn ! S. Hence, S0 = S.(g) This follows immediately because the time-invariant �lter is a special case of the time-varying �lter.
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Chapter 12
Wiener Filter
12.1 SummaryHere are the key ideas and results.� De�nition of LTI system� De�nition of wide sense stationary processes� De�nition of transfer function and power spectral density� How an LTI system modi�es the spectral density of a process� Derivation of the Wiener Filter
12.2 OverviewOne is given two sequences of random vectors fXn;Yn; n 2 Zg. The random variables arespeci�ed through their �rst and second moments. The problem is to calculate X̂n := L[XnjYm]where Yn := fYm;m � ng.Thus, whereas Kalman assumes a dynamic model of the sequences, Wiener starts with thespeci�cation of the �rst and second moments. For the problem to be tractable, one assumesthat the �rst and second moments time-invariant. One can then expect a result of the form

X̂n = nX
m=�1�(n�m)Ym:

This expression is called the Wiener �lter. Thus, X̂n is the output at time n of a causal lineartime invariant system whose input is the sequence of observations fYng. Figure 12.1 illustratesthe idea.
Wiener FilterYn Xn

^

Figure 12.1: The Wiener Filter.
In this lecture, we explain how to derive the Wiener �lter.We start with a brief review of linear time invariant systems. We then discuss what itmeans for the �rst and second order moments to be time-invariant.73



74 CHAPTER 12. WIENER FILTER12.3 Linear Time Invariant Systems
De�nition 12.1. LTI SystemA system is a mapping that transforms an arbitrary input sequence fXn; n 2 Zg intoan output sequence fYn; n 2 Zg. The system is linear if to a linear combination of inputscorresponds the same linear combination of outputs. It is time invariant if delaying the inputby m time units results in delaying the output by m time unit, for any m 2 Z.Example 12.1. (a) A system with output Yn = a0Xn + a1Xn�1 + a2Xn�2 is LTI.(b) A system with output Yn = (Xn +Xn�1)2 is time invariant but not linear.(c) A system with output Yn = Xn cos(2�f0n) is linear but not time invariant.(d) A system such that Yn = (1� �)Yn�1 + �Xn for n � 0 where Y�1 := 0 is LTI.De�nition 12.2. Impulse ResponseConsider an LTI system. Let fhi(n); n 2 Zg to be its output when its input is fei�n; n 2 Zgwhere �n := 1fn = 0g for n 2 Z. The impulse response of the system is de�ned as fh(n); n 2 Zgwhere h(n) is a matrix whose i-th column is hi(n).Example 12.2. A system such that Yn = Xn�n0 for n 2 Z delays its input by n0 time units.Its impulse response is H(n) = I1fn = n0g since ei1fn = n0g is the output at time n when theinput is ei�n.Fact 12.1. Consider an LTI system with impulse response fh(n); n 2 Zg and input fXn; n 2Zg. Its output is fYn; n 2 Zg where

Yn = 1X
m=�1h(n�m)Xm; n 2 Z:

Proof:The input is the linear combination PnXn�n� where �n is the operator that delays afunction by m time units. Consequently, the output must be PnXn�nh whose value at timem is Ym =Pn h(m� n)Xn.

12.4 Wide Sense Stationary
De�nition 12.3. Wide Sense StationaryThe sequences of complex valued random vectors fXn;Yn; n 2 Zg are wide sense stationary(wss) ifE(Xn) = �X; E(Yn) = �Y ; E(Xn+mX�n) = RX(m); E(Yn+mY�n) = RY (m); E(Xn+m;Y�n) = RXY (m); 8n;m 2 Z:
In particular, each sequence is also said to be wide sense stationary. (Some authors say that(X;Y) are jointly wide sense stationary, but we use the simpler terminology.)For simplicity of notation, we assume throughout that �X = �Y = 0.Example 12.3. Let fXn; n 2 Zg be a sequence of zero mean uncorrelated random variableswith unit variance. Then X is wss and RX(n) = 1fn = 0g. This process is called a whitenoise.



12.5. FREQUENCY DOMAIN 75Example 12.4. Let Xn = �e2�f0n+� where f0 2 (�1=2; 1=2), � = U [0; 2�], E(�) = 0, var(�) =�2, and �; � are independent. Then fXng is wss and RX(m) = �2ej2�f0m. The process fXngis a sinusoid with frequency f0 and a random phase (to make it wss).We need to clarify the notions of bounded and causal systems.
De�nition 12.4. Bounded; CausalA linear system is bounded if its output is bounded whenever the input is bounded.A system is causal if its output at time n depends only on its inputs at times m � n, forall n 2 Z.We have the following lemma.
Lemma 12.1. (a) A linear time invariant system is bounded if and only if its impulse responsefh(n)g is summable, i.e., such that jjhjj1 := Pn jjh(n)jj1 < 1 where jjvjj1 := Pi jvij for anyvector v.(b) A linear time invariant system is causal if and only if h(n) = 0 for n < 0.
Proof:(a) If h is summable, then jjYnjj1 � jjhjj1maxnfjjXnjj1g. Conversely, let (Xn)i = sign(hi(�n)),so that h(�n)Xn = jjh(�n)jj1. If the system is bounded, since fXng is bounded, we must havejjY0jj1 = jjhjj1 <1.(b) This statement is obvious.

12.5 Frequency Domain
De�nition 12.5. Transfer FunctionThe transfer function is the Fourier transform of the impulse response. That is

H(f) = 1X
m=�1h(m)e�j2�mf ; f 2 <:

Note that h(n) = Z 1=2
�1=2H(f)ej2�fdf;

since Z 1=2
�1=2 ej2�nfdf = 1fn = 0g:

We say that H(f) is rational if it is the ratio of two polynomials in e�2�f .Note that ej2�f = ej2�(f+k) for any integer k. Consequently, H(f) is periodic with period1.
Example 12.5. Consider the system with Yn = (1 � �)Yn�1 + �Xn. Assume that � 2 (0; 1).Find the transfer function.



76 CHAPTER 12. WIENER FILTERIf the input is �, then the output is such that Y0 = �; Y1 = (1��)Y0+�X1 = (1��)�; Y2 =(1� �)Y1 = (1� �)2�. Continuing in this way, we see that Yn = (1� �)n�1fn � 0g. Hence,h(n) = (1� �)n�1fn � 0g;
so that H(f) = 1X

n=0(1� �)n�e�j2�fn = 11� (1� �)e�j2�f = �1� (1� �)z�1 :
Example 12.6. The system withb0Yn + b1Yn�1 + � � �+ bqYn�q = a0Xn + a1Xn�1 + � � �+ apXn�p; n 2 Zhas transfer function H(f) = a0 + a1z�1 + � � �+ apz�pbo + b1z�1 + � � �+ bqz�q : (12.1)
Example 12.7. In the examples below, A is a stable matrix.(a) h(n) = An1fn � 0g $ H(f) = [I �Ae�j2�f ]�1;(b) h(n) = A�n1fn � 0g $ H(f) = [I �Aej2�f ]�1:De�nition 12.6. PolesThe poles of a transfer function H(f) are the values of z := ej2�f for which H(f) =1.In Example 12.7(a), the poles of H(f) are the eigenvalues of A and are inside the unit circle.Indeed, H(f) = [I�Az�1]�1 which is in�nite when I�Az�1 is singular, i.e., when jzI�Aj = 0.On the other hand, in Example 12.7(b), the poles are the reciprocals of the eigenvalues of Aand are outside the unit circle.Note that Example 12.7 (a) is a causal transfer function whereas Example 12.7 (b) is not.We suspect that the transfer function is causal i� its poles are inside the unit circle. We discussthat result below. We have the following lemma.Lemma 12.2. A bounded system with a rational transfer function is causal if and only if itspoles are strictly inside the unit circle.Proof:We consider the one-dimensional case. The multidimensional case is derived by consideringeach component of h. By performing a partial fraction expansion of H(z�1), one �nds that itis a linear combination of terms of the form (1� az�1)�k. Now,11� az�1 = � Pn an1fn � 0gz�n; if jaj < 1;Pn an1fn � 0gz�n; if jaj > 1:Taking the derivative with respect to z, we �ndz�1(1� az�1)2 = � Pn nan�11fn � 0gz�n; if jaj < 1;Pn nan�11fn � 0gz�n; if jaj > 1:Taking multiple derivatives shows that the inverse transform of (1�az�1)�k is causal wheneverjaj < 1 and anti-causal whenever jaj > 1.

Next we de�ne the spectral density.



12.5. FREQUENCY DOMAIN 77De�nition 12.7. Spectral DensityLet fXn;Yn; n 2 Zg be wss. Then
SX(f) := 1X

m=�1RX(m)e�j2�mf and SXY (f) := 1X
m=�1RX(m)e�j2�mf ; f 2 <: (12.2)

SX is called the spectral density of X and SXY the cross spectral density of X and Y. (Someauthors say power spectral density.)We say that SX(f) is rational if it is the ratio of two polynomials in e�j2�f .Note that ej2�f = ej2�(f+k) for any integer k. Consequently, SX and SXY are periodic withperiod 1.
We have a simple inversion lemma.

Lemma 12.3. Basic PropertiesOne has
RX(n) = Z 1=2

�1=2 SX(f)ej2�nfdf and RXY (n) = Z 1=2
�1=2 SXY (f)ej2�nfdf: (12.3)

Moreover, E(jjXnjj2) = Z 1=2
�1=2 trace(SX(f))df: (12.4)

Proof:To verify (12.4), note that
E(jjXnjj2) = E(X�nXn) = trace(E(XnX�n)) = trace(RX(0)) = trace(Z 1=2

�1=2 SX(f)df):

The spectral density is a convenient way to study the e�ect of linear time invariant systemson random sequences, as the following result shows.
Theorem 12.1. Assume that

Vn = 1X
m=�1h1(n�m)Xm and Wn = 1X

m=�1h2(n�m)Ym
where P1m=�1 jjhk(m)jj2 <1 for k = 1; 2. Then

SVW (f) = H1(f)SXY (f)H�2 (f)
where Hk(f) is the transfer function that corresponds to hk.
Proof:The result says that time-domain convolutions become products in the frequency domain.



78 CHAPTER 12. WIENER FILTERWe have
SVW (f) = X

m RVW (m)z�m =Xm E(Vn+mW �n)z�m
= X

m E(Xk h1(n+m� k)XkXp Y �p h�2(n� p))z�m
= X

m
X
k
X
p h1(n+m� k)z�(n+m�k)RXY (k � p)z�(k�p)fh�2(n� p)z�(n�p)

= H1(f)SXY (f)H�2 (f);as claimed.
The following examples illustrate the ideas.

Example 12.8. Let fXn; n 2 Zg be a white noise , i.e., a sequence of zero mean uncorrelatedrandom variables with unit variance. Then SX(f) = 1. Indeed, RX(n) = 1fn = 0g, so thatSX(f) :=P1m=�1RX(m)z�m = 1.
Example 12.9. Let Xn = �e2�f0n+� where f0 2 (�1=2; 1=2), � = U [0; 2�], E(�) = 0, var(�) =�2, and �; � are independent. Then SX(f) = �2�(f � f0).Indeed, RX(m) = �2ej2�f0m = Z 1=2

�1=2 �2�(f � f0)ej2�mfdf:
The process fXng is a sinusoid with frequency f0 and a random phase (to make it wss).The expression for SX indicates that all the power is concentrated on the frequency f0.

Example 12.10. Let fXng be wss and one-dimensional. Then Yn = Pk h(n � k)Xk is suchthat SY (f) = jH(f)j2SX(f). Assume now that h is a �lter that lets the frequencies in [f0; f0+�]go through without modifying their amplitude and blocks all other frequencies, with 0 < �� 1.Then H(f) = 1ff0 � f � f0 + �g. Consequently,
E(jYnj2) = Z 1=2

�1=2 SY (f)df = Z f0+�f0 SX(f)df = SX(f0)�:
Accordingly, we see that SX(f)� is the power contained in fXng in the frequencies [f0; f0 + �].Hence the terminology (power) spectral density. A similar justi�cation can be made for themeaning of cross spectral density.
Example 12.11. Assume that the input of system (12.1) is white. Find SY (f) where Y is theoutput of the �lter. We know that

SY (f) = jH(f)j2 = ja0 + a1z�1 + � � �+ apz�pbo + b1z�1 + � � �+ bqz�q j2 where z = ej2�f :
Note that SY is rational.



12.6. WIENER FILTER 7912.6 Wiener Filter
We start with a representation result.
Theorem 12.2. Whitening FilterConsider a wss process X with rational spectral density SX . One assumes that the processsatis�es some technical conditions known as the Paley-Wiener conditions.In the scalar case, one can write

SX(f) = jH(f)j2
where H(f) = N(f)=D(f) with N and D being polynomials in z�1 with zeros inside the unitcircle. (The zeros are the values of z for which the polynomials are zero.)In the multidimensional case, one can write

SX(f) = H(f)KH�(f)
where H(f) has its poles inside the unit circle, H�1(f) has its poles on or inside the unit circle,and K is positive de�nite.This result shows that one can represent X as the output of a linear time invariant �lterwhose input is white; the �lter is causal and its inverse is causal. This �lter is called thewhitening �lter.This result is easy if the process is the output of a �lter with rational transfer function andwhite input noise. The result is non trivial even in that case because the �lter may not becausal nor causally invertible. In the the scalar case, we know that SX(f) = j�(f)j2 where �is the transfer function of the �lter. Since � is rational, one can separate the zeros and polesso that H has the indicated properties. Because E(jXnj2) < 1, SX cannot have poles on theunit circle.The multidimensional case is similar.

Here is an example.
Example 12.12. Assume that

SY (f) = 1j(2� z)(3� z)j2 :
In that case, we can write SY (z�1) = jH(z�1)j2 with

H(z�1) = 1(2� z�1)(3� z�1) = 12� z�1 � 13� z�1
where H is causal and causally invertible.
12.6.1 ProjectionWe explain how to calculate the LLSE of Xn given all values of Y (not only the past values).



80 CHAPTER 12. WIENER FILTERTheorem 12.3. Let fX;Y g be wss. Then~Xn = L[XnjYm;m 2 Z] =Xm g(n�m)Ym
where G(f) = SXY (f)S�1Y (f):
Proof:We know that G should be such that Xn � ~Xn ? Ym for all m 2 Z. That is,0 = S(X� ~X);Y (f) = SXY (f)�G(f)SY (f);which proves the result.

12.6.2 Whitening and ProjectionNow we consider the situation illustrated in Figure 12.2.
H-1Y

n
Wn H Y

n
G X

n

~

Figure 12.2: A non-causal �lter.
This �lter calculates L[XnjYm;m 2 Z] = L[XnjWm;m 2 Z] where W is a white noise. Thefollowing result explains how to extract the optimal causal �lter.Theorem 12.4. Wiener FilterLet K(f) = H(f)G(f):Then X̂n = L[XnjY n] = X

m�n k(n�m)Wm:
Let also K+(e�j2�f ) be the transfer function of the �lter with impulse response k(n)1fn � 0g.Then the Wiener �lter has transfer function

K+(f)H�1(f) where K(f) = SXY (f)S�1Y (f)H(f):
The �lter is illustrated in Figure 12.3.

H-1Yn [HSXYSY
-1]+ Xn

^

Figure 12.3: The construction of the Wiener �lter.
Proof:



12.6. WIENER FILTER 81Because H is causal and causally invertible, the set of linear combinations of Wn is exactlythe set of linear combinations of Y n. Moreover, W is white. Consequently,
L[Xm k(n�m)WmjY n] = L[Xm k(n�m)WmjWn] = X

m�n k(n�m)Wm:

Example 12.13. Assume that
SY (f) = 1j(2 + z)(3 + z)j2 :and Xn = Yn+n0 ; n 2 Z:We calculate the Wiener �lter to �nd L[Yn+n0 jY n].In Example 12.12, we found

H(z�1) = 1(2� z�1)(3� z�1) = 12� z�1 � 13� z�1 ;
so that h(n) = (12)n+11fn � 0g � (13)n+11fn � 0g:

To �nd SXY we note that X is obtained from Y by a linear time invariant �lter with impulseresponse �(n) = 1fn = n0g, so that
�(f) = 1X

m=�1�(m)e�j2�fm = e�j2�fn0 :
Accordingly, SXY (f) = �(f)SY (f) = e�j2�n0fSY (f):Next, we calculate

K(f) = SXY (f)S�1Y (f)H(f) = e�j2�n0fH(f);
so that k(n) = h(n+ n0); n 2 Z:It follows that

K+(f) = 1X
n=0h(n+ n0)e�j2�nf = 2�n02� z�1 � 3�n03� z�1 :

Finally, we get the Wiener �lter:
K+(f)H�1(f) = [ 2�n02� z�1 � 3�n03� z�1 ][(2� z�1)(3� z�1)] = 2�n0(3� z�1)� 3�n0(2� z�1):
Hence, X̂n = (3:2�n0 � 2:3�n0)Yn � (2�n0 � 3�n0)Yn�1:



82 CHAPTER 12. WIENER FILTER12.7 Solved Problems
Problem 12.1. Let (Xn) be wide-sense stationary (WSS), and Xn = Yn+n0 for some �xedn0 � 0.Let SY (f) = j2� zj2j4� zj2j3� zj2 ;where z = ej2�f .Find the Wiener �lter for X̂n = L[XnjY n].Solution:Notice that SY (f) = jH(f)j2, for

H(f) = 2� z�1(4� z�1)(3� z�1) ;where H;H�1 are causal, since all poles and zeros are inside the unit circle.Also, can write H(f) as
H(f) = 24� z�1 � 13� z�1

 ! 12 �14�n 1fn � 0g � 13 �13�n 1fn � 0g =: h(n) :
The impulse response of the system giving Y from X is h0(n) = 1fn = �n0g. But,SXY (f) = SY (f)H0(f), so the Wiener �lter is H�1(f)[H(f)H0(f)]+, where [�]+ denotes thecausal part. Let K(f) = H(f)H0(f).Now k(n) = h(n+ n0), sok+(n) = h(n+ n0)1fn � 0g

 !X
n�0

 12 �14�n+n0 z�n � 13 �13�n+n0 z�n
!

12 �14�n0 11� 14z�1 � 13 �13�n0 11� 13z�1 =: K+(f) :
The Wiener �lter is H�1K+.Problem 12.2. Cosider two processes X;Y such that

Xn = 13Xn�1 +Wn�1
Yn = 12Yn�1 + 12Xn + Vn ;

where (V;W ) are uncorrelated white noise sequences with known variances.
1. Assume (X;Y ) is WSS.Calculate SX ; SXY ; SY .2. Find the Wiener �lter for estimating X.



12.7. SOLVED PROBLEMS 833. Augment state to bring the model into the form of a linear system such as the one in theformulation of Kalman �lter.
4. Calculate the Kalman �lter for the system in (c).
5. Show that the stationary Kalman �lter is the same as the Wiener �lter found in (b).

Solution:With no loss of generality, assume E(Wn) = 0; E(W 2n) = 1; E(Vn) = 0; E(V 2n ) = �2V .1. Xn is given by passingWn through the �lter with transfer function 3z�1=(3�z�1), wherez = ej2�f , and f is the frequency. Hence,
SX(f) = ���� 3z�13� z�1 ����2 � SW (f) = 9j3� z�1j2 :

Similarly, Yn is given by passing 12Xn + Vn through a �lter with transfer function 2=(2�z�1), so SXY (f) = SX; 12X+V (f) 22� z ;by using the formulas from Lecture 15. But, since V ? X, SX; 12X+V (f) = 12SX(f). Thus,
SXY (f) = 9(2� z)(3� z�1)(3� z) :

Moreover,
SY (f) = ���� 22� z�1 ����2 SX; 12X+V (f)

= 4�2Vj2� z�1j2 + 9j2� z�1j2j3� z�1j2= 94�2V j3� z�1j2=9 + 1j2� z�1j2j3� z�1j2 :
2. We �rst derive the transfer function for the whitening �lter H.

SY (f) = 9 (a� bz�1)(a� bz)j2� z�1j2j3� z�1j2 ;where a; b are determined by a2 + b2 = 40�2V =9 + 1; ab = 12�2V =9, and the requirementthat jbj < jaj. In particular,
b =

vuut40�2V + 9�q(9 + 16�2V )(9 + 64�2V )18 ;
a =

vuut40�2V + 9 +q(9 + 16�2V )(9 + 64�2V )18 :



84 CHAPTER 12. WIENER FILTERSince 0 < b < a, we see that by de�ning
H(f) = 3 a� bz�1(2� z�1)(3� z�1) ;H;H�1 are causal. This will be our whitening �lter.Now, the non-causal �lter is
G(f) = SXY (f)SY (f) = 2� z�1ja� bz�1j2 ;so G(f)H(f) = 3(a� bz)(3� z�1) = 3� ca� bz + dz�13� z�1� ;for c = a=(3a� b), d = 1=(3a� b).To take the causal part of G(f)H(f), we turn into the time domain.

G(f)H(f) ! 3ca �ab�t 1ft � 0g+ 3d�13�t 1ft � 1g ;
so the causal part [GH]+ is

3d�13�t 1ft � 0g  ! 3d1� 13z�1 ;where we used c = ad.Finally,
H�1[GH]+ = (2� z�1)(3� z�1)3(a� bz�1) 9d3� z�1

= 3d(2� z�1)a� bz�1 = 6da� bz�1 � 3dz�1a� bz�1 ;so the Wiener �lter is �Xn = ba �Xn�1 + 6da Yn � 3da Yn�1 ;where a; b; d are determined above.3. Let (Xn; Yn) be the state. Then,�XnYn
� = �1=3 01=6 1=2��Xn�1Yn�1

�+ � 1 01=2 1��Wn�1Vn
�

Zn = �0 1��XnYn
� ;

where Zn is the observation.4. Let (X̂n; Ŷn) be the estimator for (Xn; Yn). Then,X̂n = 13X̂n�1 +Rn(Yn � 16X̂n�1 � 12Yn�1)= 2�Rn6 X̂n�1 +RnYn � Rn2 Yn�1;where the �rst equality is because Ŷn = Yn. Rn is determined for every n, by the KFequations for this system.



12.7. SOLVED PROBLEMS 855. First, note that the system in (c) is observable and reachable, so KF converges. To �ndthe stationary KF, we solve the Ricatti equationS = A(S � SCT [CSCT +KW ]�1CS)AT +KV ;where for the system in part (d), we have
A = �1=3 01=6 1=2� ; C = �0 1� ; KV = � 1 1=21=2 �2V + 1=4� ; KW = 0 :

Let S = �s1 s2s3 s4
� ;and substitute for the right-hand-side of the Ricatti equation to get�s1 s2s3 s4

� = 136 �s1 � s2s3s4
��4 22 1�+ � 1 1=21=2 �2V + 1=4� :

So S = � 4x+ 1 2x+ 1=22x+ 1=2 x+ �2V + 1=4� ; (12.5)where
x = 136 �s1 � s2s3s4

�
= 136 �4x+ 1� (2x+ 1=2)2x+ �2V + 1=4� :

The last line comes from using (12.5) again. This gives an equation in x, with solution
x = q(9 + 16�2V )(9 + 64�2V )� 32�2V � 972 :

Now Rn converges to R, given by
R = s2s4 = 2q(9 + 16�2V )(9 + 64�2V )� 64�2V + 18q(9 + 16�2V )(9 + 64�2V ) + 40�2V + 9 :

To see that the stationary KF,
X̂n = 2�R6 X̂n�1 +RYn � R2 Yn�1;coincides with the Wiener �lter in part (b), note that

2a� 6ba = 2a2 � 6baa2 = �64�2V + 18 + 2q(9 + 16�2V )(9 + 64�2V )40�2V + 9 +q(9 + 16�2V )(9 + 64�2V ) = R :
Thus, (2 � R)=6 = b=a. In the same way -or by looking only at the de�nition of d; a; b-we see that R = 6d=a.Hence stationary KF=Wiener.



86 CHAPTER 12. WIENER FILTERProblem 12.3. Find a WSS process X which is not stationary. (We call X stationary -or stationary in the strict sense-, when for any k � 1, any Borel sets A1; : : : ; Ak, we haveP (X1 2 A1; : : : ; Xk 2 Ak) = P (X1+m 2 A1; : : : ; Xk+m 2 Ak) for all m 2 Z.)Solution:For odd n 2 Z consider i.i.d., Bernoulli Xn s.t. Xn = 1 w.p. 1/2, and Xn = �1 otherwise. Foreven n 2 Z consider i.i.d., Gaussian Xn s.t. Xn = N(0; 1). Then, E(XnXm) = 1fn�m = 0g,E(Xn) = 0, but P (X1 > 1) = 0 < P (X2 > 1).Problem 12.4. Let (Zn : n 2 Z) be a sequence of i.i.d. geometric r.v's with parameter p, i.e.,P (Zn = k) = (1� p)k�1p; k � 1, p a constant in (0; 1).For n � 0, de�ne Xn = 1 if inffk � 0 : Pki�0 Zi > ng is an even number, and Xn = 0otherwise. Similarly for n < 0, de�ne Xn = 0 if inffk � 1 :P�1i=�k Zi � �ng is an odd number,and Xn = 1 otherwise.1. Show that (Xn : n 2 Z) is not stationary. (For the de�nition of stationarity, cf. Problem3.)2. Find r.v. W such that (Xn+W : n 2 Z) is stationary.Solution:
1. Notice that X0 = 1; X�1 = 0, so X cannot be stationary.2. It will prove convenient to de�ne the following �rst. Let (Y 0n : n 2 Z) be Bernoulli(p),i.e., Y 0n are i.i.d. with Y 0n = 1 w.p. p and Y 0n = 0 w.p. 1 � p. Also, let X 00 = 0 w.p. 1/2and X 00 = 1 w.p. 1/2, independent of Y 0. Now for n > 0, de�ne X 0n = X 00 if Pni=1 Y 0i iseven, and X 0n = 1 � X 00 otherwise. Similarly, de�ne X 0n = X 00 if P0i=�n Y 0i is even andX 0n = 1�X 00 otherwise.Then it is easy to show that X 0 is stationary. E.g., note that P (X 0n = 0) = P (X 0n = 1) =1=2, by symmetry. For n < 0, P (X 0n = 0; X 0n+1 = 1) = P (X 0n = 0jX 0n+1 = 1)P (X 0n+1 =1) = p=2 which does not depend on n, and so on. . .Now, we will construct a r.v. W such that (Xn+W : n 2 Z) has the same distribution asX 0, thereby showing that the former is stationary too.Let W0 = Geometric(p) independent of all alse, and

W = (W0 w.p. 1=2W0 + Z0 w.p. 1=2 ;independent of all else. De�ne Yn = jXn �Xn�1j, for all n 2 Z.First we show that (Yn+W0 : n 2 Z) is stationary.
P (Yn = 0) = 1X

k=0P (
kX
i=0 Zi < n < n+ 1 � k+1X

i=0 Zi)
= 1X

k=0P [Zk+1 � n� kXZi + 1j kXZi < n � k+1XZi]P ( kXZi < n � k+1XZi)
=Xk=0P (Z0 � 2)P ( kXZi < n � k+1XZi)
= 1� p :



12.7. SOLVED PROBLEMS 87Also, from the above calculations, it is obvious that the Y 0ns are independent. Hence,(Yn : n 2 Z; n 6= 0) are i.i.d. 0-1 Bernoulli with parameter p. Now, let k0 = inffk :W0 <Pki=0 Zig, and de�ne ~Z0 =Pk0i=0 Zi �W0; ~Z1 = Zk0+1; ~Z2 = Zk0+2; : : : and ~Z�1 =W0 �Pk0�1i=0 Zi; ~Z�2 = Zk0�2; : : :. Then, all ~Z are i.i.d. geometric with parameter p. Weneed to show it only for ~Z0; ~Z�1: for m > 0,
P ( ~Z�1 � m) = P [W � k0X

i=0 Zi +mj k0XZi < W;W � k0+1X Zi]
= 1X

k=0P [W �
kX
i=0 Zi +mj kXZi < W;W � k+1XZi; k0 = k]P (k0 = k)

= P (W � m) :
The proof for ~Z0 is easier -the distribution of W does not matter-, so we ommit it.But then (Yn+W ) has the same distribution as (Y 0n) because the number of Yn between 1'sis (i.i.d.) geometric with the same parameter, p. Also, P (XW0 = i) = P (XW0+Z0 = 1� i)for i = 0; 1, so XW = 0 or 1 w.p. 1/2 independently of the Yn+W sequence. Hence(XW ; (Yn+W : n 2 Z)) has the same distribution as (X 00; (Y 0n : n 2 Z)). Recall thatYn+W = jXn+W � Xn+W�1j for all n 2 Z, so (Xn+W : n 2 Z) is uniquely determinedby (XW ; (Yn+W : n 2 Z)). Similarly, (X 0n : n 2 Z) is determined in the same way by(X 00; (Y 0n : n 2 Z)). Thus, the distribution of (Xn+W : n 2 Z) is the same as that of(X 0n : n 2 Z).
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Chapter 13
Markov Chains - Discrete Time
13.1 Summary
The book [3] is very clear, so my notes will be very succinct. You can also check [10] forexamples. Here are the key ideas of this lecture.
� De�nition of Markov chain;
� Passage times
� Strong Markov Property
� irreducible; transient or recurrent.
� Examples; Random Walk.

13.2 De�nitions
A Markov chain models the random memoryless evolution of an object in a countable set.
De�nition 13.1. Distribution, Transition MatrixLet X be a �nite or countable set. A distribution on X is a collection � = f�i; i 2 Xg ofnonnegative numbers that sum to one.A transition probability matrix, or transition matrix, or stochastic matrix on X is a collec-tion P = fP (i; j); i; j 2 Xg of nonnegative numbers such that Pj2X P (i; j) = 1 for all i 2 X .We think of P as a matrix, even when X is in�nite.
De�nition 13.2. Markov ChainLet X be a �nite or countable set, �0 a distribution of X , and P a transition matrix on X .A sequence of random variables X = fXn; n � 0g taking values in X is a Markov chain withinitial distribution �0 and probability transition matrix P if

P (X0 = i) = �0(i); 8i 2 X (13.1)
and P [Xn+1 = jjXn = i;Xm;m � n� 1] = P (i; j);8i; j 2 X and n � 0: (13.2)89



90 CHAPTER 13. MARKOV CHAINS - DISCRETE TIMEThe possible values of Xn are called states. In this de�nition, (13.1) states that �0 is thedistribution of X0. The identities (13.2) express that the evolution of Xn starts afresh fromXn at time n, independently of the values prior to time n. This is the Markov property thatsays that the past and the future are independent given the present state.
De�nition 13.3. IrreducibilityA Markov chain with transition matrix P is said to be irreducible if it can go from any i toany other j in X .Note that

P [Xn+1 = jjX0 = i] = X
k2X P [Xn+1 = j;Xn = kjX0 = i]

= X
k2X P [Xn+1 = jjXn = k;X0 = i]P [Xn = kjX0 = i]

= X
k2X P [Xn = kjX0 = i]P (k; j):

This identity shows, by induction on n, that
P [Xn = jjX0 = i] = Pn(i; j);8i; j 2 X : (13.3)

This expression shows the following fact.
Fact 13.1. The Markov chain is irreducible if and only ifX

n�0Pn(i; j) > 0; 8i; j 2 X :
We �rst de�ne some random times.

De�nition 13.4. First Return Time and First Passage TimeLet Xn be a Markov chain on X . The �rst return time to state i is �i de�ned as follows:
�i := minfn > 0jXn = ig:

The �rst passage time of state i, Ti, is de�ned as follows:
Ti := minfn � 0jXn = ig:

We extend these de�nitions to TS and �S for S � X .Note that �i = Ti if X0 6= i. However, if X0 = i, Ti = 0 < �i.Theorem 13.1. Strong Markov PropertyConsider a MC (Xn; n � 0) with transition matrix P . Assume P [Ti <1jX0 = k] = 1, forsome i; k. Then P [XTi+1 = jjX0 = i] = P (i; j); 8j 2 X :That is, the evolution of X starts afresh from i at the random time Ti. In particular, the timesbetween successive returns to i are i.i.d.



13.2. DEFINITIONS 91Proof: Observe thatP [XTi+1 = jjX0 = k] = P [XTi+1 = j; Ti <1jX0 = k]
= 1X

t=0 P [Xt+1 = j; Ti = tjX0 = k]
= 1X

t=0 P [Xt+1 = jjXt = i;Xs 6= i8s = 0; : : : ; t� 1; X0 = k]P [Ti = tjX0 = k]
= 1X

t=0 P [Xt+1 = jjXt = i]P [Ti = tjX0 = k]
= P (i; j) 1X

t=0 P [Ti = tjX0 = k] = P (i; j)P [Ti <1jX0 = k]
= P (i; j) :

De�nition 13.5. We now de�ne some key properties of a Markov chain.
� Transient: State i is transient if P [�i <1jX0 = i] < 1.
� Recurrent: State i is recurrent if P [�i <1jX0 = i] = 1.
� Positive Recurrent: State i is PR if E[�ijX0 = i] <1.
� Null Recurrent: State i is NR if it is recurrent and E[�ijX0 = i] =1.
� In�nitely Often: fXn = i; i.o. g = f! j Xn(!) = i for in�ntely many n0sg = f! jP1n=0 1fXn(!) = ig =1g.We state the following results that we leave you as an exercise to prove:Fact 13.2. State i is transient ifP [Xn = i; i.o. jX0 = i] = 0:Theorem 13.2. Solidarity(a) If (Xn) is irreducible M.C. and has some recurrent state, all states must be recurrent.(b) Moreover, if it has some positive recurrent state, then all states must be positive recur-rent.Proof:(a) Assume state j is recurrent, and let i be any other state. We use the notation in Problem2, with T 0i = 0. For any k � 0, de�ne

Vk = Tk+1jX
n=Tkj +1 1fXn = ig :

Now since the past and the present are conditionally independent on knowing the presentstate, by the Strong Markov Property, if we condition on XTkj , we see that V0; V1; : : : ; Vk�1 are



92 CHAPTER 13. MARKOV CHAINS - DISCRETE TIMEindependent of Vk. But they are also, unconditionally independent since XTkj = j. Thus, (Vk)are mutually independent. They are also identically distributed since P [Vk = v] = P [Vk =vjXTkj = j] = P [V0 = vjX0 = j].Because of irreducibility, p := p(j; s1)p(s1; s2) � � � p(sL; i) > 0 for some L > 0, and statess1; : : : ; sL, with sm 6= j for all m = 1; : : : L. But P [V0 > 0jX0 = j] � p, since V = 0 > 0 canhappen by taking the path j; s1; : : : ; sL; i.Also observe, 1X
k=0 Vk �

1X
k=0 1fVk > 0g =1 ;

where the last equality holds because 1fVk > 0g are i.i.d. with P (Vk > 0) = p > 0. [We cannothave P1k=0 1fVk > 0g <1, since PKk=0 1fVk > 0g=K ! p > 0.]Therefore, Ni =1. This shows that all states are recurrent.(b) Now assume moreover that j, positive recurrent.
1K KX

k=1 Vk � 1K KX
k=1Zk !1 ;

as K !1, from the above. But LHS is also written as
TKjK PKk=1 VkTKj ;

and by positive recurrence of j, TKj =K ! E[T 1j jX0 = j], as K !1. Hence,PKk=1 Vk=K mustconverge to a positive number. So we must have also,
limK 1K TKiX

n=T 1i +1 1fXn = ig > 0 ;
by recurrence of i. But,

limK 1K TKiX
n=T 1i +1 1fXn = ig = TKiK

PKk=1PTk+1in=Tki +1TKi ; (13.4)
Arguing in a similar way as in the recurrent case, we get

limK 1K KX
k=1

Tk+1iX
n=Tki +1 1fXk = ig > 0 :

By comparing the above with (17.1), we get that TKi =K must converge to a positive limit aswell. This limit must be E[T 1i jX0 = i] by the strong law of large numbers, so state i is positiverecurrent.



13.3. EXAMPLE 9313.3 ExampleWe look at one example:Fact 13.3. Assume P [Xn+1 = i+ 1jXn = i] = p and P [Xn+1 = i� 1jXn = i] = q = 1� p fori 2 X = Z. Then all the states are transient if p 6= 1=2.Proof:Note that Xn+1 = Xn + Vn where fV0; Vn; n � 0g are independent and P (Vn = 1) = p =1� P (Vn = �1). Consequently, of X0 = 0, Xn = V0 + V1 + � � �+ Vn�1. Hence,Xnn = V0 + V1 + � � �+ Vn�1n ! E(V1) = p� q 6= 0:This shows that Xn ! +1 if p > 1=2 and Xn ! �1 if p < 1=2. Now, if Xn(!) ! 1, thisimplies that Xn > 10 for all n � n(!) where n(!) <1. Consequently,X
n�0 1fXn = 0g < n(!) <1:

Since this happens with probability one, we see thatP [Xn�0 1fXn = 0g < n(!) <1jX0 = 0] = 1;
which shows, by de�nition, that 0 is transient. By symmetry, all states are transient. The sameargument applies for p < 1=2.

13.4 Solved Problems
Problem 13.1. Show that an irreducible Markov chain (M.C.) (Xn) with �nite state spacecannot be transient.Solution:Assume MC is transient. Then P1n=0 1fXn = ig <1 for any state i. But this is not possible,since PiPNn=0 1fXn = ig � N !1 as N !1.Problem 13.2. Let X be a MC and de�ne, for a �xed i, p = P [Xn = i for some �nite n >0jX0 = i]. Show that p < 1) P [Xn; i.o. jX0 = i] = 0and p = 1) P [Xn; i.o. jX0 = i] = 1:Solution:For any state i, de�ne Ni =P1n=0 1fXn = ig, the number of visits to state i. Also, let T ki bethe time of the k � th visit to state i, where if Ni < k we let T ki =1. Then for any j,P [Nj � k + 1jX0 = i] = P [Nj � k + 1; T kj jX0 = i]= P [Nj � k + 1jXTj = j; T kj <1; X0 = i]P [T kj <1jX0 = i]= P [T k+1j <1jXTj = j]P [Nj � kjX0 = i]= P [T 1j <1jX0 = j]P [Nj � kjX0 = i]= (P [T 1j <1jX0 = j])k�1P [T 1j <1jX0 = i]



94 CHAPTER 13. MARKOV CHAINS - DISCRETE TIMEFor j = i we haveP [Ni =1jX0 = i] = limk P [Ni � k + 1jX0 = i] = limk (P [T 1i <1jX0 = i])k = limk pk = 0 or 1 ;depending on whether p < 0 or p = 1.Now observe that fXn = i i.o.g = fNi =1g.Problem 13.3. Show that if (Xn) is an irreducible M.C. and has one positive recurrent state,all states must be positive recurrent.Solution:This follows from the result of the previous problem.Problem 13.4. Show that if the M.C. (Xn) is irreducible and positive reccurent, then
limn 1n nX

m=0 1fXm = ig = 1E[�ijX0 = i] ;
where �i = minfn > 0 : Xn = ig, the time of �rst return to state i.Solution:We use the same notation as above. Notice thatP [Tn+1i � Tni > tjTni ; Tn�1i ; : : :] = P [Tn+1i � Tni > tjXTni =i]= P [�i > tjX0 = i] ;so the times taken for excursions out of state i and back again are i.i.d. with �nite mean, bypositive recurrence.Now, Tni < 1 almost surely, since otherwise E[�ijX0 = i] = 1, a fact that contradictspositve recurrence. Also, Tn+1i � Tni + 1, so Tni " 1. Now,

1Tni
TniX
m=0 1fXm = ig = 1 + nTni ! 1E[�ijX0 = i] ;by the strong law of large numbers. Thus,

limn 1n nX
m=0 1fXm = ig = limn 1Tni

TniX
m=0 1fXm = ig = 1E[�ijX0 = i] :

Problem 13.5. Consider the M.C. (Xn) with state-transition probabilities given by the dia-gram.Find E[T2jX0 = 0], where Ti = minfn � 0 : X0 = ig is the �rst passage time to state i.Solution:For any state i, we de�ne �(i) = E[T2jX0 = i]. By Kolmogorov's equations:�(2) = 0�(3) = 12(1 + �(2)) + 12(1 + �(0))�(1) = 1 + �(0)�(0) = 12(1 + �(3)) + 12(1 + �(1)) ;giving �(0) = 8.



13.4. SOLVED PROBLEMS 95

0 1 2 3
1/2

1/2

11

1/2

1/2

Problem 13.6. For the M.C. of Problem 5, �nd P [Xn hits 2 before hitting 1 twicejX0 = 0].Solution:According to the notation of problem 2, P [Xn hits 2 before hitting 1 twicejX0 = 0] = P [T 21 <T 12 jX0 = 0]. Now,
P [T 12 < T 21 jX0 = 0] = P [T 12 < T 11 jT 11 < T 12 ; X0 = 0]P [T 11 < T 12 jX0 = 0]+ P [T 12 < T 21 ; T 11 > T 12 jX0 = 0] :But,

P [T 12 < T 21 jT 11 < T 12 ; X0 = 0] = P [T 12 < T 21 jXT 11 = 1; Xn 6= 2; n = 1; : : : ; T 11 ; X0 = 0]= P [T 12 < T 21 jXT 11 = 1]= P [T 12 � T 11 < T 21 � T 11 jXT 11 = 1]= P [T 12 < T 11 jX0 = 0] ;and P [T 12 < T 21 ; T 11 > T 12 ; X0 = 0] = P [T 12 < T 11 jX0 = 0] =: a :Thus, P [T 12 < T 21 jX0 = 0] = a(1 � a) + a. To compute a, we use Kolmogorov's equations: let�(0) = P [T 12 < T 11 jX0 = i], and notice that a = �(0) = �(3)=2; �(3) = 1=2 + �(0)=2, givinga = 1=3. Thus, P [T 12 < T 21 jX0 = 0] = 5=9.Problem 13.7. Assume you observe a M.C. X0; X1; : : :. How would you estimate P (i; j) fora given pair (i; j)?Solution:Assume Xn is a positive recurrent chain. We have
1N NX

n=0 1fXn = i;Xn+1 = jg ! P (i; j) ; as N !1 :
The see why this is true, notice that ((Xn; Xn+1; n � 0) de�nes a positive reccurent chain.If we empirically estimate the fraction of times the transition i! j is taken, it will convergeto the unknown P (i; j).
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Chapter 14
Markov Chains - Part 2
14.1 SummaryHere are the key ideas of this lecture.
� Function of Markov chain.
� Kolmogorov Equations
� Reected Random Walk.

14.2 Function of Markov Chain
Fact 14.1. Generally, a function of a Markov chain is not a Markov chain.We look at a few examples.Example 14.1. Consider the Markov chain X with Xn+1 = (Xn + 1)mod(3) where X0 isuniformly distributed in f0; 1; 2g. Let f(x) = 0 for x = 0; 1 and f(2) = 1. Then Yn = f(Xn) isnot a Markov chain. Indeed,

P [Y2 = 0jY1 = 0; Y0 = 0] = 0 6= P [Y2 = 0jY1 = 0] = 12 :Intuitively, f(Xn) contains less information than Xn and it may happen that ff(Xm);m �ng has information about Xn that f(Xn) does not contain, as the example shows.Example 14.2. As a trivial example where f(Xn) is a Markov chain even though f(�) is notone-to-one, take f to be constant.
14.3 Kolmogorov EquationsFirst passage times satisfy simple �rst step equations that we can use for their analysis.Fact 14.2. Kolmogorov Equations(a) One has, for any A;B � X and i 2 X ,

�(i) := P [TA < TBjX0 = i] = 8<:
Pj P (i; j)�(j); if i =2 A [B;1; if i 2 A nB;0; if i 2 B:97



98 CHAPTER 14. MARKOV CHAINS - PART 2(b) One has, for any A � X and i 2 X ,
�(i) := E[TAjX0 = i] = � 1 +Pj P (i; j)�(j); if i =2 A;0; if i 2 A:

(c) Assume that X = Z or X = Z+ and that Ti " 1 as i!1. Then, if i =2 A,
P [TA < TijX0 = j] " P [TA <1jX0 = j] as i!1

and E[minfTA; TigjX0 = j] " E[TAjX0 = j] as i!1:
Proof:Everything is obvious, except for (c) which relies on part (a) of the following result.
Theorem 14.1. Lebesgue Convergence Theorem(a) Assume that 0 � Xn " X as n!1. Then E(Xn) " E(X) as n!1.(b) Assume that Xn ! X as n!1 and jXnj � Y with E(Y ) <1. Then E(Xn)! E(X)as n!1:

Remark. You might be tempted to think that Xn ! X as n!1 implies E(Xn)! E(X)as n!1. However, this is not true as the following example illustrates.Example 14.3. Let 
 = (0; 1] and assume that ! is picked uniformly in 
. For n � 1,let Xn(!) = n1f! � 1=ng. Then P (Xn = n) = 1=n = 1 � P (Xn = 0), so that E(Xn) =n � (1=n) = 1 for n � 1. Moreover, Xn ! X = 0 as n ! 1. However, E(Xn) = 1 doesnot converge to E(X) = 0 as n ! 1. You see that this example violates both assumptions ofLebesgue's theorem.
14.4 Random Walk
Fact 14.3. Assume P [Xn+1 = i+ 1jXn = i] = p and P [Xn+1 = i� 1jXn = i] = q = 1� p fori 2 X = Z. Here, p 2 (0; 1).(a) If p 6= 0:5; the Markov chain is transient.(b) If p = 0:5, the Markov chain is null recurrent.
Proof:(a) Assume p < 0:5. Fix a; b 2 f1; 2; 3; : : :g. De�ne �(i) = P [Ta < T�bjX0 = i];�b � i � a.Then, according to Kolmogorov's equations,

�(i) = 8<:
Pj P (i; j)�(j); if i =2 A [B;1; if i = a;0; if i = �b: (14.1)

Solving these equations, assuming p < 0:5, we �nd
P [Ta < T�bjX0 = i] = �i � ��b�a � ��b ;�b � i � a where � := qp > 1: (14.2)



14.4. RANDOM WALK 99Now we let b!1. We use part (c) of Fact 14.2 to conclude that
P [Ta <1jX0 = i] = �i�a; i � a:Since this value is less than 1, we see that

P [�a <1jX0 = a] = pP [Ta <1jX0 = a+ 1] + qP [Ta <1jX0 = a� 1] < 1;so that a is transient.(b) Assume p = 0:5. In that case, the solution of (14.1) is
P [Ta < T�bjX0 = i] = i+ ba+ b :Consequently, as b!1, we �nd

P [Ta <1jX0 = i] = 1and we conclude that every state is recurrent. To show positive recurrence, we solve theKolmogorov equations for �(i) = E[minfTa; T�bgjX0 = i]. We �nd
E[minfTa; T�bgjX0 = i] = (a� i)(i+ b);�b � i � a:Letting b!1, we �nd E[TajX0 = i] =1; i 6= a;which proves null recurrence.
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Chapter 15
Markov Chains - Part 3
15.1 Summary
Here are the key ideas of this lecture.
� Stationary; Invariant Distribution
� Classi�cation theorem.

15.2 Stationary; Invariant Distribution
De�nition 15.1. We de�ne
� Invariant Distribution �: A nonnegative solution of �P = � and �1 = 1.
� Stationary: X = fXn; n � 0g is stationary if it has the same �nite dimensional distribu-tions as fXn+m; n � 1g for all m, i.e., if
P (X0 2 A0; : : : ; Xn 2 An) = P (Xm 2 A0; : : : ; Xm+n 2 An); 8n;m 2 Z+ and A0; : : : ; An � X :

We start with a simple fact.
Fact 15.1. (a) Let �n(i) := P (Xn = i); i 2 X and de�ne �n as the row vector with components�n(i). Let also P be the matrix with entries P (i; j) for i; j 2 X . Then

�n+1 = �nP; n � 0:
(b) X = fXn; n � 0g is stationary if and only if �0 is invariant.

Example 15.1. We look at a few examples of MC with many, zero, and one invariant distri-bution. We also examine the empirical distribution and the behavior of �n as n!1 for theseexamples.
The examples above suggest the classi�cation theorem.101
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Theorem 15.1. (a) If a Markov chain is irreducible, then all the states have the same recur-rence properties (T, NR, or PR). The MC is then said to be T, NR, or PR, correspondingly.(b) If a MC is irreducible, then it is T if and only if P [Xn = i; i.o. jX0 = j] = 0; 8i; j:(c) If a MC is irreducible, then it is R if and only if P [Xn = i; i.o. jX0 = j] = 1;8i; j:(d) If an irreducible MC is T or NR, then

1N NX
n=1 1fXn = ig ! 0;8i 2 X :

Moreover, there is no invariant distribution. A �nite irreducible MC cannot be T or NR.(e) If an irreducible MC is PR, then
1N NX

n=1 1fXn = ig ! �(i) > 0;8i 2 X :
Moreover, � is the unique invariant distribution. A �nite irreducible MC is necessarily PR.(f) If the MC is irreducible, PR, and aperiodic, then

P (Xn = i)! �(i);8i 2 X :
Proof:The basic steps for (a)-(c) are sketched in HW7.(d)-(e). By considering the successive visits to i we �nd cycles with iid durations �n. Thus,with �n =Pnm=1 �m and Sn =P�nk=0 1fXk = ig, we have

Sn�n = (Sn=n)(�n=n) ! 1E[� jX0 = i] :Thus, 1n nX
m=0 1fXk = ig ! 1E[� jX0 = i] :Moreover, this limit does not depend on X0 since X reaches i in �nite time.Now, if � is invariant and if we choose �0 = �, then we �nd

�(i) = E( 1n nX
m=0 1fXk = ig)! 1E[� jX0 = i]

where the limit is justi�ed by the Lebesgue convergence theorem (b).(f) Imagine X and X 0 as two independent Markov chains with ptm P . We claim that if Pis irreducible, PR, and aperiodic, then Yn = (Xn; X 0n) is irreducible. To see this, take two pairsof states (i; i0) and (j; j0). There is some �nite n such that Pn(i; i0) > 0 and Pn(j; j0) > 0. Thisfollows from the fact that P is aperiodic (see Lemma (d) below). Moreover, this MC admits aninvariant distribution �(i)�(i0), so that it is positive recurrent. Modify slightly the constructionso that X starts with the invariant distribution � and X 0 starts from any given distribution �0.Moreover, assume that X and X 0 stick together after they �rst meet and designate their �rst



15.3. CLASSIFICATION THEOREM 103meeting time by � , which does not change the fact that both X and X 0 are Markov chain withptm P . We know that � is �nite, by recurrence. Then
j�(i)� P (X 0n = i)j = jP (Xn = i)� P (X 0n = i)j � P (� � n)! 0: (15.1)The limit holds because � is �nite, so that 1f� � ng ! 0 as n ! 1; the expectation goes tozero by the Lebesgue convergence theorem (b). To see the inequality, note that

j1fXn = ig � 1fX 0n = igj � 1f� � ng:Indeed, the left-hand side is zero if � < n since then Xn = Yn. Also, left-hand side is alwaysless then or equal to 1. Hence,1fXn = ig � 1fX 0n = ig � 1f� � ng;which implies, by taking expectation, that
P (Xn = i)� P (X 0n = i) � P (� � n):Similarly, we get P (X 0n = i) � P (Xn = i) � P (� � n), which, together with the previousinequality, proves (15.1).

It remains to show the irreducibility of Y we used in (f). That result follows from thefollowing lemma.Lemma 15.1. (a) Assume p and q are coprime. Then 1 = mp+ nq for some m;n 2 Z.(b) Assume fp1; p2; : : : ; pkg are coprime, then there are some integers mi such that 1 =m1p1 + : : :+mkpk.(c) Under the assumption of (b), there must be two consecutive integers N and N + 1 thatare positive integer linear combinations of the pi.(d) Again under the same assumption, all integers larger than some n0 are positive integerlinear combinations of the pi.Proof:(a) For two numbers a 6= b, de�ne f(a; b) = (a � b; b) if a > b and (a; b � a) if a < b. Westop if a = b. Starting with (a; b) = (p; q) and applying f repeatedly, one must end up witha = 1 or b = 1. To see that, assume that we end up with a = b > 1. At the previous step,we had (2a; a) or (a; 2a). At the step before, we had (2a; 3a), and so on. By induction, we seethat p and q must be multiples of a, a contradiction. Thus, we end up with a = 1 or b = 1.But, at each step, a and b are integer combinations of p and q.(b) We extend this idea to k coprime numbers. Starting with p1; : : : ; pk, at each step, wereplace the largest number with the di�erence between it and the smallest number. We stopwhen the numbers are equal or when we reach a 1. At each step, we get integer multiples ofthe original numbers. As in (a), we claim that we must end up with some number equal to 1.Otherwise, all the original numbers must be multiples of the same a > 1, a contradiction.(c) We know 1 = Pjmjpj = Pj(mj)+pj � Pj(mj)�pj . Thus, we can choose N =Pj(mj)�pj and N + 1 =Pj(mj)+pj .(d) In the set of integer linear combinations of the pi, we have N and N + 1. Therefore,for m > N � 1, we also have mN; (m � 1)N + (N + 1) = mN + 1; (m � 2)N + 2(N + 1) =



104 CHAPTER 15. MARKOV CHAINS - PART 3mN +2; : : : ; (m�N +1)N + (N � 1)N = mN +N and these sets cover all the integers largerthan N2.

15.4 Solved Problems
Problem 15.1. Show that any MC (Xn; n � 0) with transition matrix P , can be written as

Xn+1 = f(Xn; Vn) ; n � 0 ;
for some function f(�; �), where (Vn; n � 0) are i.i.d. r.v's, independent of X0.Solution:The idea is that Vn is a collection of die rolls, one for each state. For state i, the roll yields jwith probability P (i; j). Then f(i; Vn) is the outcome of the roll that corresponds to state i.



Chapter 16
Markov Chains - Part 4
16.1 Summary
Here are the key ideas of this lecture.
� Reected Random Walk
� Hidden Markov Chain: Estimation and MAP
� Time-Reversibility
� Time Reversal
� Guessing (�; P 0) - Kelly's Trick

16.2 Reected Random Walk
We have the following de�nition.
De�nition 16.1. The reected random walk is the MC X on X = f0; 1; 2; : : :g with thefollowing transition matrix where p 2 (0; 1):

P (i; j) = � p; if j = i+ 1q = 1� p; if j = (i� 1)+
Fact 16.1. The reected random walk is transient if p > 1=2, null recurrent if p = 1=2, andpositive recurrent if p < 1=2.
Proof:(a) p > 1=2. Note that Xn+1 � Xn + Vn where fX0; Vn; n � 0g are independent andP (Vn = 1) = p = 1 � P (Vn = �1). Consequently, Xn � X0 + V0 + � � � + Vn. Dividing by n,letting n!1, and using the SLLN, we �nd that Xn !1. Thus, the reected random walkis larger than the non-reected walk and the latter goes to in�nity.(b) p = 1=2. We note that P [T0 <1jX0 = i] and E[T0jX0 = i] for i � 0 are the same as forthe non-reected random walk that we studied in Fact 3 of Lecture 17. Since the non-reectedrandom walk is null recurrent, we see that so is X.105



106 CHAPTER 16. MARKOV CHAINS - PART 4(c) p < 1=2. The equations �P = � are
�(0) = q�(0) + q�(1);�(k) = p�(k � 1) + q�(k + 1); k � 1:

The solution is seen to be
�(k) = (1� �)�k; k � 0 where � := pq < 1:

Since X is irreducible and has an invariant distribution, it must be positive recurrent.

16.3 Hidden Markov ChainThis class of models is useful in speech recognition and in digital communication.
16.3.1 De�nitionDe�nition 16.2. A hidden Markov chain is a pair or processes (X;Y ) such that X is a MCon X with transition probabilities P and

P [Yn = jjXn = i;Xm; Ym;m 6= n] = Q(i; j); i 2 X ; j 2 Y:
In this de�nition, Q is a nonnegative matrix whose rows add up to one.

16.3.2 EstimationAssume we observe Y . What does that tell us about X? Here is one formulation.Fact 16.2. Let Y n = (Y0; : : : ; Yn) for n � 0 and
�̂n(i) := P [Xn = ijY n]; i 2 X ; n � 0:

Then �̂n+1(i) = Pi0 �̂n(i0)P (i0; i)Q(i; Yn+1)Pi00Pi0 �̂n(i0)P (i0; i00)Q(i00; Yn+1) :Proof:The derivation is a straightforward application of Bayes' rule. Note that
P [Xn+1 = ijY n+1] = Pi0 P [Xn+1 = i; Yn+1; Xn = i0jY n]Pi00Pi0 P [Xn+1 = i00; Yn+1; Xn = i0jY n] :Now,

P [Xn+1 = i; Yn+1; Xn = i0jY n] = P [Yn+1jXn+1 = i]P [Xn+1 = i; Yn+1jXn = i0]P [Xn = i0jY n]= P (i0; i)Q(i; Yn+1)�̂n(i0):Putting these equalities together proves the fact.
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You will note that these equations that update the conditional distribution of Xn given Y nare recursive but are nonlinear. We can view them as a \nonlinear �lter." In the case of theKalman �lter, if the random variables are all Gaussian, then the distribution of Xn given Y nis N(X̂n;�n) where X̂n is computed recursively from the observations. Here, the situation issimilar, but the �lter is nonlinear. Also, its dimension is the number of states of the Markovchain (minus one, since the probabilities add up to one).

16.3.3 MAPOne interesting question is the MAP of Xn := fX0; : : : ; Xng of the stationary MC givenY n := fY0; : : : ; Yng. We haveFact 16.3. The MAP of the hidden MC X given the observation Y is given as follows:MAP [XnjY n = (j0; : : : ; jn)] = argmaxi0;:::;in�(i0)Q(i0; Y0)P (i0; i1)Q(i1; Y1) � � �P (in�1; in)Q(in; Yn):(16.1)Proof:We have
P [X0 = i0; X1 = i1; : : : ; Xn = injY n = (j0; : : : ; jn)] = P (X0 = i0; X1 = i1; : : : ; Xn = in; Y0 = j0; : : : ; Yn = jn)P (Y0 = j0; : : : ; Yn = jn) :

Also,P (X0 = i0; X1 = i1; : : : ; Xn = in; Y0 = j0; : : : ; Yn = jn)= P (X0 = i0; X1 = i1; : : : ; Xn = in)P [Y0 = j0; : : : ; Yn = jnjX0 = i0; X1 = i1; : : : ; Xn = in]= �(i0)Q(i0; j0)P (i0; i1)Q(i1; j1) � � �P (in�1; in)Q(in; jn):
This fact leads to a simple shortest path algorithm called Viterbi's Algorithm for �nding theMAP. One constructs a graph with one copy of X at each time 0; 1; : : : ; n and one additionalstate � at time �1. There is a link from � to every state i at time 0 and a link from everystate at time m� 1 to every state at time m, for m = 1; : : : ; n. The link lengths are de�ned asfollows. From � to i at time 0, the length is d0(i) and from i at time m� 1 to i0 at time m itis dm(i; i0) whered0(i) = ln(�(i0)Q(i0; j0)) and dm(i; i0) = ln(P (i; i0)Q(i0; jm));m = 1; : : : ; n:To �nd the longest path, one de�nes D(i;m) as the length of the longest path from � to i attime m in the graph. We see that

D(i; 0) = d0(i) and D(i;m) = maxim�1fD(im�1;m� 1) + dm(im�1; i)g;m = 1; : : : ; n:
Solving these equations, we �nd the longest path to stage n. It is such that im�1 achieves themaximum in the above identities and D(im;m) = maxiD(i;m). That longest path maximizesthe logarithm of the expression in (16.1) and is the MAP.
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Chapter 17
Poisson Process
17.1 SummaryHere are the key ideas.� Exponential distribution.
� Poisson process.
� Poisson measure.
� Application to a queuing model.

17.2 Exponential DistributionRecall the following de�nition.De�nition 17.1. The random variable � is exponentially distributed with rate � � 0 if P (� �t) = e��t with t � 0. We write � =D Exp(�). Equivalently, � = 1 if � = 0 and f� (t) =�e��t1ft � 0g if � > 0.Fact 17.1. Assume � =D Exp(�) for some � > 0. Then(a) Characteristic Function and Moments:
E(es� ) = ��� s; 8s with Re(s) < �

and E(�n) = n!��n; for n � 0:(b) Scaling Property: � =D 1�� where � =D Exp(1):
(c) Generation from Uniform:

� =D � 1� ln(U) where U =D U [0; 1]:
(d) Memoryless Property:P [� > t+ sj� > t] = P (� > s);8s; t � 0:109



110 CHAPTER 17. POISSON PROCESSProof: (a) We �nd
E(es� ) = Z 10 est�e��tdt = ��� s; 8s with Re(s) < �:

This identity implies that
E(�n) = dndsnE(es� )js=0 = n!�(�� s)n+1 js=0 = n!��n for n � 0:

(b) Indeed, P � 1�� > t� = P (� > �t) = e�1(�t) = e��t;8t � 0:(c) One has
P �� 1� ln(U) > t� = P (ln(U) < ��t) = P (U < e��t) = e��t; 8t � 0:

(d) We �nd, for s; t � 0,
P [� > t+ sj� > t] = e��(s+t)e��t = e��s = P (� > s):

The following results are useful.Fact 17.2. Assume �1 and �2 are independent with �i =D Exp(�i) for i = 1 and 2.(a) minf�1; �2g =D Exp(�1 + �2).(b) Also,
P [�1 < �2jminf�1; �2g = t] = P [�1 � �2jminf�1; �2g = t] = �1�1 + �2 ; 8t � 0:

(c) Moreover, E(maxf�1; �2g) = 1�1 + �2
�1 + �1�2 + �2�1

� :
Proof: (a) We have P (minf�1; �2g > t) = P (�1 > t; �2 > t) = P (�1 > t)P (�2 > t) =e��1te��2t = e�(�1+�2)t.(b) First we note that P (�1 2 (t; t+ �); �2 > t) � ��1e��1t � e��2t = ��1e�(�1+�2)t. Then
P [�1 < �2jminf�1; �2g 2 (t; t+�)] � P (�1 2 (t; t+ �); �2 > t)P (minf�1; �2g 2 (t; t+ �)) � ��1e�(�1+�2)t(�1 + �2)�e�(�1+�2)t = �1�1 + �2 ;which implies the result.(c) E(maxf�1; �2g) = E(minf�1; �2g) + E(maxf�1; �2g �minf�1; �2g). On the other hand,E(maxf�1; �2g �minf�1; �2gjminf�1; �2g)= E(�2 � �1; �1 < �2jminf�1; �2g) + E(�1 � �2; �2 � �1jminf�1; �2g)= E(�2 � �1j�1 < �2;minf�1; �2g)P [�1 < �2jminf�1; �2g] + E(�1 � �2j�2 � �1;minf�1; �2g)P [�2 � �1jminf�1; �2g]= �1�1 + �2 � 1�2 + �2�1 + �2 � 1�1 :The result follows from the fact that E[E[XjY ]] = E[X].



17.3. POISSON PROCESS 11117.3 Poisson Process
De�nition 17.2. Let f�n; n 2 Ng be i.i.d. Exp(�). De�ne, for t � 0,

Nt = maxfn � 1 j Tn := �1 + � � �+ �n � tg if t � �1 and Nt = 0 if t < �1:
The process fNt; t � 0g is called a Poisson process with rate �. The random times fTn; n 2 Ngare the jump times of the process. Thus, Nt is the number of jumps in [0; t]. We also say thatNt is a counting process since it counts jumps.Theorem 17.1. Let fNt; t � 0g be a Poisson process with rate �.(a) For any s > 0, fNt+s �Ns; t � 0g is a Poisson process with rate � and is independentof fNt; t � sg.(b) For any n � 2 and 0 < t1 < t2 < � � � < tn, the random variables Nt1 ; Nt2 �Nt1 ; : : : ; Ntn � Ntn�1 are mutually independent and Poisson distributed with respective means�t1; �(t2 � t1); : : : ; �(tn � tn�1).(c) Given that Nt = n, the jump times fT1; : : : ; Tng are the ordered values of n i.i.d. U [0; t]random variables.(d) Color each jump time Tn independently red with probability � and blue with probability1 � � where � 2 (0; 1). For t � 0, let At be the number of red jumps and Bt the number ofblue jumps in [0; t]. Then fAt; t � 0g and fBt; t � 0g are independent Poisson processes withrespective rates �� and (1� �)�.
Proof: (a) Suppose for concreteness that by time s there have been n arrivals occurring at timesT1; : : : ; Tn. We know the waiting time for the (n+ 1)-th arrival must have �n+1 > s� Tn, butby the lack of memory property of the exponential distribution, P [�n+1 > s � Tn + tj�n+1 >s � Tn] = P (�n+1 > t) = e��t. This shows that the distribution of the �rst arrival after s isExp(�) and independent of T1; : : : ; Tn. Therefore, it is clear that �n+1; �n+2; : : : are independentof T1; : : : ; Tn and �n, and the interarrival times after s are independent Exp(�).(b) The independence follows from (a). To get the distribution, it su�ces to focus on Nt.We �nd g(n; t + �) := P (Nt+� = n) � P (Nt = n)(1 � ��) + P (Nt = n � 1)(��) + o(�). Thus,g(n; t+ �) = g(n; t)(1� ��) + g(n� 1; t)��+ o(�). Hence,ddtg(n; t) = ��g(n; t) + �g(n� 1; t):
For n = 0, this gives g(0; t) = e��t. Assume as an induction hypothesis that the result hodsfor n� 1. For n we get ddtg(n; t) = ��g(n; t) + � (�t)n�1(n� 1)!e��t:One can check that g(n; t) = (�t)ne��t=n! solves this equation.As an alternate proof, note that

P (T1 2 (t1; t1 + �); : : : ; Tn 2 (tn; tn + �); Tn+1 > t)� P (�1 2 (t1; t1 + �); �2 2 (t2 � t1; t2 � t1 + �); : : : ; �n 2 (tn � tn�1; tn � tn�1 + �); �n+1 > t� tn)� ��e��t1��e��(t2�t1) � � ���e��(tn�tn�1)e��(t�tn) = (��)ne��t:
Integrating this constant value over all the possible values of t1 < � � � < tn in [0; t]n andobserving that these values occupy a fraction 1=n! of the cube [0; t]n, we get the result.



112 CHAPTER 17. POISSON PROCESS(c) We use the result of the calculation above and �nd P [T1 2 (t1; t1+ �); : : : ; Tn 2 (tn; tn+�)jNt = n] = (��)ne��tP (Nt=n) = n!�ntn , which proves the statement of the theorem.(d) For small �, the probability of a new jump occurring in the time interval (t; t+ �) givenTNt is Z t+��TNtt�TNt �e��sds = e��(t�TNt ) � e��(t+��TNt ) � ��
from the exponential distribution. Thus, the probability of a red (blue, resp.) jump occurring inthe time interval (t; t+�) is approximately ��� ((1��)��, resp.). It is clear that fAt; t � 0g andfBt; t � 0g are Poisson processes with respective rates �� and (1� �)�. Let 0 < t1 < � � � < tnand 0 < s1 < � � � < sm, with no common values. The probability that A has the jumps ti in[0; t] and B the jumps sj in [0; t], within small �, is

�n(1� �)m(��)n+me��t = (���)ne���t((1� �)��)me�(1��)�t;which proves the independence.
17.4 Poisson MeasureWe generalize the previous de�nition to non-homogeneous and multi-dimensional situations.We limit the discussion to a concrete situation. Let � be a �-�nite measure on (<d;B(<d)).For instance, �(A) = ZA �(x)dx;where � is nonnegative and bounded. Being �-�nite means that we can cover <d with acountable union of pairwise disjoint sets Cn 2 B(<d) such �(Cn) <1 for each n. Let �(n) bea Poisson random variable with mean �(Cn). Let the random variables X1; : : : ; X�(n) be i.i.d.and distributed in Cn so that P (Xk 2 A) = �(A)=�(Cn) for every A � Cn. Finally, let

N(A) = �(n)X
k=1 1fXk 2 Ag; A � Cn:

The counting process N(�) is called a Poisson measure on Cn with intensity �. By doing thisconstruction independently in each Cn, we de�ne a Poisson measure in <d with intensity �(�).Theorem 17.2. Let N(�) be a Poisson measure on <d. For any n � 2 and any pairwise disjointsets A1; : : : ; An in B(<d), the random variables N(A1); : : : ; N(An) are mutually independentand N(Am) is Poisson with mean �(Am).Proof: Let Am � Ci. Note thatP (N(Am) = k1; N(Ci) = k1 + k2) = P (N(Ci) = k1 + k2)P [N(Am) = k1jN(Ci) = k1 + k2]= (�(Ci))k1+k2e��(Ci)(k1 + k2)! �k1 + k2k1
���(Am)�(Ci) �k1 �1� �(Am)�(Ci) �k2=  (�(Am))k1e��(Am)k1!

! (�(Ci)� �(Am))k2e��(Ci)+�(Am)k2!
! :



17.5. APPLICATION 113Summing the above probability over all non-negative integers k2, it is clear that N(Am) isPoisson with mean �(Am). To show the independence, it su�ces to look at n = 2. Let A1 andA2 partition some Ci. Then �(Ci) = �(A1) + �(A2) andP (N(A1) = k1; N(A2) = k2) = P (N(A1) = k1; N(Ci) = k1 + k2)= P (N(Ci) = k1 + k2)P [N(A1) = k1jN(Ci) = k1 + k2]= (�(Ci))k1+k2e��(Ci)(k1 + k2)! �k1 + k2k1
���(A1)�(Ci)�k1 �1� �(A1)�(Ci)�k2=  (�(A1))k1e��(A1)k1!

! (�(A2))k2e��(A2)k2!
! :

17.5 ApplicationWe consider a service system where customers arrive according to a Poisson process with rate� and arrival times fTn; n 2 Zg. Thus, fTn � Tn�1; n 2 Zg are i.i.d. Exp(�). Each customerrequires a service time Sn that is i.i.d. with some distribution G(�). For n 2 Z, customer nleaves at time T 0n = Tn + Sn.Fact 17.3. (a) The departure process with jumps fT 0n; n 2 Zg is Poisson with rate �.(b) The number of customers in the queue at time t is independent of the departure timesup to time t and is Poisson with mean �E(S1).Proof: The �rst observation is that f(Tn; Sn); n 2 Zg is a Poisson measure on <2. To see this,let Cn = [tn; tn+1)�<, where ftn; n 2 Zg is an increasing sequence divergent to in�nite. Thenumber of points in Cn is Poisson with mean �(tn + 1� tn) = � from the fact that the arrivalprocess is Poisson with rate �. Given the number of points in fCn; n 2 Zg, the number of pointsin Cn are distributed independently according to the intensity (t; t+dt)�(u; u+du) 7! �dtdG(u)(in the sense of probability). This corresponds precisely to the de�nition of a Poisson measure.Now we look at Figure 17.1. For a �xed time t, the points in the triangle A correspond tothe customers in the queue at time t. The points in the set B1 (B2 and B3, resp.) correspondto the customers who will leave during (t1; t) ((t2; t1) and (t3; t2), resp.). Since the measure isPoisson, the number of points in these disjoint sets are all independent and Poisson distributed.Hence the departure process is Poisson. To �nd the corresponding rate we compute the meanof B3 with t2 = t3 + 1, Z
B3

�dtdG(u) = Z 10 �(t2 � t3)dG(u) = �:
However, this particular B3 indicates the departure process is incremented by a unit time, therate is �.It remains to compute the mean of A, which isZ

A �dtdG(u) = Z 10
Z t
t�u �g(u)dtdu = � Z 10 ug(u)du = �E(S1):
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Figure 17.1: The arrivals with the service times.
17.6 Solved Problems
Problem 17.1. Let N be a Poisson r.v. with mean �, and M a binomial r.v. B(m; p), withmp = �;m > 0 i.e.,

P (M = n) = �mn�pn(1� p)m�n ; for all n = 0; : : : ;m :
Show that P (N � n) � P (M � n), for any n � 0.(Hint: write N as N = N(1) = Pmi=1(N(i=m) � N((i � 1)=m)), where N(t) is a Poissonprocess with rate �. De�ne a r.v. M for which N �M , and M =D B(m; p).)Solution:Let N(t) be a Poisson process with rate �, and let N = N(1). Observe that for any m > 0,

N =Xi=1�N� im��N� i� 1m �� �Xi=1 1�N� im��N� i� 1m � > 0	 =:M :
Since the r.v's (N(i=m)�N((i� 1)=m); i = 1; : : : ;m) are independent, M =D B(m; p), with

p = P �N� im��N� i� 1m � = 0� = 1� e��=m :Thus, for all n � 0, P (N � n) � P (M � n).Problem 17.2. In this problem we want to estimate the rate � of some Poisson process Nt,given the observation (Ns : 0 � s � t), for some �xed t > 0.1. Show that Nt=t is the maximum-likelihood estimate of �.
2. Compute Var(Nt=t), for t > 0.Solution:
1. Let T1; T2; : : : be the arrival times of Ns, and suppose we observe these to be t1; t2; : : :,and Nt = n. From class,P [T1 2 (t1; t1 + dt); : : : ; Tn 2 (tn; tn + dt)] = �ne��t(dt)n :Thus, the value of � at maximizes the likelihood must satisfyn�n�1e��t � �nte��t = 0 =) � = nt :



17.6. SOLVED PROBLEMS 1152. Var�Ntt � = �tt2 :
Problem 17.3. Under hypothesis X = 0, Nt is a Poisson process with rate �0; under X = 1,Nt is a Poisson process with rate �1. Suppose we observe (Ns : 0 � s � t), for some �xed t > 0.1. Solve the hypothesis-testing problem, i.e., �nd a test that minimizes P [X̂ = 1jX = 0],such that P [X̂ = 0jX = 1] � �.

2. Find t such that P [X̂ = 1jX = 0] � �.Solution:
1. Assume �1 > �0. By Problem 5, the likelihood-ratio is given by

�((Ns; 0 � s � t)) = �Nt1 e��1t�Nt0 e��0t ;so the Neyman-Pearson test is
X̂ =

8><>:
1 ;�((Ns; 0 � s � t)) > �1fU > g ;�((Ns; 0 � s � t)) = �0 ;�((Ns; 0 � s � t)) < � ;

where U is an independent r.v. uniform in [0; 1], and �;  are determined by P [X̂ = 0jX =1] � �.2. We will use a suboptimal test to bound the errors. The test will be:
~X = (1 ; Ntt > �1+�020 ; otherwiseNotice that for any a > 0,

1fjNt=t� �0jg � ag � (Nt=t� �0)2a2 1fjNt=t� �0jg � ag ;
so taking expectations, conditional on X = 0, on both sides yields

P [jNt=t� �0j � ajX = 0] � E[(Nt=t� �0)2jX = 0]a2= �0ta2 ;by Problem 5(b). Using a = (�1 � �0)=2, we can compute the error as
P [ ~X = 1jX = 0] � 4�0t(�1 � �0)2 :In the same way, we can compute
P [ ~X = 0jX = 1] � 4�1t(�1 � �0)2 :



116 CHAPTER 17. POISSON PROCESSThus, for t � 4maxf�1=�; �0=�g=(�1 � �0)2, we have maxfP [ ~X = 0jX = 1]; P [ ~X =1jX = 0]g � minf�; �g.Since P [X̂ = 0jX = 1] = � � P [ ~X = 0jX = 1], the Neyman-Pearson test guaranteesthat P [X̂ = 1jX = 0] � P [ ~X = 1jX = 0].
Problem 17.4. [Two-sided stationary Poisson process.] Let N+t ; N�t be two independent Pois-son processes with rate �, and corresponding arrival times (T+n ; n � 1), (T�n ; n � 1) respectively.For n > 0, de�ne Tn = T+n , T1�n = �T�n .One can think of (Tn; n � 0), (Tn; n > 0) as describing arrivals occuring before and aftertime 0, respectively. You will show that the arrival statistics do not depend on the choice oft = 0, i.e., (Tn; n 2 Z) is stationary.For any �xed s 2 R, let n0 = maxfn 2 Z : Tn � sg, and consider the sequence (Tn+n0�s; n 2Z). Show that (Tn+n0 � s; n 2 Z) =D (Tn; n 2 Z).Observe E(T1 � T0) = 2��1, while E(Tn+1 � Tn) = ��1 for all n 6= 0! How do you explainthis?
Solution:We must show s�Tn0 =D Tn0+1� s =D Tn+1+n0 �Tn+n0 =D Exp(�) for n 2 Z n f0g, and thatthese are mutually independent.We may assume s � 0, since the setup is symmetric around 0.Now, P (s � Tn0 > t) = E(P [s � Tn0 > tjn0]). On n0 = 0, P [s � Tn0 > tjn0] = P (�T0 >t � s) = 1ft > sg. On n0 = m > 0, the arrival times (T1; �; Tm) are distributed as the orderstatistics of i.i.d. uniform on [0; s], since N+s = n0. Thus,

P [s� Tn0 > tjn0] = 1fs > tg�s� ts �m :
Combining all the above yields,

P (s� Tn0 > t) = P (N+s = 0)(e��(t�s)1ft > sg+ 1ft � sg)
+ 1ft < sg 1X

m=1P (N+s = m)�s� ts �m
= e��s(e��(t�s)1ft > sg+ 1ft � sg)
+ 1ft < sg 1X

m=1 e
��s(�s)mm! �s� ts �m

= e��t :
(17.1)

We still need to show that Tn+n0 � Tn+n0�1 are i.i.d. Exp(�), for all n � 0.On Tn+n0 < 0, Tn+n0 � Tn+n0�1 is independent of (Tm : m � n + n0) and exponentiallydistributed with rate �. This is because n0 depends only on (Tm : m � 0), and (�Tm : m � 0)give the arrivals of a Poisson process of rate �, which are independent of (Tm : m � 0).Let's assume Tn+n0 � 0 (so n+ n0 � 1) now. Then,
P [Tn+n0 � Tn+n0�1 > tjTn+n0 ] = E[P [Tn+n0 � Tn+n0�1 > tjTn+n0 ; n0]jTn+n0 ] ;



17.6. SOLVED PROBLEMS 117but fTn+n0 = u;N+u = m;n0 = kg = fTn+n0 = u; n0 = �n+mg, so
P [Tn+n0 � Tn+n0�1 > tjTn+n0 = u; n0 = k; (N+r ; u � r � s)] =P [u� Tk+n�1 > tjTk+n = u;N+u = k + n;Ns �N+u = �n; (N+r ; u � r � s)]= P [u� Tk+n�1 > tjN+u� = k + n� 1]= P [u� Tn0 > tjN+u = k + n� 1] ; (17.2)

where N+u� = lim�#0N+u��. Thus, by letting s = u in (17.1), P [Tn+n0 � Tn+n0�1 > tjTn+n0 ] =e��t, where we have always conditioned on fTn + n0 � 0g.Now, by combining the above,P (Tn+n0 � Tn+n0�1 > t) = e��t :Also, (17.2) implies that Tn+n0 �Tn+n0�1 is independent of s�Tn0 ; (Tm�Tm�1;m = n+n0+1; : : : ; n0.Finally, note that Tn0+1 � s; (Tn+n0+1 � Tn+n0 ; n > 0) are i.i.d. Exp(�), independent ofeverything that came before time s. This follows from the fact that (N+t+s � N+s ; t � 0) is aPoisson process, independent of (N+r : 0 � r � s).E(T1 � T0) > E(Tn+1 � Tn); 8n 6= 0 is called the \inspection" paradox: When an observersuddenly looks at a system of arrivals, he sees that the spread between the next and previousarrival, is \larger" than the average spread of the other inter-arrival times! The reason that thisoccurs is not particular to Poisson; it is because the observer is more likely to fell into a longer-than-usual interval. E.g., consider two types of alternating interarrival intervals; one that lasts1 second, and another lasting 100 seconds. Although half of the intervals are short, there is ahigher likelihood of encountering a long one because they occupy more time. In this example,the observed average interarrival interval is not 121s+ 12100s = 50:5s, but 11011s+ 100101100s � 99s.Problem 17.5. Let �1; �2; : : : be i.i.d. Exp(�) r.v's, independent of a geometric r.v. Z withparameter p, 0 < p < 1, i.e., P (Z = k) = (1� p)k�1p, for k � 1.Show that ZX
i=1 �1 =D Exp(�p) :

Solution:Let Nt; t � 0 be a Poisson process with rate �, and interarrival times �1; �2; : : :. Then, for alls; t � 0,
P � ZX

i=1 �i � t+ sj ZX
i=1 �i � s� = P [Z � (Nt+s �Ns) +NsjZ � Ns]

= P (Z � Nt+s �Ns) = P (Z � Nt)
= P � ZX

i=1 �t � t� ;
so PZt=1 �i has the memoryless property, so it is exponentially distributed with mean

E� ZX
i=1 �i� = E(Z)E(�i) = p�1��1 :



118 CHAPTER 17. POISSON PROCESSProblem 17.6. Let �1; : : : ; �n be n i.i.d. Exp(�) r.v's.Calculate E(maxf�1; : : : ; �ng).Solution:Let n > 1. Then,
E(maxf�1; : : : ; �ng) = E(maxf�1; : : : ; �n�1g)+E(maxf�1; : : : ; �ng �maxf�1; : : : ; �n�1g) :But,

E(maxf�1; : : : ; �ng�maxf�1; : : : ; �n�1g) = E((�n�maxf�1; : : : ; �n�1g)1f�n > maxf�1; : : : ; �ngg);and P (�n � maxf�1; : : : ; �n�1g+ tj�n � maxf�1; : : : ; �n�1g) = P (�n � t) ;so E[maxf�1; : : : ; �ng �maxf�1; : : : ; �n�1gj�n > maxf�1; : : : ; �ng]) = 1� :Hence, E(maxf�1; : : : ; �ng) = E(maxf�1; : : : ; �n�1g) + 1�n = 1� nX
i=1 1i :



Chapter 18
Continuous Time Markov Chains:
Examples and De�nition
18.1 Summary
We look at examples to illustrate the following key ideas.
� Exponential Holding Times
� Rate Matrix
� Invariant Distribution, Convergence
� Explosions
� De�nition

18.2 Examples
We discuss a few simple examples.
18.2.1 Two-State MCWe de�ne a process fXt; t � 0g as follows. X0 is chosen in f0; 1g with P (X0 = 0) = �0(0) andP (X0 = 1) = �0(1) where �0(0) � 0; �0(1) � 0; and �0(0) + �0(1) = 1. If X0 = i, then Xt = ifor t 2 [0; T1) where T1 =D Exp(qi) with qi > 0. Also, XT1 = 1� i. The construction of Xt fort � T1 then continues as before, independently of T1.Figure 18.1 illustrates the construction.

0 t

Xt
1

T1

T2

T3

T4

Figure 18.1: A two-state Markov chain.119



120CHAPTER 18. CONTINUOUS TIMEMARKOVCHAINS: EXAMPLES ANDDEFINITIONThe interesting questions concern the long-term fraction of time that Xt = i and theevolution of P (Xt = i), for i = 0; 1. To study these questions, we establish a few preliminaryfacts.Fact 18.1. Fix t > 0. Given fXs; s � t;Xt = ig, the process fXs; s � tg has the samedistribution as fXs; s � 0g given that X0 = i, for i 2 f0; 1g.
Proof:The exponential distribution is memoryless.

That property is called the Markov property. It states that X restarts afresh from Xt attime t, independently of the past.Fact 18.2. Let �t = (�t(0); �t(1)) for t � 0 where �t(i) = P (Xt = i). Thenddt�t = �tQ
where Q = � �q0 q0q1 �q1

� :
The matrix Q is called the rate matrix or the generator of X.
Proof:We �nd that

P (Xt+� = 0) = P (Xt+� = 0; Xt = 0) + P (Xt+� = 0; Xt = 1)= P [Xt+� = 0jXt = 0]P (Xt = 0) + P [Xt+� = 0jXt = 1]P (Xt = 1)= P [T1 > �jX0 = 0]�t(0) + P [T1 < �jX0 = 1]�t(1) + o(�)= (1� q0�)�t(0) + q1��t(1) + o(�) = �t(0)� q0��t(0) + q1��t(1):Hence, ddt�t(0) = �q0�t(0) + q1�t(1):
Using the previous fact, one easily derives the following result.Fact 18.3. (a) The distribution �t of Xt is given as follows:

�t = �0eQt; t � 0:
(b) �t = �0;8t � 0 if and only if �0Q = 0:(c) The unique solution of the equations above is

� = [ q1q0 + q1 ; q0q0 + q1 ]:We note also the following fact.



18.2. EXAMPLES 121Fact 18.4. (a) One has
limT!1

Z T0 1fXs = igds = �(i); i 2 f0; 1g; almost surely
where � is as given in the previous fact.(b) Moreover, for any �0, one has

�t ! �; as t!1:
Proof:(a) Assume that X0 = 0. Then

1T1 + � � �+ T2n
Z T1+���+Tn0 1fXt = 0gdt = T1 + T3 + �+ T2n�1T1 + T2 + � � �+ T2n ! q�10q�10 + q�11 = q1q0 + q1 :(b) A simple proof is by coupling. Let Xt be stationary version of this MC and Yt anindependent version of the MC with Y0 = 0. De�ne Zt as follows. Let � = minft � 0jXt = Ytg.Let then Zt = Yt for t � � and Zt = Xt for t � � . The claim is that Zt is again a MC withrate matrix Q and with Z0 = 0, as you can easily verify. Now, since � < 1, it is clear thatP (Xt = Zt) ! 1 as t ! 1. Since the distribution of Xt is � for all t � 0, it follows that thedistribution of Zt converges to �. However, the distribution of Zt is the same as that of Yt.This concludes the proof.

18.2.2 UniformizationLet Y = fYn; n � 0g be a Markov chain with transition matrix P and N = fNt; t � 0g aPoisson process with rate � that is independent of Y .Fact 18.5. De�ne X = fXt = YNt ; t � 0g. Then
P [Xt+� = jjXt = i;Xs; s � t] = � q(i; j)�+ o(�) := �P (i; j)�+ o(�); if i 6= j1 + q(i; i)�+ o(�) := 1� �Pk 6=i P (i; k)�+ o(�); if i = j:
Proof:The key idea is the memoryless property of the Poisson process.

18.2.3 ExplosionHere is a cute example. X0 is chosen in X = f0; 1; 2; : : :g according to some distribution �0. IfX0 = i, then X keeps that value for an Exp(qi) random time. It then jumps to i+ 1, and theconstruction continues as before. We assume that1X
i=0 q�1i <1:



122CHAPTER 18. CONTINUOUS TIMEMARKOVCHAINS: EXAMPLES ANDDEFINITIONFor instance, qi = (i + 1)2: In that case, one can see that X makes in�nitely many jumps in�nite time. For instance, if X0 = 0. we have, for s > 0,
E(T1 + �+ Tn) = q�10 + q�11 + � � �+ q�1n�1 ! 1X

i=0 q�1i ; as n!1:
Hence, by the Lebesgue convergence theorem,

E( 1Xn=1Tn) =
1X
i=0 q�1i <1

This implies that P (P1n=1 Tn <1) = 1.Thus our construction de�nes the process X only on [0; �) where � = P1n=1 Tn < 1. Tocontinue the construction, we restart it at time � with the distribution �0.What is quite interesting is that we have de�ned a process that makes in�nitely many jumpsin �nite time. Also, the fraction of time that this process spends in state 0 certainly dependson �0. Consequently, this fraction of time is not uniquely determined by Q, even though theprocess is irreducible and positive recurrent if �0(0) = 0, with the de�nitions that we adapt inthe obvious way from the discrete time case....
18.2.4 De�nition and ConstructionWe de�ne and construct a Markov chain.De�nition 18.1. Let X be a countable set. A rate matrix Q on X is a matrix Q = fq(i; j); i; j 2Xg such that q(i; j) � 0 for all i 6= j and Pj q(i; j) = 0 for all i.A process fXt; t � 0g that takes values in X is a Markov chain with rate matrix Q if

P [Xt+� = jjXt = i;Xs; s � t] = � q(i; j)�+ o(�); if i 6= j1 + q(i; i)�+ o(�); if i = j:We already saw a few examples. We now construct the general case.De�nition 18.2. ConstructionLet Q be a rate matrix and �0 a distribution on X . We de�ne a process X = fXt; t � 0gas follows.First we choose X0 in X according to �0. Second, if X0 = i, then we de�ne an exponentiallydistributed random variable � with rate �q(i; i). Third, we de�ne Xt = i for t 2 [0; �). Fourth,given X0 = i and � , we de�ne X� = j with probability P (i; j) := �q(i; j)=q(i; i) for j 6= i.Fifth, we continue the construction of Xt for t � � as before, independently of X0 and of � .This construction de�nes the process X as long as there are no explosions.We have the following fact.Fact 18.6. The process X that we constructed is a Markov chain with rate Q if there are noexplosions.Proof:Exercise.
What about explosions? If they occur, we can restart after the explosion as we explainedin the example. Can we say when explosions occur? The following fact provides a strong clue.



18.3. SOLVED PROBLEMS 123Fact 18.7. For n � 1, let �n =D Exp(�n) and assume that these random variables are inde-pendent. Then P (� := 1X
n=1 �n <1) = � 1; if P1n=0 ��1n <10; if P1n=0 ��1n =1:

Proof:We saw the �rst part earlier.Assume P1n=0 ��1n =1. Then, for all s > 0,
E(e�s(�1+���+�n) = �mm=1(1 + ��1m s)�1 � (1 + nX

m=1��1m s)�1 ! 0 as n!1:
Consequently, by Lebesgue's Theorem, E(e�s� ) = 0 for all s > 0. This implies that P (e�s� =0) = 1, so that P (� =1) = 1.

18.3 Solved Problems
Problem 18.1. How would you simulate a continuous-time Markov chain (CTMC) with ratematrix Q and state-space f1; 2; : : : ; Ng?Solution:
Problem 18.2. Consider the CTMC with rate-matrix given by the �gure.

Find the invariant distribution.Solution:
Problem 18.3. Let Xt be a CTMC with state-space X . Assume that �q(i; i) � �; 8i 2 X .Show that one can write Xt = YNt, where (Nt; t � 0) is a Poisson process of rate �, and(Yn; n � 0) is a discrete-time MC.Solution:
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Problem 18.4. Consider the CTMC Xt with rate-matrix given by the �gure on the next page.
1. Show that one can write Xt = f(X0;N�s ; N�s ; s � t) ;where N�s ; N�s are independent Poisson processes of rate �; �, respectively.
2. How would you generalize (a) to any CTMC Xt?Solution:

Problem 18.5. Let Xt be a CTMC on X with rate-matrix Q = [q(i; j)]i;j2X , and de�ne�A = minft > 0jXt 2 Ag for A � X .Show that
P [X�A+� = jjX�A = i;Xs; s � �A] = q(i; j)�+ o(�) ; i 6= j ; as � # 0 :

Solution:
Problem 18.6. Provide the details for the coupling argument we used in class to show that

P (Xt = 0)! ��+ � ; as t!1 ;
for the CTMC with rate matrix ��� �� �� � .



Chapter 19
Continuous Time Markov Chains:
Key Results
19.1 SummaryWe explain the following ideas and results:
� Invariant Distribution
� Classi�cation Theorem
� M/M/1 queue
� Time-Reversal

19.2 Invariant DistributionWe have the following de�nition.De�nition 19.1. Invariant DistributionThe distribution � = f�(i); i 2 Xg is said to be invariant for Q if
�Q = 0;

i.e., if �(i)(�q(i; i)) =Xj2X �(j)q(j; i); i 2 X : (19.1)
The relations (19.1) are called the balance equations.The relevance is because of the following results.Theorem 19.1. Kolmogorov EquationsLet X be a regular Markov chain (meaning, no explosions are possible) with rate matrix Q.For t � 0, let �t = f�t(i); i 2 Xg where �t(i) = P (Xt = i). We consider �t as a row vector.Then ddt�t = �tQ:Consequently, �t = � for all t � 0 if and only if �0 = � and � is invariant.125



126 CHAPTER 19. CONTINUOUS TIME MARKOV CHAINS: KEY RESULTSWe discuss an interpretation of the balance equations (19.1). The number of transitionsfrom fig to figc := fj 2 X j j 6= ig and the number of transitions from figc to fig over anyinterval [0; T ] di�er by at most one. If the Markov chain is stationary with invariant distribution�, then the rates of those transitions are given by both sides of (19.1).
Theorem 19.2. Let X be a regular Markov chain with rate matrix Q and initial distribution�. It is stationary if and only if � is invariant.
19.3 Classi�cation Theorem
We de�ne irreducible, transient, null recurrent, and positive recurrent as in discrete time. Wehave the following result.
Theorem 19.3. Classi�cationLet X = fXt; t � 0g be an irreducible Markov chain on X .(a) The states are either all transient, all null recurrent, or all positive recurrent. We thensay that the Markov chain is ....(b) If X is transient or null recurrent, then

1T Z T0 1fXt = igdt! 0; as T !1;8i 2 X ; a.s.
Moreover, there is no invariant distribution and

P (Xt = i)! 0; 8i 2 X :
(c) If X is positive recurrent, then

1T Z T0 1fXt = igdt! �(i) > 0; as T !1;8i 2 X ; a.s.
Moreover, � is the unique invariant distribution and

P (Xt = i)! �(i);8i 2 X :
Proof:Consider the jump chain Y = fYn; n � 0g that speci�es the sequence of successive valuesof X. We can see that X and Y must be of the same type.We leave the details as an exercise.

19.4 M/M/1 Queue
Customers arrive according to a Poisson process with rate � and get served one by one, withindependent service times that are exponentially distributed with rate �, by a single server.



19.5. TIME REVERSAL 127Theorem 19.4. The number of customers in the queue at time t, Xt, is a Markov chain withrate matrix q(n; n + 1) = �, q(n + 1; n) = � for n � 0. All the other non-diagonal terms arezero.This Markov chain is positive recurrent if and only if � < �. In that case, the uniqueinvariant distribution is �(n) = (1� �)�n; n � 0:
Proof:Write the balance equations. You �nd �(n) = �n�(0); n � 0. There is a solution only if� < 1.

19.5 Time Reversal
We want to examine the Markov chain Xt observed in reverse time. Imagine a movie of theMarkov chain that you play in reverse.The �rst observation may be a bit surprising.
Fact 19.1. Assume fXt; t � 0g is a Markov chain. In general, fYt := XT�t; 0 � t � Tg is nota Markov chain.
Proof:Exercise.

However, we have the nice result.
Theorem 19.5. Assume X is a regular stationary Markov chain with rate matrix Q and in-variant distribution �. Then Y is a regular stationary Markov chain with invariant distribution� and rate matrix Q0 where q0(i; j) = �(j)q(j; i)�(i) :
De�nition 19.2. Time-Reversible A random process X is time-reversible if fXt; t 2 <g andfXT�t; t 2 <g have the same distribution for all T 2 <.Note that a time-reversible process must be stationary. (Prove that fact.)
Theorem 19.6. A Markov chain with rate matrix Q is time-reversible i� it is stationary andits invariant distribution � is such that

�(i)q(i; j) = �(j)q(j; i);8i; j 2 X : (19.2)
These relations are called the detailed balance equations.Here is a cute application to the M/M/1 queue.



128 CHAPTER 19. CONTINUOUS TIME MARKOV CHAINS: KEY RESULTSTheorem 19.7. The stationary M/M/1 chain is time-reversible. In particular, the departuresfrom the stationary queue form a Poisson process with rate � whose past up to time t is inde-pendent of Xt. It follows that two M/M/1 queue in tandem, when stationary, have independentqueue lengths at any given time.
Proof:The stationary distribution satis�es the detailed balance equations (19.2), so that the sta-tionary queue length process is time-reversible.The departures up to time t become the arrivals after time t for the time-reversed queue.Since the time-reversed queue is again an M/M/1 queue, the arrivals after time t are a Poissonprocess independent of Xt. Therefore, the same is true of the departures before time t.

19.6 Solved Problems
Problem 19.1. Let Xt be the queue length of an M/M/1 queue with arrival and service rates� and �, respectively. Explain how to simulate Xt with one Poisson process and a sequence ofi.i.d. Bernoulli random variables.Solution:
Problem 19.2. Assume (Nt; t � 0) counts arrivals in [0; t] and is such that

P [Nt+� = Nt + 1jNs; s � t] = ��+ o(�) ;P [Nt+� = NtjNs; s � t] = 1� ��+ o(�) :
Show that (Nt; t � 0) is a Poisson process with rate �.Solution:

Problem 19.3. Show that a stationary CTMC Xt is time-reversible if and only only if
q(i0; i1)q(i1; i2) � � � q(in�1; in)q(in; i0) = q(i0; in)q(in; in�1) � � � q(i2; i1)q(i1; i0) ;

for any �nite sequence of states i0; i1; : : : ; in. [Hint: to show the `if ' part, �x a reference stater, and for each j, de�ne
�(j) = � q(r; j0)q(j1; j2) � � � q(jn; j)q(j; jn)q(jn; jn�1) � � � q(j0; r) ;where j0; j1; : : : ; jn is a sequence of states leading from r to j.]Solution:

Problem 19.4. Consider an M/G/1 and an M/M/1 queue, in tandem as in the �gure. Let� be the rate of (Poisson) arrivals in the M/G/1 system, and � the service rate of the M/M/1queue.
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1. How would you de�ne the \state" X1t of the M/G/1 system? [Knowledge of the stateshould determine the future evolution, statistically.]
2. Let X2t be the state of the M/M/1 system.Show that if the system is started at �1, so stationarity is reached at any �nite time,X1t and X2t are independent.Solution:

Problem 19.5. Consider a closed Jackson network where every customer can visit all thequeues, but that no customer enters or exits the system. An example is given in the �gure.

Show that �(x) = �1(x1) � � ��J(xJ) ;with �i(n) = �ni (1��i); �i = �i=�i, is invariant, for any �i. (�i must satisfy �i =Pj �jR(j; i),�i < �i where R(�; �) is the routing matrix.)[Hint: Use Kelly's lemma.]Solution:
Problem 19.6. Consider a G=M=1 queue with service rate �. The arrival process is modulatedby the two-state CTMC Yt as follows: when Yt = 0, arrivals are Poisson with rate �0, whilewhen Yt = 1 arrivals are Poisson with rate �1.Let Xt be the queue length (including the customer in service, if any) at time t.
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1. Show that Xt is not a MC.
2. Show that Zt = (Xt; Yt) is a MC.
3. What conditions on the rates are needed for positive recurrence of Zt? [Hint: Pake'slemma.]
4. [This part is optional.] Write �(x; y) = �x(y); y 2 f0; 1g and let �x = [�x(0) �x(1)].Show that �x = �0Rx for some matrix R, under the conditions of (c). [Hint: Assume�x = �0Rx and write the balance equations, (�Q)(x; 0) = 0; (�Q)(x; 1) = 0.]

Solution:



Chapter 20
Jackson Networks
20.1 SummaryWe explain the following ideas and results:
� Kelly's Lemma
� Jackson Networks
� PASTA

20.2 Kelly's LemmaHere is a useful result. See [6] for these ideas and more.Lemma 20.1. Kelly's LemmaAssume that Q and Q0 are two rate matrices and � a distribution on X such that
�(i)q(i; j) = �(j)q0(j; i); 8i; j 2 X : (20.1)

Then �Q = 0 and Q0 is the rate matrix of the Markov chain reversed in time.
Proof:Summing (20.1) over i 2 X and using the fact that Pi q0(j; i) = 0, we �nd that �Q = 0.The other statement then follows from Theorem 5 in Lecture 23.

This result enables us to prove that a distribution is invariant by guessing the rate matrixof the process reversed in time. We examine an example next.Example 20.1. Consider two M/M/1 queues in series, with arrival rate � at the �rst queueand service rates �1 and �2, respectively. We assume � < �1; �2. Let Q be the rate matrixof the pair (X1t ; X2t ) of queue lengths. Let also Q0 be the rate matrix of the two queues witharrivals into queue 2 whose departures go to queue 1. For instance,
q((m;n); (m� 1; n+ 1)) = �1; q0((m� 1; n+ 1); (m;n)) = �2; q((m;n); (m+ 1; n)) = �;q0((m+ 1; n); (m;n)) = �1; q((m;n); (m;n� 1)) = �2; and q0((m;n� 1); (m;n)) = �:131



132 CHAPTER 20. JACKSON NETWORKSDe�ne �(m;n) = (1� �1)�m1 (1� �2)�n2 ;m; n � 0 where �i = ��i ; i = 1; 2:
We then see that

�(m;n)q((m;n); (m� 1; n+ 1)) = �(m� 1; n+ 1)q0((m� 1; n+ 1); (m;n)):
Similarly, �(m;n)q((m;n); (m+ 1; n)) = �(m+ 1; n)q0((m+ 1; n); (m;n))and �(m;n)q((m;n); (m;n� 1)) = �(m;n� 1)q0((m;n� 1); (m;n)):Thus, equations (20.1) hold and we conclude that � is the invariant distribution of the twoqueues in series. Also, the process reversed in time behaves line arrivals into queue 2 attachedto queue 1.
20.3 Jackson NetworksWe generalize the example of the previous section. Consider a set of J queues. Customersarrive as independent Poisson processes, with rate i into queue i. Customers face independentservice times in all the queues and these are exponentially distributed with rate �i in queuei. When a customer leaves queue i, he goes to queue j with probability R(i; j) and leaves thenetwork with probability 1�PJj=1R(i; j). This system de�nes a Jackson network.Theorem 20.1. Assume that each customer can eventually leave.(a) In that case, the equations

�i = i + JX
j=1 �jR(j; i); i = 1; : : : ; J

have a unique solution (�1; : : : ; �J).(b) Moreover, if �i := �i=�i < 1 for i = 1; : : : ; J , then the vector of queue lengths Xt =(X1t ; : : : ; XJt ) is a positive recurrent Markov chain with invariant distribution
�(n1; : : : ; nJ) = �1(n1) � � ��J(nJ) where �i(n) = (1� �i)�ni ; n � 0:

Proof:Part (a) is easy. We focus on (b). We show that the process Xt reversed in time correspondsto the network with the ows of customers going in the reversed directions.The routing matrix R0 of the ows reversed in time is such that
�iR(i; j) = �jR0(j; i):Indeed, the left-hand side if the rate of ow going from i to j whereas the right-hand side isthe rate of ow going from j to i in the reversed network. Also, the exogenous arrival rate intoqueue i for the reversed network should by
�0i = �i(1� JX

j=1R(i; j)):



20.4. PASTA 133Designate by Q the rate matrix of the original network and by Q0 the rate matrix of thereversed network. For instance, if ei designates the unit vector in direction i, then
q(x+ ei; x+ ej) = �iR(i; j) and q0(x+ ej ; x+ ei) = �jR0(j; i):

We can then verify that
�(x+ ei)q(x+ ei; x+ ej) = �(x+ ej)q0(x+ ej ; x+ ei);i.e., that �(x+ ei)�iR(i; j) = �(x+ ej)�jR0(j; i):To see this, note that

�(x+ ei) = �(x)�i�i and �(x+ ej) = �(x)�j�j ;so that the previous identity reads, after simplifying by �(x),�i�i�iR(i; j) = �j�j �jR0(j; i);
which we see is satis�ed. Proceeding in a similar way, we can verify that �;Q;Q0 satisfy theconditions of Kelly's Lemma.

20.4 PASTAHow large is the backlog that a customer �nds when he arrives into a queue? Let us look �rstat an example.Assume customers arrive every two seconds into a queue where each service time takesexactly one second. If the queue is initially empty, every customer �nds an empty queue whenit arrives. However, the average queue length is 1=2 since the queue has one customer half ofthe time and is empty the other half. Thus, an arriving customer does not see the averagequeue length.However, when the arrivals are Poisson, the situation is very simple.Theorem 20.2. PASTAAssume customers arrive as a Poisson process into a queuing system described by a station-ary Markov chain Xt. Then, an arriving customer sees the state with its invariant distribution�.
Proof:Designate the arrival process by At. ThenP [Xt = xjAt+� = At + 1] = P (Xt = x) = �(x)
because the arrival process has independent increments, so that fAt+s; s � 0g and Xt areindependent.



134 CHAPTER 20. JACKSON NETWORKSThis identity shows that the state Xt just before an arrival time has its invariant distribu-tion.
As an application, we study the delay of a customer through a stationary M/M/1 queue.Theorem 20.3. The delay of a customer through a stationary M/M/1 queue with arrival rate� and service rate � is exponentially distributed with rate �� �.

Proof:Because of PASTA, an arriving customer �nds n customers in the queue with probability(1��)�n for n � 0 where � = �=�. When he joins n other customers, because of the memorylessproperty of the service times, the customers �nds a delay � equal to the sum of n+1 independentservice times that are exponentially distributed with rate �. Hence,
E(e�s� ) = 1X

n=0(1� �)�nE(e�sT )n+1
where T =D Exp(�). Thus,

E(e�sT ) = Z 10 e�st�e��tdt = �s+ �;so that
E(e�s� ) = 1X

n=0(1� �)�n( �s+ �)n+1 = (1� �) �s+ � [1� � �s+ � ]�1 = �� �s+ �� �;
which shows that � =D Exp(�� �).A more elegant proof is to view � as the interarrival time of a Poisson process with rate� sampled with probability 1 � �, i.e., of a Poisson process with rate � � �. Indeed, withprobability �n(1��), this interarrival time is the sum of n+1 independent exponential randomvariables with rate �.



Chapter 21
Convergence
21.1 SummaryWe explain the following ideas and results:
� Types of Convergence
� Examples
� Key Results
� Large Numbers

21.2 OverviewOur objective is to give you a sense for the concepts of convergence of random variables. Theideas are subtle but it important to understand them. The key results in probability areconvergence results.It turns out that we need a few preliminaries before we can go anywhere with this topics.We review them in Section 21.3. With these ideas out of the way, we de�ne the di�erent notionsof convergence in Section 21.4. We illustrate these notions on some representative examplesin Section 21.5. In Section 21.6 we clarify the relationships between the di�erent modes ofconvergence. Finally, in Section 21.7, we discuss some results that lead to the all-importantstrong law of large numbers. We believe that the intermediate steps are useful to clarify thenotions of convergence.This is a di�cult lecture; we hope we can help you understand these very neat ideas.
21.3 PreliminariesWe need a few tools to study limits.We �rst recall the following key result about real numbers.
Lemma 21.1. CauchyThe sequence fxn; n � 1g converges to some �nite x if and only if

�n := supm;k�njxm � xkj ! 0 as n!1: (21.1)135



136 CHAPTER 21. CONVERGENCEA sequence that satis�es (21.1) is said to be Cauchy. Thus, Cauchy's Lemma states thatCauchy sequences converge in <.
Proof:The only if part is obvious. We show the if part. Thus assume that the sequence is Cauchy.For any n we �nd that jxnj < jx1j+ jxn � x1j � jx1j+ �1:Thus, the sequence fxng is contained in I1 := [�jx1j� �1; jx1j+ �1]. Half of that interval, eitherthe closed left-half or the closed right-half, must contain an in�nite subsequence. Designatethat half interval by I2. Continuing in this way, we form a set of closed intervals Ik whoselengths go to zero and with the property that Ik+1 � Ik for all k. The intersection of all thesesets contains some point x which is the least upper bound of the an = minfyjy 2 Ing. Indeed,the an are nondecreasing and bounded. It is then easy to check that (21.1) implies xn ! x.

Next, we reviewLemma 21.2. Borel-CantelliAssume that events An are such that Pn P (An) <1, then P (An; i.o.) = 0.
Proof:Note that

fAn; i.o.g = \n�1 [m�n Am; so that [m�n Am # fAn; i.o.g:This implies that P ([m�nAm) # P (An; i.o.). But P ([m�nAm) � Pm�n P (Am), so thatP ([m�nAm) # 0.
Finally, we will need the following result.Lemma 21.3. KroneckerLet fxn; n � 1g be real number such that P1n=1 xn = s is �nite. Then

1n nX
k=1 kxk ! 0:

Proof:To prove the lemma, we do a simple calculation. Let yn = P1k=n+1 xk so that y0 = s andxn = yn�1 � yn. Then,nX
k=1 kxk =

nX
k=1 k(yk�1 � yk) = n�1X

k=0(k + 1)yk � nX
k=1 kyk =

n�1X
k=1 yk + y0 � nyn:

We note that, since yk ! 0, the right-hand side divided by n goes to 0 as n!1.



21.4. TYPES OF CONVERGENCE 13721.4 Types of Convergence
We explore the convergence of random variables. Since a random variable is a function, onemust de�ne the meaning of convergence. We have the following de�nitions.
De�nition 21.1. Types of ConvergenceLet X and fXn; n � 1g be random variables on some common probability space f
;F ; Pg.(a) One says that the random variables Xn converge almost surely to X as n ! 1, andone writes Xn a:s:��! X as n!1or limn!1Xn = X; a.s.
if P (f! j Xn(!)! X(!)g) = 1:(b) One says that the random variables Xn converge in probability to X as n ! 1, andone writes Xn P�! X as n!1if limn!1P (f! j jXn(!)�X(!)j > �g) = 0;8� > 0:

(c) One says that the random variables Xn converge in distribution to X as n ! 1, andone writes Xn D�! X as n!1if limn!1P (Xn � x) = P (X � x);8x where P (X � x) is continuous.
(d) One says that the random variables Xn converge in Lp to X as n!1, and one writes

Xn Lp�! X as n!1
if limn!1E(jXn �Xjp) = 0:
21.5 Examples
Let us quickly look at some examples to clarify these notions. In this example, f
;F ; Pg is[0; 1] with the uniform distribution. See Figure 21.1 for an illustration.
Example 21.1. Let X = 0 and Xn = n� 1f! � 1=ng. Then, as n!1, one has

Xn a:s:��! X; Xn P�! X; Xn D�! X; but Xn L19 X:
Proof:Note that Xn(!) = 0 for all n > 1=!, so that Xn(!)! 0 for all ! 6= 0. Hence Xn a:s:��! X.We �nd that, for any � > 0, P (jXn �Xj > �) � 1=n! 0 as n!1, so that Xn P�! X.
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Figure 21.1: The random variables in Example 21.1.
Observe that P (X � x) = 1fx � 0g is continuous at every x 6= 0. Also, for x < 0 we haveP (Xn � x) = 0! P (X � x) = 0. Moreover, for x > 0, we have P (Xn � x) � 1� 1=n! 1 =P (X � x), so that Xn P�! X.Finally, E(jXn �Xj) = 19 0, so that Xn L19 X.

Example 21.2. Let fXn; n � 1g be i.i.d. N(0; 1) random variables. Then Xn D�! X butXn a:s:9 X, Xn P9 X, and Xn L19 X.
Example 21.3. Let X1 = 1; X2(!) = 1f! � 0:5g; X3(!) = 1f! > 1=2g; X4 = 1f! �1=4g; X5(!) = 1f! 2 (1=4; 1=2]g; X6(!) = 1f! 2 (1=2; 3=4]g, etc, as shown in Figure 21.2.Then Xn P�! 0 but Xn a:s:9 X.
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Figure 21.2: The random variables in Example 21.3.
Example 21.4. For n � 1, let Xn =D U [�1=(2n); 1=(2n)], as shown in Figure 21.3. Let alsoX = 0. Then Xn D�! X. Note that P (Xn � 0) = 1=29 P (X � 0) = 1.



21.6. RELATIONSHIPS 139
n

2n
1

2n
1

-

P(Xn < x)

P(X < x)

Figure 21.3: The random variables in Example 21.4.
21.6 RelationshipsHow do these types of convergence relate? How do we prove convergence and what can weconclude from it?We �rst review the following result we saw in Lecture 17 and that we do not prove here:Theorem 21.1. Lebesgue Convergence Theorem(a) Monotone Convergence Theorem: MCT. Assume that 0 � Xn "a:s: X as n!1. ThenE(Xn) " E(X) as n!1.(b) Dominated Convergence Theorem: DCT. Assume that Xn a:s:��! X as n ! 1 andjXnj � Y for n � 1 with E(Y ) <1. Then E(Xn)! E(X) as n!1.We start with a counterpart of Cauchy's Lemma for random variables.Lemma 21.4. We say that Xn is Cauchy a.s., in P , in L1 (respectively) if, as n ! 1 andfor all � > 0,supm;k�n jXm �Xkj a:s��! 0; supm;k�nP (jXm �Xkj > �)! 0; supm;k�nE(jXm �Xkj)! 0; (respectively):

The result is that a sequence that is Cauchy a.s., in P, in L1 (respectively) converges in thecorresponding sense to some �nite random variable.
Proof:(a.s.): The result is obvious.(P ): Take �k # 0 with Pk �k <1 and nk such that n;m � nk implies thatP (jXm �Xnj > �k) � 2�k:We now use Borel-Cantelli to conclude that

P (jXnk+1 �Xnk j > �k; i.o.) = 0:Thus, for all !, one has jXnk+1�Xnk j � �k for all k > k(!). This implies that, form > p > k(!),
jXnm �Xnp j � jXnm �Xnm�1 j+ � � �+ jXnp+1 �Xnp j � 1X

k=p �k ! 0 as p!1:



140 CHAPTER 21. CONVERGENCEThus, Xnk is Cauchy a.s. and it follows that Xnk a:s:��! X for some �nite X. We now show thatXn P�! X. To do this, we observe thatP (jXn �Xj > �) � P (jXn �Xnk j > �=2) + P (jXnk �Xj > �=2)and each term can be made as small as we wish by picking n and nk large enough.(L1): Assume Xn is Cauchy in L1. That is,X
m>nEjXm �Xnj ! 0; as n!1:

Using Chebyshev's inequality, we see that Xn is Cauchy in P , so that it converges in probabilityto some random variable X. To see that it converges in L1 to X, we use DCT.
Example 21.5. Assume that the random variables fXn; n � 1g are i.i.d. with E(Xn) = � andvar(Xn) = �2 <1. Then X1 +X2 + � � �+Xnn P�! �:This result is called the weak law of large numbers.Proof:Recall that �1fjY j � �2g � Y 2, so that P (jY j � �) � E(Y 2)=�2, which is Chebychev'sinequality. It follows that

P (jX1 +X2 + � � �+Xnn � �j � �) � �2n�2 ! 0;
which proves the result.

We use that result in the following example.Example 21.6. Assume that the random variables Xn are independent and such that E(Xn) =0 for all n and P1n=1E(X2n) <1. Then Pnk=1Xk P�! Z for some �nite random variable Z.Proof:Let Zn =Pnk=1Xk for n � 1. Fix k < m and � > 0 and note that
P (jZm � Zkj > �) � mX

n=k+1E(X2n)=�2:
Hence, supm>k�nP (jZm � Zkj > �)! 0 as n!1:

It follows that the sequence is Cauchy in P and converges in probability to some �niterandom variable.
The next result shows the relationship between the convergence types.



21.6. RELATIONSHIPS 141Theorem 21.2. Figure 21.4 indicates the relationships between the convergence types. Thepositive results are the following:
� (1) A.s. convergence implies convergence in probability;
� (2) Convergence in probability implies convergence in distribution;
� (3) Convergence in L1 implies convergence in probability.
The other implications do not hold, except the following:
� (2') Convergence in distribution to a constant implies convergence in probability to thatconstant;
� (4) A.s. convergence with di�erences that satisfy one of the conditions or the LebesgueConvergence Theorem implies convergence in L1.

Unless...

Unless...

(1)

(2)

(3)
(4)

(1')
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P D
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L
1

Figure 21.4: The relationships in Theorem 21.2.
Proof:We sketch the proofs.(1) Assume Xn a:s:��! X and �x � > 0. ThenZn := 1fjXn �Xj > �g a:s:��! 0 as n!1:Moreover, jZnj � 1 for n � 1. We conclude from DCT that E(Zn)! 0, i.e., thatP (jXn �Xj > �)! 0; as n!1:(1') Example 21.3 shows that convergence in probability does not imply almost sure con-vergence.(2) We start with the following observation. Assume P (Bn)! 1. Then P (A\Bn)! P (A).To see this, note thatP (A) � P (A \Bn) = 1� P (Ac [Bcn) � 1� P (Ac)� P (Bcn) = P (A)� P (Bcn)! P (A):

Assume Xn P�! X. Then, for any � > 0,
fX � x� �g \ fjXn �Xj � �g � fXn � xg:Using our previous observation, we seeP (X � x� �) � lim inf P (Xn � x):



142 CHAPTER 21. CONVERGENCESimilarly, we see that
fX > x+ �g \ fjXn �Xj � �g � fXn > xg:

Hence, P (X > x+ �) � lim inf P (Xn > x);which is equivalent to P (X � x+ �) � lim supP (Xn � x):Letting �! 0 and assuming that P (X � x) is continuous at x, we �nd
P (X � x) � lim inf P (Xn � x) � lim supP (Xn � x) � P (X � x);

which proves that P (Xn � x)! P (X � x).[Recall that lim inf xn := limn!1 infm�n xm is well-de�ned because infm�n xm is nonde-creasing. Similarly, lim supxn = limn!1 supm�n xm. Also, xn ! � if and only if lim inf xn =x = lim supxn. Finally, lim inf(�xn) = � lim supxn.](2') See Example 21.2. However, if X is constant, then this implication holds. To see this,assume that Xn D�! 0. Fix � > 0. We claim that P (jXnj > �) ! 0. Indeed, P (Xn � ��) ! 0and P (Xn � �)! 1 because of the convergence in distribution.(3) One has �1fjXn �Xj � �g � jXn �Xj, so that P (jXn �Xj � �) � E(jXn �Xj)=�.(3') See Example 21.1.(4) In general, a.s. convergence does not imply convergence in L1, as Example 21.1 shows.However, if Xn � X satis�es the conditions of DCT or of MCT, then we can conclude thatE(jXn �Xj)! 0, which implies convergence in L1.(4') See Example 21.3.

21.7 Large Numbers
Our goal is to prove Theorem 21.3. We use the proof in [1], Section 3.6. Leo Breiman died onJuly 5, 2005 at the age of 77. He had been a Professor of Statistics at U.C. Berkeley since 1980and made numerous contributions to statistics, notably on classi�cation methods. You mightenjoy his elegant book.We �rst show that the convergence in Example 21.6 is almost sure.
Lemma 21.5. Levy Assume that the random variables Xn are independent and such thatE(Xn) = 0 for all n and P1n=1E(X2n) < 1. Then Pnk=1Xk a:s:��! Z for some �nite randomvariable Z.
Proof:Let Zn = Pnk=1Xk. Assume that Zn does not converge with some positive probability.Let Wn := supm>n jZm � Znj. When Zn does not converge, infn�1Wn > 0; for otherwisethe sequence would be Cauchy and converges. Thus, for a �xed n, P (Wn > 0) > 0 and,consequently, there is some �xed � > 0 and some � such that P (Wn > �) � � > 0.



21.7. LARGE NUMBERS 143We show that this is not possible. De�ne C(n;N) = supn�m<N P (jZN � Zmj > �). Let� = minfk > n j jZk � Znj > 2�g. Then
P ( supn<m�N jZm � Znj > 2�; jZN � Znj > �) = NX

k=n+1P (jZN � Znj > �; � = k) � NX
k=n+1P (jZN � Zkj � �; � = k)

= NX
k=n+1P (jZN � Zkj � �)P (� = k) � (1� C(n;N)) NX

k=n+1P (� = k) = (1� C(n;N))P (supk�N jZk � Znj > 2�):
Hence, P (supk�N jZk � Znj > 2�) � 11� C(m;N)P (jZN � Znj > �):
Now, observe that since the series converges in probability, C(n;N) ! 0 as n ! 1.Similarly that convergence in probability also implies that P (jZN � Znj > �)! 0 as n!1.Consequently, P (supn<k�N jZk � Znj > 2�)! 0, which proves the contradiction.
The following theorem is very important. It \con�rms" the frequentist interpretation ofprobability.Theorem 21.3. Strong Law of large NumbersLet Xn be i.i.d. random variables with E(jXnj) <1. ThenX1 +X2 + � � �+Xnn a:s:��! E(X1) as n!1:

Proof:Step 1: The result holds if E(Xn) = 0 and var(Xn) = �2.By Kronecker's Lemma, to show that (Pnk=1Xk)=n! 0, it su�ces to show thatPnk=1(Xk)=kconverges to a �nite random variable. (Indeed, let xk = kXk in Kronecker's Lemma.) To showthat, in view of Levy's Lemma 21.5, it su�ces to prove that1X
k=1E(X2k)=k2 <1;

which is seen to hold.Step 2: The result holds under the conditions of the theorem.De�ne ~Xn = Xn1fjXnj � ng. We also de�ne Yn = ~Xn � E( ~Xn). We show below that1X
n=1 1n2E( ~X2n) <1: (21.2)

Step 1 then implies that1n nX
k=1 Yk a:s:��! 0; so that 1n nX

k=1( ~Xk � E( ~Xk)) a:s:��! 0:
Moreover, DCT implies that E( ~Xn)! E(Xn), so that1n nX

k=1 ~Xk a:s:��! E(X1):



144 CHAPTER 21. CONVERGENCEIn addition, we claim that P (jXnj > n; i.o.) = 0, so that the result above proves the theorem.To see the claim, note that 1X
n=1P (jXnj > n) <1;

because E(jXnj) <1.It remains to prove (21.2). We have1X
n=1 1n2E( ~X2n) = 1X

n=1 1n2 Zjxj�n x2dF (x) = 1X
n=1

nX
k=1 1n2 Zk�1<jxj�k x2dF (x)

= 1X
k=1

1X
n=k 1n2 Zk�1<jxj�k x2dF (x) � 1X

k=1 2k
Z
k�1<jxj�k x2dF (x) � 2 1X

k=1
Z
k�1<jxj�k jxjdF (x) � 2E(jX1j) <1:

(We used the fact that P1n=k 1=n2 � 2=k.)

21.8 Solved Problems
Problem 21.1. Suppose (Xn; n � 1) is a sequence of (not necessarily independent) r.v's.Assume �n # 0 and P (jXkj � �n) � 1n2 ;8n � 1 :

Show Xn a.s.��! 0, as n!1.[Hint: Use Borel-Cantelli lemma.]Solution:
Problem 21.2. Assume �n # 0 andP (jXk �Xmj > �n) � 2�n ; for all k;m � n � 1 :Show that (Xn; n � 1) is Cauchy, a.s., and conclude that Xn a.s.��! X, for some �nite r.v.X. [Hint: Use Borel-Cantelli lemma.]Solution:
Problem 21.3. Assumesupk;m�nP (jXk �Xmj > �)! 0 ; as n!1;8� > 0 :

Show that Xn p�! X, for some �nite r.v. X.[Hint: Choose �i # 0, and de�ne ni such thatP (jXk �Xmj > �i) � 2�i; for all k;m � ni :Use the previous problem to conclude Xni a.s.��! X, for some �nite r.v. X. Conclude thatXni p�! X.]



21.8. SOLVED PROBLEMS 145Solution:
Problem 21.4. Construct an example of random variables (Xn; n � 1), such that

P (jXn �Xmj > �) � 0:01 ; for all n;m ;
but P ( supn6=m jXn �Xmj > �) = 1 :
Solution:
Problem 21.5. Let Xk be a positive recurrent discrete-time MC, and f(�) any bounded func-tion. Assume Y is distributed according to the invariant distribution of the MC.Use SLLN to show 1n nX

k=1 f(Xk) a.s.��! E(f(Y )) :
Solution:
Problem 21.6. Consider a renewal process with events at times T0; T1; : : :, i.e., (Tn�Tn�1; n �1) are i.i.d. Assume T0 = 0, and de�ne Xt = minfTk � tjk � 0; Tk � t � 0g the residual timefor the �rst event after time t > 0.

Solution:
Problem 21.7. Show 1T Z T0 Xtdt a.s.��! E((T1 � T0)2)2E(T1 � T0) ; as T !1 :



146 CHAPTER 21. CONVERGENCESolution:
Problem 21.8. Let Nt be the number of events up to including time t � 0, i.e., Nt = minfn �1 : Tn�1 � tg.Show Ntt a.s.��! 1E(T1 � T0) :Solution:
Problem 21.9. Let Xt be a positive recurrent CTMC with invariant distribution �. The chainXt modulates the arrivals of some counting process Nt as follows: while Xt = i, Nt increasesaccording to an independent Poisson process of rate �(i). Assume maxi �(i) <1.Show that Ntt a.s.��! � ;
where � =Pi �(i)�(i).Solution:



Chapter 22
Renewal Processes
22.1 Summary
We introduce a few basic ideas of renewal processes:
� Renewal Process
� Variations

22.2 Overview
As the name indicates, a renewal process is one that \renews" itself regularly. That is, thereis a sequence of times fTn; n 2 Zg such that the process after time Tn is independent of whathappened before that time and has a distribution that does not depend on n. We have seenexamples of such processes before. As a simple example, one could consider a Poisson processwith jump times Tn. As another example, we could consider a positive recurrent Markov chainand Tn to be successive visits to a given state.The basic tool to study such processes, as you probably expect, is the strong law of largenumbers, with a twist. The theory we look at is very cute and certainly useful.We start with a the simple case: the renewal process. We then examine variations.
22.3 Renewal Process
A renewal process is an arrival process with i.i.d. interarrival times.
De�nition 22.1. Renewal ProcessLet fTn; n � 1g be such that Tn < Tn+1 and fTn+1 � Tn; n � 1g are i.i.d.. If T1 has thesame distribution as T2 � T1, this process is called a renewal process; otherwise, it is a |emdelayed renewal process. We also de�ne Nt = maxfn � 1 j Tn � tg with Nt = 0 for t < T1 fort � 0. See Figure 22.1.For simplicity, we assume throughout this section that ��1 := E(T2 � T1) <1.Here are a few representative questions we can ask about a delayed renewal process.

1. In what sense is the long term rate of jumps equal to �?147
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Figure 22.1: Renewal process in De�nition 22.1.
2. How do we choose T1 to make Nt stationary in the sense that the jump times after timet look like the jump times after time 0?3. How many jumps do we expect to see in an interval of T seconds?4. How long after t do we have to wait for the next jump?
We examine these questions below.The rate of jumps is obtained from the strong law of large numbers that implies the followingresult, as you proved in a homework assignment.Fact 22.1. One has Ntt a:s:��! � as t!1:



22.3. RENEWAL PROCESS 149We now examine stationarity. We start with a de�nition.De�nition 22.2. (a) A point process is a collection T := fTn; n � 1g of random variables suchthat 0 < T1 < T2 < � � � . We also de�ne the corresponding counting process N = fNt; t � 0gwhere Nt = 0 if t < T1 and Nt = maxfn � 1 j Tn � tg otherwise.(b) A counting process N is stationary if N � �s := fNt+s � Ns; t � 0g has the samedistribution for all s � 0. Thus, the process N � �s is simply the jump process watched aftertime s. See Figure 22.1.The following result explains how to make N stationary.Theorem 22.1. Let fNt; t � 0g be a delayed renewal process and F (t) = P (T2 � T1 � t) andG(t) = P (T1 � t) for t � 0. The process fNt; t � 0g is stationary if and only if
G(t) = � Z t0 (1� F (s))ds; t � 0 where ��1 = Z 10 sdF (s) = E(T2 � T1): (22.1)

In particular, if the process is stationary, the average time until the next jump, E(T1) isgiven by
E(T1) = �2E((T2 � T1)2): (22.2)

Before we attempt a proof, let us look at a few examples.
Example 22.1. (a) If T2 � T1 = 1, then T1 =D U [0; 1] and E(T1) = 1=2 = E(T2 � T1)=2, aswe would expect.(b) If T2�T1 =D Exp(�), then T1 =D Exp(�) and E(T1) = E(T2�T2), which follows fromthe memoryless property of the exponential distribution but is nevertheless somewhat counter-intuitive when we compare with (a).(c) If T2 � T1 =D U [0; 1], then F (t) = t(2� t) for t 2 [0; 1] and F (t) = 1 for t � 1. In thiscase, E(T1) = 2=3 which is a bit larger than E(T2 � T1) = 1=2.(d) If P (T2 � T1 = a) = p = 1 � P (T2 � T1 = b) with 0 < a < b, then G(t) = at + (1 �p)(minft; bg � a)+. Here, we �nd

E(T1) = 12 pa2 + (1� p)b2pa+ (1� p)b > 12E(T2 � T1) unless a = b:
These examples show that the average time until the next jump, for a stationary process, islarger than half the average time between two successive jumps. This paradox can be explainedby observing that a time t picked \randomly" is more likely to fall in a large gap between twojumps than in a small one. Thus, stationarity yields a bias in favor of the large gaps.We can pursue this intuitive discussion by noting that the probability that t falls in a gapof length u should be proportional to u times the probability that a gap has this length, andshould thus be udF (u). For this density to sum to one, we need  = �. If t falls in a gap oflength u, then the time until the next jump should be uniform in [0; u]. This suggests that

P (T1 2 (s; s+ �)) = Z 1
s [�udF (u)]� �2u = �2 [1� F (s)]�:

This argument justi�es (e.renewal1). We now turn to a proof.



150 CHAPTER 22. RENEWAL PROCESSESProof of Theorem 22.1Here is a sketch. Designate by Gs(t) the probability that N has a jump in [s; s+ t]. This isthe cpdf of the �rst jump time of N � �s. The process N is stationary i� Gs does not dependon s. Let 0 < �� 1 and observe that
T1 � �s+� � t, T1 � �s 2 [�; t+ �) or T1 � �s 2 [0; �) and (T2 � T1) � �s � t:

Hence,
Gs+�(t) = Gs(t+ �)�Gs(�) +G�(�)F (t)= Gs(t) +G0s(t)��Gs(�)f1� F (t)g:

Subtracting Gs(t) and dividing by �, we �nd
Gs+�(t)�Gs(t)� = G0s(t)�G0s(0)f1� F (t)g:

The left-hand side is zero i� G0s(t) = G0s(0)f1� F (t)g, which proves the result.
Here is a simple consequence of stationarity.Fact 22.2. Assume that N is a stationary point process. Then

E(Nt+L �Nt) = �L;8L; t � 0
where � := E(N1).

Proof:By stationarity, E(Nt+� � Nt) does not depend on t. By decomposing the interval insegments of length �, we conclude that E(Nt+L �Nt) is proportional to L.
We now turn to the expected number of jumps in an interval of length L. To appreciatethe issue, consider the following examples.Example 22.2. (a) Assume T1 = T2 � T1 = �, for some positive constant �. Then we seethat E(Nt+L �Nt) does not converge unless L is an integer multiple of �.(b) Assume that T1 = 0 and T2 � T1 takes values in a set of integer multiples of � > 0.Then, the same conclusion holds as in (a).In case (b), we say that the distribution of T2�T1 is \lattice." We rule out that case belowto avoid having to consider special values of L. The following remarkable result is due to DavidBlackwell (a Professor in Statistics at Berkeley).

Theorem 22.2. BlackwellAssume that F is non-lattice. Then, for all L > 0,
E(Nt+L �Nt)! �L as t!1:



22.4. VARIATIONS 151Proof:There are two types of proof. One is analytical and studies distributions through charac-teristic functions. The other is probabilistic and is essentially a coupling argument. We brieycomment on the second proof which is due to Linvall.Consider two independent versions of the process N. We call one version the process Nand the other the process N0. Assume that N0 is stationary. Couple the two processes the�rst time they jump within � seconds of each other. If t is after the coupling time, they haveessentially the same number of jumps in [t; t + L], so that the expected number is �L as wesaw for a stationary point process. The trick is to show that they couple in �nite time. Thedetails are a bit too long to cover here.
The last question is the time until the next jump.

Theorem 22.3. If F is non-lattice, then the distribution of the time until the next jump aftertime t converges to G, where G is de�ned in (22.1).
Proof:This result follows from the same coupling argument as in the proof of the Blackwell'stheorem.

22.4 VariationsThe renewal process only involves times. We can make more complex constructions.Example 22.3. Markov ChainLet X = fXt; t 2 <g be a positive recurrent Markov chain on X . Let fTn; n 2 Zg be thesuccessive return times to a give state i 2 X with the convention that T0 < 0 � T1. Then, forany n 2 Z, fXTn+t; t � 0gis independent of fXTn+t; t � 0g and has a distribution that does not depend on n. In particular,the cycles Cn := f(t� Tn; Xt); t 2 [Tn; Tn+1gare i.i.d. for n 2 Z. Thus, fTn; n 2 Zg is a delayed renewal process.We can view Cn as a graph as shown in Figure 22.2.Using the fact that the cycles are i.i.d., we can apply the law of large numbers and getresults of the following form, as you did in a homework assignment.Fact 22.3. Let f(:) : X ! < be bounded function. Then1T Z T0 f(Xt)dt a:s:��!X
i �(j)f(i)

where � is the invariant distribution of the Markov chain.
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Figure 22.2: Cycle n in Example 22.3.
Another interesting variation concerns semi-Markov processes. Here is a de�nition.

De�nition 22.3. Semi-Markov ProcessDe�ne the process fXt; t � 0g on a countable set X as follows. One is given a transitionmatrix P on X . For i 2 X , let Fi be a cpdf on [0;1). Let also �0 be a pmf on X . ChooseX0 in X according to the pmf �0. If X0 = i, then pick some random variable �1 with cpdf Fi.De�ne Xt = i for t 2 [0; �1). Let P [X�1 = j j X0 = i; �1] = P (i; j). Resume the constructionfrom time �1 as if it started at time 0.This process is called a semi-Markov process with transition probabilities P , holding timedistributions Fi, and initial distribution �0.You see that this de�nition is a simple extension of the continuous-time Markov chain wherewe replaced the exponential holding times by more general distributions.Of course, this process is no longer Markov. Nevertheless, we expect many of the keyproperties to hold. For instance, if the holding times are non-lattice, �nite mean, and ifthe jump chain is positive recurrent, then we expect asymptotic stationarity and almost sureconvergence of the fraction of time in the states. All this requires a little bit of work.



Chapter 23
Review: Part 1 - Preliminaries,
Detection & Estimation
23.1 OverviewThese notes summarize the key results of the �rst part of the course. Make sure you understandthese results and that you can apply them.
23.2 Linear AlgebraLinear Algebra is the study of linear transformations.We used the following result on how to diagonalize an Hermitian matrix:
II.1. Theorem: Diagonalization of Hermitian Matrix (Notes on Linear Algebra -Theorem 6)Let H 2 Cn�n be a Hermitian matrix, i.e., such that H = H�.The eigenvalues �1; : : : ; �n of H are real (they are not necessarily distinct);H has n orthonormal eigenvectors fu1; : : : ; ung that form a basis for Cn. That is, u�iuj =1fi = jg.If P = [u1j : : : jun], then P �HP = � = diag(�1; : : : ; �n)
and H = P�P � = nX

i=1 �iuiu�i :In particular, H maps a unit hypercube with sides ui into a box with orthogonal sides Puiand volume det(H).
We use the �rst part of II.1 to study covariance matrices. Here is the main result:

II.2. Theorem: Properties of Covariance Matrix (Lecture 6 -Theorem 1)A covariance matrix K is a symmetric positive semi-de�nite matrix and conversely.There is an orthonormal matrix Q such that KQ = Q� where � = diag(�1; : : : ; �n). Here,the �i are the eigenvalues of K; they are real and nonnegative.153



154CHAPTER 23. REVIEW: PART 1 - PRELIMINARIES, DETECTION & ESTIMATIONThere is a unique positive semi-de�nite matrix R such that K = R2 andR = Q�1=2QT :We use the second part of II.1 in IV.1 below (change of variables).When we studied linear systems, we usedII.3. Lemma: Cayley-Hamilton (Lemma 1 in Lectures 13-14)If A 2 <n�n, then Ak is a linear combination of fI;A; : : : ; An�1g.A consequence of that result isII.4. Fact: Observability and Reachability (Fact 1 of Lectures 13-14.)
rank[CT jATCT j(A2)TCT j � � � ] = rank[CT jATCT j � � � j(Am�1)TCT ] and rank[CjACjA2Cj � � � ] = rank[CjACj � � � jAm�1C]:

The rank of the �rst (resp., second) matrix is full if and only if the corresponding systemis observable (resp., reachable).
23.3 ProbabilityLet us review only a few of the important ideas. Typical probability spaces f
;F ; Pg are(
; 2
; P (A) = Pi2A pi) when 
 is �nite, (<;B(<); P ) where P is �-additive and P (<) = 1.The �-additivity means that if An # A, then P (An) # P (A). We use that fact many times, inparticular to prove Borel-Cantelli that states that ifPn P (Bn) <1, then P (Bn i.o.) = 0. Wealso use that continuity below in III.1. In the previous example, F (x) = P ((�1; x]) is then acpdf (the �-additivity of P implies the right-continuity of F and its convergence to 0 and 1).Key ideas are then conditional probability and independence. We explained that pairwiseindependence does not imply mutual independence.A random variable on f
;F ; Pg is a functionX : 
! < such thatX�1(B) 2 F ; 8B 2 B(<),equivalently, if f! : X(!) � xg 2 F ; 8x 2 <. This condition is precisely what we need to beable to de�ne FX and its derivative fX . You are familiar with some standard distributions.Expectation is the next important topic. In particular, we used a number of times, but didnot prove the following result. It shows that expectation inherits the continuity of probability.III.1. Lebesgue Convergence Theorem(a) MCT: Assume that 0 � Xn " X as n!1. Then E(Xn) " E(X) as n!1.(b) DCT: ssume that Xn ! X as n!1 and jXnj � Y with E(Y ) <1. Then E(Xn)!E(X) as n!1:
23.4 Jointly Gaussian Random VariablesWhat makes jointly Gaussian random variables tick is that any linear combination is Gaussian.First, one de�nes X = N(�; �2) if E(esX) = es�+(s2�2)=2.Second, one observes that i.i.d. N(0; 1) random variables Xk are jointly Gaussian since

E(expfs(a1X1 + � � �+ anXn)g) = �k[e(s2a2k�2k)=2] == N(0; �2) with �2 =Xk a2k�2k:



23.5. DETECTION 155Third, one has the following result that shows that this is essentially it. This result derivesdirectly from II.2.
IV.1. Theorem: Representation of JG - (Lecture 6 - Theorem 1)Assume Y = N(0;K). Then Y =D RX where X =D N(0; I).In particular, if jKj 6= 0, then

fX(�) = 1(2�)n=2jKj1=2 expf�12�TK�1�g: (23.1)
Fourth, we have the very useful observation, easily obtained from the joint characteristicfunction, that

IV.2. Theorem: Uncorrelated JG are Independent (Lecture 4 - Theorem 1)Jointly Gaussian random variables are independent if and only if they are uncorrelated.
This result directly implies the following:

IV.3. Conditional Distribution of JG (Lecture 5 - Theorem 1) Assume that (X;Y)are N(0;K) with jKj 6= 0. Then, given Y = y, X = N(Ay;�) where
A = KXYK�1Y and � = KX �KXYK�1Y KY X : (23.2)

23.5 DetectionRecall the basic setup. The RV X takes values in a �nite set and is not observed. One observesY and the conditional distribution of Y given X is known. The detection problem is to guessX from the observed value of Y . We have two formulations: Bayesian when we know the priordistribution of X and non-Bayesian when we do not.An example of formulation in the Bayesian case is the Maximum A Posteriori estimate ofX given Y de�ned by MAP [XjY = y] = argmaxx P [X = xjY = y].An example of the non-Baesian formulation is the Maximum Likelihood Estimator of Xgiven Y de�ned by MLE[XjY = y] = argmaxx P [Y = yjX = x]. When appropriate, useconditional densities.Another non-Bayesian formulation is the hypothesis testing problem when X 2 f0; 1g: FindX̂ calculated from Y that maximizes P [X̂ = 1 j X = 1] subject to P [X̂ = 1 j X = 1] � �. Thesolution of this problem is given by
V.1. Theorem - Neyman-Pearson (Lecture 10 - Theorem 1)The solution to the binary hypothesis testing problem is as follows:

�(y) =
8><>:

1; if �(y) := fY jX [yj1]fY jX [yj0] > �;; if �(y) = �;0; if �(y) < �; (23.3)
where � > 0 and  2 [0; 1] are the only values such that

P [Z = 1 j X = 0] = � when P [Z = 1 j Y = y] = �(y): (23.4)



156CHAPTER 23. REVIEW: PART 1 - PRELIMINARIES, DETECTION & ESTIMATIONQuite remarkably the solutions of the MLE, MAP, or HT problems are all based on thelikelihood ratio �(y;x) := fY jX [yjx]fY jX [yjx0] :Thus if �(y;x) = g(h(y);x), the solution is a function of h(y). In that case, we say that h(Y )is a su�cient statistic for detecting X from Y . The interpretation is that h(Y ) contains all theinformation in Y that is useful for detecting X.
23.6 EstimationThe formulation of estimation is similar to that of detection, except that X takes values in ageneral set. We can de�ne MLE and MAP as before.We focus on MMSE and LLSE.One useful way to understand these ideas is through the concept of projections in the spaceof random variables with �nite second moment. In that space, the scalar product of X and Yis de�ned as E(XTY) and it corresponds to a norm jjXjj =pE(XTX). This space is Hilbertand, consequently, the projection onto a subspace is well-de�ned. Moreover, a projection ischaracterized by the fact that the di�erence between the random variable and its projection isorthogonal to the subspace.Recall from Lecture 11 that the MMSE of X given Y is the function g(Y) that minimizesthe mean squared error E(jjX� g(Y)jj2). We haveVI.1. Theorem: The MMSE is the Conditional Expectation (Lecture 11 - Theorem1) The MMSE of X given Y is E[XjY].We explained that, if h(Y) is a su�cient statistic for X, then E[XjY] = g(h(Y)).We then de�ne the LLSE of X given Y as the linear function AY + b that minimizes themean squared error E(jjX� (AY + b)jj2). The key result is
VI.2. Theorem: Calculating the LLSE (Lecture 11 - Theorem 2) L[XjY] = E(X) +KX;YK�1

Y (Y � E(Y)) if KY is nonsingular.L[XjY] = E(X) +KX;YQ1��11 QT1 (Y � E(Y)) if KY is singular.
It follows from the projection interpretation that E[� j Y] and L[� j Y] are linear operations.Of course, if X and Y are JG, then E[X j Y] = L[X j Y]. The converse is certainly not true.One nice result is

VI.3. Fact: Innovation (Lecture 12 - Example A)Let X;Y;Z be three random vectors such that Y ? Z and that all the random variables arezero-mean. Then
L[XjY;Z] = KX;YK�1

Y Y +KX;ZK�1
Z Z = L[XjY] + L[XjZ]: (23.5)

Moreover, cov(X� L[XjY;Z]) = cov(X� L[XjY])�KX;ZK�1
Z KZ;X: (23.6)

We also explained the relationship between linear regression and LLSE.



23.7. KALMAN FILTER 15723.7 Kalman FilterConsider a system whose state evolves according to linear dynamics with uncorrelated noise andassume one makes linear observations in the state, also with uncorrelated noise. The Kalman�lter computes recursively the LLSE of the state given the observations to date. (Of course,in the JG case, the �lter computes the conditional expectation and we know the conditionaldistribution.)The key result is
VII.1. Theorem: Kalman Filter (Lectures 13-14 - Theorem 1)Assume Xn+1 = AXn + Vn and Yn = CXn +Wn; n � 1where X1; Vn;Wn are all orthogonal and zero-mean, cov(Vn) = KV , and cov(Wn) = KW .Then X̂n = L[XnjY1; : : : ; Yn] = L[XnjY n]is obtained by the Kalman Filter:

X̂n = AX̂n�1 +Rn(Yn � CAX̂n�1)
where

Rn = SnCT [CSnCT +KW ]�1;Sn = A�nAT +KV ;�n+1 = (I �RnC)Sn:
Thus, Sn+1 = KV +ASnAT �ASnCT [CSnCT +KW ]�1CSnAT :Moreover, the matrices Sn and �n have the following signi�cance:

Sn = cov(Xn �AX̂n�1);�n = cov(Xn � X̂n):One interesting question is what happens to the estimate as time goes to in�nity. Oneimportant result is
VII.2. Theorem: Filter Asymptotics (Lecture 13-14 - Theorem 3)Let Q be a square root of KV . Suppose that the following conditions hold:(A;Q) is reachable, (A;C) is observable, and KW > 0: (23.7)
Then, if S0 = 0, �n ! �; Sn ! S;Rn ! R; as n!1:The limiting matrices are the only solutions of the equations

R = SCT [CSCT +KW ]�1;S = A�AT +KV ;� = (I �RC)S:



158CHAPTER 23. REVIEW: PART 1 - PRELIMINARIES, DETECTION & ESTIMATIONEquivalently, S is the unique positive semide�nite solution of
S = A(S � SCT [CSCT +KW ]�1CS)AT +KV : (23.8)

Moreover, the time-invariant �lter
Zn = AZn�1 +R(Yn � CAZn�1)

is such that cov(Xn � Zn)! �; as n!1:
We don't expect you to know the proof of this result. However, you should understandwhy the error covariance is bounded when the system is observable, even if the system itself isunstable. You should also realize that this result is possible because the assumptions guaranteethat A�RCA is stable. The convergence itself is proved through a connection with an optimalcontrol problem that we analyze using dynamic programming and we did not have really enoughtime to explore these ideas.

23.8 Wiener FilterWhereas Kalman consider processes de�ned by dynamic equations, Wiener explore wide sensestationary processes.We have
VIII.1. De�nition - WSS (Lecture 15 - De�nitions 3 and 7)fXn;Yn; n 2 Zg are wide sense stationary (wss) if
E(Xn) = �X; E(Yn) = �Y; E(Xn+mX�n) = RX(m); E(Yn+mY�n) = RY(m); E(Xn+mY�n) = RXY(m); 8n;m 2 Z:
Then the spectral and cross-spectral densities are de�ned as follows:

SX(f) := 1X
m=�1RX(m)e�j2�mf and SXY(f) := 1X

m=�1RXY(m)e�j2�mf ; f 2 R:
The following result explains how linear time-invariant systems modify the spectral density.

VIII.2. Theorem - E�ect of LTI System on WSS Processes (Lecture 15 - Theorem1 ) Vn = 1X
m=�1h1(n�m)Xm and Wn = 1X

m=�1h2(n�m)Ym;
where h1(n) and h2(n) are summable. Then

SVW(f) = H1(f)SXY(f)H�2(f)where Hi(f) is the transfer function that corresponds to hi(n), for i = 1; 2. That is,
Hi(f) = 1X

n=�1hi(n)e�j2�nf ; f 2 R:



23.8. WIENER FILTER 159With these de�nitions, we can construct the Wiener �lter as follows. We have processes Xand Y that are WSS. The Wiener �lter is a causal LTI system with input Y and whose outputat time n is X̂n = L[XnjYm;m � n].
VIII.3. Theorem: Wiener Filter (Lecture 15, Section VI.)Let X;Y be WSS. Assume that SY (f) = jH(f)j2 where H(f) = N(f)=D(f) with N andD are polynomials in z�1 = e�i2�f with roots z inside the unit circle. The Wiener �lter hastransfer function [SXY (f)S�1Y H(f)]+H�1(f):In this expression, [K(f)]+ designates the causal part of an LTI system with transfer functionK(f), i.e., an LTI system with impulse response k+(n) = k(n)1fn � 0g.

The key idea is that the �lter H�1 is the whitening �lter. When its input is Y, its outputis a white process Wn. It is easy to see that the �lter SXY S�1Y with input Y has output~Xn = L[Xn j Ym;m 2 Z]. It follows that ~Xn is the output of a �lter K(f) = SXY (f)S�1Y H(f)when its input is Wn, so that the output of K+ is indeed X̂n.
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Chapter 24
Review: Part 2 - Markov Chains,
Poisson Process, and Renewal
Process
24.9 Overview
We review the second part of the course. As with the review of the �rst part, use these notesas a guide to your review. However, do not assume that what is not in the review is not partof the �nal.
24.10 Markov Chains: Discrete Time
A DTMC is a sequence of random variables that take value in a discrete set and are suchthat the evolution starts afresh from its current value, at any given time. This is the Markovproperty.The basic de�nition is
X.1. De�nition: Narkov Chain (Lecture 16)Let X be a countable set and P = fP (i; j); i:j 2 Xg a matrix of nonnegative numbers whoserows add up to one. Let also �0 = f�0(i); i 2 Xg be a collection of nonnegative numbers thatadd up to one. The sequence of random variables X = fXn; n � 0g is a Markov chain on Xwith transition probability matrix P and initial distribution �0 if

P [Xn+1 = jjXn = i;Xm;m = 0; 1; : : : ; n� 1] = P (i; j); i; j 2 X ; n � 0:
It may help to realize the following:

X.2. Fact: Dynamic Representation (Homework)We can represent a Markov chain X as
Xn+1 = f(Xn; Vn); n � 0

where fVn; n � 0g are i.i.d. and independent of X0.161



162CHAPTER 24. REVIEW: PART 2 - MARKOVCHAINS, POISSON PROCESS, AND RENEWAL PROCESSIn fact, one can choose Vn =D U [0; 1], but this is not saying much.A deeper observation is that a Markov chain X starts afresh from its value at some ran-dom times called stopping times. Generally, a stopping time is a random time � that is non-anticipative. That is, we can tell that � � n from fX0; X1; : : : ; Xng, for any n � 0. A simpleexample is the �rst hitting time TA of a set A � X . Another simple example is TA+5. A simplecounterexample is TA � 1. This property is the strong Markov property. It is that propertythat enables us to say that the successive hitting times of a given state form a renewal process.We have
X.3. Theorem: Strong Markov Property (Homework)Let � be a stopping time of X. Then

P [X�+1 = j j X� = i;Xm;m � � ] = P (i; j);8i; j 2 X :
Moreover, the distribution of fX�+n; n � 0g given fX� = i;Xm;m � �g is the same as thedistribution of X given that X0 = i.

Proof:Although you worked this out in a homework, let us give a more general and probably morecompact derivation.Let V = 1fX�+1 = jg; Y = 1fX� = ig; Z = fXm;m � �g. Then we know that
E[V j Y = 1; Z] = E[E[V j Y = 1; Z; � ] j Y = 1; Z]]:However, E[V j Y = 1; Z; � = n] = P [Xn+1 = j j Xn = i;Xm;m � n; � = n] = P [Xn+1 =j j Xn = i;Xm;m � n] = P (i; j). The next to last equality comes from the fact that f� = ngis determined by fXm;m � ng and is consequently independent of Xn+1 given Xn. This isprecisely where we need � to be a stopping time. Hence, it follows that E[V j Y = 1; Z] =E(P (i; j)) = P (i; j).



24.10. MARKOV CHAINS: DISCRETE TIME 163We then de�ned a few concepts.
X.4. De�nition: Irreducible, etc ((De�nition 1 - Lecture 17)The Markov chain X is irreducible if ..., aperiodic, transient, null recurrent, positive recur-rent, ...A distribution � is invariant if it satis�es the balance equations �P = �. The Markov chainis stationary if and only if �0 is invariant.

We then get to the key result:
X.4. Theorem: Classi�cation (Theorem 1 - Lecture 18)(a) If a Markov chain is irreducible, then all the states have the same recurrence properties(T, NR, or PR). The MC is then said to be T, NR, or PR, correspondingly. All the states alsohave the same period...(b) If a MC is irreducible, then it is T if and only if P [Xn = i; i.o. jX0 = j] = 0; 8i; j:(c) If a MC is irreducible, then it is R if and only if P [Xn = i; i.o. jX0 = j] = 1;8i; j:(d) If an irreducible MC is T or NR, then

1N NX
n=1 1fXn = ig a:s:��! 0;8i 2 X :

Moreover, there is no invariant distribution. A �nite irreducible MC cannot be T or NR.(e) If an irreducible MC is PR, then
1N NX

n=1 1fXn = ig a:s:��! �(i) > 0;8i 2 X :
Moreover, � is the unique invariant distribution. A �nite irreducible MC is necessarily PR.(f) If the MC is irreducible, PR, and aperiodic, then

P (Xn = i)! �(i);8i 2 X :
You understand these results and you know how to derive them. For (d)-(e) we only neededthe strong law of large numbers applied to the i.i.d. inter-visit times to state i.One cute argument to prove (f) uses coupling. We comment on this idea because it seemsto confuse a few of you. By coupling we mean the construction of two random variables X;Yor two random processes X;Y that have desired marginal distributions and have a particularjoint distribution that enables to prove a relationship between the marginal distributions.As an example, assume that X =D Exp(�) and Y =D Exp(�) with � > �. We want toshow that if f(:) is a nondecreasing function, then E(f(X)) � E(f(Y )). The coupling proofuses that fact that we can assume that Y = (�=�)X since this does not a�ect the marginaldistributions ofX and Y and since the inequality we want to prove depends only on the marginaldistributions, not on the joint distribution. One then notices that Y � X, so that f(Y ) � f(X)and E(f(Y )) � E(f(X)). A proof based on the distributions would go as follows. We haveE(f(X)) = R10 f(x)�e��xdx = f(0) + R10 e��xdf(x) � f(0) + R10 e��xdf(x) = E(f(Y )). Notethat in the coupling proof, one �nds an almost sure relationship between the random variables.That is, all the realizations have that relationship. In the distribution proof, one calculates.The result (f) can be proved by coupling; so can the corresponding result for continuous-timeMarkov chains. We also indicated that a proof of Blackwell's renewal theorem uses coupling.



164CHAPTER 24. REVIEW: PART 2 - MARKOVCHAINS, POISSON PROCESS, AND RENEWAL PROCESSWe examined a number of examples of Markov chains, such as a random walk and a reectedrandom walk. We also discussed the Viterbi algorithm for estimating a hidden Markov chain.In discussions, we explained a criterion for positive recurrence.
X.5. Theorem: Criterion for Positive Recurrence (Discussion)Let X be an irreducible Markov chain on X . Assume there is a function V : X ! [0;1)with the following properties:(a) E[V (Xn+1)� V (Xn) j Xn = i] <1;8i 2 X ;(b) E[V (Xn+1)� V (Xn) j Xn = i] � �� < 0; 8i =2 A where A is a �nite subset of X .Then X is positive recurrent.

This result can be understood as follows. Since V decreases outside of A and since V isnonnegative, X must spend a positive fraction of time inside A. By Theorem X.4, this impliesthat X is positive recurrent.
24.11 Poisson ProcessA Poisson process with rate � > 0 is a point process with the property that a jump occurs in[t; t+ �] with probability ��+ o(�), independently of the jump times less than t. Consequently,the Poisson point process is memoryless. In particular, this implies that the times betweenjumps must be independent and exponentially distributed with rate �. If we de�ne the Poissonprocess to have a jump at time 0, then it is not stationary. Indeed, in that case the probabilitythat the process has a jump in (��;+�) is one, which is not the same as the probability that ithas a jump in (t� �; t+ �) for t 6= 0. One the other hand, if the process has not jump at time0, then it is stationary. This is related to the discussion of stationary renewal processes thatwe review later.The key result is
XI.1. Theorem: Properties of Poisson Process (Theorem 1 - Lecture 20)Let fNt; t � 0g be a Poisson process with rate �.(a) For any s > 0, fNt+s �Ns; t � 0g is a Poisson process with rate � and is independentof fNt; t � sg.(b) For any n � 2 and 0 < t1 < t2 < � � � < tn, the random variables Nt1 ; Nt2 �Nt1 ; : : : ; Ntn � Ntn�1 are mutually independent and Poisson distributed with respective means�t1; �(t2 � t1); : : : ; �(tn � tn�1).(c) Given that Nt = n, the jump times fT1; : : : ; Tng are the ordered values of n i.i.d. U [0; t]random variables.(d) Color each jump time Tn independently red with probability � and blue with probability1 � � where � 2 (0; 1). For t � 0, let At be the number of red jumps and Bt the number ofblue jumps in [0; t]. Then fAt; t � 0g and fBt; t � 0g are independent Poisson processes withrespective rates �� and (1� �)�.

We then generalized the Poisson process to a Poisson measure in <d. This is a distributionof isolated points with the property that the number of points in disjoint sets are mutuallyindependent and have Poisson distribution in each set A with mean �(A). You see that astandard Poisson process is a Poisson measure on < with �([t; t+ s]) = �s.We applied the notion of Poisson measure to the analysis of the M/G/1 queue with Poissonarrivals with rate � and i.i.d. service time distributed like S1. There are in�nitely many servers,



24.12. CONTINUOUS TIME MARKOV CHAINS 165so that the departures are equal to the arrival times delayed by i.i.d. service times. The resultisXI.2. Fact: Property of M/G/1 Queue (Fact 3 - Lectures 20)(a) The departure process is Poisson with rate �.(b) The number of customers in the queue at time t is independent of the departure timesup to time t and is Poisson with mean �E(S1).
24.12 Continuous Time Markov ChainsA continuous time Markov chain is essentially a discrete time Markov chain that speci�es thesuccessive values, modi�ed so that the process stays in state i for a random holding time that isexponentially distributed with a rate that depends on the state. Given the sequence of valuesof the Markov chain, all the holding times are independent.From the memoryless property of the exponential distribution, we �nd that this processhas the Markov property. We observed that the construction runs into a problem if jumps canaccumulate (explosion). For simplicity, we assume that they cannot and we call such Markovchains regular. One key result is the following.XII.1. Theorem: Invariant Distribution and Stationarity (Theorems 1-2 - Lecture23)Let X be a regular Markov chain (meaning, no explosions are possible) with rate matrix Q.For t � 0, let �t = f�t(i); i 2 Xg where �t(i) = P (Xt = i). We consider �t as a row vector.Then ddt�t = �tQ:Consequently, �t = � for all t � 0 if and only if �0 = � and � is invariant.Let X be a regular Markov chain with rate matrix Q and initial distribution �. It is sta-tionary if and only if � is invariant.The classi�cation result corresponds to Theorem X.4.XII.2. Theorem: Classi�cation of Markov Chains (Theorem 3 - Lecture 23)Let X = fXt; t � 0g be an irreducible Markov chain on X .(a) The states are either all transient, all null recurrent, or all positive recurrent. We thensay that the Markov chain is ....(b) If X is transient or null recurrent, then1T Z T0 1fXt = igdt! 0; as T !1;8i 2 X ; a.s.
Moreover, there is no invariant distribution andP (Xt = i)! 0; 8i 2 X :(c) If X is positive recurrent, then1T Z T0 1fXt = igdt! �(i) > 0; as T !1;8i 2 X ; a.s.
Moreover, � is the unique invariant distribution andP (Xt = i)! �(i);8i 2 X :



166CHAPTER 24. REVIEW: PART 2 - MARKOVCHAINS, POISSON PROCESS, AND RENEWAL PROCESS24.13 Jackson Networks
A Jackson network is a collection of J queues. Customers arrive as independent Poissonprocesses, with rate i into queue i. Customers face independent service times in all the queuesand these are exponentially distributed with rate �i in queue i. When a customer leavesqueue i, he goes to queue j with probability R(i; j) and leaves the network with probability1�PJj=1R(i; j). The basic result is
XIII.1. Theorem: Product-Form (Theorem 1 - Lecture 24)Assume that each customer can eventually leave.(a) In that case, the equations

�i = i + JX
j=1 �jR(j; i); i = 1; : : : ; J

have a unique solution (�1; : : : ; �J).(b) Moreover, if �i := �i=�i < 1 for i = 1; : : : ; J , then the vector of queue lengths Xt =(X1t ; : : : ; XJt ) is a positive recurrent Markov chain with invariant distribution
�(n1; : : : ; nJ) = �1(n1) � � ��J(nJ) where �i(n) = (1� �i)�ni ; n � 0:

The key idea of the proof is to guess that the process reversed in time corresponds to theJackson network with the same queues but where the ows of customers are reversed. Oneuses the following lemma.
XIII.2. Lemma: Kelly (Lemma 1 - Lecture 24)Assume that Q and Q0 are two rate matrices and � a distribution on X such that

�(i)q(i; j) = �(j)q0(j; i); 8i; j 2 X :
Then �Q = 0 and Q0 is the rate matrix of the Markov chain reversed in time.
PASTA is a useful result that derives directly from the independence of the increments ofa Poisson process.

XIII.3. Theorem: PASTA (Theorem 2 - Lecture 24)Assume customers arrive as a Poisson process into a queuing system described by a station-ary Markov chain Xt. Then, an arriving customer sees the state with its invariant distribution�.
We applied this result to show

XIII.4. Theorem: Delay through stationary M/M/1 queue (Theorem 3 - Lecture24)The delay of a customer through a stationary M/M/1 queue with arrival rate � and servicerate � is exponentially distributed with rate �� �.



24.14. CONVERGENCE 16724.14 ConvergenceWe observed that there are di�erent forms of convergence and we explored the relationshipsbetween these forms. You should know the de�nitions of these forms of convergence. Youshould remember the following results: a:s: ! P ! D and L1 ! P . You should be able toshow that the reverse implications are not true.The following result is very useful. We don't expect you to know the proof.
XIV.1. Theorem: Strong Law of Large Numbers (Theorem 3 - Lecture 25)Let Xn be i.i.d. random variables with E(jXnj) <1. ThenX1 +X2 + � � �+Xnn a:s:��! E(X1) as n!1:
24.15 Renewal ProcessesWe start with
XV.1. De�nition: Renewal Process (De�nition 1 - Lecture 26)Let fTn; n � 1g be such that Tn < Tn+1 and fTn+1 � Tn; n � 1g are i.i.d.. If T1 has thesame distribution as T2 � T1, this process is called a renewal process; otherwise, it is a |emdelayed renewal process. We also de�ne Nt = maxfn � 1 j Tn � tg with Nt = 0 for t < T1 fort � 0. See Figure 22.1.For simplicity, we assume throughout this section that ��1 := E(T2 � T1) <1.

We saw two nice results. The �rst theorem tells us how to choose the �rst jump time tomake the process stationary. We explained that this corresponds to picking the origin randomlyalong the real line among jumps separate by i.i.d. times.
XV.2. Theorem: Stationary Renewal Process (Theorem 1 - Lecture 26)Let fNt; t � 0g be a delayed renewal process and F (t) = P (T2�T1 � t) and G(t) = P (T1 �t) for t � 0. The process fNt; t � 0g is stationary if and only if

G(t) = � Z t0 (1� F (s))ds; t � 0 where ��1 = Z 10 sdF (s) = E(T2 � T1):
In particular, if the process is stationary, the average time until the next jump, E(T1) isgiven by

E(T1) = �2E((T2 � T1)2):
The second theorem says that the process becomes stationary if the distribution is notconcentrated on multiples of some �xed quantity.

XV.3. Theorem: Blackwell's Renewal Theorem (Theorem 2 - Lecture 26)Assume that F is non-lattice. Then, for all L > 0,
E(Nt+L �Nt)! �L as t!1:
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Appendix A
Notes on Probability
A.1 IntroductionProbability Theory models uncertainty and develops methods to make decision in the face ofsuch uncertainty. We briey review a few concepts that you learned in elementary probabilityand we add some important results that you may not be familiar with yet.
� Probability Space
� Random Variables
� Expectation

A.2 Probability SpaceA probability space is a triplet f
;F ; Pg where 
 is a nonempty set, F a �-�eld of 
, andP probability measure on F . That is, F is a collection of subsets of 
 that is closed undercountable set operations and P : F ! [0; 1] is a �-additive function such that P (
) = 1. Theelements of F are called events.The �-additivity of P means that if A = [1n=1An where An 2 F for n � 1 are pairwisedisjoint, then P (A) =P1n=1 P (An). Equivalently, assume that An # A in F . That is, An 2 Fwith An+1 � An for n � 1 and A = \1n=1An. Then P (An) # P (A), i.e., P (An+1) � P (An) forn � 1 and P (A) = limn!1 P (An).In particular, the following result holds.Lemma A.1. Borel-CantelliAssume that events An are such that Pn P (An) <1, then P (An; i.o.) = 0.Proof:The notation i.o. means \in�nitely often." That is, fAn; i.o. g is the collection of ! thatbelong to in�nitely many events An.One observes that omega belongs to in�nitely many An is and only if for each n � 1 thereis some m � n such that ! belongs to Am. That is,fAn; i.o.g = \n�1 [m�n Am; so that [m�n Am # fAn; i.o.g:This implies that P ([m�nAm) # P (An; i.o.). But P ([m�nAm) � Pm�n P (Am), so thatP ([m�nAm) # 0. 169
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Here are a few commonly used probability spaces.

Example A.1. Finite SpaceLet 
 be a countable set, F = 2
 be the collection of all the subsets of 
, and fp(!); ! 2
g be a collection of nonnegative numbers that add up to one. One then de�nes P (A) =P!2A p(!); A � 
. The f
;F ; Pg is a probability space.The only nontrivial part of this result is that P is � additive. To show it, assume thatAn � 
 with An+1 � An for n � 1 and let A = \1n=1An. To show that P (An) ! P (A), weargue by contradiction. Since P (An) #, let � = limP (An) and assume that � > P (A). Thatimplies that there must be at least some ! 2 An nA for all n � 1, a contradiction.
Example A.2. Real LineLet B(<) be the smallest �-�eld that contains the intervals (a; b) for all a < b in <. The�-�eld B(<) is called the Borel �-�eld of the real line. This �-�led exists because an arbitraryintersection of �-�elds is a �-�eld. Also, 2< is a �-�eld that contains all the intervals. Thus,B(<) is the intersection of all the �-�elds that contain all the intervals.Similarly, for a < b 2 <, one de�nes B([a; b]) to be the smallest �-�eld of [a; b] that containsall the intervals of [a; b].Recall that a set G of real numbers is open if every point x 2 G is surrounded by points ofG. That is, for every x 2 G, there is some � > 0 such that (x � �; x + �) � G. It follows thatevery x 2 G is such that x 2 (r(x) � epsilon(x); r(x) + �(x)) � G where both r(x) and �(x)are rational numbers. Consequently, we can write G = [x2G(r(x) � epsilon(x); r(x) + �(x)).Moreover, this union is in fact countable since all the r(x) and �(x) are rational and the setof rational numbers is countable. Thus, G is a countable union of intervals and this impliesG 2 B(<). We have shown that B(<) contains all the open sets of <.By de�nition, a set is closed if its complement is open. Consequently, B(<) contains all theclosed sets of <.
Example A.3. Uniform Distribution on [0; 1]Let 
 � [0; 1];F = B([0; 1]) and de�ne P such that P ((a; b)) = b � a for 0 � a � b � 1.One can show that P (:) extends uniquely to a probability measure on B([0; 1]). The resultingprobability space f
;F ; Pg describes the random experiment \choosing a point uniformly in[0; 1]."
Example A.4. Uniform Distribution on [0; 1]2The previous de�nitions extend to multiple dimensions. One de�nes B([0; 1]2) as the small-est �-�led that contains all the rectangles of the form [a; b] � [c; d] � [0; 1]2. The uniform dis-tribution on [0; 1]2 is the unique probability measure on B([0; 1]2) such that P ([a; b] � [c; d]) =(b� a)� (d� c) for all [a; b]� [c; d] � [0; 1]2.
A.3 Independence
Let f
;F ; Pg be a probability space. You recall the following de�nitions.
De�nition A.1. Conditional Probability



A.4. RANDOM VARIABLES 171The conditional probability of A given B is designated by P [AjB] and is de�ned by
P [AjB] = P (A \B)P (B) ; if P (B) 6= 0:

It follows that if fB1; : : : ; Bng � F are pairwise disjoint and such that [nm=1Bm = 
, then
P [BmjA] = P (Bm \A)P (A) = P [AjBm]P (Bm)Pnk=1 P [AjBk]P (Bk) : (A.1)

This expression is known as Bayes' Rule.De�nition A.2. Independence(a) A;B 2 B are independent if P (A \B) = P (A)P (B).(b) The events fAi; i 2 Ig � F are pairwise independent if Ai and Aj are independent forall i 6= j 2 I.(c) The events fAi; i 2 Ig � F are mutually independent if, for any �nite J � I, one hasP (\j2JAj) = �j2JP (Aj):It is important not to confuse pairwise independence and mutual independence.
A.4 Random VariablesYou recall that a random variable X on a probability space f
;F ; Pg is a function X : 
! <with the property that X�1(B) 2 F for all B 2 B(<). Here, X�1(B) := f! 2 
 j X(!) 2 Bgis the inverse image of B under X. The point of this de�nition is that one can then de�neP (X 2 B) for B 2 B as P (X�1(B)). In particular, one de�nes

FX(x) := P (X � x); x 2 <and one calls FX the cumulative probability distribution function (c..p.d.f.) of X. Observe thatF (b) � F (a) = P (a < X � b) for a < b 2 <. Note that FX is right-continuous, that it tendsto 1 at +1 and to 0 at �1. These properties follow directly from the �additivity of P . Forinstance, one sees that if xn # x, thenX�1((�1; xn]) # X�1((�1; x]), so that FX(xn) # FX(x).Also, P (X = a) = limx"a P (x < X � a) = limx"a(FX(a) � FX(x)) = FX(a) � FX(a�). Thatis, the size of the jump (discontinuity) of FX at a is the probability that X takes the value a.It may happen that FX has a derivative fX , so that
FX(x) = Z x

�1 fX(y)dy:
In such a case, fX is called the probability density function (p.d.f.) of X. The interpretation offX is that fX(x)dx = P (X 2 (x; x+ dx)).Consider the following simple example.Example A.5. Let 
 = [0; 1] and F = f[0; 1]; [0; 0:5]:(0:5; 1]; ;g where ; designates the emptyset. Note that F is closed under countable set operations, so that it is a �-�eld. De�neP ([0; 0:5]) = 0:3; P ((0:5; 1]) = 0:7; P (;) = 0, and P ([0; 1[) = 1. Then f
;F ; Pg is a probabilityspace. Consider the function X : 
! < de�ned by X(!) = !. Then we claim that X is not arandom variable on f
;F ; Pg. Indeed, X�1([0; 0:2]) = [0; 0:2] =2 F : In particular, P (X � 0:2)is not de�ned.



172 APPENDIX A. NOTES ON PROBABILITYFact A.1. Function of Random VariableLet X be a random variable on f
;F ; Pg and g : < ! < be some function such thatg�1(B) 2 B(<) for all B 2 B(<). A function g with that property is called a Borel function.Then Y := g(X) is a random variable on f
;F ; Pg.Proof:One must show that Y �1(B) 2 F for all B 2 B(<). But Y �1(B) = X�1(A) whereA = g�1(B). The assumption on g implies that A 2 B(<). The fact that X is a randomvariable implies that X�1(A) 2 B(<).
The same ideas extend to multiple random variables. Thus, if X = (X1; : : : ; Xn) whereeach Xm is a random variable on the same probability space f
;F ; Pg, then one de�nesFX(x1; : : : ; xn) = P (X1 � x1; : : : ; Xn � xn). Note that the set fX1 � x1; : : : ; Xn � xng =\nm=1X�1m ((�1; xm]) is in F since each Xm is a random variable. The function FX is thejoint cumulative probability distribution function (j.p.d.f.) of the random variables. If it has adensity fX, we call it the joint probability density function (j.p.d.f.) of the random variables.You know that the j.c.p.d.f. contains much more information than the marginal c.p.d.f. FXm .You should review the standard distributions: Bernoulli, binomial, Poisson, geometric,uniform, and exponential.We recall the followingDe�nition A.3. Independent Random Variables(a) Two random variables X and Y on f
;F ; Pg are independent ifP (X 2 A; Y 2 B) = P (X 2 A)P (Y 2 B):8A;B 2 B(<):
(b) The random variables fXi; i 2 Ig on f
;F ; Pg are pairwise independent if Xi and Xjare independent for all i 6= j 2 I.(c) The random variables fXi; i 2 Ig on f
;F ; Pg are mutually independent if, for any�nite subset J � I, one hasP (Xj 2 Aj ; j 2 J) = �j2JP (Xj 2 Aj); 8Aj 2 B(<):We use the following observation repeatedly.Theorem A.1. Let fXi; i 2 Ig be mutually independent random variables on f
;F ; Pg. LetJ1 and J2 be two �nite subsets of I and g : <d1 ! < and h : <d2 ! < be Borel functions whered1 = jJ1j and d2 = jJ2j. Then g(Xj ; j 2 J1) and h(Xj ; j 2 J2)are independent random variables.The conclusion is generally not valid if the random variables are only pairwise independent.

A.5 ExpectationOne de�nes the expected value E(X) of a random variable X as
E(X) = Z 1

�1 xdFX(x);



A.5. EXPECTATION 173provided that the integral does not yield 1�1. If fX exists, then
E(X) = Z 1

�1 xfX(x)dx:
One can be a bit more precise here. Assume that X takes only �nitely many values, sothat we can write X = Pnm=1 am1f! 2 Amg for some events Am. Then one de�nes E(X) =Pnm=1 amP (Am). The general de�nition is obtained by approximating X by simple randomvariables. Thus, if X � 0, one de�nes Xn = maxfk2�njk � 0; k2�2n � minfX;ngg. Onesees that each Xn is a simple random variable. Moreover, Xn+1(!) � Xn(!) for all !. Itis easy to show that E(Xn) is nondecreasing and must therefore converge to some limit thatde�nes E(X). In the general case, one writes X = X+ � X� where X+ := maxfX; 0g andX� := X�X+. One then de�nes E(X+) and E(X�) as before, and E(X) := E(X+)�E(X�),provided that the result is not 1�1.We now state a very convenient result.Theorem A.2. Let X be a random variable on f
;F ; Pg with c,p.d.f. FX and let g be a Borelfunction. Then E(F (X)) = Z 1

�1 g(x)dFX(x) = Z 1
�1 g(x)fX(x)dx;

where the second identity holds if fX exists.Recall also the following de�nition:De�nition A.4. The variance of the random variable X is designated by var(X) and is de�nedas var(X) = E((X � E(X))2) = E(X2)� E(X)2:We will use the following simple inequalities.Fact A.2. Let X be a random variable.(a) Markov: If h : [0;1)! < is nondecreasing, then
P (jXj � �) � E(f(jXj))f(�) :

In particular, for h(x) = x2, one gets Chebychev's inequality:
P (jXj � �) � E(X2)�2 :

(b) Jensen: Assume that g : < ! < is a convex function. Then
E(g(X)) � g(E(X)):

Proof:(a): Note that f(�)1fjXj � �) � f(jXj) as you can verify by considering separately thecases jXj < � and jXj � �. The result then follows by taking expectations.(b) Since g is convex, it lies above the tangent line to its graph at the point (E(X); g(E(X))).If we designate the slope of that tangent by �, we conclude that
g(X) � g(E(X)) + �(X � E(X)):Taking expectation on both sides yields the result.
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The �-additivity of P implies continuity properties of the expected value. For instance, letXn(!) = 1f! 2 Ang where An " A as n!1. Then Xn " X where X(!) = 1f! 2 Ag and wesee that E(Xn) = P (An) " E(X) = P (A).However, one must be careful, as the following example demonstrates. Let f
;F ; Pg =([0; 1];B([0; 1]); P ) where P ([a; b]) = b� a for 0 � a � b � 1. De�ne Xn(!) = n� 1f! � 1=ngand X(!) = 0 for all ! 2 [0; 1]. We see that Xn(!) ! X(!) for all ! 6= 0. However,E(Xn) = 1 9 E(X) = 0. Thus, in general Xn ! X does not imply E(Xn) ! E(X). Theimportant positive result is as follows.We need the following de�nition.De�nition A.5. Almost Sure ConvergenceLet Xn and X be random variables on f
;F ; Pg. One says that Xn converges almost surelyto X, and one writes Xn a:s:��! X if the set of ! such that the numbers Xn(!) converge to thenumber X(!) has probability one. That is,

Xn a:s:��! X , P ( limn!1Xn = X) = 1:
Theorem A.3. Lebesgue Convergence Theorem(a) Monotone Convergence Theorem: MCT. Assume that 0 � Xn "a:s: X as n!1. ThenE(Xn) " E(X) as n!1.(b) Dominated Convergence Theorem: DCT. Assume that Xn a:s:��! X as n ! 1 andjXnj � Y for n � 1 with E(Y ) <1. Then E(Xn)! E(X) as n!1.



Appendix B
Notes on Linear Algebra
B.1 IntroductionLinear Algebra is the theory of linear transformations. Applications abound in estimation,control, and Markov chains. You should be familiar with the following concepts that we reviewin these notes:
� Linear transformation, vector, matrix, determinant
� Basis
� Eigenvector, eigenvalue
� Range, rank, null space
� Diagonalization
� Rotation
� Projection
� Singular Value Decomposition

B.2 Preliminaries
Matrix NotationYou remember the matrix notation. For instance,

� 3 41 5 � � 7 �26 9 �
= � 3� 7 + 4� 6 3� (�2) + 4� 91� 7 + 5� 6 1� (�2) + 5� 9 �= � 45 3037 43 �Thus, element (AB)ij (meaning row i and column j) of AB is the product of row i of Atimes column j of B, where the product of two vectors is the sum of the products of their175



176 APPENDIX B. NOTES ON LINEAR ALGEBRAcorresponding elements. This makes sense if A 2 Cm�k, meaning hat A has m rows and kcolumns, and B 2 Ck�n and then AB 2 Cm�n.Observe that, with z 2 Cm and v1; : : : ; vm 2 Cn,[v1jv2j � � � jvm]z =Xj zjvj :
Also, A(B + C) = AB +BC:Recall that (AB)� = B�A�where A� is the transposed of A de�ned by A�ij = Aji.Also, in general, AB 6= BA.If A 2 Cn�n, then A�1 is a matrix in Cn�n such that AA�1 is the identity matrix I. It iseasy to see that A�1 is unique, if it exists. Also, (AB)�1 = B�1A�1.

Inverse of 2� 2Note that, with � := ad� bc,� a bc d � � d �b�c a � = � � 00 � � ;
so that � a bc d ��1 = 1� � d �b�c a � ;
provided that � 6= 0.For instance, � 3 52 7 ��1 = 111 � 7 �5�2 3 � ;
which enables us to state that the unique solution of the equations� 3 52 7 � � x1x2

� = � 1337 �is � x1x2
� = � 3 52 7 ��1 � 1337 �= 111 � 7 �5�2 3 � � 1337 � = � �94=1185=11 � :

Note also that the matrix � 3 56 10 �does not have an inverse, because ad� bc = 3� 10� 6� 5 = 0. Observe that� 3 56 10 � � x1x2
� = � 36 �x1 + � 510 �x2 = � 12 � (3x1 + 5x2):



B.2. PRELIMINARIES 177Consequently, the equation � 3 56 10 � � x1x2
� = � b1b2

�
has no solution unless � b1b2

� = � � 12 �for some �. In that case, there are in�nitely many solutions that correspond to 3x1+5x2 = �.
Solving Homogeneous Linear EquationsConsider the equations � 2 6 43 11 8 �

24 x1x2x3
35 = � 00 � :We can subtract from the second equation the �rst one multiplied by 3=2 without changing thesolutions. Accordingly, these equations are equivalent to the following:� 2 6 40 2 2 �

24 x1x2x3
35 = � 00 � :Let us �x x3 = u 2 C. The second equation is 2x2 + 2x3 = 0 and it yieldsx2 = �u:The �rst equation is 2x1 + 6x2 + 4x3 = 0 and it yieldsx1 = �3x2 � 2x3 = �3(�u)� 2u = u:We conclude that the general solution of the equations isx1 = u; x2 = �u; x3 = u:The procedure that we used consists in performing elementary row manipulations of theequations to bring them into a row echelon form. In that form, the column index of left-mostnonzero term of a row is called the pivot. The index of the pivot is increasing for successiverows. We then solve recursively \bottom up."The elementary row operations consist in interchanging rows or subtracting a multiple ofone row from another row. Let A be an arbitrary matrix. Assume column i is the left-mostnonzero column. By interchanging rows, one makes sure that element (1; i) is nonzero. Bysubtracting row 1 multiplied by aji=a1i from row i, the new matrix has all entries ji equal tozero for j � 2. We then interchange rows below row 1 to make sure that the leftmost nonzeroterm in those rows is in row 2. We continue in this way to obtain the row echelon form.Theorem B.1. A system of m homogeneous linear equations with n variables has in�nitelymany solutions if n > m.Proof:First reduce the equations to the row echelon form. Since there are more columns thanrows, there must be columns without pivots. One can �x the variables xi arbitrarily for thevalues of i such that column i has no pivot; these are free variables. Proceeding bottom up, onesolves for the last pivot variable in terms of the free variables. One then continues recursively,solving for the other pivot variables.



178 APPENDIX B. NOTES ON LINEAR ALGEBRAB.3 Range, Rank, Null Space, etc.
B.3.1 Linear IndependenceThe vectors fv1; : : : ; vkg 2 Cn are linearly independent if

a1v1 + � � � akvk = 0 only if a1 = � � � = ak = 0:
A linear subspace V of Cn is a subset of Cn such that a linear combination of two elementsof V is again in V. That is, v1; v2 2 V and a1; a2 2 C implies a1v1 + a2v2 2 V. For instance,the collection of vectors x 2 C2 such that x2 = 3x1 is a linear subspace of C2.Let V be a subspace of Cn. A basis of V is a collection fv1; : : : ; vmg of vectors of V that arelinearly independent and such that every v 2 V can be written as v = a1v1 + � � � + amvm forsome ai 2 C.A linear map Q : V ! V is invertible if it is a bijection.Fact B.1. Let fv1; : : : ; vmg be a basis of the linear subspace V. For any v 2 V, the represen-tation v = a1v1 + � � �+ amvm is unique. That is, if

v = a1v1 + � � �+ amvm = b1v1 + � � �+ bmvm;
then ai = bi for i = 1; : : : ;m.
Proof:Note that 0 = (a1 � b1)v1 + � � �+ (am � bm)vm:Since the vi are linearly independent, it follows that ai � bi = 0 for i = 1; : : : ;m.
Fact B.2. Let fv1; : : : ; vmg be a basis of the linear subspace V. Let fw1; : : : ; wkg � V withk > m. Then the vectors fw1; : : : ; wkg are linearly dependent.
Proof:We want to �nd fb1; : : : ; bkg that are not all zero and such that b1w1 + � � �+ bkwk = 0. Weknow that wi = mX

j=1 aijvj ; for i = 1; : : : ; k:
Hence, 0 = kX

i=1 biwi = kX
i=1

mX
j=1 biaijvj =

mX
j=1[

kX
i=1 biaij ]vj :It follows that kX

i=1 biaij = 0; for j = 1; : : : ;m:
This is a system ofm homogeneous equations with k > m variables. We know from Fact B.1that there are in�nitely many solutions. In particular, there are nonzero solutions fb1; : : : ; bkg.
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B.3.2 DimensionTheorem B.2. Let V be a subspace of Cn. If fv1; : : : ; vmg and fw1; : : : ; wkg are two bases ofV, then m = k � n. The value of m is called the dimension of V that we designate by dim(V).If Q : V ! V is a linear invertible map, then dim(QV) = dim(V).
Proof:Since fv1; : : : ; vmg is a basis, Fact B.2 implies that k � m. A symmetric argument showsthat m � k. It follows that k = m.To show that m � n, note that fe1 = (1; 0; : : : ; 0)�; : : : ; en = (0; 0; : : : ; 0; 1)g is a basis, sothat no more than n vectors can be linearly independent, again by Fact B.2.With V = [v1j � � � jvm], we claim that QV is a basis for QV. Indeed, QV x = 0 impliesV x = 0 because Q is invertible, which implies x = 0.

B.3.3 Range, Rank, Null SpaceLet V = fv1; : : : ; vmg be a collection of vectors in Cn and V = [v1j � � � jvm] 2 Cn�m the matrixwith columns vj . By V � we designate the conjugate of the matrix V . That is, (V �)ij is thecomplex conjugate of Vji. Thus, V � 2 Cm�n.De�nition B.1. We de�ne R(V ), the range of V , to be the collection of linear combinationsof the vectors vi. That is R(V ) = fV a j a 2 Cmg:The range of V is a linear subspace of Cn. The dimension of that subspace is called the rankof V .The null space of V , N(V ), is de�ned as the following set:
N(V ) := fz 2 Cm j V z = 0g:

Theorem B.3. Let V 2 Cn�m. Then
dim(R(V )) = dim(R(V �)):

Moreover, dim(R(V )) + dim(N(V )) = m:
Proof:Convert the matrix V to the echelon form by performing row operations. Since these op-erations are invertible, they do not change the dimension of the range of V . Also, they do notchange N(V ). Now, say that the reduced matrix has k nonzero rows, and therefore k pivot vari-ables. The k nonzero rows are linearly independent, and there are only k linearly independentrow, so that dim(R(V �)) = k. Also, the k columns that correspond to the pivot variables arelinearly independent and there cannot be more than k linearly independent columns. Hence,dim(R(V )) = k.In the previous argument, there are m � k columns that do not have pivots and they cor-respond to independent free variables. Consequently, dim(N(V )) = m� k.
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Figure B.1: The actions of A and A�.
Lemma B.1. Let A 2 Cm�n be a matrix of rank r.(a) One has the decompositionsCn = R(A�)�N(A) and Cm = R(A)�N(A�)where R(A�) ? N(A) and R(A) ? N(A�). That is, any x 2 Cn can be written uniquely asx = u+ v where u 2 R(A�) and v 2 N(A) and similarly for Cm.(b) The restriction of A on R(A�) is a bijection of R(A�) onto R(A) andN(AA�) = N(A�); R(AA�) = R(A):(c) The restriction of A� on R(A) is a bijection of R(A) onto R(A�) andN(A�A) = N(A); R(A�A) = R(A�):Proof:Figure B.1 illustrates the statements of the Lemma.The key observation is thatR(A)? := fx 2 Cm j x�y = 0; 8y 2 R(A)g = N(A�):To see this, note that x 2 R(A)? , x�Az = 0;8z 2 Cn, z�A�x = 0; 8z 2 Cn, A�x = 0, x 2 N(A�):Consequently, replacing A by A�, one �nds that R(A�)? = N(A).Since R(A�)? = N(A), any vector x can be written uniquely as x = u+ v where u 2 R(A�)and v 2 N(A). Consequently, Ax = Au and we see that A restricted to R(A�) is onto R(A).Moreover, we claim that A restricted to R(A�) is one-to-one on R(A). That is, if Au1 = Au2for u1; u2 2 R(A�), then u1 = u2. Equivalently, let Au = 0 for some u 2 R(A�); we show thatu = 0. To see this, observe that u 2 N(A) \R(A�) = f0g.We now verify that N(AA�) = N(A�). Assume that x 2 N(AA�). Then AA�x = 0, so thatjjA�xjj2 = x�AA�x = 0, which shows that A�x = 0 and x 2 N(A�). Hence, N(AA�) � N(A�).Obviously, N(A�) � N(AA�) since A�x = 0 implies AA�x = 0. Hence, N(AA�) = N(A�).To show that R(AA�) = R(A), assume that x 2 R(A), so that x = Ay. We decompose yas y = u + v where u = A�z 2 R(A�) and v 2 N(A). Then, x = A(u + v) = Au = AA�z, sothat x 2 R(AA�). Hence, R(A) � R(AA�). Also, R(AA�) � R(A) since any x 2 R(AA�) is ofthe form x = AA�y = A(A�y) 2 R(A).The other statements of the lemma are obtained by replacing A by A�.



B.4. DETERMINANT 181B.4 Determinant
We de�ne the determinant det(A) of a square matrix A. This concept is essential to understandthe inverse of matrices and also the change of variables in multivariate calculus.Before introducing the de�nition, we need to review the notion of index of a permutation.
B.4.1 PermutationsCall a transposition of a list of numbers the interchange of two successive numbers in the list.Consider the numbers (1; 2; 3). They are in increasing order. Thus, the minimum numbers(1; 2; 3) of transpositions required to put these numbers in increasing order is equal to zero;that is, s(1; 2; 3) = 0.Now consider (3; 1; 2). To arrange these elements in increasing order we can interchange the�rst two elements to obtain (1; 3; 2), then interchange the last two elements to obtain (1; 2; 3).That is, we can reorder the three elements with two transpositions of successive elements. Youcan also see that this is the minimum number of such transpositions required since no singletransposition does the job. Hence, s(3; 1; 2) = 2.Consider a permutation p = (p1; p2; : : : ; pn) of (1; 2; : : : ; n). There is certainly a sequence oftranspositions that reorders these numbers. For instance, let pk = 1. We can bring 1 back inthe �rst position by interchanging the elements k and k� 1, then the elements k� 1 and k� 2,..., then the elements 2 and 1. After these k � 1 transpositions, the permutation p has beenmodi�ed to (1 = pk; p1; : : : ; pk�1; pk+1; : : : ; pn). One can then repeat the procedure to bring 2in second position with a �nite number of transpositions, and so on. We de�ne s(p) to be theminimum number of transpositions required to arrange the elements in p in increasing order.Assume that one can reorder the elements of a permutation p with k transpositions. Weclaim that k � s(p) must be an even number. Equivalently, if we perform a number k oftranspositions of the elements (1; 2; : : : ; n) that brings them back to the same order, then kmust be even. To see this, note that the result is obvious for two elements. Assume that theresult holds for n elements and we color these elements blue. Let us add one element thatwe color red. Consider then the set of k transpositions that bring back the elements to theiroriginal order. Among these transpositions, a number k1 do not move the red element. Byinduction, k1 must be even. The other k2 = k� k1 transpositions move the red element to theright or to the left in the set of blue elements. It is obvious that k2 must be even to bring thered element back to its original position.Consider A 2 Cn�n. Let � be a selection of n entries of A taken from di�erent rows anddi�erent columns. We can list the elements of � in increasing order of their rows. Thus, � =�(p) := (a1p1 ; a2p2 ; : : : ; anpn) where p := (p1; p2; : : : ; pn) is some permutation of (1; 2; : : : ; n).Thus, there are n! such selections �, one for each permutation p.
B.4.2 De�nitionDe�nition B.2. Let A 2 Cn�n for some n � 2. The determinant det(A) of matrix A isde�ned as det(A) =Xp a1p1a2p2 � � � anpn(�1)s(p) =Xp �(p)(�1)s(p)
where the sum is over all the possible permutations p of (1; 2; : : : ; n).



182 APPENDIX B. NOTES ON LINEAR ALGEBRATo clarify this de�nition, let us look at some examples. For a; b; c; d 2 C,
det� a bc d � = �(1; 2)� �(2; 1) = a11a22 � a12a21 = ad� bc:

As another example,
det0@ a b cd e fg h i

1A
= �(1; 2; 3)� �(1; 3; 2)� �(2; 1; 3)+ �(2; 3; 1) + �(3; 1; 2)� �(3; 2; 1)= a11a22a33 � a11a23a32 � a12a21a33+ a12a23a31 + a13a21a32 � a13a22a31= aei� afh� bdi+ bfg + cdh� ceg:

Fact B.3. (a) Assume the matrix B is obtained from A 2 Cn�n by interchanging two rows ortwo columns, then det(B) = � det(A):(b) Assume the matrix B is obtained from A 2 Cn�n by multiplying one row or one columnby a constant , then det(B) =  det(A):(c) Assume the matrix A has two identical rows or two identical columns, then
det(A) = 0:

(d) Let A� designate the transposed of matrix A, de�ned so that the entry ij of A� is theentry ji of matrix A. Then det(A�) = det(A):
Proof:For (a), note that the interchange modi�es the index of every permutation by one. Fact (b)is obvious. Fact (c) follows from (a).For fact (d), consider the term �(p) = a1p1 � � � anpn in det(A). That term appears indet(A�) := det(B) as bp11 � � � bpnn. Let us rearrange the terms (bp11; : : : ; bpnn) so that theyare in increasing order of the rows. To do this, we need to perform s(p) transpositions. Weend up with the terms b1q1 � � � bnqn . But then we know that s(p) transpositions of the termsq = (q1; : : : ; qn) bring them back in the order (1; 2; : : : ; n). That is, s(q) = s(p). Accordingly,the term a1p1 � � � anpn that appears with the sign s(p) in det(A) appears with the sign s(q) = s(p)in det(A�) and we see that det(A) = det(A�).
De�nition B.3. Let A 2 Cn�n. For i; j 2 f1; : : : ; ng, the matrix Aij 2 C(n�1)�(n�1) isobtained from A by deleting row i and column j. We then de�ne the cofactor of the entry aijof matrix A as cij = (�1)i+j det(Aij):



B.4. DETERMINANT 183Fact B.4. det(A) =Xk aikcik =Xk akjckj ; for all i; j:
Proof:Consider a generic term in aikcik. Such a term is� := (�1)i+ka1p1 � � � ai�1;pi�1ai+1;pi+1anpn(�1)s(p)where p = (p1; : : : ; pn) is a permutation of the numbers (1; 2; : : : ; n) from which k has beenremoved. Consequently,

� = a1p1 � � � ai�1;pi�1aikai+1;pi+1anpn(�1)s(p)+(i+k):We claim that (�1)s(p)+(i+k) = (�1)s(p1;:::;pi�1;k;pi+1;:::;pn):Let us �rst perform i� 1 transpositions of (p1; : : : ; pi�1; k; pi+1; : : : ; pn) to get(k; p1; : : : ; pi�1; pi+1; : : : ; pn):We then perform s(p) transpositions to get(k; 1; : : : ; k � 1; k + 1; : : : ; n):Finally, with k � 1 other transpositions, we get(1; 2; : : : ; k � 1; k; k + 1; : : : ; n):That is, we can reorder the terms (p1; : : : ; pi�1; k; pi+1; : : : ; pn) with s(p) + i+ k � 2 trans-positions. We know that this may not be the minimum number of transpositions, but thedi�erence with the minimum number must be even, as we explained when we introduced theindex of permutations. This proves the claim.It follows from this observation that the terms in aikcik as k ranges over all possible valuesare all the terms in det(A).
Fact B.5. Let B be a matrix obtained from A by subtracting from one row a multiple of adi�erent row. Then det(B) = det(A):Proof:Assume that all the rows of B are the same as the rows of A, except that row i is equal torow i of A minus � times row j of A, for some i 6= j. Let cik be the cofactor of aik and c0ik bethe cofactor of bik. Then cik = c0ik since these cofactors involve only elements of the matricesthat are not on row i. The expansion of the determinants givesdet(A) =Xk aikcik and det(B) =Xk (aik � �ajk)cik:
Now,Pk ajkcik is the determinant of the matrix obtained from A by replacing row i by a copyof row j. Since this matrix has two identical rows, its determinant is zero. We conclude thatdet(A) = det(B).



184 APPENDIX B. NOTES ON LINEAR ALGEBRAFact B.6. Let A;B 2 Cn�n. Then
det(AB) = det(A) det(B):

Proof:The trick in the proof is to reduce the matrices to a row echelon form by performing simplerow operations where we subtract from one row a multiple of a row above. For instance, saythat we replace row 2 in matrix A by row 2 minus � times row 1. We then obtain a matrix A0with a0ij = aij � �a1j1fi = 2g; j = 1; : : : ; n:Note that
(A0B)ik = X

j a0ijbjk =Xj (aij � �a1j1fi = 2g)bjk
= (AB)ik � �(AB)1k1fi = 2g:

That is, the rows of A0B are those of AB, except that � times row 1 is subtracted from row2. That is, the elementary row operation performed on A results in the same row operationon AB. We know from Fact B.5 that such row operations do not modify the determinant of amatrix.Similarly, if we interchange two rows in matrix A, then the corresponding rows of AB areinterchanged. Indeed, row i of AB is equal to row i multiplied by B. Such an operationmultiplies the determinant of A and that of AB by �1.Let us then perform elementary row operations on A to reduce it to a row echelon form.The determinant of the reduced matrix A is nonzero only if the reduced matrix has a triangularform. That is, if the diagonal elements are nonzero and the terms below the diagonal are zero.The determinant of a matrix in triangular form is the product of the diagonal elements, as iseasy to see by induction on the size of the matrix from Fact B.4. These operations do notmodify the identity between the determinants of A and of AB,We now perform elementary column operations on B to reduce it to row echelon form. Theseoperations correspond to the same operations on AB. For instance, if b0jk = bjk��bj11fk = 2g,then
(AB0)ik = X

j aij(bjk � �bj11fk = 2g)
= (AB)ik � �(AB)i11fk = 2g:

Once again the determinant of B is nonzero only if after reduction B is triangular. so thatB is also triangular. But now, both A and B are triangular and it is immediate that AB istriangular. Moreover, the diagonal terms of AB are the product of the corresponding diagonalterms of A and B. That is, the determinant of AB is the product of the determinants of Aand B.Since the identity between the determinant of AB and those of A and B has not been modi-�ed by the elementary row and column operations, we conclude that det(AB) = det(A) det(B)for the original matrices.



B.5. INVERSE 185B.5 InverseConsider the matrix A 2 Cn�n. We know that the span of A, span(A) := fAx j x 2 Cng, isa linear space with dimension rank(A). If the columns of A are linearly independent, i.e., ifrank(A) = n, span(A) = Cn and for every y 2 Cn, there is some x 2 Cn such that Ax = y.Moreover, that x must be unique since we know that the representation of a vector as a linearcombination of basis vectors is unique. We can then de�ne that unique x to be the inverse ofy under A and we designate it by x = A�1y.If rank(A) < n, then span(A) is a proper subset of Cn, so that there are some y 2 Cn forwhich there is no x such that Ax = y. Also, if y is in span(A), then there are in�nitely manyx such that Ax = y and any two such values of x di�er by an element in the null space of A.We now discuss the calculation of A�1 in terms of determinants.Theorem B.4. Let A 2 Cn�n. Then rank(A) = n if and only if det(A) 6= 0. Moreover, inthat case, there is a unique matrix A�1 2 Cn�n such that AA�1 = I where I designates theidentity matrix, i.e., the matrix whose elements are Iij = 1fi = jg. That matrix has entries
A�1ij = 1det(A)cji

where cji is the cofactor of aji in A.
Proof:De�ne B to be the matrix with entries bij = cji. We show that AB = det(A)I. First wecheck the diagonal elements of AB. We �nd

(AB)ii =Xk aikbki =Xk aikcik = det(A);
by Fact B.4.Second, we check the o�-diagonal terms. Thus, let i 6= j. Then

(AB)ij =Xk aikbkj =Xk aikcjk:
Now, consider the matrix D obtained from A by replacing row j of A by a copy of row i of A.Note that the cofactor of djk is not a�ected by this replacement since that cofactor involvesterms that are not on row j. Accordingly, that cofactor is cjk. Hence, we can write, using FactB.4, det(D) =Xk djkcjk =Xk aikcjk:
But we know that det(D) = 0, because that matrix has two identical rows (see Fact B.3(b)).Putting these conclusions together, we see that AB = det(A)I. This shows that if det(A) 6=0, then the matrix A�1 := B= det(A) is such that AA�1 = I. It follows that Ax = y has a uniquesolution x = A�1y, so that the column of A must be linearly independent and rank(A) = n.Now assume that rank(A) = n. We want to show that det(A) 6= 0. Since rank(A) =n, for every i 2 f1; 2; : : : ; ng, there must be some vi 2 Cn such that Avi = ei, whereei(j) = 1fi = jg. The matrix D with columns vi must then be such that AD = I. Sincedet(AD) = det(A) det(D), this implies that det(A) 6= 0.



186 APPENDIX B. NOTES ON LINEAR ALGEBRATheorem B.5. Let A 2 Cn�n. Then Ax = 0 has a nonzero solution if and only if det(A) = 0.Proof:If det(A) 6= 0, then we know that A has an inverse A�1, so that Ax = 0 implies x = 0.Assume that det(A) = 0. By performing elementary row operations, one converts A to arow echelon form B with det(B) = 0. Now, det(B) is the product of the diagonal elementsof B. Consequently, B has a zero diagonal element which corresponds to a nonzero xi solvingBx = 0, and therefore Ax = 0.

B.6 Eigenvalues and EigenvectorsThese concepts are very useful. We start with an example.
B.6.1 ExampleConsider the matrix A = � 4 31 2 � :An eigenvector of A is a nonzero vector v such that Av is proportional to v; that is, Av = �v.The constant � is called the eigenvalue associated with the eigenvector v. You can check that

v1 := � 1�1 � and v2 := � 31 �are such that Av1 = v1 and Av2 = 5v2:Accordingly, v1 and v2 are two eigenvectors of A with respective eigenvalues �1 = 1 and �2 = 5.This concept is useful because we can write any other vector x as a linear combination ofv1 and v2. For instance, � x1x2
� = y1v1 + y2v2with y1 = (�x1 + 3x2)=4 and y2 = (x1 + x2)=4. We then �nd thatAx = A(y1v1 + y2v2) = y1Av1 + y2Av2 = y1�1v1 + y2�2v2:We can write the above calculations in matrix form. We have

x = V y = [v1jv2] � y1y2
� where y = � �1=4 3=41=4 1=4 � = V �1x;

so that Ax = AV y = AV V �1x = [�1v1j�2v2]V �1x = �V V �1xwhere � = diag(�1; �2) is the diagonal matrix with diagonal elements �1; �2.Repeating these operations n times, we �ndAnx = �nV V �1xwhere �n = diag(�n1 ; �n2 ).



B.7. ROTATION AND PROJECTION 187
B.6.2 General CaseDe�nition B.4. Let A 2 Cn. An eigenvector of A is a nonzero v 2 Cn such that Av = �v.The constant � 2 C is called the eigenvalue associated with v.Fact B.7. Av = �v for some v 6= 0 if and only if det(A� �I) = 0.Proof:(A��I)v = 0 admits a nonzero solution v if and only if det(A��I) = 0, by Theorem B.5.

The fact above tells us how to �nd the eigenvalues. One can then �nd the eigenvectorscorresponding to an eigenvalue � by solving the homogeneous equations (A � �I)v = 0. Oneprocedure to do this is to reduce the matrix to row echelon form.Fact B.8. Assume that A admits the linearly independent eigenvectors fv1; : : : ; vng with cor-responding eigenvalues f�1; : : : ; �ng. ThenV �1AV = � := diag(�1; : : : ; �n) where V = [v1j � � � jvn]:Proof:This is identical to the example we explained earlier.
Fact B.9. Assume that the eigenvalues of A are distinct. Then the corresponding eigenvectorsare linearly independent.Proof:Assume otherwise, so that Pnj=1 cjvj = 0 for some nonzero cj . Then

0 = A( nX
j=1 cjvj) =

nX
j=1 cj�jvj :It follows that 0 = nX

j=1 cj�jvj � �n nX
j=1 cjvj =

n�1X
j=1 cj(�j � �n)vj :

Hence, the eigenvectors fv1; v2; : : : ; vn�1g are linearly dependent. We can repeat the argumentand show that the eigenvectors fv1; v2; : : : ; vn�2g are linearly dependent. Continuing in thisway shows that the eigenvector v1 must be linearly dependent, clearly a contradiction.
B.7 Rotation and ProjectionThe length of a vector x 2 Cn is de�ned as

jjxjj := ( nX
i=1 x2i )1=2 = (x�x)1=2:

Picture a vector x and imagine that you rotate it around the origin, by some angle. Intuitively,this operation is linear. It should therefore correspond to some matrix R. The rotation must



188 APPENDIX B. NOTES ON LINEAR ALGEBRApreserve the length and also the angles between vectors. In particular, the rotated axes mustbe orthogonal and have a unit length. Since the rotated axes are the columns of the matrix R,this implies that R�R = I:In other words, R� = R�1.By de�nition, a rotation matrix is a real matrix with the property above. It is immediatethat the product of two rotation matrices ia again a rotation matrix. Not surprisingly, one canrepresent an arbitrary rotation matrix as a product of rotations around the axes.The concept of projection is also important.De�nition B.5. Assume that V is a linear subspace of Cn. Let x 2 Cn. The projection of xonto V is the vector v 2 V that is the closest to x, i.e., that achievesminfjjx� vjj s.t. v 2 Vg:
We write v = xjV if v is the projection of x onto V.Fact B.10. (a) v = xjV if and only if v 2 V and x� v ? V, i.e.,(x� v)�w = 0; 8w 2 V:

(b) The projection is unique.(c) The projection is a linear operation.(d) Assume that V = span(V ) = span(v1; : : : ; vk) where the column vectors of V are linearlyindependent. Then xjV = VMx where M = (V �V )�1V �:
Proof:(a) Take any w 2 V, so that v + �w 2 V. Then

jjx� (v + �w)jj2 = (x� v � �w)�(x� v � �w)= jjx� vjj2 � 2�(x� v)�w + �2jjwjj2:Taking the derivative with respect to � at � = 0, we �nd that the value of � = 0 achieves theminimum if and only if (x� v)�w = 0.(b) Assume that both v and w achieve the minimum distance to x in V. We claim thatv = w. Note that x � v ? V and x � w ? V. It follows that w � v = (x � v) � (x � w) ? V.But w � v 2 V. Hence, 0 = (w � v)�(w � v) = jjw � vjj2;so that v = w.(c) Assume vi = xijV for i = 1; 2. We show that
a1v1 + a2v2 = (a1x1 + a2x2)jV :To show this, we verify that
a1x1 + a2x2 � (a1v1 + a2v2) ? V:This follows from[a1x1 + a2x2 � (a1v1 + a2v2)]�v = a1(x1 � v1)�v + a2(x2 � v2)�v = 0:



B.8. SINGULAR VALUE DECOMPOSITION 189(d) Note that VMx 2 V. Moreover, we observe that, for any v = V z 2 V,(x� VMx)�V z = x�V z � x�M�V �V z= x�V z � x�V (V �V )�1V �V z = 0:
A little example might help. Let v1 = (1; 2; 3)� and v2 = (1; 1; 2)�. The V = span(v1; v2) isa linear subspace of C3 that consists of all the vectors of the form z1v1 + z2v2 = V z where Vis the matrix with columns v1 and v2 and z = (z1; z2)�. Note that

V �V = � 14 99 6 � ;so that
M� = V (V �V )�1 = 24 1 12 13 2

35 13 � 6 �9�9 14 �
= 13

24 �3 53 �40 �1
35 ;

or M = 13 � �3 3 05 �4 1 � :We conclude that
xjV = VMx = 24 1 12 13 2

35 13 � �3 3 05 �4 1 �x:
For instance, if x = (2; 1; 1)�, then

xjV = �v1 + 73v2 2 V:Also, if we choose some v 2 V, say v = V z, then
(x� xjV)�v = 0@24 211

35� 13
24 415

351A� 24 1 12 13 2
35 z = 0:

B.8 Singular Value Decomposition
B.8.1 Some TerminologyA matrix U 2 Cn�n is said to be unitary if U�U = I, where U� is the complex conjugate of thetransposed of U . The matrix U is said to be orthogonal if it is unitary and real.A matrix H 2 Cn�n is called Hermitian if H� = H; moreover, it is positive semide�nite ifx�Hx � 0 for all x 2 Cn; it is positive de�nite if x�Hx > 0 for all nonzero x 2 Cn.
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B.8.2 Decomposition of Hermitian MatricesTheorem B.6. Let H 2 Cn�n be a Hermitian matrix.(a) The eigenvalues �1; : : : ; �n of H are real (they are not necessarily distinct);(b) Eigenvectors ui and uj that correspond to distinct eigenvalues are orthogonal, i.e.,u�iuj = 0.(c) H has n orthonormal eigenvectors fu1; : : : ; ung that form a basis for Cn. That is,u�iuj = 1fi = jg.(d) If P = [u1j : : : jun], then

P �HP = � = diag(�1; : : : ; �n)
and H = P�P � = nX

i=1 �iuiu�i :(e) H is positive semide�nite (resp., de�nite) if and only if �i � 0 (resp., > 0) for all i.(f) One has maxfxjjjxjj=1gx�Hx = maxf�ig
and minfxjjjxjj=1gx�Hx = minf�ig:
Proof:(a) The eigenvalues of H are the zeros of det(�I �H). This polynomial of degree n has nzeros (not necessarily distinct). We show that every eigenvalue �i must be real. Since H = H�,we see that (u�iHui)� = u�iH�ui = u�iHui, so that u�iHui is real. However, u�iHui = �iu�iuiand u�iui = jjuijj2 is real. It follows that �i is also real.(b) Assume that �i 6= �j and if Hui = �iui and Huj = �juj . Observe that

u�iHuj = �ju�iuj ;so that, by taking the complex conjugate,
�ju�jui = (u�iHuj)� = u�jHui = �iu�jui;which shows that (�i � �j)u�jui = 0. Since �i 6= �j , it follows that u�iuj = 0.(c) We show that H has n linearly independent eigenvectors. Let u1 be such that Hu1 =�1u1 and jju1jj = 1. Let also V1 be the space of vectors orthogonal to u1. Note that if x 2 V1,then Hx 2 V1. Indeed, (u�1Hx)� = x�H�u1 = x�Hu1 = �1x�u1 = 0:

Pick an orthornormal basis fb2; : : : ; bng for V1. Let P = [u1jb2j � � � jbn]. Any x 2 Cn can bewritten uniquely as Py with y = P �x since P �P = I. Also,
HPy = �1u1y1 +H( nX

j=2 bjyj) = �1u1y1 + nX
j=2 bjzj



B.8. SINGULAR VALUE DECOMPOSITION 191because H(Pnj=2 bjyj) 2 V1. By linearity,2664
z2z3�zn
3775 =M

2664
y2y3�yn
3775 ;

so that HP = P ~H where ~H = � �1 00 M � :
Note that M� = M . We claim that the eigenvalues of M are the eigenvalues of H other than�1. Indeed, det(�I �H) = det(�I � P ~HP �) = det(P (�I � ~H)P �)= det(�I � ~H)
because det(P ) = det(P �) = 1 since PP � = I. Now,

det(�I � ~H) = (�� �1) det(�In�1 �M):
Let v2 be an eigenvector of M with eigenvalue �2. That is, Mv2 = �2v2. Let also w2 =[0v�2]�. Note that ~Hw2 = �2w2;so that HPw2 = P ~Hw2 = �2Pw2;which shows that u2 = Pw2 is an eigenvector of H with eigenvalue �2. Moreover, u2 2 V1, sothat u2 is orthogonal to u1. We can normalize u2 so that jju2jj = 1. Continuing in this way,we de�ne V2 to be the subspace of Cn orthogonal to u1 and u2. Repeating the previous steps,we �nd a collection of vectors fu1; u2; : : : ; ung that are orthonormal and such that Hui = �iui.(d) This is immediate.(e) and (f) follow from (d).

B.8.3 Illustration of SVDThe goal of this section is to illustrate that an m � n matrix A can be decomposed as U�V �where � is diagonal and U; V are unitary. This decomposition, called the singular value de-composition of A, enables us to view the action of A as a combination of scaling and rotations.We use that result to explain the transformation of a sphere into an ellipsoid and to show howvolumes gets mapped, which is essential in calculus.Consider the matrix A = � 1 p32 0 � :
Then A� = � 1 2p3 0 � ; AA� = � 4 22 4 � ; A�A = � 5 p3p3 3 � :
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Figure B.2: The action of A combines rotations and scaling.
By solving det(�I �AA�) = 0, one �nds the eigenvalues �21 = 6 and �22 = 2 of AA�. Theseare also the eigenvalues of A�A. Solving AA�uj = �2juj and A�Avj = �2j vj for j = 1; 2, one�nds the following orthonormal eigenvectors of AA� and A�A:

U = [u1ju2] = 1p2 � �1 �1�1 1 � ;
V = [v1jv2] = 12 � �p3 1�1 �p3 � :You can verify that A = U�V � with � = diagf�1; �2g = diagfp6;p2g.Since A = U�V �, it follows that AV = U�. That is, Avj = uj�j , which shows that Arotates vj into uj and scales it by �j .For instance, consider the sphere S = fx 2 C2 j jjxjj2 = 1g. Thus, S = f�1v1 + �2v2 j�21 + �22 = 1g. The mapping under A of S is AS = fAx j x 2 Sg. Thus,

AS = fAV � j jj�jj2 = 1g = fU�� j jj�jj2 = 1g= f�1�1u1 + �2�2u2 j �21 + �22 = 1g:
We conclude that AS is an ellipsoid with principal axes along u1 and u2 and of lengths �1and �2.The mapping S ! AS is illustrated in Figure B.2.As another application, consider the transformation of the square Q = f�1v1 + �2v2 j�1; �2 2 [0; 1]g under the mapping A. As the �gure shows,

AQ = f�1�1u1 + �2�2u2 j �1; �2 2 [0; 1]g:
We conclude that A maps the square Q with area 1 into a rectangle AQ with area �1�2 =jdet(A)j. We can write this result `di�erentially' as

jAdvj = jdet(A)jjdvj
where dv = fx j xj 2 (vj ; vj + dvj); j = 1; 2g and jdvj = dv1dv2. This identity states that Amaps a small area dv into an area that is multiplied by jdet(A)j.We now turn to the derivation of that decomposition in the general case.
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B.8.4 SVD of a matrixTheorem B.7. Let A 2 Cm�n be a matrix of rank r. The matrix A has a singular valuedecomposition A = U�V � with � = diagf�1; : : : ; �r; 0; : : : ; 0gwhere
� �1 � �2 � � � � � �r > 0 are the square roots of the common positive eigenvalues of A�Aand AA�;
� V = [V1jV2] is unitary; the columns of V1 are a basis of R(A�) and those of V2 are a basisof N(A); the columns of V are a basis of eigenvectors of A�A;
� U1 := AV1��11 ;
� U = [U1jU2] is unitary; the columns of U1 are a basis of R(A) and those of U2 are a basisof N(A�); the columns of U are a basis of eigenvectors of AA�.

Proof:The matrix H = A�A is Hermitian and positive semide�nite since x�Hx = (Ax)�(Ax) � 0.Moreover, H has rank r because R(A�A) = R(A), by Lemma B.1. By Theorem B.6, H hasthe eigenvalues �2i with �21 � �22 � � � � � �2r > 0 = �2r+1 = � � � = �2nto which corresponds an orthonormal basis of eigenvectors fv1; : : : ; vng of A�A. Let V =[v1j � � � jvn] = [V1jV2] where V1 = [v1j � � � jvr], so that V �V = I. Also, by Lemma B.1, R(A�A) =R(A�), N(A�A) = N(A), and R(A�)? = N(A). It follows that V1 is a basis of R(A�) and V2 abasis of N(A).With �1 = diagf�1; : : : ; �rg, one sees that A�AV1 = V1�21. LetU1 := AV1��11 :It follows that U�1U1 = Ir. Moreover, AA�U1 = U1�21. Let fu1; : : : ; urg be the columns of U1.We conclude that u�iuj = 1fi = jg and AA�ui = �2i ui:But AA� and A�A have exactly the same r nonzero eigenvalues. Indeed, if A�Ay = �y andx = Ay, then AA�x = AA�Ay = �Ay = �x, so that the eigenvalues of A�A are eigenvalue ofAA�. By symmetry, A�A and AA� have the same eigenvalue. It follows that the columns ofU1 form an orthonormal basis for R(AA�) = R(A).De�ne now an m� (m�r) matrix U2 with orthonormal columns such that U�2U1 = 0. ThenU = [U1jU2] is a unitary matrix with Cm = R(U1) � R(U2). Since Cm = R(A) � N(A�) andR(U1) = R(A), it follows that R(U2) = N(A�) with the columns of U2 forming an orthonormalbasis for N(A�). We conclude that the columns of U form a basis of eigenvectors of AA�.Finally, since U1 = AV1��1, we �nd that
U1�1V �1 = AV1��1�1V �1 = A;and U�V � = [U1jU2] � �1 00 0 � � V �1V �2

� = U1�1V �1 = A;
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B.9 Cayley-Hamilton
The Cayley-Hamilton Theorem states that a square matrix is a root of its characteristic poly-nomial.
Lemma B.2. Cayley-HamiltonLet A 2 <m�m and f(s) := det(sI �A) = �0 + �1s+ � � �+ �m�1sm�1 + sm. Then

f(A) := �0I + �1A+ � � �+ �n�1Am�1 +Am = 0:
In particular, spanfI; A;A2; : : :g = spanfI; A; : : : ; Am�1g.
Proof:There are many proofs of this result. We give two proofs.Proof 1First assume that A can be diagonalized, i.e., such that A = P�P�1 with � = diagf�igwhere the �i are the eigenvalues of A . Then Ak = P�kP�1 and f(A) = Pdiagff(�i)gP�1 = 0.Second, if A is not diagonalizable, one can �nd a sequence of matrices An that are andsuch that An ! A componentwise. The idea to �nd these matrices An is to perturb theentries of A slightly so that An has distinct eigenvalues. (See Facts B.8-B.9.) We then have0 = f(An)! f(A), so that f(A) = 0.Proof 2Recall that the inverse of a matrix is the adjoint divided by the determinant. Thus, if � isnot an eigenvalue of A, (A� �I)�1 = B(�)f(�)where B(�) is a matrix of polynomials of degrees at most n� 1 in �. That is,

B(�) = B0 +B1�+ � � �+Bn�1�n�1:
Now, (A� �I)B(�) = f(�)I, so that

(A� �I)(B0 +B1�+ � � �+Bn�1�n�1) = f(�)I:
Thus, matching coe�cients,

AB0 = �0IAB1 �B0 = �1IAB2 �B1 = �2I� � �ABn�2 �Bn�3 = �n�1IABn�1 �Bn�2 = 0:
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(AB0)+A(AB1�B0)+A2(AB2�B1)+� � �+An�2(ABn�2�Bn�3)+An�1(ABn�1�Bn�2) = f(A);
but the left-hand side collapses to 0.

B.10 Notes on MATLABMATLAB is a software package that provides many mathematical functions and visualizationtools. It is particularly suited for matrix operations. We illustrate some useful functions. It isnot a bad idea to become familiar with MATLAB, even though we will not require it for thisversion of the course.
B.10.1 Matrix NotationThe matrix

B = 24 3 4 25 1 31 4 2
35

is written in MATLAB as
B = [3 4 2; 5 1 3; 1 4 2]

The product of two matrices B and C with compatible dimensions is written as
B*C

B.10.2 EigenvectorsWe �nd the eigenvalues of matrix A as follows:
eig(A)which returns
ans =

2.4272

-1.4272

To �nd the eigenvectors, we write
[V, D] = eig(A)which returns
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V =

0.7718 -0.5809

0.6359 0.8140

D =

2.4272 0

0 -1.4272

B.10.3 InverseThe inverse of A is obtained as follows:
C = inv(A)which returns
C =

0 0.5000

0.5774 -0.2887

and you can verify that
A*C

ans =

1 0

0 1

B.10.4 Singular Value DecompositionHere is the code you need to calculate the singular value decomposition of matrix A in SectionB.8.3.
[U, S, V] = svd([1 3^0.5; 2 0])

That function returns
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U =

-0.7071 -0.7071

-0.7071 0.7071

S =

2.4495 0

0 1.4142

V =

-0.8660 0.5000

-0.5000 -0.8660

B.11 ExercisesCalculations can be done in MATLAB. However, it is useful to know the steps to understandwhat is going on. We solve some of the problems and we let you work on the others.Exercise 6. Calculate the inverse of the following matrices:
� 2 31 2 � ; � 5 42 3 � ;

24 2 1 31 4 13 1 3
35 :

Solutions � 2 31 2 ��1 = � 2 �3�1 2 � ; � 5 42 3 ��1 = 17 � 3 �4�2 5 � ;
Let

A = 24 2 1 31 4 13 1 3
35 :

The matrix C of cofactors of A is
C = 24 11 0 �110 �3 1�11 1 7

35 :
The determinant of A can be found using Fact B.4. We get, by expanding over the �rst column,

det(A) = 2� 11 + 1� 0 + 3� (�11) = �11:
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A�1 = 1det(A)C 0 = � 111

24 11 0 �110 �3 1�11 1 7
35 :

Exercise 7. Perform the elementary row operations to reduce the following matrices to rowechelon form:
A = 24 5 3 12 4 22 3 6

35 ;24 2 3 1 24 4 2 32 3 6 1
35 ;24 2 3 1 24 6 2 31 2 1 2

35 :
Solution: For matrix A, the �rst step is

r02 := r2 � 25r1 = [02:80:2]:
The second step is to cancel the �rst two elements of r3. The �rst element is canceled as follows:

r03 = r3 � 25r1 = [01:85:2]:
We cancel the second element by subtracting a multiple of r02:

r003 = r03 � 1:82:8r02 = r3 � 0:14r1 � 0:64r2 = [004:6]:
Thus, we perform the operation24 1 0 0�0:4 1 0�0:14 �0:64 1

35A � 24 5 3 10 2:8 1:60 0 4:6
35 :

We let you perform the same steps for the other matrices.
Exercise 8. Perform the elementary row operations and the elementary column operationsstep by step to explain that the determinant of the product of the following two matrices is theproduct of their determinants:

A = � 4 33 2 � and B = � 5 43 3 � :
Solution: Note that det(AB) = det(LABU 0)where L = � 1 0�0:75 1 � and U 0 = � 1 0�1 1 � :
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LABU = (LA)(BU 0) = � 4 30 �0:25 � � 1 40 3 � = � 4 250 �0:75 � :But, det(A) = det(LA) = (4)(�0:25);det(B) = det(BU 0) = (1)(3):Moreover, det((LA)(BU 0)) = (4)(�0:25� 3);so that det(AB) = det(A) det(B):The same argument goes for the other examples.

Exercise 9. Repeat the previous exercise for the following two matrices:24 4 2 32 3 52 4 7
35 and

24 5 2 11 3 13 2 6
35 :

Exercise 10. Find a basis for the span of the following vectors:(1; 1; 3; 2)�; (2; 3; 1; 2)�; (2; 1; 2; 3)�:
Exercise 11. Find the rank and the dimension of the null space of the following matrices:2664

3 1 24 2 35 7 22 6 0
3775 ;
2664
2 2 44 2 35 1 21 6 3

3775 ; and
2664
1 1 24 2 35 3 23 5 0

3775 :

Exercise 12. Find xjV where V = span(V ) for the following values of x and V :
V :

2664
3 1 24 2 35 7 22 6 0

3775 ;
2664
2 2 44 2 35 1 21 6 3

3775 ; and
2664
1 1 24 2 35 3 23 5 0

3775 ;
and x = (1; 3; 1; 3)�; (2; 1; 4; 2)�; and (2; 2; 1; 1)�:
Exercise 13 (Optional). Use MATLAB to �nd the decomposition H = P�P � of the followingHermitian matrices: 24 4 2 32 1 53 5 7

35 and
24 5 2 12 3 21 2 6

35 :
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>> [V, D] = eig([4 2 3;2 1 5;3 5 7])

V =

-0.0553 0.9009 0.4304

0.8771 -0.1622 0.4520

-0.4771 -0.4025 0.7813

D =

-1.8455 0 0

0 2.2997 0

0 0 11.5458

Hence, H = V DV 0.
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