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Chapter 1

Introduction

This course explains models of randomness in systems. Specifically, we study detection, esti-
mation, Markov chains, Poisson processes, and renewal processes. We choose these particular
topics because of their many applications in communications, signal processing, control, and
more general decision making under uncertainty.

We assume that you have taken an undergraduate course in Probability and that you have
a good understanding of Linear Algebra. To help you, we include one appendix on each of
these topics. We also review them briefly in the first lectures.

For convenience of the students and of the instructor, each chapter corresponds approx-
imately to one eighty-minute lecture. Together, the notes cover a one-semester course. We
deliberately left some redundancy in the notes that corresponds to repetitions in lectures. Sim-
ilarly, some details are left for students to fill in. We believe that students benefit by doing
some of the work instead of being presented with complete derivations.

The difficulty that we always face when teaching this course is that it covers two sets of
topics usually not well represented in a single textbook. The first set of topics concerns mostly
detection and estimation, including Wiener and Kalman filters. We deal with second-order
properties of random variables and with linear systems. The main idea here is projection
in a space of square-integrable random variables. The tools are algebraic. These topics are
traditional in electrical engineering because of their many applications in communication theory
and signal processing.

The second set of topics concerns Markov chains and renewal processes. Here the tools
are mostly probabilistic, such as properties of individual trajectories and coupling arguments.
These topics are important in computer science and in operations research. For instance, they
are essential to queuing theory, stochastic scheduling, searching algorithms, learning models,
and Markov decision theory.

We regularly use two different textbooks to cover the material because we have yet to find
one that does a good job of presenting both. These notes are not meant to be complete, so we
refer regularly to textbooks.

In the rest of this introduction we outline some of the key ideas of the course.

1.1 Detection

The detection problem is to guess the value of some random variable X in a finite set given
some observation Y whose distribution depends on X. For instance, Y is the output of some
sensor and X is either 1 or 0 to represent the ppeurrence of a house fire or its non-occurrence,
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respectively. As another example, X € {0, 1,2, 3} is the symbol that a transmitter sends and Y
is the signal that a receiver gets. As yet another example, X = 0 indicates that some machine
is working correctly and X = 1 that it is somehow defective; Y is a set of measurements that
one performs on the output of the machine. In a medical setting, X = 1 could indicate that
a given patient has a specific form of cancer and X = 0 that she does not; in that context, ¥
could be the output of a cat scan or some biological measurement. As a more complex example
in speech recognition, X represents the sequence of syllables that someone pronounces and Y
is the measurements made after processing the sound that a microphone captures.

As these examples suggest, many practical situations correspond to detection problems.
The mathematical formulation of such a problem specifies the conditional distribution of Y
given X. This conditional distribution is a model of the “observation channel.” It specifies
how the observation relates to the value X to be detected. There are two essentially different
formulations of the problem that differ in what we assume known about X.

In the Bayesian formulation , the prior distribution of X is known. That is, we know the
probability that X takes any specific value. Since we know also the conditional distribution
of Y given X, we know the joint distribution of X and Y. Using this joint distribution, we
can calculate the conditional distribution of X given Y. From this conditional distribution,
we can determine how to calculate the value of X based on Y that minimizes some average
cost E(c¢(X, X)). For example, one may want to minimize the probability of guessing a wrong
value, which corresponds to ¢(X, X ) being equal to one when X # X and to zero otherwise.
In a communication application, this problem corresponds to minimizing the error rate of the
receiver.

In the non-Bayesian formulation, we do not know the prior distribution of X. Such a
formulation is motivated by many applications where that distribution is difficult to guess or
where the system must operate satisfactorily under a wide range of possible prior distributions
of X. For instance, what is the probability that your house will be on fire at noon next
Tuesday? Clearly, if the design of your fire alarm relies on knowing that probability accurately,
it is not likely to work satisfactorily. Similar considerations apply to medical tests and many
other situations. One standard formulation, when X € {0, 1}, is to minimize the probability of
guessing X = 0 when in fact X = 1 subject to an upper bound on the probability of guessing
X =1 when in fact X = 0. In the medical setting, the first error is a “false negative” and the
second is a “false positive.” As you expect, there is a tradeoff between the probabilities of these
two types of error. Thus, one may want to limit the rate of false positive to 5%, say, and then
design the most sensitive test that minimizes the probability of false negative subject to that
constraint. The acceptable probability of false positive depends on the context. For instance,
when screening blood donations for HIV, one may accept a larger probability of false positive
than when testing people.

1.2 Estimation

The estimation problem is to guess the value of X, in some subset of the real line or of some
higher-dimensional space, given some observation Y whose distribution depends on X. This
problem is similar to the detection problem; the key difference being that here X takes values
in a continuous set instead of a finite one.

As an example, X could be the amplitude of a signal that a transmitter sends and Y the
measured signal amplitude at a wireless receiver. In that situation, Y differs from X because
of attenuation, noise, and various multi-path effects. As another example, X is the average
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power of the noise at a receiver and Y is a set of transmitted and corresponding received signal
amplitudes. As a prediction example, X is the snow depth at the base of Sugar Bowl next
January 15 and Y is the set of available information from weather reports to date.

Such estimation problems occur in many fields of application. For the most part we focus on
Bayesian formulations where the prior distribution of X is known. We study static and dynamic
formulations. In a static formulation, the joint distribution of X and Y is specified and we
estimate X based on Y. One issue is whether we can perform arbitrary calculations based on
Y to estimate X or whether we are restricted to linear operations. In many applications, one
considers the latter case and one derives the linear least squares estimator of X given Y. The
restriction to linear estimators is made because it greatly simplifies the calculations. Moreover,
the best linear estimator depends only on second-order statistics whereas the best nonlinear
estimator generally depends on higher-order statistics that may be difficult to obtain.

In the dynamic formulation, both X and Y may change over time. For instance, say that
X, is the location at time n of some automobile. Y, is the output of a GPS sensor at time
n. One wishes to estimate X,, given all the values of Y, for m < n. Here, the key idea is
to derive a recursive estimator where the estimate at time n depends only on Y, and on the
estimate at time n — 1. Thus, a recursive estimator updates the estimate based on the latest
measurements instead of performing a new calculation every time based on all the accumulated
measurements. The Kalman Filter is such a recursive estimator for linear systems.

1.3 Gaussian Random Variables

Gaussian random variables play a special role in our discussion of detection and estimation.
This special role has three principal causes. The first is that Gaussian random variables occur
naturally as sums of many small almost independent random variables. Thus, the thermal noise
in a conductor tends to be Gaussian because it is the sum of contributions of many electrons
whose motions are almost independent. Similarly, noise due to electromagnetic interference
tends to be Gaussian.

A second cause for the importance of Gaussian random variables is that a linear combination
of independent Gaussian random variables is again Gaussian. This fact, obviously consistent
with the first cause, simplifies greatly the analysis of linear systems with Gaussian noise. We
call jointly Gaussian random variables that are linear combinations of independent Gaussian
random variables.

The third cause is that the joint distribution of jointly Gaussian random variables is com-
pletely specified by second order statistics. In particular, jointly Gaussian random variables
that are uncorrelated are independent. This property reduces the analysis of Gaussian random
variables to simple algebraic calculations.

1.4 Markov Chains and Renewal Processes

A Markov chain models the random evolution of some object in a discrete set X'. For instance,
one can approximate the number of telephone calls in progress in a given office building by a
Markov chain. The defining property of a Markov chain is that its evolution starts afresh from
its value at any given time. Thus, in the telephone example, the evolution of the number of
telephone calls after 1:00 pm depends obviously on the number, say Xg of calls in progress at
that time. However, given Xy, the values of that number of calls after 1:00 pm are independent
of the values before 1:00 pm. (This statement is only approximately true, but the example
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conveys the main idea.) As another example, imagine a flea that jumps on a chessboard and
assume that the flea jumps randomly at each step, without remembering its previous jumps.
The position of that flea at successive steps is a Markov chain.

Designate by X; € & the location of the object at time . We call X; the state of the
Markov chain at time £. The questions of interest concern the fraction of time that the state
has a particular value and the probability that the state has a given value at some time ¢. A
related question is the average time it takes for the state to reach a given set of values. For
instance, imagine that X; represent the number of packets stored in a given Internet router,
assuming that this can be modeled by a Markov chain. If the router transmits packets at a
constant rate, there is a direct relationship between X; and the delay of the packets through
the router. Similarly, knowing the fraction of time that the router is full tells us the likelihood
that the router must drop incoming packets. Accordingly, finding out the statistics of X; is of
direct relevance to estimating the performance of the router.

Think of the process of replacing a specific light bulb whenever it burns out. Assume for
simplicity that the bulb is always on until it burns out and is replaced. The lifetimes of the
successive bulbs are independent and identically distributed. Designate by N; the number of
bulbs that one has to use up to time ¢, for ¢ > 0. Under these assumptions, N; is a renewal
process . We focus on two related questions. The first one is how long one can expect to wait
until the bulb burns out. To be more precise, choose a large time ¢ and let 7(¢) be the random
time one has to wait after time ¢ until the bulb burns out. We explain that if the lifetime
distribution is not concentrated on multiples of some constant, then the distribution of 7(¢)
converges as t increases. Interestingly, the mean value of 7(¢) converges to a value that is larger
than half the lifetime of a bulb. The second question concerns the expected number of bulbs
one needs between time ¢ and ¢t + L for ¢, L > 0. We explain that, under the same assumption
as before, this expected value converges to AL as ¢ increases. Here, A is the reciprocal of the
average lifetime of a bulb. Thus, A is the average replacement rate of the bulbs.



Chapter 2

Mathematical Preliminaries

To make sure we all have the necessary background we start by reviewing some concepts from
Set Theory, Real Numbers, Probability, and Linear Algebra.
2.1 Summary

Here are the main points reviewed in this chapter:

e Set, set operations, function
e Inverse image of a set; commutes with set operations

e Countable set; real numbers are not countable; a countable union of countable sets is
countable

e Convergence of sets

e Convergence of real numbers; of a nondecreasing upper-bounded sequence; of a Cauchy
sequence

e Definition of random variable and counterexample

e Almost sure convergence of random variables does not imply that of expectations
e Using the Borel-Cantelli Lemma to prove a.s. convergence

e Projection property of conditional expectation

e Using elementary row operations to solve Az =0

e Basis and dimension of a linear subspace

A Hermitian matrix can be diagonalizedlgy a unitary matrix
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2.2 Set Theory

You recall that a set is a well-defined collection of objects. That is, a set is defined if one can
determine whether any given object belongs to the set or not. Hence, the notions of element and
subset of a set. One then defines basic set operations such as union, intersection, complement,
and difference. The next concept is that of function f defined from a set €2 into another set
S: the function assigns an element f(w) of S to each element w of Q. We designate such a
function by f: Q2 — S.

If f:Q— Sand BCS, then f~1(B) := {w € Q| f(w) € B} is the inverse image of B
under f(-). You can show that the inverse image commutes with set operations. For instance,
FU(MierB) = Nierf ~1(By) and f-1((A\ B)UD®) = (f-1(4) \ £~ L(B)) U (f }(D))".

A set Q is countable if one can enumerate its elements as = {w;,wsy,...}. The rational
numbers are countable, the real numbers are not. A countable union of countable sets is
countable.

For n > 1, let A, C Q and let also A C Q. We write A, | A if 4,11 C A,,Vn > 1 and if
N2, A, = A. We define A,, T A similarly. More generally, we say that the sets A,, converge to
A and we write A, - Aift UyX_ Ay, | Aand Ul T A.

2.3 Real Numbers

Let S C R. We say that x € R is a lower bound of S if z <y forally € S. If z € S is a lower
bound of S, we write £ = min S and we say that z is the minimum of S. The completeness
aziom of real numbers states that if a set S of real number has a lower bound z, then it has a
greatest lower bound y and we write y = inf S and we say that y is the infimum or the greatest
lower bound of S. We have the similar definitions for the mazimum max S and the supremum
sup S or lowest upper bound. Thus, 0 = min[0, 1] = inf(0, 1] but (0, 1] does not have a minimum
element.

Let z € R and =, € R for n > 1. We say that =, converges to x and we write x,, — x if for
all € > 0 there is some n(e) such that |z, —z| <€,Vn > n(e). We also write z,, — oo if for all
¢ € R these is some n(c) such that z,, > ¢ for all n > n(c).

An important fact is that a nondecreasing sequence that is bounded from above must
converge.

The sequence {z,,n > 1} is Cauchy if supy, >, [T — Tm| — 0 as n — co. One has z,, — =
with z finite if and only if the sequence is Cauchy. For a proof, see Lemma 21.1

2.4 Probability

We review in Appendix A the basic notions of Probability Theory. Here we highlight a few
ideas.

Let Q ={1,2,3,4} and assume that each element has probability 1/4. Consider the events
A ={1,2},B = {1,3},C = {1,4}. These events are pairwise independent but not mutually
independent. Indeed, P(A N B) = P(A)P(B) and similarly for the other pairs of sets, but
P(ANBNC) # P(A)P(B)P(C). Thus, P[A | BN C] # P(A). The point of this example is
that one should not confuse the statements ‘A and B are independent’ and ‘knowing that B
occurs does not tell us anything about how A occurs.’

Consider a probability space {Q, F, P} with Q = [0, 1], F = {[0,0.5], (0.5, 1],0,Q}, P([0,0.5])
0.3. Let also X : @ — R be defined by X(w) = w. Then X is not a random variable
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X~[0,0.2]) = [0,0.2] ¢ F. In particular, the probability that X < 0.2 is not defined. What
is going on here is that X is not F-measurable: the probability space {Q,F, P} is not ‘rich’
enough to ‘measure’ X.

Let {Q,F, P} be [0,1] with the uniform probability. For n > 1, let X, (w) =nl{w < 1/n}.
Note that X, (w) — 0 as n — oo, for all w # 0. Thus, P(X, — 0) =1 and we write X,, — 0
and we say that X, converges to 0 almost surely. Note however that E(X,) =1 -» E(0) = 0.
See Lebesgue’s theorem in Appendix A.

Recall Borel-Cantelli and assume that E(X2) < a/n?. Fix any ¢ > 0 and note that
S L P(|1Xy] > €) <300 E(X2)/e? < oo, so that P(|X,| > €, i.0.} = 0. This shows that
Xn 25 0.

Recall also that E[X|Y] is some function ¢g(Y') with the property that E((X —g(Y))h(Y)) =
0 for all A(-). That is, X —E[X|Y] L {h(Y),h(-) is a function }. Thus, E[X|Y]is the projection
of X onto the subspace of function of Y. Also, the projection of a point onto an hyperplane
is the closest element of the hyperplane to that point. Thus, E[X|Y] is the function g(Y') of
Y that minimizes E((X — g(Y))?). These facts are the projection property and the minimum
mean squares estimator property of conditional expectation.

2.5 Linear Algebra

Appendix B reviews the main ideas of Linear Algebra. Here are some points that we use
frequently.

The elementary row operations (eros) consist of either adding to a row of a matrix a multiple
of another row or of interchanging two rows. Consider then the homogeneous equations Az = 0
where A € R"™*™ and z € R". By performing eros, we can bring the matrix A to a row echelon
form where row k has the form [0,...,0,%,...,%] and its first nonzero term, called its pivot,
corresponds to column n(k) where n(k) is strictly increasing. The eros do not change the
solutions of Az = 0. Moreover, if A has the row echelon form, then we can solve the equations
bottom up. Consider the last row L. Each term m > n(L) corresponds to an element of =
that we can set arbitrarily. The pivot then corresponds to an element of x uniquely determined
from the previously selected values. Continuing in this way, we find that the free variables of z
are the non-pivot elements. This argument shows that if n > m, then there must be non-pivot
elements and there are infinitely many solutions to Az = 0. See Problem 2.6 for an illustration.

A basis of some linear subspace V is a collection of linearly independent vectors of that space
such that each element can be written as a linear combination of the basis vectors. Assume that
there is a basis A = [a1]---|am]. Then any collection {v1,...,v,} C V with n > m must be
linearly dependent. Indeed, v; = Aw; for ¢ = 1,...,n. Hence, 0 = Y"1 | zv; = Y 1| xiAw; =
A(YSM | myw;) is equivalent to 0 = > | x;w;, which is a system of m equations with n > m
variables, and we know from the previous discussion that it has infinitely many solutions. It
follows that all bases must have the same number of elements, which is called the dimension
of the subspace.

The following result is important in the study of Gaussian random variables.

Theorem 2.1. Diagonalization of Hermitian Matriz
Let H € C™*™ be o Hermitian matrix, i.e., such that H = H*.
The eigenvalues A1, ..., A, of H are real (they are not necessarily distinct);
H has n orthonormal eigenvectors {u1,...,un} that form a basis for C". That is, uju; =

1{i = j}.
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If P =[uq]...|uy], then

P*HP = A = diag(A1, ..., \n)

and

n
H = PAP* = Nujuj.
=1

In particular, H maps a unit hypercube with sides u; into a box with orthogonal sides Pu;
and volume det(H). The matriz P is said to be unitary because P*P = I.

The key idea of the proof of this theorem is as follows. The eigenvalues of H are the roots
of det(AI — H) = 0. This is an equation of degree n; it admits n roots, not necessarily distinct.
Assume Huj = Ajup and that ||Jui|| = 1. Then uiHuj = (u}Hup)* = Ai]u1]|?, so that A\; is
real. Also, the subspace V) orthogonal to u; is such that if v € Vy, then Hv € V;. One can
then continue the construction with V;. For details, see Theorem B.6.

2.6 Solved Problems
Problem 2.1. Show that f~'(MierB;) = Nierf 1 (B;).
Solution:
By definition, w € f1(N;e; B;) if and only if
f(w) € NierB;,

i.e., if and only if

f(w) € By,Vi € 1,
i.e., if and only if

we fYBy),Viel,

i.e., if and only if

w € Nierf ' (By).
Hence,

f N NierBi) = Nierf 1 (By).

Problem 2.2. Exhibit a bounded set of real numbers that has a minimum but no mazimum.

Solution:
For instance [0, 1).

Problem 2.3. Prove that an upper-bounded set of real numbers has a supremum.

Solution:

This cannot be proved; it is an axiom, part of the definition of real numbers. For instance, this
property is not true for rational numbers: think of the successive decimal expansions of v/2.
By definition, the set or of real numbers is the smallest complete (i.e., containing the suprema)
set that contains all the rational numbers.

Problem 2.4. Show that an upper-bounded nondecreasing sequence must converge.
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Solution:

Let {z,,n > 1} be that sequence; it is bounded by b. Let z be the supremum of the sequence.
The claim is that z, — z. We show this by contradiction. If x,, does not converge to x, then
there is some € > 0 such that z — z,, > € for all n > 1. This contradicts the fact that x is the
supremum since z — € is an upper bound that is smaller than .

Problem 2.5. Let {X,,n > 1} be i.i.d. random variables with mean zero and variance 1.
Show that Yy, = (X1 + -+ + X,,)/n? converges almost surely to 0.

Solution:
Note that E(Y,2) = 1/n?, so that )., E(Y,?) < co. We then conclude as in our discussion of
Borel-Cantelli.

Problem 2.6. Use elementary row operations to solve

3 21
[1 9 2]X—O.

Solution:
Replace row 2 (r2) by 71 — 3 x 2 to get

3 2 1
[0 _4 _5])(—0.

Choose z3 arbitrarily. The second equation then implies that —4xo — 5z3 = 0, so that zo =
—(5/4)z3. The first equation then states that 3z1+2z2+z3 = 0, so that 3z; —(5/2)zs+z3 =0,
so that 1 = (3/2)z3. We conclude that
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Chapter 3

Gaussian Random Variables

3.1

Summary

Here are the key ideas:

3.2

Definition 1: W = N(0,1) if fyy =--- (3.1).

Fact 1: W = N(0,1) iff gw(s) =--- (3.2).

Theorem 1: If {X,,,n > 1} are i.i.d. with E(X,) = 0 and E(X2) = 1, then (X7 +---

Xn)/v/n —p N(0,1). (Related idea: Exercise 3.)

Definition 2: X = N(u,0?) if X = p+ oW where W = N(0, 1).

Fact 2: X = N(u,0?) iff fx =--- (3.3).

Fact 3: X = N(pu,0?) iff gx = --- (3.4).

Definition 3: X Jointly Gaussian (JG) if a’ X is Gaussian for all vector a.
Fact 4: {X1,...,X,} iid. N(0,1) = X is J.G.

Fact 5: {X1,...,Xp} iid. N(0,1) = p+ AX is J.G.

Why a special attention to Gaussian RVs?
They are common (CLT, see later).
They are a ‘worst case’ (max. entropy given variance).
They are easy (conditional densities, conditional expectation).
Preserved by linear systems.
Elegant solutions of LQG control, Kalman and Wiener Filters.

Very useful as models of communication211inks.
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3.3 Standard Gaussian Random Variable

Definition 3.1. N(0,1)
By definition, W = N(0,1) if

1 2
fw(w) = \/ﬂexp{ —hweR (3.1)
Exercise 1. Check that fw is a pdf.
Fact 3.1. MGF of N(0,1)
§2
gw(s) == E(e") = exp{;}, secC. (3.2)

Exercise 2. Check that formula.

Observe that gy (—s) is the Laplace Transform of py,. The MGF characterizes the pdf. It
is useful to calculate moments (see below). The MGF of the sum of independent RVs is the
product of their MGFs. (Convolution of densities becomes product of MGFs.)

3.4 A quick glance at CLT

Theorem 3.1. CLT Assume {X,,m > 1} are i.i.d. with E(X,,) = 0, var(X,,) = 1. Then

IZXmNN(o 1).

Proof: (Rough sketch...)
Note that

E(exp{s( T Z eXP{\fSXl})

2

S X e )

~ [E(1 + f -

The following exercise shows the stability of the Gaussian distribution. It is another look
at the CLT.

Exercise 3. Assume that X,Y are i.i.d., zero-mean, unit-variance. Assume also that

X+Y
V2

=p X.

Show that X = N(0,1).
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Solution:
(1) Let g(s) = gx(s) = gy (s). Then
g(s) = 9(@)2 =-g(2)™

2
s s
~ 0 ") //07271
@0 + 9O + 9O
2 2
- 5 y2n s
= (1+2n) —>exp{2}.
We used the facts that ¢’(0) = 0 and ¢"(0) = 1.

(2) Second solution. Let {X, X,,n > 1} be i.i.d. Then,

X1+X> + X3+X4

X — X1+X2: V2 V2
e TP V2

1

=p 5{X1+ -+ Xa}

1
:D27{X1+"'+X2n}—>N(0,1).

3.5 General Gaussian: N(u,o?)
Definition 3.2. By definition, Z = N(u,0?) if we can write Z = p+ oW where W = N(0,1).
Fact 3.2. X = N(u,0?) if and only if

z— z— p)?
20) = Lw o) = - En b, 33)

o o

Fact 3.3. X = N(u,0?) if and only if
52,2
92(s) = exp{sp + Shr ). (3.4)

Remember this basic representation result contained in the definition: one can write a
N (p,0?) as a linear transformation of a N(0, 1). We will see the corresponding multi-dimensional
version of this result later.

3.6 Definition: Jointly Gaussian, jpdf, MGF.

The cute idea about JG RVs is that any linear combination is again G. As a consequence, the
output of a linear system whose input is JG is again JG. This clean definition leads to clean
consequences.
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Definition 3.3. Jointly Gaussian
A collection {X1,...,Xn} of RVs are jointly Gaussian if

n
Z amXm s a Gaussian RV

m=1
for any real numbers {am,m =1,...,n}.

We can translate this definition in vector notation. Let X be the column vector with
components {X1,..., X, }. We say that X is JG if a” X is Gaussian for all a € R".

Fact 3.4. Let X be independent N(01) RVs. They are JG.

Proof: Let Y = a” X. We show that Y is Gaussian by computing gy (s). We find

gy (s) = E(€5(2%=1 aiXi)) =I5, 1 E(samXm)

2,2
s“az,

— H:anl eXp{ 2 } — 6%8202
where 0 = 3" | a2,.
According to (3.4), this shows that Y = N(0,0?). 0

Here is a very useful fact:

Fact 3.5. Let X be a vector of n i.i.d. N(0,1) RVs. Then

p+ AX (3.5)
s a vector of JG RVs.
Proof: a”(n+ AX) = a' i + (Aa)TX is Gaussian for all a.

As we will see in Lecture 4, all JG random variables are of the form (3.5). Thus, nothing
terribly mysterious. What is quite cute is that from a fairly abstract definition (Definition 3.3)
one can derive a very concrete representation (3.5). That result will be a key topic in Lecture
4.

3.7 Solved Problems

Problem 3.1. Suppose X1, Xo,... are i.i.d. random variables with finite variance. If N is a
r.v. taking values in a bounded subset of the nonnegative integers, is independent of {X;}, show
that

N
E (Z XZ) = E(N)-E(X,), (3.6)
=1

N
Var (Z XZ-> = E(N) - Var(X1) + Var(N) - (E(X1))?.
=1

Give an example where (3.6) fails when N is not independent of {X,}.
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Solution:

1. Say that K is a constant for which NV < K. Then,

()<

oeffn))
&
[

{i < N}E[X; |N]>

()
N)E

For a case where the above fails, let P(X; =1) =1—- P(X; = —1) =
follows: N =1 if X = —1, N = 2 if X5 = 1. Then E(N)E(X;) = 0, but

() -

2. Applying part 1 for {X;} and {X?}, yields

(8] o () - (-()

N N N
— B <Z X3> +28 (ZZXin) — (B(N)E(X1))”

i=1 i=1 j>i

1/2. Define N as

Xy = +E

ZX

1 1

ZX

=1

Xg-l]

=1/2.

Now,

i=1 j>i i=1 j>i

N N K K
E (ZZXZXJ) =F (Zzl{j < N}Xin)
K K
=E (Z > His N}E[XinN])

i=1 j>i

K
= (E(X1))’E <Z(N —i)1{i < N})

i=1
= (B(X1))’B(N(N - 1))/2.
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Thus,

N
Var (Z XZ-> = E(N)E(X?) + (E(X1))?E(N(N — 1)) — (E(N)E(X,))?
=1

= E(N)Var(X1) + (E(X,))*Var(N) .

Problem 3.2. Let X be a r.v. taking values in a bounded subset of the nonnegative integers.
Show that E(X) =72, P(X > ).

Solution:
Let K be a constant with X < K.

00 K
E(X)=E (Z 1{X > i}) =F (Z{X > i})

1=0 1=0
K o)
=) P(X>i)=) P(X>i).
i=0 i=0

Problem 3.3. Find two Gaussian random wvariables X and Y that are uncorrelated, i.e.,
E(XY)=E(X)E(Y), but not independent.

Solution:
Let X =p N(0,1) and Z independent of X such that P(Z =1) = P(Z = —1) = 0.5. Also, let
Y = X Z. Note that Y =p N(0,1). Indeed,

P(Y<1z) = PY<a,2=1)+P(Y<2,Z=-1)=P(X<z2=1)+PX>—2,7=—1)
= 0.5P(X <z)+05P(X > —z) = P(X <x).

Also, E(XY) = E(X%Z) = E(X?)E(Z) =0 = E(X)E(Y), so that X and Y are uncorrelated.
Finally, X and Y are not independent since P(|X| < 1,|Y| > 1) =0 # P(|X| < 1)P([Y]| > 1).

Problem 3.4. Let X1, X9, X3 be (mutually) independent U|0, 1] r.v., i.e., uniformly distributed
in the interval [0,1]. Compute E[(X; + X2)?| X2 + X3].

Solution:
We first note that,

E[(X, + X2)?| Xz + X3] = B(X2) +2B(X1) B[Xa| X2 + Xa] + E[X3| Xz + X5].

Next, we find the distribution of Xy given X9 + X3. Observe that (Xo, X3) picks a point

uniformly from the unit square [0, 1] x [0, 1]. Therefore, given X2 + X3 = ¢, the point (X2, X3)

is chosen uniformly from the line segment {(u,c —u) : u € R} N [0,1] x [0,1]. Thus, the

marginal distribution of each coordinate, and X5 in particular, is uniformly distributed on its

range. Thus, given Xy + X3 = ¢ < 1 then Xy = UJ[0,¢|. In this case, E[X3|Xs + X3 = ¢|] =

E(U[0,c]) = ¢/2 and E[X2| X3 + X3 = ¢] = E(U[0, c]?) = ¢?/3. Thus, on X5 + X3 <1,
(Xo+X3)? Xo+X; 1

B[(X1 + X2)?|Xp + X3] = 3 + =g

On the other hand, on X5+ X3 > 1, we have Xy = U[ X3+ X3 —1,1]. But, E[U[X2 + X3 —
1, 1]|X2—|—X3] = (X2+X3)/2 and E[U[X2+X3—1, 1]2|X2—|-X3] = (X2+X3—|-(X2+X3—1)2)/3.
Thus,

Xo+X3)?? X9+ X3 2
B0+ X)X + 5] = T2 Jod K 2

on X9 + X3 > 1.
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Problem 3.5. Show that if X,Y,Z are mutually independent, then f(X,Y) and g(Z) are
independent for any choice of real-valued functions f,g that make them random variables.
Show that this may not be the case if X,Y, Z are only pairwise independent.

Solution:
Let A, B be Borel subsets of R. Then,

P(f(X,Y) € A,g(Z) € B) = P(X,Y) € f'(A), Z € g '(B))
=P((X,Y) € fH(A)P(Z € g~'(B))
= P(f(X,Y) € A)P(g9(Z) € B),

where the last step from the first to the second line is justified because (X,Y) and Z are
independent. Thus, f(X,Y),g(Z) are independent.

To demonstrate that pairwise dependence is not sufficient, consider a r.v. U taking values
in {1,2,3,4} with equal probability. Let X be the indicator of the event {U =1 or 2}, Y the
indicator of {U =1 or 3}, and Z of {U =1 or 4}. It is easy to check that X,Y, Z are pairwise
independent, but not mutually independent. E.g., if X =1,Y =1, then Z = 1. Hence, we see
that on the event XY =1, Z = 1 must hold, so XY is not independent of Z.
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Jointly Gaussian Random Variables

4.1 Summary

Here are the key ideas and results:

e Definition 1: Notation for covariance matrix: (4.1)
e Definition 2: N(u, K)
e Fact 3: If X = N(u, K), then gx = (4.2)

e Theorem 1: For JG, L= independence

4.2 Simple Algebra

Recall the following ideas for random vectors:
Definition 4.1. Covariance Matriz

Kxvy:=couX,Y):= E(X - EX))(Y - E(Y)") = EXYT) - EX)E(Y)T. (4.1)

For complex vectors, one replaces T by *.

You will note that the covariance matrix is the matrix of covariances. The matrix Ky y is
sometimes denoted by Ky. Some authors prefer ¥ to K.

Fact 4.1. For any random vectors X, Y and matrices A, B, u,v one has

cov(p + AX, v + BYJ = Acov(X,Y)BT.
2
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4.3 Definition of Jointly Gaussian

Recall (see D3 in L3) that X are JG if a’ X is Gaussian for all vector a. We introduce a bit of
notation:

Definition 4.2. We write X = N(u, K) to indicate that X is JG with mean p and covariance
K = E((X — )(X — p)7).

Here is an immediate result.

Fact 4.2. Assume that X = N(u, K). Then

AX +b=N(Au+b,AKAT).

4.4 MGF of JG Random Variables

Fact 4.3. Assume that X = N(u, K) is JG. Then
1
gx (o) := E(e”TX) = exp{ol pn + §O'TKO'}. (4.2)

Proof:
Note that Y := 67X = N(o"pu, 0" Ko) and gx (o) = gy (1).

The main point of the Joint MGF E(e”" X) is the following.
Theorem 4.1. The Joint MGF E(e”TX) determines uniquely the joint pdf fx(&).

The Joint MGF is the n-dimensional Laplace transform of the joint pdf. As in the one
dimensional case, it has a unique inverse. That is, if two joint pdf have the same Joint MGF,
they must be identical.

4.5 Uncorrelated JG are independent!

The following result is very useful.

Theorem 4.2. JG RVs are independent iff they are uncorrelated The JG random variables X
are independent iff they are uncorrelated.

Proof:
= Independent implies uncorrelated, for arbitrary RVs.
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< Assume X are JG and uncorrelated, so that K = diag{o?,...,02} and
1 al 1
o'u+t o Ko = ;[smum + 5 5m Ol

Then, by (4.2),
gx(0) = Tyt #3500 =TI g, (sm),
since X, = N(pm,02,) for m = 1,...,n. This implies that gx (o) is the same as that of
independent N (u;,0?) random variables. Indeed, if the random variables X,, were independent
N (m,02,), then we would find that
T
gx(0) = E(e” *) = E(em*m¥m) =TIt _ gx,, (sm).

By Theorem 4.1, this implies that the random variables X are independent.

Note that the MGF of JG X is completely specified by 4 and K. Consequently, fx is
also completely specified by p and K. Accordingly, it is not surprising that independence is
determined by the covariance matrix . Taking the inverse L'T, the joint pdf is also determined
uniquely by p and K; we discuss the explicit formulas in L5.

4.6 Conditional Expectation: An Example

Here is a little example that illustrates the power of Theorem 4.2.
Assume that (X,Y)T = N(0, K) with

3 1
K_[lly
We calculate E[X Y] as follows. First we find a number a such that
X—-—aY 1Y.

That is, since the random variables are zero mean,
0=E(X —aY)Y)=EXY)—-aE(Y?*) =1-a,
where we found the numerical values by looking at K. We conclude that o = 1, so that
X-Y 1Y

Second, since X —Y and Y are JG (being linear combinations of the JG random variables
X and Y'), we conclude from Theorem 4.2 that X —aY and Y are independent (since they are
uncorrelated). Now,

E[X|Y]=EX -Y +Y|Y]=EX -Y|Y]|+EY|Y]=EX -Y)+Y =Y.

In this derivation, the second identity comes from the following two properties of conditional
expectation:
P1: X,Y independent = E[X|Y] = E(X);

P2: E[Xg(Y)[Y] = E[X|Y]g(Y).

We will extend this example to the general vector case in L5.
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4.7 Solved Problems

Problem 4.1. Let X = AW, and Y = BW, where W = N(0,I,xn), A € R™™™ B ¢
R™ " det A # 0,det B # 0. What is the conditional pdf fX»D;(-|-), of X givenY ?

Solution:

Since B is nonsingular, we see that W = B~'Y, so that X = AB™'Y. Thus, given Y =7,
the random variable X takes the value AB~'4 with probability one and its density is a Dirac
impulse at that value.

Problem 4.2. Suppose (X,Y1,Y2) is a zero-mean jointly Gaussian (JG) random vector, with
covariance matrix

K=

— N

2 1
4 2
2 1
Find the conditional pdf fxv, y,(:|") of X given (Y1,Y2). Calculate E[X|Y1,Y>].

Solution:
The complication here is that Ky is singular. This means that the vector Y does not have a
density. In fact,

E(Y1 — 2Y3)? = var(Yy) — 4cov(Y1, Ya) + 4var(Ys) =4 —8 +4 =0,
which shows that Y7 = 2Y5. Thus we should consider fxy,. Now,
X — aY1 L Y1
if 0 = E(X —aY1)Y1) = cov(X, Y1) —avar(Y1) = 2 — a, ie., if a = 2. In that case, X —2Y)
and Y7 are independent. But, X = X — 2Y; + 2Y3, so that given Y; = y; the random variable
X is N(2y1,02) where
0? = var(X — 2Y}) = var(X) — 4cov(X,Y]) + 4var(Y]) =4 — 8 + 16 = 12.

We conclude that

1 1
Ty, y2| = exp{—— (z — 2y1)?}, if y; = 2us.
fX|Y1,Y2[ |y1 ?JQ] m p 24( yl) } Il Y2

Also, this expression is meaningless if y; # 2ys.
Along the way, we found that E[X|Y], Ys] = E[X|Y]] = 2Y] since X = (X —2Y7) +2Y] and
X — 2Y; is zero-mean and independent of Y7.
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Representation of Jointly Gaussian
Random Variables

5.1 Summary

Here are the key ideas and results:

e Example in Section 5.2 of E[X|Y] for (X,Y) JG.

e Theorem 1: If (X,Y) are N(0, K) with |K| # 0, then, fxy[-|y] = N(Ay, ) where A, %
are given by (23.2).

e Theorem 2: Under same assumptions, E[X|Y] =--- (5.2).

e Theorem 3: K is a covariance matrix iff it is positive semi-definite; then K = R? = QAQ™T
for some orthogonal matrix Q and R = QAY/2Q7

e Theorem 4: If X = N(u, K) with |K| # 0, then fx =--- (23.1)

e Fact 1: Sum of squares of two i.i.d. N(0,1) is exponentially distributed.

5.2 Example - Continued

Recall our little example from the end of L4:
Assume that (X,Y)T = N(0, K) with

3 1
K= [ ’ ! ] |
We found that X —Y 1 Y, sothat X —Y and Y are independent. We used that to calculate
EX|Y]=EX-Y+Y|Y]|=Y.
There is another useful consequence of the independence of X — Y and Y: Given that

Y =y, we see that
X=(X-Y)+Y |y—y= N(y,0?)

where
o? =var(X = Y) = var(X) -|—var3(3Y) —2cov(X,Y)=3+1—-2=2.
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That is,
fxpylly] = N(y,2).

Here are a few key observations:
e The mean of X given Y =y depends on y (it is E[X|Y = y] = y).

e However, the variance of X given Y = y does not depend on y! Again, this fact follows
from the independence of X —Y and Y. The ‘noise’ X —Y that is added to Y to get X
does not depend on Y.

e The variance of X given Y is smaller than the variance of X. (Here, it is 2 instead of 3.)

We generalize these observations in the next section.

5.3 Conditional Densities

Theorem 5.1. Conditional Densities
Assume that (X,Y) are N(0, K) with |K| # 0. Then, given Y =y, X = N(Ay,X) where

A=KyyKy' and £ = Kx — Kxy Ky 'Ky x. (5.1)

Proof:
First note that |Ky | # 0. Second, observe that

Z:=X-AY LY if Kyy = AKy, ie., A= Kxy K"
Then, X = AY + Z where Z and Y are independent. Also,

Y:=K;=EX-AY)X - AY)T)
=Ky — AKyx — Kxy AT + AKy AT
=Kx — nyKglex.

One interesting observation is that the variance 3 of X given that Y = y does not depend on
the value of y. Another observation is the reduction of the variance Kx due to the observation.
We can also derive the following consequence.

Theorem 5.2. Conditional Ezpectation
Under the same assumptions as Theorem 5.1,

E[X|Y] = KxyKy'Y. (5.2)

Exercise 4. Extend the results of Theorems 5.1 and 5.2 to nonzero-mean random variables.
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5.4 Covariance Matrices

Assume that K is a covariance matrix. That means that K = E(XX”) for some zero-mean
random vector X. Here are some basic properties.

Theorem 5.3. Properties of Covariance Matriz

Assume that K is a covariance matriz. That matriz must have the following properties.

(1) K is positive semi-definite. That is, al Ka > 0 for all a € R".

(2) K is positive definite if and only if |K| # 0.

(8) The eigenvalues of K are real and nonnegative. Let A = diag(A1, ..., \,) be the eigen-
values of K repeated according to their multiplicity. Then |K| = MAg---X,. There is an
orthonormal matriz Q such that KQ = QA.

(4) If K is positive definite, then K=t = QA~1QT.

(5) There is a unique positive semi-definite matriz R such that K = R? and

R = QA1/2QT-

(6) A positive semi-definite symmetric matriz K is a covariance matriz. It is the covariance
matriz of RX where X = N(0,1).

Proof:
(1) Assume K = E(XXT) for some zero-mean random vector X. For a € R” one has

a’Ka = E(Y?) where Y = a’ X.

Hence al'Ya > 0.

(2)-(4) Since K is positive semi-definite, (2)-(4) follow from Theorem 6 in [?].

(5) The issue is uniqueness. The matrix R is such that R = VA/2V7T where K = VAVT.
Thus, V are the eigenvectors of K and A'/? is fixed.

(6) is immediate.

The above theorem tells us about the shape of fx, as stated in the next result, illustrated
in Figure 5.1.

Theorem 5.4. Assume that X = N(0,K). If |K| =0, the RVs X do not have a joint density.
If |[K| # 0, then

Fx(€) = exp{—5¢"K '€}, 53

1
(271')”/2|K|1/2
Also, the level curves of fx are ellipses whose azes are the eigenvectors of K and dimensions
scaled by the square roots of the eigenvalues of K.
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f(x,y) A
Klu, u,] = [u, u] diag(a,, a,) ua

PR
A 1

ANV
";f!“::“:ﬁ\ﬁ‘
"3@‘.\‘.“.‘\‘,\;“

\

Figure 5.1: The N (0, K) probability density function.

Proof:

The expression for fx follows from the representation X = RY and the observation that if
¢ =Ry, theny = R™'¢ and y'y = ¢TR72¢ = K¢,

The level curves are sets of ¢ such that ¢ K=1¢ = y''y = ¢ where ¢ = Ry. Thus, y belongs
to a circle with radius y/c and & belongs to an ellipse whose axes are the eigenvectors u; of R.
(See Section VIIT in [?].)

5.5 Generating a N(0,1)- Random Variable.

In this section, we explain a cute result that can be used to generate Gaussian random variables.
We start with some general ideas.

5.5.1 Generating Random Variables
For well chosen values of «, 3, N, the sequence X, defined below looks like i.i.d. UJ0,1]:

Yoi1 = (a¥p + B)mod(N), Xn41 = Xpy1/N.
Assume then that U =p UJ0,1]. We can generate a RV X with cdf Fix(.) by computing
X = F'(U).

Indeed, P(X < z) = P(U < Fx(z)) = Fx(z), as desired. For instance,

1
generates a random variable with
1
P(X <z)= P(_X In(U) < z)

= P(In(U) > —\z) = P(U > e ) =1—e 7,

That is, X is exponentially distributed with rate A (i.e., with mean A~1).
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5.5.2 Generating Gaussian Random Variables

The general method discussed in the previous section does not work well for generating a
N(0,1) RV X because Fy does not have a close form and neither does its inverse. Of course,
we could tabulate F)zl, but that is not very elegant. Instead, one uses the following fact.

Fact 5.1. Let X, Y be i.i.d. N(0,1). Then Z = X? + Y? is exponentially distributed with
mean 2.

By the way, one says that vVZ = ||(X,Y)||2 has a Raleigh distribution. Thus a Raleigh-
distributed random variable is the square root of an exponentially-distributed random variable.
This distribution is important in wireless system (Raleigh fading).

Proof:
We calculate the MGF of Z as follows:

E(e’?) = 2i /oo /OO S %1202 /2 g gy
™
2
/ / e 2 drdp —/ rels=1/2r? gy,
(s—1/2)r*
T 2s—1 / de T 1= 25'

On the other hand, if V' is exponentially distributed with mean 2, then

E(*Y) =/ e“%e—”ﬂdu
0
1 1
- - (s=1/2pv _ =
2(3—1/2)/ de T 12

Comparing these expressions shows that Z = X? + Y2 =p V. 0

One method to generate the random variables X and Y is then to generate Z as an expo-
nentially distributed random variable, then to calculate

= VZcos(d) and Y = VZsin(6)
where 0 is U0, 27] and is independent of Z. This procedure yields two i.i.d. N(0,1) random
variables X and Y.
Exercise 5. Assume that X1 and X9 are two i.i.d. random wvariables and that their joint

distribution is invariant under rotation. Show that the random wvariables are Gaussian.

Once we can generate i.i.d. N(0,1) random variables, we know how to generate any N (u, K)
random vector.
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5.6 Solved Problems

Problem 5.1. Suppose Y is zero-mean JG with covariance matriz

2 1 0
K=|1 2 -3
0 -3 6

Find a matriz A such that Y = AZ where Z = N(0,1).

Solution:

Here again, the complication is that K is singular so that the vector Y does not have a density.
This implies that Y is a linear combination of fewer than 3 independent Gaussian random
variables. To find the appropriate linear combination, we use the fact that K is Hermitian.
Consequently, by Theorem 2.1, we can write K = PAPT where PTP = I. Thus, K = AA”
where A = PAY2. We can then write Y = AZ where Z = N(0,I). We leave you the calculation
of P and A.



Chapter 6

Detection

6.1 Summary

Here are the key ideas and results:

e Formulation of the detection problem in Section 6.2.
e Maximum Aposteriori Probability detector (MAP), in Section 6.3.
e Maximum Likelihood detector (ML), in Section 6.3.

e Examples: two basic models of binary detection.

6.2 Detection

The detection problem can be formulated as follows. (X,Y’) are random variables where X
takes values in a finite set {1,2,..., N}. One observes Y and one wants to guess the value of
X. This estimate is a function of the observations, and we denote it by g(Y'). The “goodness”
of each estimate is specified by a cost function ¢(z, z) that associates a cost in guessing z when
the true value is z.

The detection problem is the following: choose a function g(-) such that it minimizes

E(c(X,9(Y))) - (6.1)

One interpretation of this problem is the following. Consider the case where one has to
detect a sequence of i.i.d. values X1, Xo,.... Say that for each X;, one observes Y;. If the
decision rule g(-) is used, then this will incur an average cost of

n

1
Jim ~ 2; c(Xi,g(¥)) -
By the law of large numbers, this is the same as (6.1).

The key in minimizing (6.1) is to minimize E[c(X, z)|Y = y] over z, for each value y of the
observation Y. If zp is the optimum, then if we define go(-) by go(y) = 20, then go(-) mini-
mizes (6.1), as well, for if A(-) is any other function, then E(c(X, h(Y))) = E(E[c(X,h(Y))|Y]) >
E(E[c(X, 90(Y)Y]) = E(c(X, 90(Y)))- 39
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Now,

Ele(X,2)|Y =y] =) c(i,z)PIX =i]Y =y]

Ny WP =)
_; G ) '

Thus, to minimize (6.1) one can equivalently solve
min' > (i, 2) P(X = i) fyx (5li) . (6.2)
Z .
1

in the case Y is a continuous r.v., and

mZian(i, 2)P(X =i)P[Y = y|X =], (6.3)

when Y is discrete.

6.3 Minimizing the probability of wrong detection

Assume X,¢g(Y) € {1,...,N}. A common cost function for this case is ¢(z, z) = 1{z # z}.
It corresponds to minimizing P(X # ¢g(Y)), the probability of wrong detection. By (6.3), we
solve,

arg mzin Z(l —1{i # 2})P(X =49)PlY =y|X =i] = arg mZaXP(X = 2)P[Y = y|X = 7]

= argmax P[X = z|Y =y].
z
(6.4)

The last expression is the posterior distribution of X, by incorporating the information in-
cluded in the observation y. For this reason, we call this rule the Mazimum Aposteriori Prob-
ability (MAP) detector. The optimum 2z as a function of the observation y, is denoted by
MAP[X|Y = y]. Notice that in general, it depends on the knowledge (or a stipulation) of the
prior distribution of X.

In some cases, the postulation of a prior may be quite arbitrary. Indeed, one assumes he
knows the distribution of what he intends to estimate. Because of this, a distribution free rule
might be desirable. One way to do this, is simply by agreeing on the use of a certain prior.
When this is the uniform prior, P(X =1i) =1/N for alli =1,..., N, one then must solve

max P[Y =y|X = z].
z

Intuitively, this rule spits back the value z of X under which the observation is most likely.
The resulting rule is called the Mazimum Likelihood (ML) detector, and the estimate of X it
provides, the ML estimate (MLE) denoted by MLE[X|Y = y].
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Figure 6.1: When X = 0, with probability a the wrong output Y will be produced. Similarly,
with probability 8 the input X = 1 is wrongly produced at the output.

6.4 Binary detection models

Consider the case of the binary channel depicted in Figure 1.

Since P[Y =0|X =0l =1—«,P[Y =0|X =1], the MLE given Y =0is 1, if 5 > 1 — ¢,
and 0 otherwise.

To compute the MAP, one needs to further decide on a prior. Let p; := P(X =1),i =0, 1.
Using the first line in (6.4), given Y = 0, the MAP estimate is 1, if p18 > pp(1 — «), and 0
otherwise.

Notice that MAP[X|Y = 0] = MLE[X|Y = 0], when pg = p1, as explained in the previous
section. When py > p1, MAP favors 0 more than ML does.

Now, let us consider a model with continuous observations Y. In particular, when X = 0,

1 T
0 = 67202 s
fY\X(y| ) mo_
while when X =1,
1 (y=w)?
1) = e 202
fY|X(y| ) \/%O'

for some p, o > 0.

MLE[X]Y = y] = 1 or 0, depending on whether the so-called likelihood-ratio fy|x (y|1)/fyx (y|0) >
1 or < 1. This happens if y > p/2 or < 11/2, respectively.

For computing M AP[X|Y = y], we have,

p[xzuyzy]:fwx(yl%andP[X:mY:y]:W

Iy (y)

Therefore, we should compare the likelihood-ratio fy|x(y|1)/fy|x(y|0) with po/p1 instead of 1
which we used in MLE. Plugging the expressions for fy|x(:|-) above, we get that MAP[X—Y=y]
chooses 1 if
2
y > 7 log oyt ;
pooopr 2

and 0 otherwise.
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6.5 Solved Problems

Solution:
Given some observation ¥ = (y1,...,yn) € {0,1}", the likelihood ratio A(%) is

A = PE =0X = 1] g1 =y S o
P[Y =X = 0] pozmyi(l o)X

The Neyman-Pearson test is to choose Z = 1 with probability ¢(%) given by

1, if A(y) > A,
P(7) = q7v, A = A
0, otherwise,

for A, given by P[Z =1]X = 0] = 8 < P[A(Y) > A|X = 0] + vP[A(Y) = \| X = 0] = 3.
From (6.5) we see that ;" | Y; is a sufficient statistic.

Problem 6.1. Repeat Problem 1 for the following situation. When X =0, Y1,...,Y, are i.i.d.
Ul0,2] r.v’s. When X =1, they are UJ0, 3].
What was the sufficient statistic? Explain.
Solution:
Let3>y; >0 foralli=1,...,n. Then,

Al — _ =

(6.6)

fy‘X(?ﬂl) 3" (2/3)” , of max;y; <2
00 , otherwise .
Set A\ =1(2/3)", and v = (. Then,
P[Z=1|X =0] = P[A(Y) > A|X = 0] + yP[A(Y) = A X =0]=0+~1 = 5.

From (6.6) we see that max;Y; is a sufficient statistic.

Problem 6.2. Repeat Problem 2 for the case where Y; = N(1,1) when X =0, and Y; = N(0,4)
when X = 1.

What was the sufficient statistic? Explain.
Solution:

@)

T G10)

Since A(%) is a continuous r.v., 7y is not needed, and A is (uniquely) determined by P[A(Y) >
AMX =0]=5.
From (6.7) we see that >_.(3Y;? — 8Y;) is a sufficient statistic.

AG) = o [T exp(3? — 80+ 4)/9). (67)

=1

Problem 6.3. Let U,V be two independent U0, 1] r.v’s.

1. Compute X = Licos(U)|U + V], the linear least squares error estimator of cos(U) given
U+V.

2. Compute Y = E[cos(U)|U + V]
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3. Compare E((X —U?%)?) and E((Y — U?)?).

Solution:
1.
Llcos(T7) [T + V] = Covif;):((g)fv)* w+v)
+ B(eos(U)) — COVg;:((g )+UV;L Vew +v)
Now,

Cov(cos(U),U + V) = Cov(cos(U),U) + Cov(cos(U), V)
= E(Ucos(U)) — E(U)E(cos(U)),

by independence of U, V. But,

1 1
E(U cos(U)) :/0 u cos(u)du = sin(1) —/0 sin(u)du
=sin(1) 4+ cos(1) — 1,

so Cov(cos(U),U + V) = cos(1) + 0.5sin(1) — 1. Also, Var(U + V) = Var(U) + Var(V) =
1/6, and

1
E(cos(U)) = /0 cos(u)du = sin(1) .

2. Notice that (U, V) is uniformly distributed on the unit square. On U +V = s, (U, V) =
(U, s—U) is uniformly distributed, so U is U[0, s] if s < 1, and U[s—1, 1] if s > 1. Hence,

if s > 1,
1 ) cin(s 1
Elcos(U)|U + V] :/ cos(u)du _ sin(1) —sin(s — 1) ,
s-1 2= 2 _ s
and s |
Elcos(U)|U 4+ V] :/ cos(u) gy = Sins ’
0 S S
it s <1.

3. From theorem proved in class, we expect E((X — cos(U))?) > E((Y — cos(U))?).
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Chapter 7

Binary Detection under AWGN

7.1 Summary
Here are the key ideas and results:

e Section 7.3: binary detection with vector observations under AWGN. The ideas from
Chapter 6 carry over to the case of vector observations.

e Definition: Sufficient statistic, in Section 7.3.1.

e BER calculations and system design, in Section 7.4.

7.2 Example: system design under power constraints

Let us consider the basic (scalar observation) model of binary detection in Chapter 6, under

Gaussian noise:
Y=pX+W,

where X € {0, 1} is the r.v. we want to guess, W is noise N(0,0?), and Y is the observation.
Assume X has the distribution P(X =0) = pg, P(X =1) = p;.
In Chapter 6 we saw that X := MAP[X|Y = y] = 1 or 0 depending on whether Y > 6 or
< 0, respectively, where ,
g.=L + 7z log bo
2 p Tm
Then,

P(X # X) = P[X # X|X = Olpg + P[X # X|X = 1]p1
= P(N(0,0?) > 0)po + P(N(p,07) < 0)p1

:P<N(0,1)2 0>po+P<N(O,1)§ 9_");)1.

g o

When py = p; we have the further simplification

, p
P(X#X)=P (N(o, 1) > 27) . (7.1)

g

Now, if we wanted to design our communication system such that the bit-error-rate (BER)
is less than, say 10710, then we could use (7.1) ZlEt)o calculate the average energy per bit required
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to achieve this. (Note that P(N(0,1) > 6) < 107'%.) For example, if the amplitude of the
signal at the sender is A, and G the channel gain, then y = AG. Since no signal is sent when
X =0, which happens half of the time (pg = p1 = 1/2), the average energy per bit is p = %AQ.
Thus,

72

G2’

gives a lower bound in terms of the power of the noise.

b
_— >
o2~

7.3 Binary detection with vector observations
The key ideas in L7 carry over to the vector case: Let X € {0,1} as before, jig, i1 € R™ and
?:/Ii+2, when X =1,

where Z = N(0, K). This can model a variety of situations. One can think of ¥ as the received
signals at an antenna array, each coordinate corresponding to the output of a different antenna.
Another way to look at this model, is by considering pp, ;i1 as waveforms, corrupted by noise
with an autocorrelation structure specified by matrix K.

Let’s compute MLE[X|Y = §] for the case that |K| # 0.

fyx(ml) 1
X2 = b (=5 K G ) + 30 ) K ) )
oL U S IR S R R
= exp (( i) K = gt K i K 1M0> :

The last expression is the likelihood-ratio. Usually, we work with the exponent, the so called
log-likelihood-ratio (LLR)

L O 7 T S
(i — o) "K' — T K i+ ST K i, (7.3)

which we denote by LLR[X|Y = 7].
Thus,
, 1, if LLR[X|Y =] >0
MLE[X|V = ] = { b HLLRIXIY =]
0, otherwise
For MAP[X|Y = ] one needs to compare fy x @11)p1 with fg  (10)po. Hence,

MAP[X[T = 7] = {1, if LLR[X|Y = ] > log(p1/po)
0, otherwise.

Whereas we started with a nonlinear problem, that of minimizing the probability of incorrect
detection, we see that we get simple linear rules. To see why this happens, notice that when
K =1, from (7.2), one chooses i = 0 or i = 1 depending on which of /g, is closest to the
observation vector ¥, in the sense of Euclidean distance | — ;| Hence, the decision rule is
specified by the two halfspaces divided by the line of equidistant points from g, 1.
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7.3.1 Sufficient statistic

Notice that even though the dimensionality n of the observations might be high, what is actually
sufficient in determining the LLR -and hence MAP and MLE-, is a linear function of Y. Such
a function is called a sufficient statistic. More precisely, we will call §(Y) a sufficient statistic!,
if

fy x @l7) = F(§(@).2)G(@)

for some real functions F,G. There can be many sufficient statistics; a trivial one is Y itself.
In the definition, X, z may be also vectors.

7.3.2 Matched filter

One common way to compute ;7 needed in the sufficient statistic, is by a matched filter.

Note that
Z pi(t)ye = Z hi( )yt

where /7 = (ui(1), ..., p1i(n))T, and h;(t) = pi(n —t). Thus, 77§ can be computed by passing
/ through a filter with an impulse response h;(-) “matched” to the signal ;.

7.4 Bit error rate calculations

Assume K = ¢, for simplicity. The probability of incorrect detection is
P(error) = <LLR[X|Y] > log —|X = 0> po+ P (LLR[X|Y] < log |X = 1> p1. (7.4)

Hence, we need to determine the distribution of LLR(X |}7) Y is jointly Gaussian, and

(i — o) o g mt
LLR X =0]= _
Bl ¥ )| ] o2 + 202 202
= —3 (i — i) fio — 55 (i + o) (s — 4i1)
Lo e
= —T‘QH 1— Hollz
Similarly, we find
_ i - sall3

Both the variance and conditional mean depend only on the ratio |41 — fio|l2/0 =: 7.
Thus, (7.4) becomes

1 1
P(error) = P (N(O, 1)> ~log 2> + 7) po+P (N(o, 1) < —log 2% + 7) P
Y b1 2 y 1 2

Observe that BER depends on the energy in the difference of the two signals, ;i1 and g, and

how these compare to the power of the noise o2.

!This is one of many equivalent definitions, that suffices for our purposes.
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When py = p1, the above simplifies to
Plerror) = P (N(o, 1) > %) .

Usually one wants to minimize this, under some power constraint. Part of the problem is to
determine the signals ;. One way to do this is to set gy = 0, i.e. allocate no power to this
signal, and transmit any p] at full power.

7.5 Example: relation with the scalar case

Assume that a symbol is a bit-string of fixed length n, where each of the m bits is picked
independently. Independent noise W = N (0, I,,«,) corrupts each bit in a symbol. What is the
MAP detector?

In this case, we have 2" possible symbols in the set {0, 1}{17""”} =: S, but we don’t need
to have 2™ matched filters for implementing MAP. One has,

MAP[X[Y = §] = arg max fy ¢(712) P(X = 2)
n
= arg max (H Frilx; (wlm)) [P =2)
nz:l
= arg T;lggiil;[lfmxi (yilzi) P (X = zi) ,

— =

where the second line follows from independence of the X;’s. Thus, MAP[X|Y = g¢] will
estimate the i-th bit of X as X; = MAP[X;]Y; = vi].
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Hypothesis Testing; Estimation 1

8.1 Summary

Here are the key ideas and results:

The Hypothesis Testing problem is to maximize P[Z = 1|X = 1] subject to P[Z = 1|X =
0] < 8 where Z is based on Y and fy|x is known.

The solution of the HT problem is given by the Neyman-Pearson theorem 8.1.
e Some composite HT problems have a simple solution; most do not.

e g(Y) is sufficient for X if X and Y are conditionally independent given g(Y").

8.2 Binary Hypothesis Testing

So far we have considered the Bayesian detection problem of minimizing E(c(X,¢(Y))) when
both px and fy|x are known. Recall that, when X € {0,1} the optimum decision has the
form g(Y) = h(A(Y)) where A(y) = fy|x[y|1]/fy|x[y]0] is the likelihood ratio. In particular,
if A(y) = f(k(y)), then k(Y) is a sufficient statistic for detecting X given Y.

In this section we explore the detection problem when px, the prior, is not known. We
start with the case when X € {0,1}.

8.2.1 Formulation

Definition 8.1. Binary Hypothesis Testing Problem

One is given fy|x. For each observed value y of Y, one chooses #(y) € [0,1] and one lets
Z =1 with probability ¢(y) and Z = 0 otherwise. One is also given € (0,1). The objective
1§ to choose ¢ to

minimize P[Z = 0| X = 1] subject to P[Z =1| X =0] < f. (8.1)
One interpretation is that X = 1 means that your house is on fire. In that case the problem

is to design the alarm system to detect a fire with the largest probability compatible with a
probability of false alarm at most equal to . 49
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8.2.2 Neyman-Pearson Theorem

The key result is the following.

Theorem 8.1. Neyman-Pearson
The solution to the binary hypothesis testing problem is as follows:

1, if Ay) ._M>)\

T fyixwlo]
$(y) =19 0, if A(y) < A
v, if Aly) = A

where X > 0 and y € [0,1] are the only values such that

PZ=1|X =0]=p when P[Z=1|Y =y| = ¢(y).

(8.2)

(8.3)

The interpretation of the result is that if A(y) > A, then one is pretty sure that X = 1
because the observed value would be much less likely if X = 0. In that case, one safely decides
Z =1. If A(y) < A, one decides Z = 0. If A(y) = A, one edges the bet by deciding Z = 1 with
probability ¢(y). The threshold A is an adjustment of the ‘sensitivity’ of the alarm: the lower
A, the most likely the alarm is to sound. The randomization «y is designed to achieve exactly

the probability of false alarm.

Before looking at the proof, let us examine two representative examples.

8.2.3 Two Examples

Example 8.1. We consider the binary symmetric channel. That is, one is given some € €

[0,0.5) and, for z,y € {0,1}, one has

1—¢ ifx=y

We find

Aly) = =9 &

PlY =ylX = 1] {15,Uy=1
PIY =y|X =0] To ify=0

Since A(1) > A(0), we see that the solution of the hypothesis testing problem must be of the

following form:
PlZ=1Y =1]=7v and P[Z =1|Y =0] =0

where g and 7y are chosen in [0,1] so that (23.4) holds. Now,

P[Z=1|X =0]= P[Z =1]Y =1]P[Y = 1|X = 0]+ P[Z = 1|Y = 0]P[Y = 0|X = (]

=€+ 7(1 —e).

The values of vg and 1 depend on B. One finds that

_ (0’2)7 zfﬁ <e
o) _{ (=20, if B> e
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Example 8.2. In this ezample, Y = X +V where X and V are independent and V.= N(0, 1).
Here,

A(y) = exp{— 5y~ 1?}/ exp{~ 39"} = exply — 1}

Since A(y) is increasing in y, we see that the solution of the hypothesis testing problem has the
following form:
la zfy > Yo
Ply) =4 0, if y <wo
Y, Y=o
where yo = A~Y(X\). However, since P[Y = yo|X = z] = 0 for z € {0,1}, one can ignore the
last possibility. Accordingly, the solution is

_ la ny>y0
¢(y)_{ 0, if y < o.

The value of yg is such that P[Z = 1|X = 0] = 3, i.e.,

B =PlY >y|X =0]=P(V > y).

We now turn to the proof of Theorem 8.1.

8.2.4 Proof of Neyman-Pearson Theorem

Define Z as indicated by the theorem and let V' be some random variable that corresponds to
another choice ¢'(y) instead of ¢(y). We assume that V satisfies the bound on the false alarm
probability, i.e., that P[V = 1|X = 0] < 8. We show that P[V =1|X =1] < P[Z = 1|X =1].
To do this, note that A(Y)(Z — V) > A(Z — V). Hence,

E[ANY)(Z - V)|X =0] > AE[Z — V|X = 0] > 0.

But
EANY)(Z-V)|X =0]=E[Z-V|X =1].
Indeed,
EAY)(Z-V)X =0] = /A(y)[¢(y) — ¢'(y)] fy|x[yl0]dy

[ fyixlyll )

= m[ﬂ?ﬂ —¢ (y)]fY|X[y|0]dy

— [ ) - # W)ty xlyltldy = BLZ - VIx = 1)
Hence,

0<E[Z-V|IX=1=P[Z=1X=1]-P[V=1|X =1],

as was to be shown.

For an intuitive discussion of this result, see [10], page 126.
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8.2.5 Important Observations

One remarkable fact is that the optimal decision is again a function of the likelihood ratio.
Thus, as in the Bayesian case, if A(y) = f(k(y)), the optimal decision for the hypothesis
testing problem is a function of the sufficient statistic £(Y).

We used two simple but useful observations in the examples. The first one is that when
A(y) is increasing in y, the decision rule is a threshold on Y. The second is that when Y has a
density, there is no need to randomize by introducing some +.

8.2.6 Composite Hypotheses

We have considered only the case X € {0,1}. The general case would be that X takes values in
some set X and one wishes to determine if X € A C X or X ¢ A. Say that one selects Z =1
to mean that one thinks that X € A. One would then attempt to maximize P[Z = 1|X € A]
subject to the constraint that P[Z = 1|X ¢ A] < . This general problem does not admit
a simple answer. For instance, the likelihood ratio P[Y = y|X € A]/P[Y = y|X ¢ A] is not
defined since we do not have a prior distribution of X. However, some problems have a simple
answer. We give one example.

Example 8.3. One knows that, given X, Y = N(X,1) and we want to determine whether
X = po or X > po. First note that if the alternatives are X = pg or X = p1 > po, then the
optimal decision would be Z = 1{Y > yo} with P[Y > yo|X = po] = B. Thus, the value of yo
does not depend on py. It follows that this decision rule is optimal for the composite problem.

8.3 Conditional Independence and Sufficient Statistics

The notion of conditional independence is useful to clarify the concept of sufficient statistics.

Definition 8.2. Conditional Independence
The random variables X and Z are conditionally independent given the random variable Y

if
P[X € A,Z € BlY| = P[X € AlY|P[Z € B|Y],VA, B. (8.4)
Note the following simple fact:

Fact 8.1. If X and Z are conditionally independent given Y, then g(X) and h(Z) are condi-
tionally independent given Y, for any functions g(-) and h(-).

The following fact is a direct consequence of the definition.
Fact 8.2. X and Z are conditionally independent given Y if and only if
Elg(X)h(2)|[Y] = E[g(X)|Y]E[A(Z)[Y],Vg(-), h(-). (8.5)

Proof:
The result is immediate from (8.4) if g(X) = >, a;1{X € A;} and h(Z) = 3, b;1{Z € B;}.
The general case follows by approximation.
0

From this property, one finds the following result.
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Fact 8.3. Assume that X and Z are conditionally independent given Y. Then
E[X|Y, Z] = E[X|Y].

Proof:
We must show that

E(f(Y, 2)EIX]Y]) = E(f(Y, Z2)X),Vf().
Assume that f(Y,Z) = g(Y)h(Z). Then
E(f(Y, 2)E[X|Y]) = E(9(Y)(2) E[X]Y]) = E(E[g(Y)h(Z)E[X|Y][Y])
E(E[g(Y)h(Z)X|Y]), by (8.5)
E(f(Y,Z2)X).

)

The general case follows by linearity and approximation. For instance, approximate f(Y, Z)
by polynomials.

Here is a different twist on the notion of sufficient statistic.

Definition 8.3. Sufficient Statistic
9(Y) is a sufficient statistic for X if X and Y are conditionally independent given g(Y').

Let us revisit the detection problem in the light of this definition. Recall that
MAP[X|Y =y| = argmax, P[X = z|Y =y].
Now, with z = g(y),
PIX = a]Y = ] = PIX = oY = y,g(Y) = 2] = P[X = alg(Y) = 7],
so that
MAP[X|X =y] = h(2).

The connection with likelihood ratios is as follows. Assume that X and Y are conditionally
independent given g(Y'). Then, with z = g(y),

fyrixlle] = foo) x2l2] fy gl 2]

so that
_ fyixlyle]l o xlzle]

Az y) = =
(z:9) fyixlylzol — foevyx [2]zo0]
It follows that the solution of the HT problem, the MLE, and the MAP are all functions of
the sufficient statistic.

= ¢(x;2).

8.4 Solved Problems

Problem 8.1. When X =0, Yi,...,Y, are i.i.d. Bernoulli r.v’s with P[Y;, = 1|X = 0] = py.
When X =1, we have P[Y,, = 1|X = 1] = p1, instead. (1 > p; > py > 0.)

Find the Neyman-Pearson test, to minimize P[Z = 0|X = 1] subject to P[Z = 1|X = 0] <
8.

What was the sufficient statistic? Explain.
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Chapter 9

MMSE and LLSE

9.1 Summary

Here are the key ideas and results:

The MMSE of X given Y is E[X]|Y].

The LLSE of X given Y is L[X|Y] = E(X)+ Kx yKy' (Y — E(Y)) if Ky is nonsingular.

Theorem 9.3 states the properties of the LLSE.

The linear regression approximates the LLSE when the samples are realizations of i.i.d.
random pairs (X, Yin).

9.2 Estimation: Formulation

The estimation problem is a generalized version of the Bayesian decision problem where the set
of values of X can be R™. In applications, one is given a source model fx and a channel model
Jyx that together define fx y. One may have to estimate fyx by using a training sequence,
i.e., by selecting the values of X and observing the channel outputs. Alternatively, one may be
able to observe a sequence of values of (X,Y) and use them to estimate fx y.

Definition 9.1. Estimation Problems

One is given the joint distribution of (X,Y). The estimation problem is to calculate Z =
g9(Y) to minimize E(c(X,Z)) for a given function c(-,-). The random variable Z = g(Y) that
minimizes E(||X — Z]||?) is the minimum mean squares estimator (MMSE) of X given Y. The
random variable Z = AY + b that minimizes E(||X — Z||?) is called the linear least squares
estimator (LLSE) of X given Y ; we designate it by Z = L[X]|Y].

9.3 MMSE

Here is the central result about minimum mean squares estimation. You have seen this before,
but we recall the proof of that important result.

Theorem 9.1. MMSE

The MMSE of X given Y is E[X]|Y]. 55
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Proof: You should recall the definition of E[X|Y], a random variable that has the property
B[(X - E[X[Y])h1(Y)] = 0,Yh1 (), (9.1)

or equivalently
E[h2(Y)(X — BIX|Y])] = 0, Vhs(). (9.2)

By E(X) = E[E[X]|Y]], the interpretation is that X — E[X[Y] L A(Y) for all h(-). By
Pythagoras, one then expect F[X|Y] to be the function of Y that is closest to X, as illustrated
in Figure 9.1.

E[X[Y] = g(Y)

{r(Y), r(.) = function}

Figure 9.1: The conditional expectation as a projection.
Formally, let h(Y) be an arbitrary function. Then

E(|IX-hY)IP) = B(IX - BX|Y]+ EX|Y] - h(Y)[]?)
= B(IX - EXY]|P) +2E((EX|Y] - M(Y))" (X — E[X|Y])) + E(||E[X[Y] - A(Y)|*)
B(|IX - EX|Y]|]) + B(|EX|Y] - 1(Y)|]*) > E(||X - EX|Y]|]*).
In this derivation, the third identity follows from the fact that the cross-term vanishes in view of

(9.2). Note also that this derivation corresponds to the fact that the triangle {X, E[X|Y],h(Y)}
is a right triangle with hypothenuse (X, h(Y)). 0

Example 9.1. You recall that if (X,Y) are jointly Gaussian with Ky nonsingular, then
EX|Y]=E(X) + Kx yKy' (Y — E(Y)).

You also recall what happens when Ky is singular. The key is to find A so that Kxy =
AKy = AQAQT. By writing

Q-@laa= | o]

where Ay corresponds the part of nonzero eigenvalues of Ky, one finds

QT

Kxvy = AQAQT = A[Q1]|Q2] [ %1 8 ] [ Qr ] = AQiMQT,

so that Kxy = AKy with A = Kx yQ1A7'QT.
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9.4 LLSE

Theorem 9.2. LLSE

LIX|[Y] = BE(X) + KxyKy' (Y — E(Y)) if Ky is nonsingular. L[X|Y] = E(X) +
KxyQiAT'QT(Y — E(Y)) if Ky is singular.
Proof: Z = L[X|Y] = AY + b satisfies X —Z L BY +d for any B and d with E(X) =
E[L[X|Y]]. If we consider any Z' = CY +c, then E((Z — Z")T(X — Z)) = 0 since Z — Z' =
AY +b—-CY —c=(A—-C)Y + (b—c) = BY +d. It follows that

E(X-Z|P) = E(X-Z2+Z-Z|P)
= B(IX-2Z|*)+2B((2 - 2)" (X - 2)) + B(|Z - Z'|]")
= B(IX -2+ E(|Z - Z'|]”) > B(|X - Z|]%).
Figure 9.2 illustrates this calculation. It shows that L[X|Y] is the projection of X on the set

of linear functions of Y. The projection Z is characterized by the property that X — Z is
orthogonal to all the linear functions BY + d. This property holds if and only if (from (9.1))

E(X—-Z)=0and E(X-2Z)YT") =0,

which are equivalent to E(X —Z) = 0 and cov(X—Z,Y) = 0. The comparison between L[X|Y]
and F[X]|Y] is shown in Figure 9.3. 0

Z=L[X|Y]

{r(Y)=CY +d}

Figure 9.2: The LLSE as a projection.

Figure 9.3: LLSE vs. MMSE.

The following result indicates some properties of the LLSE. They are easy to prove.

Theorem 9.3. Properties of LLSE

(a) L[AX; + BXy|Y] = AL[X|Y] + BL[X3|Y].

(b) LIL[X|Y,Z] | Y] = LIX|Y].

(¢) If X LY, then LIX|Y] = E(X).

(d) Assume that X and Z are conditionally independent given Y. Then, in general,
LIX|Y,Z] # LIX|Y].
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Proof: (b): It suffices to show that

E(L[X|Y,Z] - L[X|Y]) = 0 and E((L[X|Y] - L[X|Y, Z]))Y7) = 0.

We already have E(X — L[X]|Y,Z]) = 0 and E(X —L[X]|Y]) = 0, which implies E(L[X|Y,Z]—
L[X|Y]) = 0. Moreover, from E((X — L[X|Y,Z])Y") =0 and E((X — L[X|Y])YT) =0, it is
obtained E((L[X|Y] - LIX|Y,Z)YT) = 0.

(d): Here is a trivial example. Assume that X = Z = Y2 where X is U[0,1]. Then
L[X|Y,Z] = Z. However, since Y = X2, Y2 = X% and XY = X3, we find

E(XY)— E(X)E(Y)

LXIY] = B+ = s g B
S UEnI N
_ 3. B
16 ' 16

We see that L[ X|Y, Z] # L[X|Y] because

3 15 3 15
74+ =+ V=" 4 "7
7 16 + 16 16 + 16

Figure 9.4: Smoothing property of LLSE.

9.5 Examples

We illustrate the previous ideas on a few examples.

Example 9.2. Assume that U, V,W are independent and U[0,1]. Calculate L[(U + V)? |
VZ+ w2

Solution: Let X = (U+V)? and Y = V2 + W?2. Then
Kxy = cov(U? +2UV + V2 V2 + W?) = 2cov(UV, V?) + cov(VZ,V?).

Now,
cov(UV,V?) = E(UV?) — E(UV)E(V?) = - — — = —

and
cov(Vz,VQ) = E(V4) — E(V2)E(V2) =
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Hence,

1 4 31
Bxy=15+15~ 180

We conclude that

LWU+V)? | V24 W =E(U+V)))+ KxyK,' (Y —E(Y)) = g + % <y — ;) .

Example 9.3. Let U, V,W be as in the previous example. Calculate L[cos(U + V)|V + W].
Solution: Let X =cos(U+V)and Y =V + W. We find
Kyy = E(XY) — E(X)E(Y).
Now,
E(XY) = E(V cos(U + V) + %E(X).
Also,

E(Vcos(U+V)) = /01 /01 veos(u + v)dudv = /Ol[v sin(u + v)]jdv
- /Ol(vsin(v +1) — vsin(v))d = —/Olv “dcos(v +1) + /Olv - dcos(v)

1 1
= —[vcos(v+ 1)+ /0 cos(v + 1)dv + [v cos(v)]§ — /0 cos(v)dv
= —cos(2) + [sin(v + 1)]§ + cos(1) — [sin(v)]}

= —cos(2) +sin(2) — sin(1) 4 cos(1) — sin(1).

Moreover,

11 1 1
E(X) = /0 /0 cos(u + v)dudv = /0 [sin(u + v)]ddu = /0 (sin(u + 1) — sin(u))du
= —[cos(u 4 1)]§ + [cos(u)]§ = — cos(2) + cos(1) 4 cos(1) — cos(0) = —cos(2) + 2cos(1) — 1.
In addition,
EY)=E(V)+EU)=1.

and

9.6 Linear Regression vs. LLSE

We discuss the connection between the familiar linear regression procedure and the LLSE.

One is given a set of n pairs of numbers {(Zm,, ym), m = 1,...,n}, as shown in Figure 9.5.
One draws a line through the points. That line approximates the values y,, by z,, = az, + 5.
The line is chosen to minimize

n n

Z (2m — ym)2 = Z (axy + B — ym)z- (9.3)

m=1 m=1
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That is, the linear regression is the linear approximation that minimizes the sum of the squared
errors. Note that there is no probabilistic framework in this procedure.

To find the values of « and 8 that minimize the sum of the squared errors, one differentiates
(9.3) with respect to o and 3 and sets the derivatives to zero. One finds

n

Z(amm—kﬁ—ym) =0 and me(axm+ﬁ—ym) =0.

m=1 m=1
Solving these equations, we find

Az A
a= (A(y;?) ;()x)gy) and = A(y) — aA(z).

In these expressions, we used the following notation:

= :LmZ:lyva Z T, A -Ty Z TmYm, and A( ) % Z x?n

m 1 m=1

Thus, the point y,, is approximated by

2m = Aly) + A%’;) f4 ({;‘;gy) (zm — Al2)).

Note that if the pairs (z,,ym) are realizations of i.i.d. random variables (X,,,Y,,) =p
(X,Y) with finite variances, then, as n — oo, A(z) — E(X), A(2?) — E(X?), A(y) — E(Y),
and A(zy) — E(XY). Consequently, if n is large, we see that

cov(X,Y)

See [4] for examples.

Figure 9.5: Linear Regression.
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Kalman Filter - 1

10.1 Summary
Here are the key ideas and results:

e We are looking for recursive estimators.

e One key idea is that if E(X) = E(Y) = E(Z) = 0 and if Y L Z, then LIX|Y,Z] =
LIX|Y] + L[X|Z].

e An application is Kalman Filter.

10.2 Updating a LLSE

In this section we derive how to update a LLSE. Let X,Y,Z be three random vectors. Can we
express L[X|Y,Z] in terms of L[X|Y] and Z? Here is the key result.

Theorem 10.1. Assume that the random vectors X, Y ,Z are zero-mean and such that'Y L Z.
Then
LIX|Y,Z] = nyyK{{lY + nyzKilz = L[X|Y] + L[X|Z]. (10.1)

Moreover,
cov(X — L[X|Y,Z]) = cov(X — L[X|Y]) - Kx zK, 'Kz x. (10.2)

Proof:
If you look at Figure 10.1, you should see (10.1).
To verify (10.2), we do the algebra:

cov(X — LIX|Y,Z]) = cov(X - KxvKy'Y — KxzK;'Z)
= cov(X — KxyK3'Y) +cov(Kx zK;'Z) — 2cov(X — Kx yKv'Y, Kx zK,'Z)

(X~ LIX|Y]) + Kx,zK7' Kz x — 2Kx zK7' Kz, x

(

= cov(X - LIX|Y]) - KxzK; 'Kz x,

= Cov

as was to be shown. 0

61
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S LIX]Y, Z]
{AY + BZ + ¢}

(CY +d}

Figure 10.1: Updating an LLSE with additional uncorrelated observations.

10.3 Kalman Filter

The setup is that X, describes the state of a system whose dynamics are linear. One observes
Yy, a noisy version of a linear observation of X,. The problem is to calculate recurswely
X, = L[X,|Y1,...,Y,]. By recursively, we mean that X1 should be a function of X,, and
Yo+1. The key idea is then to update the LLSE X,, with the new observation Yot1-
For ease of notation, we consider a linear system with matrices that do not depend on time.
That is,
X1 =AX, +V,and Y, =CX,, + W,,n>1,

where {X;,V,,W,,n > 1} are all orthogonal and zero-mean with cov(V,) = Ky and
cov(W,,) = Kw.

Theorem 10.2. Kalman Filter
X, = L[X,|Y1,....Y,] = L[X,|Y"]
1s obtained by the Kalman Filter:

X, =AX, 1+ R, (Y, —CAX, )

where
R, = 8,CT[CS,CT + Kw] ™!,
Sn = Azn—lAT+KV7
¥, = (I-R,0)S,.

Thus,

Spi1 = Ky + AS, AT — A8,,0T[CS,.CT + Kw] 1CS,AT.

Moreover, the matrices S, and 3y, have the following significance:

Sp = cov(X n—AX,_ 1),
¥, = cov(Xn—Xn).

Proof:
Let

Up = Y= LY, |Y" 1 = YV, —LICX, AW, |Y" ] = V,,—CL[X,,|Y" '] = Y,—CAX,, | = CX,+W,,—CL[X,[Y"]
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Then, by (10.1),

X, = L[X,|Y"] = L[X,|Y" Y + L[ X,|U,] = AX,,_1 + R,U, = AX,_1 + Rp(Y,, — CAX,,_1)

where
Ry, = cov(Xy, Up)cov(Uy,) L.
Now,
cov(Xpn,Up) = cov(X,, CX, + W, — CL[X,|Y""])
= cov(X, — L[X,|Y"1,CX, + W, — CL[X,|Y"'])) = S,C".
Also,
cov(Uy,) = cov(CX,, + W,, — CL[X,|Y" !]) = CS,CT + Kyy.
Thus,

R, = 8,CT[CS,CT + Kw] .

In addition,
S, = cov(Xp — L[Xn Y1) = cov(AX, 1+ Vi 1 — AX, 1) = A%, AT + Ky
Finally, by (10.2),
Yy = cov(Xp—L[Xy|Y"]) = cov(Xn—L[X,|Y" 1)) —cov(Xn, Up)cov(Uy) teov(Un, Xp) = Sp—RnCS,.

0

See [8] for a more detailed discussion.

10.4 Solved Problems

Problem 10.1. Give an example of linear system X1 = AX, + Vo, Y, = CX,, + W, where
Cou(X,, — L[ Xp|Y0,...,Yn1]) > 00, asn—oo.

Solution:
Let X;11 = X, + V,,, Y, = Wy, for i.i.d. N(0,1) noise (V) and (W,,). Also, let Xy = N(0,1).
Then,
Cov(X, — L[X,|Y" ™)) = Var(X,, — E(X,,)) =n.

Problem 10.2. In the setting of the previous problem, give an example where
Cov(Xy, — L[ Xp|Yy,...,Yn-1]) 20, asn—oo.

Solution:
Consider X, 11 = Xg, Yy, = X, + Wy, where noise is as in the previous problem.
Then,

1 n
Cov(X, — L[X,|Y" !]) < Cov (Xn - > }g)

=1
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Problem 10.3. Give an ezample of (A, B) not reachable, with state space R2.

Solution:
A=1I5,B = (1,0)T. Then,

rank[B AB]=rank((1) (1)>:1<2.

Problem 10.4. Give an ezample of (A, C) not observable, with state space R2.

Solution:
A=1,,C =(1,0). Then,

rank[CT  ATCT) = rank< é (1) ) =1<2.

Problem 10.5. Let X, V,W be r.v’s with V. L W. Show that Var(X +V — L[X + V|X + W])

is increasing in Var(X).
Solution:
Without loss of generality, we can assume that (X,V,W) is JG. (E.g., take (Xo, Vo, Wp) JG
with the same mean and covariance matrix as (X,V,W).) Let ¢ = N(0,0?), independent of
V,W, and define X' = X + ¢. Then, Var(X') > Var(X), and
Var(X'+V — LIX'+ V|X'+ W]) > Var(X' + V — LIX' + V|X' + W,¢])

= Var(X + £+ V — LIX + V|X + W,¢] — €)

= Var(X +V — L[X + V|X + W) .
Problem 10.6. Consider the (scalar) system,

Xpp1=ap Xy +Vy

where (ag, a1, ...) arei.i.d. N(u,o?), independent of (Xo, Vo, Vi, ...). Asusual, assume (Vo,V1,...)
are i.1.d. independent of Xg.
Find conditions on p,0? so that Cov(X,) — K as n — oo, for some constant K < o0o.

Solution:
Assume V,, = N(0, Kv) for all n, E(Xy) = 0.
Var(X,1) = Var(a, X, + V)

= Var(a,X,) + Ky

= E(a?)Var(X,) + Ky

= (0% + p?)Var(X,,) + Ky .
Thus, Var(X,,) converges if o + p? < 1, diverges for 02 + 2 > 1. If 02 + u? = 1 it converges
if and only if Ky = 0.
Problem 10.7. Consider the (scalar) system,

Xpy1=aX, +V,

Yo =cnXp + Wy,

under the usual independence assumptions. Further, assume cy,ci,... are i.i.d. with mean X

and variance u?, independent of the noise and Xg.
Derive recursive equations for X, = L[X,|Yo,...,Ys].
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Solution:
Xnt1 = L[Xn+1|Y", Yn+1] =aX, + L[Xn+1|U], where U = Y,11 — E(Yn+1|Y"). Now,
U = Yot — BV [¥Y7)
= cpp1aXy + eV + Wiy — aAXn >

50 Xpi1 = aXn + Ry (Y1 — arXy), where R, = E(X,11U)/E(U?). Now,

E(U?) = a*Var(cp11Xn — AXp) + N2a?Var(X, — Xp,) + E(c2., V)
= d®u’E(X2) + \a?S, + (V2 +u?) Ky + Ky
= X8, + v’ (Ky + a*E(X})) + Kw ,

where we defined ¥, = E((X,, — X,)?), Sp = a?%, + Ky-. In addition,

E(X,11U) = E((aXy, + Vo) (cnp10Xn + cnp1 Vi + Wig1 — a)\j(n))
= d®E(Xp((cnt1 Xy — AXy)) + a*AB(Xp (X — X)) + MKy

Finally,

Ynt1 = E((aX, + Vy, —aX, — E,U)?)
= a’%, + Ky + R2E(U?) — 2aR,E(U(X, — X,,)) — 2R, E(V,,U)
= (1= ARy)S,,

where we have used

A

E(U(Xp — Xn)) = E((cny10Xn — MaXy, + aX( X, — Xp))(Xn — X;))

= aAE((Xn — X,)?) = a)D, ,
and E(V,U) = AKy.
Problem 10.8. Consider the (scalar) system

Xnt1 =aXy +Vy

{an—i-Wn wp. 1—p
Y, =
“error” w.p. P

The interpretation of “error” is that an observation is lost or discarded independently, with

probability p > 0.
How would you calculate E[X,|Yy,...,Y,]?

Solution:
Assume X, (W,,), (Vi) are independent Gaussian. Introduce the measurement Y, = C,,[X,, 0]7+
[1 0] W,,, where
_Jle 0] ,onY, = “rror”
"0 1] onY, # “error” .

Notice that the (optimal) KF estimate for £[X,|Y "] does not depend on Cy41,Cpy2,. .., sO we
don’t loose anything by not knowing whether Y, = “error” or not, ahead of time. Thus, the
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estimate E[X,,|(Y')"] = E[X,,|Y™] is as good as the estimate provided by an “oracle” KF where
all C,,’s are known ahead of time. Thus, X,, = E[X,|Y"] is given by the KF corresponding to
the system where one knows C), ahead of time, i.e., assumes they are constants.

Observe that X,, is not necessarily equal to L[X,|Y"], as the latter must be a nonrandom
linear combination of Yy, ..., Y.

Problem 10.9. Suppose 19,7m1,... are i.i.d. N(u,o2) for some unknown parameter p -o is
known- which we wish to estimate by observing the sequence &y, &1, ... given as &pq1 = alp +Mp,
§o = 0.

How to estimate p using Kalman filtering?

Solution:
The idea is to consider the system with state X,, = (i, &), so

10 0
Xn+1:<1 (,I,)Xn_l_(l)vn,

Yo=[0 1)X,.

Thus, the state estimator given by the KF is

X 1 0\ ~ X
X’n+1 = < 1 a ) X, + R’n(£n+1 - [1 a]Xn) 5

where R, is calculated by the KF recursive equations for this system.
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Kalman Filter: Convergence

11.1  Summary
Here are the key ideas and results of this important topic.
e A system is observable if its state can be determined from its outputs (after some delay).
e A system is reachable if there are inputs to drive it to any state.
e We explore the evolution of the covariance in a linear system in Section 11.3.
e The error covariance of a Kalman Filter is bounded if the system is observable.
e The covariance increases if it starts from zero.

e If a system is reachable and observable, then everything converges and the stationary
filter is asymptotically optimal.

In the following sections, we explore what happens as n — oo. Specifically, we want to
understand if the error covariance 3, blows up or if it converges to a finite value. First, we
recall some key notions about linear systems.

11.2 Observability and Reachability

Lemma 11.1. Cayley-Hamilton
Let A € R™*™ and det(sI — A) = ag + a1 + - + oy _15™ L + ™. Then

aol + 1A+ -+ a,_ 1 A"+ A™ = 0.
In particular, span{I, A, A% ...} = span{I, A,..., A™ 1},
For a proof, see B.2 in Appendix B.

Definition 11.1. Observability and Reachability
The linear system
Xp1 =AX,, Y, =CX,,n>1 (11.1)

is observable if X can be determined exactly from {Yn,n > 1}. We then say (A,C) is
observable. 67
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The linear system
Xy =AX, +CU,,n >1 (11.2)

is reachable if, for every state X, there is a sequence of inputs {U,,n > 1} that drives the
system from X1 = 0 to state X. We say that (A, C) is reachable.

Fact 11.1. (a) (A,C) is observable if and only if [CT|ATCT |- |(A™=1)T'CT] is of full rank.
(b) (A, C) is reachable if and only if (AT, CT) is observable, i.e., if and only if [C|AC| - - - |A™~1C)]
s of full rank. In that case,

;d

m—
APCCT (AP is positive definite.
=0

3

Proof: To see (a) note that (11.1) implies that Y, = CX, = CA""'X;. Consequently, ob-
servability is equivalent to the null space of [C|C A|C'A?|---] being {0}. Accordingly, this is
equivalent to the matrix [CT|ATCT|(A?)TCT|---] being of full rank. The conclusion then
follows from Lemma 11.1.

For (b), observe that (11.2) implies that

n—1 n—1
X, = A" X, + Z A" FloU, = Z ArF1lou,.
k=1 k=1

Therefore, the system is reachable if and only if [C|AC|A%C|- - -] is of full rank. The conclusion
then follows again from Lemma 11.1. 0

11.3 System Asymptotics

Our discussion is borrowed from [8]. First, let us examine the evolution of the unobserved
system
Xpp1 =AX, +Vy,,n > 1,

where {X1,V,,n > 1} are all orthogonal and zero-mean with cov(V,) = Ky and K
cov(X,). Note that
Ky = AK,AT + K. (11.3)

The following theorem describes the evolution of K,. Recall that a matrix A € R™*™ is said
to be stable if its eigenvalues all have magnitude strictly less than 1.

Theorem 11.1. (a) If A is stable, then there is a positive semidefinite matriz K such that
K, — K asn — oc. Moreover, K is the unique solution of the equation

K =AKA" + Ky. (11.4)

(b) Let Kv = QQ". Assume that (A, Q) is reachable. Then A is stable if and only if the
equation

K =AKA" + QQ"

has a positive definite solution K.
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Proof: (a) By induction we see that the solution of (11.3) is

n—2
Ky, =A""K (A" )T+ " APKy (AP)T. (11.5)

p=0

If A is stable, then |(A);;| < CaP for some finite C' and some « € (0,1), as it can be
seen by considering the SVD of A. This implies that the first term in (11.5) vanishes and
the sum converges to some K = >3 2 APK~ (AP)T that is clearly positive semidefinite. The
convergence also implies (11.4). It remains to show that (11.4) has a unique solution. Let K’
be another solution. Then A = K’ — K satisfies A = AAAT. Recursive substitutions show
that A = A"A(A™)T. Letting n — oo shows that A = 0 and the solution of (11.4) is unique.

(b) If A is stable, we know from (a) that (11.4) has a unique positive semidefinite solution
K=372, APQQT (AP)T. Since (4, Q) is reachable, the null space of [QT|QT AT|QT (A%)T]- -]
is {0}. This implies K is positive definite.

To show the converse, assume that K is a positive definite solution of (11.4). Then we
know that K = A"K(A™)T + Z;;é APQQT(AP)T n > 1. Let X be an eigenvalue of A7 with
eigenvector v. Then ATv = \v and

n—1
v Kv = A" Ku + 0" | Y APQQT(AP)T | v
p=0
But ZZ;& APQQT (AP)T is positive definite from the reachability of (A, Q), which implies that
the last term in the above identity is positive. Consequently, it must be that |A| < 1. 0

The statements of the theorem should be intuitive. If the system is stable, then the state
tries to go to 0 but is constantly pushed by the noise. That noise cannot push the state very
far and one can expect the variance of the state to remain bounded. The convergence is a little
bit more subtle. If the system is reachable, then the noise pushes the state in all directions and
it is not surprising that the variance of the state is positive definite if the system is stable. If
the system is not stable, the variance would explode.

11.4 Filter Asymptotics

We now explore the evolution of Kalman Filter.

Theorem 11.2. Let Ky = QQT. Suppose that (A, Q) is reachable and (A, C) is observable.
If S =0, then
Yo —> X, R, — R, S, =S, asn — .

The limiting matrices are the only solutions of the equations
¥ = (I - RC)S,R=SCT(CSCT + Kw)™!, and S = AXA” + Kv.
Equivalently, S is the unique positive semidefinite solution of
S = A(S — SCT (CSCT + Kw) ™' CS)AT + Ky. (11.6)

Moreover, the time-invariant filter Z,, = AZy_1+R(Y,—CAZ,_1) satisfies cov(Zn—Zn) =X,
as n — oo.
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Comments: The reachability implies that the noise excites all the components of the state.
The observability condition guarantees that the observations track all the components of the
state and imply that the estimation error remains bounded. Note that the state could grow
unbounded, if A is unstable, but the estimator tracks it even in that case. The time-invariant
filter has the same asymptotic error as the time-varying one.

Proof: The proof has the following steps. For two positive semidefinite matrices S and S’, we
say that S < §"if S’ — S is positive semidefinite. Similarly, we say that the positive semidefinite
matrices {Sp,n > 1} are bounded if S,, < S for some positive semidefinite matrix S.

e (a) The matrices S,, are bounded.

b) If S; = 0, then S,, is nondecreasing in S;.

c) If S; =0, then S,, 1 S, where S is a positive semidefinite matrix.
d) The matrix A — ARC is stable.

e) For any Sy, S, — S.
)

f) Equation (23.8) has a unique positive semidefinite solution S.

(
(
(
(
(
(

(g) The time-invariant filter has the same asymptotic error covariance as the time-varying
filter.

We outline these steps.

(a) The idea is that, because of observability, X1, is a linear function of {Y,, V,, W,,p =
n,...,n+m — 1}. The covariance Sy, must be bounded by that of X, given {Y,,p =
n,...,n+m—1}, which is a linear combination of the covariances of 2m random variables and
is therefore uniformly bounded for all n.

(b) That is, if Sy is replaced by S} > Si, then S, is replaced by S}, > S,,. The proof of this
fact is pretty neat. One could try to do it by induction, based on the algebra. That turns out
to be tricky. Instead, consider the following argument. Since we worry only about covariances,
we may assume that all the random variables are jointly Gaussian. In that case, increasing S
to S} > 51 can be done by replacing X; by X} = X; + &, where & = N(0,5] — S1) and is
independent of {X1,V,,,W,,n > 0}. Now, let X! be the system state corresponding to X}
and Y}, be the corresponding observation. Note that X | = X, ;1 + A"¢;. Consequently,

LIX5 1 [Y", &) = LXK 1 [Y"] + L[Xn 1 [61] + LIA"G] Y] + LIA"G 6] = LXn 1 [Y?] + A"

and
Sp+1 = COV(X;H—l - L[X;'L+1|Yn’£1:|)

while
Sp1 = cov(X5, 1y — LIX], 4] (Y)"]).

Since, for each n > 1, one can express Y, as a linear function of (Y,,&1), it follows that
Sn+1 < Svlm+1'

(c) Note that S; = 0 < Sy3. From part (b), S, < S,+1. However, S, < B, for some
positive semidefinite B. Thus, Sy (4,7) = el Spe; < Sp+1(4,4) < B(4,4). This implies that
Sn(i,4) 1 S(i,1) for some nonnegative S(i,4). Similarly, a(n) := Sy, (i,7) +2S,(i,7) + Sn (4, 7) =
(e;+e;)l'Sy(ei+ej) < a(n+1) < (ei+e;)T B(e; +e;). This implies that a(n) 1+ a. We conclude
that Sy, (i, 7) must converge to some S(i,j). Hence Sy (i,5) — S(4,7)-
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(d) Simple algebraic manipulations show that
S =(A—ARC)S(A — ARC)T + ARKwRT AT + Kv.
Assume that (A — ARC)Tv = v with |\| > 1 and nonzero v. Then
v*Sv = v*(A—ARC)S(A—ARC)Tv+v* ARKw RT ATv+v* Kyv = |\?v*Sv+v* ARKw RT ATv+v* Kvyo.

Since |A| > 1, it is obtained that v*Sv = v* ARKw R ATv = v*Kvv = v*QQTv = 0, which
implies Qv = 0 and (A4, Q) is not reachable.

(e) We borrow this proof from [7]. The notation is the same as before. Consider the system
i1 = AT¢, + CT¢,, + Wy,. The problem is to find the (i (&) for k = 1,...,n to achieve

n—1
O (¢) = min B)Y _{& Kv&, + GEKw} + &0 Sién | & =€),
E=1
By considering all possible choices for ¢; and assuming that the cost is minimized over {2, ..., n+

1}, one sees that
®n11(6) = ming{¢" Kv& + (TEw( + E(@n(AT¢ + CT¢+ W)}

A direct calculation (see below) allows to verify that

n—1

0, (6) = €78, + ) trace (SpKv)
k=1

and the minimizing values of (, are given by
ok = —[CSCT + Kw] 'CSpAT €,y
Instead of using this optimal control, one uses
en_i = —[CSCT + Kw] 'CSAT¢, .
In that case, the cost is ¢7'G,¢ where
Gni1 =TG,I'" + ARKwRYA" + Ky, with G; = S; and T' = A — ARC.
Since T is stable from part (d), we see that G, converges to S (Theorem 11.1). Now,

n—1
O (€) = €7 Sné + ) trace (SpKy) < G,
k=0
for all ¢£&. This implies that S, < G,. Recall that if S; = 0, then the resulting covariance
matrices, S),, are such that S, 1 S. Moreover, we see that S, < S, < G, with S}, T S and
G, — S. It follows that S, — S.
In the calculations above, we used the fact that, if A; is symmetric and invertible, then

ming{£" Aog + ¢ A1C + 26" A} = €7 [Ag — AT AT A
and is achieved by
(= =4, A8,
as a direct calculation shows.
(f) Assume that S’ is another positive semidefinite solution of (23.8). If S; = S’, then
Sp = S'. However, we know from (e) that S, — S. Hence, S' = S.

(g) This follows immediately because the time-invariant filter is a special case of the time-
varying filter. 0
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Chapter 12

Wiener Filter

12.1 Summary

Here are the key ideas and results.
e Definition of LTI system
e Definition of wide sense stationary processes
e Definition of transfer function and power spectral density
e How an LTT system modifies the spectral density of a process

Derivation of the Wiener Filter

12.2 Overview

One is given two sequences of random vectors {X,,Y,,n € Z}. The random variables are
specified through their first and second moments. The problem is to calculate X, := L[X,[Y™]
where Y" := {Y,,m <n}.

Thus, whereas Kalman assumes a dynamic model of the sequences, Wiener starts with the
specification of the first and second moments. For the problem to be tractable, one assumes
that the first and second moments time-invariant. One can then expect a result of the form

X, = Z d(n—m)Y,.

m=—o0

This expression is called the Wiener filter. Thus, X, is the output at time n of a causal linear
time invariant system whose input is the sequence of observations {Y,,}. Figure 12.1 illustrates
the idea.

N

Y,—| Wiener Filter — X

n

Figure 12.1: The Wiener Filter.

In this lecture, we explain how to derive the Wiener filter.
We start with a brief review of linear time invariant systems. We then discuss what it
means for the first and second order moments7t30 be time-invariant.
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12.3 Linear Time Invariant Systems

Definition 12.1. LTI System

A system is a mapping that transforms an arbitrary input sequence {Xp,n € Z} into
an output sequence {Yn,n € Z}. The system is linear if to a linear combination of inputs
corresponds the same linear combination of outputs. It is time invariant if delaying the input
by m time units results in delaying the output by m time unit, for any m € Z.

Example 12.1. (a) A system with output Y, = ag X, + a1 Xp—1 + ag Xy o is LTI
(b) A system with output Y, = (X,, + X,,_1)? is time invariant but not linear.
(c) A system with output Yy, = X, cos(27 fon) is linear but not time invariant.
(d) A system such that Y, = (1 — a)Y,—1 + aX, for n >0 where Y_1 :=0 is LTL

Definition 12.2. Impulse Response

Consider an LTI system. Let {h;j(n),n € Z} to be its output when its input is {e;0n,n € 7}
where 0y, := 1{n = 0} for n € Z. The impulse response of the system is defined as {h(n),n € Z}
where h(n) is a matriz whose i-th column is hi(n).

Example 12.2. A system such that'Y,, = X,,_p, for n € Z delays its input by ny time units.
Its impulse response is H(n) = I1{n = ng} since e;1{n = no} is the output at time n when the
mnput is e;0y,.

Fact 12.1. Consider an LTI system with impulse response {h(n),n € Z} and input {X,,,n €
Z}. Its output is {Yy,,n € Z} where

Yo=Y h(n—m)Xp,n€L

m=—o0

Proof:

The input is the linear combination ) X,0,0 where 6, is the operator that delays a
function by m time units. Consequently, the output must be ) X,6,h whose value at time
mis Yy =), h(m —n)X,.

12.4 Wide Sense Stationary

Definition 12.3. Wide Sense Stationary
The sequences of complex valued random vectors {X,,Y,,n € Z} are wide sense stationary

(wss) if
E(X,) =ux,E(Y,) = py, E(Xp+mX,) = Rx(m), E(Yn4mY,) = Ry (m), E(Xytm, Y;) = Rxy(m),Vn,m € Z.

In particular, each sequence is also said to be wide sense stationary. (Some authors say that
(X,Y) are jointly wide sense stationary, but we use the simpler terminology.)

For simplicity of notation, we assume throughout that ux = puy = 0.

Example 12.3. Let {X,,n € Z} be a sequence of zero mean uncorrelated random variables
with unit variance. Then X is wss and Rx(n) = 1{n = 0}. This process is called a white
noise.
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Example 12.4. Let X,, = &e?™ont0 yhere fo € (—1/2,1/2), 6 = U[0,27], E(£) =0, var(¢) =
o2, and &,0 are independent. Then {X,} is wss and Rx(m) = o2e/?™0™  The process {X,}
is a sinusoid with frequency fo and a random phase (to make it wss).

We need to clarify the notions of bounded and causal systems.

Definition 12.4. Bounded; Causal

A linear system is bounded if its output is bounded whenever the input is bounded.

A system is causal if its output at time n depends only on its inputs at times m < n, for
alln € Z.

We have the following lemma.

Lemma 12.1. (a) A linear time invariant system is bounded if and only if its impulse response
{h(n)} is summable, i.e., such that ||h|l1 := ), ||h(n)]|[1 < oo where ||[v||1 := ), |vs| for any
vector v.

(b) A linear time invariant system is causal if and only if h(n) = 0 for n < 0.

Proof:

(a) If b is summable, then ||Y,||1 < [|h|]1 max,{||Xn||1}. Conversely, let (X,,); = sign(h;(—n)),
so that h(—n)X, = ||A(—n)||1. If the system is bounded, since {X,,} is bounded, we must have
[Yoll1 = [[A]]y < oo.

(b) This statement is obvious.

12.5 Frequency Domain

Definition 12.5. Transfer Function
The transfer function is the Fourier transform of the impulse response. That is

H(f)= Y h(me ™ fen

m=—o0

Note that
1/2

h(n) = H(f)e*™ df,
—-1/2

since
/2
/ eI gf = 1{n = 0}.
—1/2

We say that H(f) is rational if it is the ratio of two polynomials in e 277,

Note that e/?7/ = e727(/+5) for any integer k. Consequently, H(f) is periodic with period

Example 12.5. Consider the system with Y, = (1 — a)Yp_1 + aX,. Assume that o € (0,1).
Find the transfer function.
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If the input is §, then the output is such that Yo = o, Y1 = (l—a)Yp+aX; = (1—a)a, Ys =
(1 —a)Y; = (1 — a)?a. Continuing in this way, we see that Y, = (1 — a)"al{n > 0}. Hence,

h(n) = (1 — a)"al{n > 0},

so that -~
. 1 (6]
H(f) =) (1 —a)"ae™ 2" = —— = :
(f) nz:;)( a)tae 1-(1—a)e727f 1—(1—-a)z!

Example 12.6. The system with
boYp +01Y_1+---+ ban_q =ay Xy, +a1 Xp_1+---+ aan_p,n €EZ

has transfer function
ag+arz V- + apz?

H(f) = . 12.1
(f) bo+biz7t + - 4 bgzTd (12.1)

Example 12.7. In the examples below, A is a stable matriz.
(a) h(n) = A"L{n > 0} > H(f) = [ — Ae=2/]L;
(b) h(n) = A™™1{n <0} < H(f) = [[ — Ae?>™/]71,

Definition 12.6. Poles
The poles of a transfer function H(f) are the values of z := e*™f for which H(f) = co.

In Example 12.7(a), the poles of H(f) are the eigenvalues of A and are inside the unit circle.
Indeed, H(f) = [I— Az !]"! which is infinite when I — Az~ ! is singular, i.e., when |2 — A| = 0.
On the other hand, in Example 12.7(b), the poles are the reciprocals of the eigenvalues of A
and are outside the unit circle.

Note that Example 12.7 (a) is a causal transfer function whereas Example 12.7 (b) is not.
We suspect that the transfer function is causal iff its poles are inside the unit circle. We discuss
that result below. We have the following lemma.

Lemma 12.2. A bounded system with a rational transfer function is causal if and only if its
poles are strictly inside the unit circle.

Proof:

We consider the one-dimensional case. The multidimensional case is derived by considering
each component of h. By performing a partial fraction expansion of H(z~!), one finds that it
is a linear combination of terms of the form (1 — az~')~*. Now,

1 >, a"{n>0}27", if |a| < 1;
l—azt | X,a"l{n<0}z", if ja| > 1.
Taking the derivative with respect to z, we find

2t Y nam i {n >0}z if o] < 1
(1—az"1)2 | X, na" '1{n <0}z, if |a| > 1.

Taking multiple derivatives shows that the inverse transform of (1—az~1)~* is causal whenever

la| < 1 and anti-causal whenever |a| > 1.

Next we define the spectral density.
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Definition 12.7. Spectral Density
Let {X,,Yp,n € Z} be wss. Then

o¢] o

Sx(f) == Y_ Rx(m)e ™ and Sxy(f):= > Rx(m)e™ > feR. (12.2)

m=—0o0 m=—00

Sx is called the spectral density of X and Sxy the cross spectral density of X and Y. (Some
authors say power spectral density.)

We say that Sx (f) is rational if it is the ratio of two polynomials in e=7%7f,

Note that €327/ = ¢127U+K) for any integer k. Consequently, Sx and Sxy are periodic with
period 1.

We have a simple inversion lemma.

Lemma 12.3. Basic Properties

One has
1/2 4 1/2 '
Ry(n) = / Sx ()™ df and Ryy (n) = / Sxy ()™ df.  (12.3)
—1/2 —1/2
Moreover,
1/2
BUXP) = [ | ace(Sx(1)4 (12.4)
—1/2
Proof:
To verify (12.4), note that
1/2
E(|Xnl)?) = E(X}:X,) = trace(E(X, X)) = trace(Rx (0)) = trace(/ Sx (f)df).
~1/2

The spectral density is a convenient way to study the effect of linear time invariant systems
on random sequences, as the following result shows.

Theorem 12.1. Assume that
Vo= Y hn-mXy and Wy = Y ha(n—m)Yy,
m=—0o0 m=—0o0

where Y > ||hi(m)||? < oo for k =1,2. Then

m=—oo
Svw (f) = Hi(f)Sxv (f)H3(f)
where Hy(f) is the transfer function that corresponds to hy.

Proof:
The result says that time-domain convolutions become products in the frequency domain.
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We have

Svw(f) = D Rvw(mz ™ =3 B(VaunWi)z "
= D BQ m(ntm =KX, Y Vihin—p)z "
m k P
= 3 S i m— k) Ry (k- p)zE PR (n— )P
m k D

= Hi(f)Sxvy(f)H5(f),

as claimed.

The following examples illustrate the ideas.

Example 12.8. Let {X,,n € Z} be a white noise , i.e., a sequence of zero mean uncorrelated
random variables with unit variance. Then Sx(f) = 1. Indeed, Rx(n) = 1{n = 0}, so that

S)((f) = Zzzfoo RX(m)z*m =1.

Example 12.9. Let X, = £e2™/ont0 yhere fo € (—1/2,1/2), 6 = U[0,27], E(¢) =0, var(¢) =
o2, and £,0 are independent. Then Sx(f) = o%3(f — fo).

Indeed,
A 1/2 .
R (m) = oo — [ o257 - o)y,
~1/2
The process {X,} is a sinusoid with frequency fo and a random phase (to make it wss).
The expression for Sx indicates that all the power is concentrated on the frequency fo.

Example 12.10. Let {X,} be wss and one-dimensional. Then Y, = >, h(n — k) Xy is such
that Sy (f) = |H(f)|?Sx(f). Assume now that h is a filter that lets the frequencies in [fo, fo+¢]

go through without modifying their amplitude and blocks all other frequencies, with 0 < e < 1.
Then H(f) = 1{fo < f < fo + €}. Consequently,

1/2 fo+e
E(Ya) = / LS = [ i = st

Accordingly, we see that Sx(f)e is the power contained in {X,} in the frequencies [fo, fo + €.
Hence the terminology (power) spectral density. A similar justification can be made for the
meaning of cross spectral density.

Example 12.11. Assume that the input of system (12.1) is white. Find Sy (f) where Y is the
output of the filter. We know that

ap+arz"t 4+ apzTP 2

_ jonf
bo+b1271—|—...+qu7q where z = ™/,

Sy(f) = H(f)]” =

Note that Sy is rational.
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12.6 Wiener Filter

We start with a representation result.

Theorem 12.2. Whitening Filter

Consider a wss process X with rational spectral density Sx. One assumes that the process
satisfies some technical conditions known as the Paley- Wiener conditions.

In the scalar case, one can write

Sx(f) = [H(f)]?

where H(f) = N(f)/D(f) with N and D being polynomials in 2~ ! with zeros inside the unit
circle. (The zeros are the values of z for which the polynomials are zero.)
In the multidimensional case, one can write

Sx(f) = H(f)KH"(f)

where H(f) has its poles inside the unit circle, H=(f) has its poles on or inside the unit circle,
and K 1is positive definite.

This result shows that one can represent X as the output of a linear time invariant filter
whose input is white; the filter is causal and its inverse is causal. This filter is called the
whitening filter.

This result is easy if the process is the output of a filter with rational transfer function and
white input noise. The result is non trivial even in that case because the filter may not be
causal nor causally invertible. In the the scalar case, we know that Sx (f) = |®(f)|? where ®
is the transfer function of the filter. Since @ is rational, one can separate the zeros and poles
so that H has the indicated properties. Because E(|X,|?) < oo, Sy cannot have poles on the
unit circle.

The multidimensional case is similar.

Here is an example.

Example 12.12. Assume that

1

Y= e e r

In that case, we can write Sy (2~ ') = |H(z 1)|? with

1 1 1

H(z") = (2—2"1H(3—2z71 T 21 3l

where H 1is causal and causally invertible.

12.6.1 Projection

We explain how to calculate the LLSE of X, given all values of Y (not only the past values).
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Theorem 12.3. Let {X,Y} be wss. Then

Xp = L[Xp|Ym,m € Z] =Y g(n—m)Yn

m

where

G(f) = Sxv(f)S5 (/).

Proof:
We know that G should be such that X,, — Xn 1Y, for all m € Z. That is,

0=>5x_x5)y(f) =Sxv(f) = G(f)Sy(f),

which proves the result.

12.6.2 Whitening and Projection

Now we consider the situation illustrated in Figure 12.2.

Y —> H!— W — H — Y —> G — X

Figure 12.2: A non-causal filter.

This filter calculates L[X,,|Ym, m € Z] = L[ X|Wy,, m € Z] where W is a white noise. The
following result explains how to extract the optimal causal filter.

Theorem 12.4. Wiener Filter
Let

Then X
X, = L[X,|Y"] = Z E(n —m)Wy,.

m<n

Let also K (e772™)) be the transfer function of the filter with impulse response k(n)1{n > 0}.
Then the Wiener filter has transfer function

Ky (f)H™'(f) where K(f) = Sxv (f)Sy' (F)H(f).

The filter is illustrated in Figure 12.3.

A%

Y, — H = [HS,,S,"], I+ X

n

n

Figure 12.3: The construction of the Wiener filter.

Proof:
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Because H is causal and causally invertible, the set of linear combinations of W is exactly

the set of linear combinations of Y. Moreover, W is white. Consequently,

an— YWY = L an— YW W™ =" k(n —m)W,

m<n
Example 12.13. Assume that
T —
VTR ) B )
and
XTL = Yp4ng N € 7.
We calculate the Wiener filter to find L[Ypn,|Y™].
In Example 12.12, we found
1 1 1

H(z ') =

so that ) )
h(n) = ()" 1n > 0} — (3)"*1{n > 0},

2—z"1)@B—-271 T2-z1 3— U

To find Sxy we note that X is obtained from'Y by a linear time invariant filter with impulse

response ¢p(n) = 1{n =ng}, so that
o0
Z qb(m)e_ﬂ”fm = e~J2mIn0,
Accordingly,
Sxy(f) = ®(f)Sy(f) = e 7™ Sy (f).
Next, we calculate

K(f) = Sxy(f)Sy (f)H(f) = e7 > H(f),

so that
k(n) = h(n +ng),n € Z.

It follows that

= —j2mnf 27no 3~no
n=0

Finally, we get the Wiener filter:

gm0 3mo
Tl 1 3,

X, = (3.27™0 — 237 "0)Y, — (2770 — 3 "0)Y,_,.

2-2"@E -2 =273 - 27") — 37
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12.7 Solved Problems

Problem 12.1. Let (X,) be wide-sense stationary (WSS), and X,, = Ypin, for some fized
ng > 0.
Let
B |2 — 2|2
=23 22

Sy (f)

where z = €12/
Find the Wiener filter for X,, = L[ X,|Y"].

Solution:
Notice that Sy (f) = |H(f)|?, for

2— 71
@B

H(f) =
where H, H~! are causal, since all poles and zeros are inside the unit circle.
Also, can write H(f) as

2 1
T 44—zl 3—1

— % (i)nl{n > 0} — % <;>n1{n2 0} =: h(n).

The impulse response of the system giving Y from X is ho(n) = 1{n = —ng}. But,
Sxv(f) = Sy (f)Ho(f), so the Wiener filter is H '(f)[H(f)Ho(f)]-, where [-]+ denotes the
causal part. Let K(f) = H(f)Ho(f).

Now k(n) = h(n + ng), so

kiy(n) = h(n + ng)l{n > 0}

1 /1\™tno Y 1 /1)\"tno Y
—x (660
n>0

1/1\™ 1 ™ 1
) —— (2] —— = K(f).
2 <4> 1-1-1 3 <3> - )

The Wiener filter is H 1K,

Problem 12.2. Cosider two processes X,Y such that

1
Xn = an—l + Wn—l

1 1
Yn:§ n—1+§Xn+Vn7

where (V,W) are uncorrelated white noise sequences with known variances.

1. Assume (X,Y) is WSS.
Calculate Sx,Sxy, Sy.

2. Find the Wiener filter for estimating X .
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3. Augment state to bring the model into the form of a linear system such as the one in the
formulation of Kalman filter.

4. Calculate the Kalman filter for the system in (c).

5. Show that the stationary Kalman filter is the same as the Wiener filter found in (b).

Solution:
With no loss of generality, assume E(W,,) =0, E(W?2) = 1, E(V,) =0, E(V;?) = 0%..

1. X, is given by passing W,, through the filter with transfer function 3z~ 1/(3—2"1), where
z =¢e1?"f and f is the frequency. Hence,

2

3z ! 9
S =|— -5 =
w0 =|E | s = =
Similarly, Y,, is given by passing %Xn + V,, through a filter with transfer function 2/(2 —
271, so
2
Sxy(f) = SX,%XJFV(f)E ;

by using the formulas from Lecture 15. But, since V- L X, Sy 15 (f) = £5x(f). Thus,
’2

9

Sxy(f) = (2—2)3—2"1)3B-2)"

Moreover,

2

2
SX,%X—&-V(f)

2— 21
40‘2/ 9
2—271 22713 — 27!
_ JAot3 =z 29 +1
|2 — 2711213 — 2712~

2. We first derive the transfer function for the whitening filter H.

o (a=bz"Y)(a— bz)
Sy (f) = 12—z 1R|3— 212"

where a,b are determined by a? + b* = 400‘2/ /9+1,ab = 120‘2/ /9, and the requirement
that |b] < |a|. In particular,

4002 +9— \/(9 +1602)(9 + 6402
bh—
18 ’
4003 +9 + /(9 +160%)(9 + 640%)
a = .
18
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Since 0 < b < a, we see that by defining

a—bz !
2-2HB-21"

H,H~! are causal. This will be our whitening filter.

H(f) =3

Now, the non-causal filter is

_Sxy(f) _ 2— 21
CN =50 “Tab P

3 c dzt
(NH]) (a—b2)(3—271) <a—bz+3—z_1> ’
forc=a/(3a —b), d=1/(3a —b).
To take the causal part of G(f)H(f), we turn into the time domain.

SO

3c ra\t 1\
GHH(f) = = (g) 1{t <0} + 3d (3) 1t > 1},
so the causal part [GH]y is

t
3d(1> 1{t20}<—>i
3 1— 3z

1,1
3

where we used ¢ = ad.
Finally,
2-2zHB—-2z1YH 9d

-1
H1GH] = 3(a—0bz=1) 3—2z71
3d(2—z71) 6d 3dz !
T Ta—bzl T a—bzl a_br L’
so the Wiener filter is
. b 6d 3d

Xy = *Xn—l +—Y,— —Yo ’
a a a

where a, b, d are determined above.

. Let (X,,Y,) be the state. Then,

() G ) G+ ) (%)
Zn=(0 1) (i:) |

where Z,, is the observation.

. Let (X,,Y;) be the estimator for (X,,Y;). Then,

Xn *anl + Rn(Yn - *anl - *Ynfl)

6 2
Ry«

N 1 4 14 1
— R
Xn—l + RnYn - %Yn—la

3
2

where the first equality is because Y, = Y,. R, is determined for every n, by the KF
equations for this system.
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5. First, note that the system in (c) is observable and reachable, so KF converges. To find
the stationary KF, we solve the Ricatti equation

S = A(S — scT[cscT + Ky tCS)AT + Ky,

where for the system in part (d), we have

A= G;g 1(/)2) , C=0 1), Kv= <1}2 051121/4> » Bw =0

g <81 82) ’
53 84
and substitute for the right-hand-side of the Ricatti equation to get

S1 82 _i _8253 4 2 + 1 1/2
s3 sq) 36\ s J\2 1 1/2 o2 +1/4)

[ 4z +1 22 +1/2
5= <2:1:+1/2 x+02v+1/4> ’ (12:5)

1 5983
rT=——s1——
36\ sy

(22 +1/2)?
= (4w 1 - EETE )
36<$+ z+02 +1/4

Let

where

The last line comes from using (12.5) again. This gives an equation in z, with solution

V(9+1602)(9 + 6403) — 3203 — 9
72 '

€r =

Now R,, converges to R, given by

L 2\/(9 +1602)(9 + 6402) — 6402 + 18
9+ 1602)(9 + 640%) + 4007 +9

To see that the stationary KF,

B 2-R, R
Xp = TXn—l + RY, — §Yn—17

coincides with the Wiener filter in part (b), note that

20— 6b 242 —Gba _ —0407 +18+ 2\/(9 +1602)(9 + 6402)

y =R.

a a

4002 + 9 + \/(9 + 160%)(9 + 640%,)

Thus, (2 — R)/6 = b/a. In the same way -or by looking only at the definition of d, a, b-
we see that R = 6d/a.

Hence stationary KF=Wiener.
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Problem 12.3. Find a WSS process X which is not stationary. (We call X stationary -
or stationary in the strict sense-, when for any k > 1, any Borel sets Ai,..., A, we have
P(X1 eAy,.... Xy € Ak) :P(X1+m S Al,---kaJ,-m EAk) for all m € Z.)

Solution:
For odd n € Z consider i.i.d., Bernoulli X,, s.t. X;, =1 w.p. 1/2, and X,, = —1 otherwise. For
even n € 7Z consider i.i.d., Gaussian X, s.t. X, = N(0,1). Then, E(X,X,,) = 1{n —m = 0},
E(X,) =0, but P(X; >1)=0< P(Xy >1).
Problem 12.4. Let (Z, : n € Z) be a sequence of i.i.d. geometric r.v’s with parameter p, i.e.,
P(Z,=k)=(1—p)*'p,k>1, p a constant in (0,1).

For n > 0, define X;, =1 if inf{k > 0: E§>0 Z; > n} is an even number, and X, = 0
otherwise. Similarly for n < 0, define X, =0 if inf{k > 1: Zl;l_k Z; > —n} is an odd number,
and X,, = 1 otherwise.

1. Show that (X, : n € Z) is not stationary. (For the definition of stationarity, cf. Problem
2. Find r.v. W such that (X,4w : n € Z) is stationary.

Solution:

1. Notice that Xo =1,X_1 =0, so X cannot be stationary.

2. It will prove convenient to define the following first. Let (Y,! : n € Z) be Bernoulli(p),
ie., Yy are iid. with Y] =1 wp. pand Y, =0 w.p. 1 —p. Also, let Xj = 0 w.p. 1/2
and X) = 1 w.p. 1/2, independent of Y'. Now for n > 0, define X] = X[ if > | Y/ is
even, and X!, = 1 — X} otherwise. Similarly, define X!, = X} if 0__ Y/ is even and
X] =1— X otherwise.

Then it is easy to show that X' is stationary. E.g., note that P( =0)=P(X,=1)=
1/2, by symmetry. For n < 0, P(X], =0,X,_ , =1) = P(X}, = | a1 = DP(X] . =
1) = p/2 which does not depend on n, and so on...

Now, we will construct a r.v. W such that (X, 1w : n € Z) has the same distribution as
X', thereby showing that the former is stationary too.

Let Wy = Geometric(p) independent of all alse, and
W Wo w.p. 1/2
Wo+Zy w.p. 1/2,
independent of all else. Define Y,, = |X,, — X,,_;|, for all n € Z.

First we show that (Ym_w0 :n € 7) is stationary.
k+1

P(Y, = :ZPZZ <n<n+1<ZZ
ko:oo k+1 k+1
ZPZk+1>n—ZZ +1|ZZ <n<Y ZP ZZ <n<> 7Z)
k=0

k
=N P(Zz22)P> Zi<n< Y Z)
k=0

=1-—p.
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Also, from the above calculations, it is obvious that the Y,s are independent. Hence,
(Yo : n € Z,n # 0) are i.id. 0-1 Bernoulli with parameter p. Now, let kg = inf{k :
Wy < Zz 0 Z} and define Z() Z Z; — W(],Z1 Zko-‘rl’ ZQ Zk0+2, ...and Z_| =
Wy — Efi Lz i Dy = Lho—2y -+ - Then, all Z are i.i.d. geometric with parameter p. We
need to show it only for Zy, Z_;: for m > 0,

ko+1
P(Z_,>m)= W>Zz+m|ZZ<WW<OZZ

s Bl
=P W>ZZ +m|ZZ <W,W <" Zi,ky = k|P(ko = k)
k=0 1=0

=P(W >m).

The proof for Z; is easier -the distribution of W does not matter-, so we ommit it.

But then (Y,+w) has the same distribution as (Y,)) because the number of Y;, between 1’s

is (i.i.d.) geometric with the same parameter, p. Also, P(Xw, = 1) = P(Xwy+z, = 1—1)
for i =0,1, so Xyy = 0 or 1 w.p. 1/2 independently of the Y, ;w sequence. Hence
(Xw, (Ypew : n € Z)) has the same distribution as (X{, (Y, : n € Z)). Recall that
Yorw = | Xngw — Xpnqrw-1| for all n € Z, so (Xpyw : n € Z) is uniquely determined
by (Xw, (Yoew : n € Z)). Similarly, (X, : n € Z) is determined in the same way by
(X{, (Y] : n € Z)). Thus, the distribution of (X,4w : n € Z) is the same as that of
(X) :n €Z).
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Chapter 13

Markov Chains - Discrete Time

13.1 Summary

The book [3] is very clear, so my notes will be very succinct. You can also check [10] for
examples. Here are the key ideas of this lecture.

e Definition of Markov chain;

e Passage times

Strong Markov Property

irreducible; transient or recurrent.

Examples; Random Walk.

13.2 Definitions

A Markov chain models the random memoryless evolution of an object in a countable set.

Definition 13.1. Distribution, Transition Matrix

Let X be a finite or countable set. A distribution on X is a collection m = {m;,i € X} of
nonnegative numbers that sum to one.

A transition probability matrix, or transition matrix, or stochastic matrix on X is a collec-
tion P = {P(i,j),i,j € X} of nonnegative numbers such that ).y P(i,j) =1 for all i € X.
We think of P as a matriz, even when X is infinite.

Definition 13.2. Markov Chain

Let X be a finite or countable set, my a distribution of X, and P a transition matriz on X.
A sequence of random variables X = {X,,n > 0} taking values in X is a Markov chain with
initial distribution mg and probability transition matriz P if

P(Xo=1i) = m(i),Vi € X (13.1)

and
P Xpt1=741Xn=0,Xm,m<n—1]=P(i,7),Yi,5 € X and n > 0. (13.2)
89
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The possible values of X, are called states. In this definition, (13.1) states that 7 is the
distribution of Xy. The identities (13.2) express that the evolution of X,, starts afresh from
X, at time n, independently of the values prior to time n. This is the Markov property that
says that the past and the future are independent given the present state.

Definition 13.3. Irreducibility
A Markov chain with transition matriz P is said to be irreducible if it can go from any i to

any other 7 in X.

Note that
PXy1 =j|1Xo=i] = Y P[Xnp1=j,Xn = kX =1]
kex
= 3 PXui1 = 1K = b, Xo = i|P[X, = K| X = ]
keXx
= ) P[X, = k|Xo =i]P(k,j).
kex

This identity shows, by induction on n, that
P[X, =j|Xo=1i] = P"(i,j),Vi,j € X. (13.3)
This expression shows the following fact.

Fact 13.1. The Markov chain is irreducible if and only if

> P(i,j) > 0,Vi,j € X.
n>0

We first define some random times.

Definition 13.4. First Return Time and First Passage Time
Let X,, be a Markov chain on X. The first return time to state i is 7; defined as follows:

7; := min{n > 0| X,, = i}.
The first passage time of state i, T;, is defined as follows:
T; := min{n > 0|X,, =i}.
We extend these definitions to Ts and g for S C X.
Note that 7; = T; if Xy # 1. However, if Xqg =14, T; =0 < 7;.

Theorem 13.1. Strong Markov Property
Consider a MC (Xp,n > 0) with transition matriz P. Assume P[T; < co|Xo = k| =1, for
some i, k. Then
Pl X741 = j|Xo =1 =P(3,j),Yj € X.

That is, the evolution of X starts afresh from i at the random time T;. In particular, the times
between successive returns to ¢ are 4.i.d.
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Proof: Observe that
P[Xy 41 = j|Xo = k] = P[Xy;41 = 5, T; < 00| Xo = k]

o0
=Y P[Xy1 =j,T; = t|Xo = k]
=0

oo
S PIXip1 = jlXe =i, Xy £ Vs = 0,...,t — 1, Xo = k]P[T} = t|Xo = K]

If
o

P[Xe11 = j|X; = i P[T; = t| X = k]

M

if
[en)

= P(i,§) Y PIT; = | Xo = k] = P(i, j) P[T; < 00| Xo = k]
t=0
= P(ZaJ) .

Definition 13.5. We now define some key properties of a Markov chain.
e Transient: State i is transient if P[1; < oo|Xo =1i] < 1.

e Recurrent: State i is recurrent if P[r; < oo|Xg =] = 1.

e Positive Recurrent: State i is PR if E[1;]Xo = 1] < 00.
e Null Recurrent: State i is NR if it is recurrent and E[1;|X¢ = i] = oo.
o Infinitely Often: {X,, = i, i.0. } = {w | Xp(w) = i for infintely many n's} = {w |

> neo H{Xn(w) = 1} = oo}
We state the following results that we leave you as an exercise to prove:
Fact 13.2. State i is transient if
P[X,, =1, i.0. |Xo=1] =0.

Theorem 13.2. Solidarity
(a) If (Xy,) is irreducible M.C. and has some recurrent state, all states must be recurrent.
(b) Moreover, if it has some positive recurrent state, then all states must be positive recur-
rent.

Proof:
(a) Assume state j is recurrent, and let 7 be any other state. We use the notation in Problem
2, with T2 = 0. For any k > 0, define

k+1
T

Vi= > 1{X,=1i}.

_k
n—Tj +1

Now since the past and the present are conditionally independent on knowing the present
state, by the Strong Markov Property, if we condition on X4+, we see that Vy, Vi,...,Vi_1 are
J
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independent of Vi. But they are also, unconditionally independent since XTJ_k = j. Thus, (V)
are mutually independent. They are also identically distributed since P[V}, = v] = P[V} =
[ Xgs = 5] = P[Vo = v|Xo = jl.

Because of irreducibility, p := p(7, s1)p(s1,82) - p(sr,i) > 0 for some L > 0, and states
Sly...,8L, with s, # j for all m = 1,... L. But P[Vp > 0|Xg = j] > p, since V=0 > 0 can
happen by taking the path j,s1,...,s,1.

Also observe,

Vi =) 1V >0} =00,
k=0 k=0

where the last equality holds because 1{Vj > 0} are i.i.d. with P(V} > 0) = p > 0. [We cannot
have 3 1{V} > 0} < oo, since Y0, 1{V; > 0}/K — p > 0.]

Therefore, N; = oo. This shows that all states are recurrent.

(b) Now assume moreover that j, positive recurrent.

1 & 1 &
k=1 k=1
as K — oo, from the above. But LHS is also written as

K K
i Dk1 Vi
K 1K 7

and by positive recurrence of j, TJK/K — E[TJ~1|X0 = j|, as K — oo. Hence, 215:1 Vi /K must
converge to a positive number. So we must have also,

K
Ti

1 .
lim — > X, =i} >0,
n:ﬂﬂ&
by recurrence of 7. But,
TK K Tik+1
o1 . ) TE PINEDY =Tk+41
lim — > X, =i} = = T[? i (13.4)
n=T}!+1 {
Arguing in a similar way as in the recurrent case, we get
K TF!
1 S .
ll}I{nEZ Y HXp=i}>0.
k=ln=TF+1

By comparing the above with (17.1), we get that T /K must converge to a positive limit as
well. This limit must be E[T}| X, = i] by the strong law of large numbers, so state 4 is positive
recurrent.
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13.3 Example

We look at one example:

Fact 13.3. Assume P[X,41 =i+ 1|X, =i]=p and P Xp41 =i—1X, =i =q=1—p for
i € X =Z. Then all the states are transient if p # 1/2.

Proof:
Note that X, +1 = X, + V,, where {V{,V,,,n > 0} are independent and P(V,, = 1) =p =
1 — P(V,, = —1). Consequently, of Xg =0, X,, =Vy+V; +---+V,_1. Hence,

X Vo+Vi+-+V,o
Sn D EAT Tl L BV =p-q#0.
n n
This shows that X, — +oo if p > 1/2 and X,, — —o0 if p < 1/2. Now, if X,,(w) — oo, this

implies that X,, > 10 for all n > n(w) where n(w) < co. Consequently,

Z {X, =0} <n(w) < .

n>0

Since this happens with probability one, we see that
P> 1{X, =0} < n(w) < 00| Xp=0] =1,
n>0
which shows, by definition, that 0 is transient. By symmetry, all states are transient. The same
argument applies for p < 1/2.

13.4 Solved Problems

Problem 13.1. Show that an irreducible Markov chain (M.C.) (X,) with finite state space
cannot be transient.
Solution:
Assume MC is transient. Then Y > 1{X, =i} < oo for any state 7. But this is not possible,
since Y, N 1{X,, =i} > N — 00 as N — <.
Problem 13.2. Let X be a MC and define, for a fized i, p = P[X,, = i for some finite n >
0|Xo = i]. Show that

p<1= P[X,, io. |Xo=i]=0
and
Solution:

For any state i, define N; = >°°° / 1{X,, = i}, the number of visits to state i. Also, let 7} be
the time of the k — th visit to state ¢, where if N; < k we let Tz-k = 00. Then for any 7,

P[Nj 2 k+1|Xo = i] = P[N; 2 k + 1,T}|Xo = 4]

[N; > k+1|Xp, = j,lef < 00,Xg = z']P[T}C < 00| X = 1]
[Tf“ < oo|X1; = j]P[N; > k| Xo = 1]

(7} < ool Xo = JIPIN; > KXo =

P[T} < 00| Xg = 4])F~' P[T} < 00| Xo =]

P
P
P

—~
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For j =1 we have
PIN; = 00| Xy = i] = lim P[N; > k + 1| X = 1] = 11}511(13[2.1 < oo|Xp =1])F = 1il£np’“ =0orl,
depending on whether p < 0 or p = 1.

Now observe that {X,, =i i.0.} = {N; = oo}.

Problem 13.3. Show that if (X,,) is an irreducible M.C. and has one positive recurrent state,
all states must be positive recurrent.

Solution:
This follows from the result of the previous problem.

Problem 13.4. Show that if the M.C. (X)) is irreducible and positive reccurent, then

1
| HX,, _—
lﬁnnz { E[nXo=1"

where 7; = min{n > 0: X,, =i}, the time of first return to state i.

Solution:
We use the same notation as above. Notice that

PITI T =T > 4T T ] = P = T >t X ]
= Plr; > t| Xy = 1],
so the times taken for excursions out of state ¢ and back again are i.i.d. with finite mean, by
positive recurrence.

Now, Tj* < oo almost surely, since otherwise E[r;|Xy = i] = oo, a fact that contradicts
positve recurrence. Also, Ti”+1 > T+ 1, s0 T 1 0o. Now,

1+n 1

“;)HX’" ~U ST T Ex =
by the strong law of large numbers. Thus,
™
hm Z {X,, =i} —héni Z X, =i} = E[sziozz]
m=0

Problem 13.5. Consider the M.C. (X,,) with state-transition probabilities given by the dia-
gram.
Find E[T| Xy = 0], where T; = min{n > 0: X =i} is the first passage time to state i.

Solution:
For any state i, we define ((i) = E[T2|X0 = i]. By Kolmogorov’s equations:
B(2) =
B(3) = ;(1 +6(2)) + 51+ B(0))
B(1) =1+ 5(0)
B0) = S(1+83)) + 5(1+ ().

giving 3(0) =
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1/2

e —

1/2

Problem 13.6. For the M.C. of Problem 5, find P[X,, hits 2 before hitting 1 twice| Xy = 0].

Solution:
According to the notation of problem 2, P[X,, hits 2 before hitting 1 twice| Xy = 0] = P[T? <
T} Xo = 0]. Now,
P[T} < T} Xy =0] = P[Ty < THT! < T}, Xo = 0|P[T} < Ty|Xo = 0]
+ P[Ty < T?, T} > Ty|Xo=0].

But,
P[Ty <TP|IT! <Ty,Xo=0]=P[Iy <T{|Xp =1,X, #2,n=1,...., 7!, Xo = (]
= P[Ty < T7| Xy =1]
= P[Ty =T <T{ = T{|Xp1 = 1]
= P[T) < T}|Xo =0],
and

PIT} < T3 T} >T),Xg=0] = P[Ty <T}|Xg=0]=:a.
Thus, P[T) < TZ|Xo = 0] = a(l — a) + a. To compute a, we use Kolmogorov’s equations: let
a(0) = P[T} < T{|Xo = i], and notice that a = a(0) = «(3)/2,a(3) = 1/2 + «(0)/2, giving
a=1/3. Thus, P[T} < T?| X, = 0] =5/9.

Problem 13.7. Assume you observe a M.C. Xy, X1,.... How would you estimate P(i,j) for
a giwen pair (i,7)?

Solution:
Assume X, is a positive recurrent chain. We have

N
1 . . .
NE:1{Xn:7'7X’n+1:.7}_>P(7’7.7)7a‘SN_>OO'

n=0

The see why this is true, notice that ((X,, X;,1+1,n > 0) defines a positive reccurent chain.
If we empirically estimate the fraction of times the transition ¢ — 5 is taken, it will converge
to the unknown P(i, 7).
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Chapter 14

Markov Chains - Part 2

14.1 Summary

Here are the key ideas of this lecture.
e Function of Markov chain.

e Kolmogorov Equations

e Reflected Random Walk.

14.2 Function of Markov Chain

Fact 14.1. Generally, a function of a Markov chain is not a Markov chain.
We look at a few examples.
Example 14.1. Consider the Markov chain X with X,11 = (X, 4+ 1)mod(3) where Xy is

uniformly distributed in {0,1,2}. Let f(z) =0 for x = 0,1 and f(2) = 1. Then Y, = f(X,) is
not a Markov chain. Indeed,
1

P =011 =0,Yp=0]=0# P\ =0]Y; =0] = .

Intuitively, f(Xy) contains less information than X, and it may happen that {f(X;,),m <
n} has information about X, that f(X,) does not contain, as the example shows.

Example 14.2. As a trivial example where f(X,) is a Markov chain even though f(-) is not
one-to-one, take f to be constant.

14.3 Kolmogorov Equations

First passage times satisfy simple first step equations that we can use for their analysis.

Fact 14.2. Kolmogorov Equations
(a) One has, for any A,B C X andi € X,

> Pl j)ald), ifi¢ AUB;
a(i) = P[Ty <Tg|Xo=1i]={ 1, ifi€ A\ B;
-0, ifi € B.
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(b) One has, for any A C X andi € X,

B(i) := BTa| X = i] = { é,:%:ﬁ’j)ﬁ(j)’ ifid A

(c) Assume that X =7 or X = Z4 and that T; T 0o as i — oco. Then, if i ¢ A,
P[Ty <Ti|Xo=j]1 P[Ta < 00| Xo=7] as i — 00

and
Emin{T4,T;}| Xo = j] 1 E[T4|Xo = j] as i — oc.

Proof:
Everything is obvious, except for (¢) which relies on part (a) of the following result.

Theorem 14.1. Lebesgue Convergence Theorem

(a) Assume that 0 < X,, T X as n — oco. Then E(X,) 1T E(X) as n — oo.

(b) Assume that X;, - X asn — oo and |X,,| <Y with E(Y) < co. Then E(X,) — E(X)
as n — oo.

Remark. You might be tempted to think that X,, — X as n — oo implies E(X,) — E(X)
as n — oo. However, this is not true as the following example illustrates.

Example 14.3. Let Q = (0,1] and assume that w is picked uniformly in Q. For n > 1,
let X,(w) = nl{w < 1/n}. Then P(X,, =n) = 1/n =1- P(X, = 0), so that E(X,) =
nx (1/n) =1 forn > 1. Moreover, X;,, - X =0 as n — oco. However, E(X,) =1 does
not converge to E(X) =0 as n — oo. You see that this example violates both assumptions of
Lebesgue’s theorem.

14.4 Random Walk

Fact 14.3. Assume P[X, 1 =i+ 11X, =i]=pand P X1 =i—1X, =i =q=1—p for
i € X =7. Here, p€ (0,1).

(a) If p # 0.5, the Markov chain is transient.

(b) If p = 0.5, the Markov chain is null recurrent.

Proof:
(a) Assume p < 0.5. Fix a,b € {1,2,3,...}. Define a(i) = P[T, < T | Xo =i],—b <i < a.
Then, according to Kolmogorov’s equations,

> P(i,j)alj), ifi ¢ AU B;
a(i) =< 1, ifi =aq; (14.1)
0, if i = —b.

Solving these equations, assuming p < 0.5, we find

p—p"°

pa_ —b?

P[Ta < T—b|X0 = 'L] = P)

—b <i < a where p := 5. (14.2)
p
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Now we let b — co. We use part (c) of Fact 14.2 to conclude that
P[T, < 0o|Xg =1i] = p" % i < a.
Since this value is less than 1, we see that
Plr, < 00| Xo =a] =pP[T, < 0| Xo =a+ 1]+ ¢P[T, < o|Xo=a—-1] < 1,

so that a is transient.
(b) Assume p = 0.5. In that case, the solution of (14.1) is
i+b
[T < TolXo = 1] a+b

Consequently, as b — oo, we find
P[T, < ©o|Xo=1i]=1

and we conclude that every state is recurrent. To show positive recurrence, we solve the
Kolmogorov equations for (i) = E[min{Ty, T }|Xo = i]. We find

E[min{T,, T 4}|Xo =i] = (a —i)(i + b),-b< i < a.

Letting b — oo, we find
E[Ta|X0 = IL] = OO,i 7é a,

which proves null recurrence.
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Chapter 15

Markov Chains - Part 3

15.1 Summary

Here are the key ideas of this lecture.

e Stationary; Invariant Distribution

e C(lassification theorem.

15.2 Stationary; Invariant Distribution

Definition 15.1. We define

e Invariant Distribution w: A nonnegative solution of TP = and w1 = 1.

e Stationary: X = {X,,n > 0} is stationary if it has the same finite dimensional distribu-
tions as {Xp4m,n > 1} for all m, i.e., if

P(Xy € Ay,...,Xn € Ap) =P(Xp, € Aoy, Xonn € Ap),Yn,m € Z and Ay, ..., Ay, C X.

We start with a simple fact.

Fact 15.1. (a) Let m,(i) := P(X,, = i),i € X and define 7, as the row vector with components
7 (1). Let also P be the matriz with entries P(i,j) fori,7 € X. Then

Tpt1 = T Pyn > 0.
(b) X = {Xp,n > 0} is stationary if and only if mo is invariant.
Example 15.1. We look at a few examples of MC with many, zero, and one invariant distri-

bution. We also examine the empirical distribution and the behavior of m, as n — oo for these
examples.

The examples above suggest the classiﬁcaiiié)il theorem.
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15.3 Classification Theorem

Theorem 15.1. (a) If a Markov chain is irreducible, then all the states have the same recur-
rence properties (T, NR, or PR). The MC is then said to be T, NR, or PR, correspondingly.
(b) If a MC is irreducible, then it is T if and only if P[X,, =1, i.0. |Xo = j] = 0,Vi, .

(c) If a MC is irreducible, then it is R if and only if P[X,, =1, i.0. |Xo = j] = 1,Vi,j.

(d) If an irreducible MC is T or NR, then

N
1 . .
n=1

Moreover, there is no invariant distribution. A finite irreducible MC cannot be T or NR.
(e) If an irreducible MC is PR, then

N

1 . . )

N Ell{anz}—Mr(z) >0,Vie X.
n—=

Moreover, w is the unique invariant distribution. A finite irreducible MC' is necessarily PR.
(f) If the MC is irreducible, PR, and aperiodic, then

P(X, =1i) = n(i),Vi € X.

Proof:

The basic steps for (a)-(c) are sketched in HW?7.

(d)-(e). By considering the successive visits to ¢ we find cycles with iid durations 7,,. Thus,
with op, = >0 | Ty and S, = > 7" 1{ X}, =i}, we have

Sn (Sp/n) 1

on  (on/n)  E[|Xo=1]

Thus,

1 Xn:l{X - 1
- k=1 T . — A
n = E[1| Xy = 1]

Moreover, this limit does not depend on X since X reaches 4 in finite time.
Now, if 7 is invariant and if we choose g = 7, then we find

(i) = E(% S 1{Xg = i}) E[T|x1'0:z]

m=0

where the limit is justified by the Lebesgue convergence theorem (b).

(f) Imagine X and X' as two independent Markov chains with ptm P. We claim that if P
is irreducible, PR, and aperiodic, then Y,, = (X,,, X)) is irreducible. To see this, take two pairs
of states (7,7') and (7, j'). There is some finite n such that P"(i,i’) > 0 and P"(4,j') > 0. This
follows from the fact that P is aperiodic (see Lemma (d) below). Moreover, this MC admits an
invariant distribution (i) (i'), so that it is positive recurrent. Modify slightly the construction
so that X starts with the invariant distribution 7 and X’ starts from any given distribution 7'
Moreover, assume that X and X' stick together after they first meet and designate their first
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meeting time by 7, which does not change the fact that both X and X' are Markov chain with
ptm P. We know that 7 is finite, by recurrence. Then

(@) = P(X} = )| = |P(Xn = i) — P(X} = §)| < P(r >n) = 0. (15.1)

The limit holds because 7 is finite, so that 1{7 > n} — 0 as n — oo; the expectation goes to
zero by the Lebesgue convergence theorem (b). To see the inequality, note that

[H{ Xy =i} — {X;, =i} < {7 = n}.

Indeed, the left-hand side is zero if 7 < n since then X, = Y,. Also, left-hand side is always
less then or equal to 1. Hence,

WX, =i} — {X] =i} < 1{r >n},
which implies, by taking expectation, that
P(X, =1) — P(X], =1i) < P(r > n).

Similarly, we get P(X! = i) — P(X,, = i)
inequality, proves (15.1).

IN

P(t > n), which, together with the previous

It remains to show the irreducibility of ¥ we used in (f). That result follows from the
following lemma.

Lemma 15.1. (a) Assume p and q are coprime. Then 1 = mp + nq for some m,n € Z.

(b) Assume {p1,p2,...,px} are coprime, then there are some integers m; such that 1 =
mip1 + ...+ mMgpg.

(c) Under the assumption of (b), there must be two consecutive integers N and N + 1 that
are positive integer linear combinations of the p;.

(d) Again under the same assumption, all integers larger than some ng are positive integer
linear combinations of the p;.

Proof:

(a) For two numbers a # b, define f(a,b) = (a — b,b) if @ > b and (a,b —a) if a < b. We
stop if @ = b. Starting with (a,b) = (p,q) and applying f repeatedly, one must end up with
a =1or b= 1. To see that, assume that we end up with a = b > 1. At the previous step,
we had (2a,a) or (a,2a). At the step before, we had (2a,3a), and so on. By induction, we see
that p and ¢ must be multiples of a, a contradiction. Thus, we end up with a =1 or b = 1.
But, at each step, a and b are integer combinations of p and gq.

(b) We extend this idea to k coprime numbers. Starting with py,...,pk, at each step, we
replace the largest number with the difference between it and the smallest number. We stop
when the numbers are equal or when we reach a 1. At each step, we get integer multiples of
the original numbers. As in (a), we claim that we must end up with some number equal to 1.
Otherwise, all the original numbers must be multiples of the same a > 1, a contradiction.

(c) We know 1 = > mjp; = > ;(m;)"p; — >;(my) pj. Thus, we can choose N =
22j(mj) pj and N +1 =37,(m;)"p;.

(d) In the set of integer linear combinations of the p;, we have N and N + 1. Therefore,
for m > N — 1, we also have mN,(m — 1)N + (N +1) =mN +1,(m —2)N +2(N +1) =



104 CHAPTER 15. MARKOV CHAINS - PART 3

mN+2,...,(m—N+1)N+ (N —-1)N =mN + N and these sets cover all the integers larger
than N2.

15.4 Solved Problems

Problem 15.1. Show that any MC (X,,n > 0) with transition matriz P, can be written as
Xpi1=f(Xn, V) ,n>0,

for some function f(-,-), where (Vp,n > 0) are i.i.d. r.v’s, independent of Xj.

Solution:
The idea is that V,, is a collection of die rolls, one for each state. For state i, the roll yields j
with probability P(i,7). Then f(i,V},) is the outcome of the roll that corresponds to state i.
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Markov Chains - Part 4

16.1 Summary
Here are the key ideas of this lecture.

e Reflected Random Walk

Hidden Markov Chain: Estimation and MAP

Time-Reversibility

Time Reversal

e Guessing (m, P') - Kelly’s Trick

16.2 Reflected Random Walk

We have the following definition.

Definition 16.1. The reflected random walk is the MC X on X = {0,1,2,...} with the
following transition matriz where p € (0,1):

o [ pifj=i+1
P(Z’j)_{ q=1—p, ifj=(i—1)"

Fact 16.1. The reflected random walk is transient if p > 1/2, null recurrent if p = 1/2, and
positive recurrent if p < 1/2.

Proof:

(a) p > 1/2. Note that X,; > X, + V;, where {Xo,V,,n > 0} are independent and
PV, =1)=p=1—-P(V, = —1). Consequently, X, > Xo+ Vo + --- + V,. Dividing by n,
letting n — oo, and using the SLLN, we find that X,, — oo. Thus, the reflected random walk
is larger than the non-reflected walk and the latter goes to infinity.

(b) p =1/2. We note that P[Ty < oo| Xy = i] and E[Ty|Xo = ] for i > 0 are the same as for
the non-reflected random walk that we studied in Fact 3 of Lecture 17. Since the non-reflected
random walk is null recurrent, we see that so 1185X .
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(c) p < 1/2. The equations 7P = 7 are

m(0) = ¢m(0) +gn(1);
w(k) = pr(k—=1)+qn(k+1),k>1.

The solution is seen to be

7(k) = (1 = p)p*,k > 0 where p := P
q

Since X is irreducible and has an invariant distribution, it must be positive recurrent.

16.3 Hidden Markov Chain

This class of models is useful in speech recognition and in digital communication.

16.3.1 Definition

Definition 16.2. A hidden Markov chain is a pair or processes (X,Y) such that X is a MC
on X with transition probabilities P and

In this definition, Q) is a nonnegative matriz whose rows add up to one.

16.3.2 Estimation
Assume we observe Y. What does that tell us about X? Here is one formulation.
Fact 16.2. Let Y™ = (Yp,...,Y,) forn >0 and
7in(i) := P[X, =14|Y"],1 € X,n > 0.
Then

fr 1(2) — Zi’ 7ATH(Z.I)P(Z.Ivi)Q(iaY;Hrl) )
" S > dtn (i) P (i, i) Q(i", Y1)

Proof:
The derivation is a straightforward application of Bayes’ rule. Note that

P[Xppq =i|y"H] = Yoi PlXng1 =14, Y1, Xy = '|Y™] ‘
" Zi” Zi’ PlXpy1 = 1", Ypi1, Xy = 7'|Y7]

Now,

P[Xn+1 = /éyYn—&-laXn == ZI|Yn] == P[Yn+1|Xn+1 == Z]P[Xn+1 == i,Yn+1|Xn == ZI]P[Xn == ZI|Yn]
= P(ila 1) Q4 Yn+1)ﬁn(il)'

Putting these equalities together proves the fact.
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You will note that these equations that update the conditional distribution of X,, given Y™
are recursive but are nonlinear. We can view them as a “nonlinear filter.” In the case of the
Kalman filter, if the random variables are all Gaussian, then the distribution of X, given Y™
is N (Xn, ) where X, is computed recursively from the observations. Here, the situation is
similar, but the filter is nonlinear. Also, its dimension is the number of states of the Markov
chain (minus one, since the probabilities add up to one).

16.3.3 MAP

One interesting question is the MAP of X" := {Xj,...,X,,} of the stationary MC given
Y™ .={Yy,...,Yn}. We have
Fact 16.3. The MAP of the hidden MC X given the observation Y is given as follows:

MAPIX"|Y"™ = (jo,.--,jn)] = argmaz;  _; 7(io)Q(i0, Yo)P(i0,i1)Q (i1, Y1) -+ P(in—1,1n)Q(in, Yn)-
(16.1)

Proof:
We have

P(Xo =0, X1 = i1, ., Xn = in. Yo = jo,- .-
P[Xo = 0, X1 = i1, s Xn = inlV™ = (or . )] = L0 = 000 X =01 X =, Yo = Jo,

P(Y():]Oaayn:jn)
Also,

P(Xo =190, X1 =1%1,...,Xn =%n, Y0 = J0,---,Yn :Jn)
= P(XO =190, X1 =11,...,Xp = in)P[Yo = 70,---5Yn :jn|X0 =190, X1 =11,...,Xn :in]
= m(40)Q(i0, jo) P (i0,41)Q (%1, 51) - - - Plin—1, in)Q(in, jin)-

This fact leads to a simple shortest path algorithm called Viterbi’s Algorithm for finding the
MAP. One constructs a graph with one copy of X at each time 0,1,...,n and one additional
state 0 at time —1. There is a link from 6 to every state ¢ at time 0 and a link from every
state at time m — 1 to every state at time m, for m = 1,...,n. The link lengths are defined as
follows. From 6 to i at time 0, the length is dg(7) and from i at time m — 1 to i’ at time m it
is d,,,(i,4") where

do (i) = In(r(i0)Q(io, jo)) and dm (i, ') = n(P(,)Q(, jm))sm = 1,...,n.

To find the longest path, one defines D(i,m) as the length of the longest path from 6 to 7 at
time m in the graph. We see that

D(i,0) = dy(i) and D(i,m) = max{D(iy—1,m — 1) + dp,(igp—1,7)},m=1,...,n.
tm—1
Solving these equations, we find the longest path to stage n. It is such that 4,,_; achieves the
maximum in the above identities and D(%,,, m) = max; D(i,m). That longest path maximizes
the logarithm of the expression in (16.1) and is the MAP.
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Chapter 17

Poisson Process

17.1 Summary

Here are the key ideas.
e Exponential distribution.
e Poisson process.
e Poisson measure.

e Application to a queuing model.

17.2 Exponential Distribution

Recall the following definition.

Definition 17.1. The random variable T is exponentially distributed with rate A > 0 if P(7
t) = e M with t > 0. We write 7 =p Exp()\). Equivalently, 7 = oo if A = 0 and f(t)
Ae™M1{t >0} if A > 0.

>

Fact 17.1. Assume 7 =p Exp(\) for some A > 0. Then
(a) Characteristic Function and Moments:

A
E() = E,Vs with Re(s) < A

and
E(m) =nI\"", forn > 0.

(b) Scaling Property:
1
T=p X{ where £ =p Ezp(1).

(c) Generation from Uniform:
1
T=p % In(U) where U =p UJ0, 1].
(d) Memoryless Property:

Plt > t+s|t >t]=P(r > s),Vs, t > 0.
109
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Proof: (a) We find

oo A
E(T) = / eSthe Mdt =
0 A

s
- S

Vs with Re(s) < A.

This identity implies that

d" n!\ _
E(r") = @E(GSTHS:O = mh:o =n!A\"" for n > 0.
(b) Indeed,
1
P (Af > t) = P(¢ > M) =e MM = M v > 0.
(c¢) One has

1
P (—/\ In(U) > t) = P(In(U) < —M) = P(U < e M) = e Vvt > 0.
(d) We find, for s,t > 0,

Plr>t+sjr>t =2

The following results are useful.

Fact 17.2. Assume 71 and 7o are independent with 7, =p Exp(\;) for i =1 and 2.
(a) min{7, 72} =p Ezp(A1 + o).
(b) Also,

A
L vt >0.

P[Tl < 7'2|min{7'1,7'2} = t] = P[Tl < 7'2|min{7'1a7-2} = t] = A+ o =

(¢) Moreover,

1 AA
E(max{r,7}) = I <1 + 7; + Ai) :

Proof: (a) We have P(min{r,72} > t) = P(rp > t,79 > t) = P(ri > t)P(r2 > t) =
e*)qtef)\zt — 67(A1+)\2)t‘

(b) First we note that P(71 € (t,t +¢), 72 > t) & edje Mt x et = edje=(MFTA2)t Then

P(rie(t,t+e),n>1t) edje~ (A2t St
P(min{r, 7} € (t,t+¢€)) (A + Ag)ee—PiFA)t — X 4+ )y

Plm < 7ol min{71, 1o} € (¢, t+€)] =~

which implies the result.
(c¢) E(max{7,72}) = E(min{7,2}) + E(max{7;, 72} — min{7y, 72}). On the other hand,
E(max{7, 72} — min{m, 7o }| min{7y, 72})
= E(
= E(

Ty — 71,7 < To| min{7, 72}) + E(11 — 79,79 < 7| min{7y, 19 })

T — 71|11 < To, min{7, 79 }) P71y < To|min{m, o} + E(11 — 12|me < 1, min{1y, 7 })P[re < 71| min{ry, 5 }]
A 1 A9 1

M+ A A+ A

The result follows from the fact that E[E[X|Y]] = E[X]. 0
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17.3 Poisson Process
Definition 17.2. Let {7,,n € N} be i.i.d. Exp(\). Define, fort >0,
Ny=max{n>1|T,:=11+--+1, <t} ift>7 and N, =0 if t < 71.

The process { Ny, t > 0} is called a Poisson process with rate A. The random times {T,,,n € N}
are the jump times of the process. Thus, Ny is the number of jumps in [0,t]. We also say that
Ny is a counting process since it counts jumps.

Theorem 17.1. Let {N;,t > 0} be a Poisson process with rate .
(a) For any s > 0, {Ny+s — Ng,t > 0} is a Poisson process with rate X and is independent

Of {Nt, t S S}.
(b) For any n > 2 and 0 < t; < to < --- < tp, the random wvariables Ny , Ny, —
Niyy... Ny, — Ny, are mutually independent and Poisson distributed with respective means

Atq, )\(tg — tl), ceey A(tn — tnfl).

(c) Given that Ny = n, the jump times {T\,...,T,} are the ordered values of n i.i.d. U|0, t]
random variables.

(d) Color each jump time T,, independently red with probability o and blue with probability
1 — a where a € (0,1). Fort > 0, let A; be the number of red jumps and By the number of
blue jumps in [0,t]. Then {As,t > 0} and {B¢,t > 0} are independent Poisson processes with
respective rates aX and (1 — a)A.

Proof: (a) Suppose for concreteness that by time s there have been n arrivals occurring at times
T1,...,T,. We know the waiting time for the (n + 1)-th arrival must have 7,41 > s — T}, but
by the lack of memory property of the exponential distribution, P[r,+1 > s — T, + t|7p41 >
s —T,] = P(ty41 > t) = e”*. This shows that the distribution of the first arrival after s is
Exp(A) and independent of T, . .., T,,. Therefore, it is clear that 7,41, T+2, . . . are independent
of Ty, ..., T, and 7, and the interarrival times after s are independent Exp(A).

(b) The independence follows from (a). To get the distribution, it suffices to focus on Ny.
We find g(n,t +€) := P(Nype = n) = P(Ny = n)(1 — Xe) + P(Ny = n — 1)(Xe) + o(€). Thus,
g(n,t+¢€) =g(n,t)(1 — Xe) + g(n — 1,t)Ae + o(€). Hence,

d
%g(nat) = _)‘g(nat) + Ag('n' - 17t)'
For n = 0, this gives g(0,#) = e *. Assume as an induction hypothesis that the result hods
for n — 1. For n we get
Y "
e
(n—1)!

d
%g(na t) - _Ag(na t) +A

One can check that g(n,t) = (At)"e~*/n! solves this equation.
As an alternate proof, note that

P(T1 S (tl,tl —|—6),... , T € (tn,tn —|—6),Tn+1 > t)

P(m € (t1,t1 +€),m2 € (ta — b1 ts —t1 + €)ooy Tn € (bn — tnots b — byt + €), Tagt > £ — tn)
~ dee Mee M) L \gem Mo T AEE) — ()M,

%

Integrating this constant value over all the possible values of ¢t; < --- < t, in [0,]" and
observing that these values occupy a fraction 1/n! of the cube [0,¢]", we get the result.
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(c) We use the result of the calculation above and find P[T} € (t1,t1 +€),..., Ty € (tn, tn +

n At n .
€)|Ny =n] = (Ii\g\&:n) = "t!,i , which proves the statement of the theorem.

(d) For small €, the probability of a new jump occurring in the time interval (¢,t+ €) given
TNt 18

t+efTNt
/ Ae Mds = e METN) _ o= AlHe=TN,) o N\
t-Tw,

from the exponential distribution. Thus, the probability of a red (blue, resp.) jump occurring in
the time interval (¢,t+¢€) is approximately aXe ((1—a)Xe, resp.). It is clear that {As, ¢ > 0} and
{B¢,t > 0} are Poisson processes with respective rates aX and (1 —a)X. Let 0 <t <--- <ty
and 0 < sy < -+ < Sy, with no common values. The probability that A has the jumps ¢; in
[0,%] and B the jumps s; in [0,t], within small e, is

an(l . a)m(Ae)n—‘rme—)\t — (Oé)\e)ne—a)\t((l _ a))\e)me—(l—a))\t’

which proves the independence. 0

17.4 Poisson Measure

We generalize the previous definition to non-homogeneous and multi-dimensional situations.
We limit the discussion to a concrete situation. Let A be a o-finite measure on (R%, B(R?)).
For instance,

M) = [ plods,

where ¢ is nonnegative and bounded. Being o-finite means that we can cover R? with a
countable union of pairwise disjoint sets C,, € B(R?) such A\(C,,) < oo for each n. Let n(n) be
a Poisson random variable with mean A(Cy). Let the random variables X1, ..., X, be i.i.d.
and distributed in C), so that P(Xy € A) = A(A)/A(C,) for every A C C,,. Finally, let

n(n)
N(A) =) 1{X; € A}, AC C,.
k=1

The counting process N(-) is called a Poisson measure on C), with intensity A\. By doing this
construction independently in each C,,, we define a Poisson measure in R? with intensity A(-).

Theorem 17.2. Let N(-) be a Poisson measure on R¢. For anyn > 2 and any pairwise disjoint
sets A1,..., Ay in B(RY), the random variables N(A1),...,N(A,) are mutually independent
and N(Ay,) is Poisson with mean A(Ap,).

Proof: Let Ay, C C;. Note that

P(N(Am) = k1,N(C;) = k1 + k2) = P(N(Ci) = k1 + k2) P[N (Am) = k1|[N(Ci) = k1 + k2]

(AMC))ErtR2e=MED () 4 ko [ MAm) \ ™ AAnm)
doanr () (Gey) (0-3@

.

_ ((A(Am))’ﬂle“w) ((A(ci) —A(Am))%xci)H(AM)

kq! ko!
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Summing the above probability over all non-negative integers ko, it is clear that N(A,,) is
Poisson with mean A(4,,). To show the independence, it suffices to look at n = 2. Let A; and
Ay partition some Cj. Then A\(C;) = M(A1) + A(A2) and

P(N(A1) = k1, N(Az) = kz) = P(N(A1) = ki, N(Ci) = k1 + k2)
— P(N(C:) = k1 + ko) P[N(A1) = k1 [N(Cy) = 1+k2]

— (A(Clk)]jfj]:; b\(ef )<k1—|—k2> ( ))> 1(

()\(Al))kle*)\(/h) ()\(Ag)) “A(A2)
ki ! k!

e

17.5 Application

We consider a service system where customers arrive according to a Poisson process with rate
A and arrival times {7T},,n € Z}. Thus, {T,, — T,—1,n € Z} are i.i.d. Exp(A). Each customer
requires a service time S, that is i.i.d. with some distribution G(-). For n € Z, customer n
leaves at time T, =T, + Sy.

Fact 17.3. (a) The departure process with jumps {T,,n € Z} is Poisson with rate \.
(b) The number of customers in the queue at time t is independent of the departure times
up to time t and is Poisson with mean \E(S1).

Proof: The first observation is that {(7},, Sn),n € Z} is a Poisson measure on R2. To see this,
let Cp, = [tn,tn +1) X R, where {t,,,n € Z} is an increasing sequence divergent to infinite. The
number of points in C), is Poisson with mean A(¢, + 1 —t,) = A from the fact that the arrival
process is Poisson with rate A. Given the number of points in {C),, n € Z}, the number of points
in C), are distributed independently according to the intensity (¢, t+dt) X (u, u+du) — AdtdG(u)
(in the sense of probability). This corresponds precisely to the definition of a Poisson measure.

Now we look at Figure 17.1. For a fixed time ¢, the points in the triangle A correspond to
the customers in the queue at time ¢. The points in the set By (B2 and Bs, resp.) correspond
to the customers who will leave during (¢1,%) ((¢2,%1) and (¢3,%2), resp.). Since the measure is
Poisson, the number of points in these disjoint sets are all independent and Poisson distributed.
Hence the departure process is Poisson. To find the corresponding rate we compute the mean
of By with to =t3+ 1,

1
/ G (u) = / Mts — 13)dG(u) = A,
B3 0

However, this particular B3 indicates the departure process is incremented by a unit time, the
rate is .
It remains to compute the mean of A, which is

/ AdtdG (u / /t Ag(u)dtdu = A/ g(u)du = NE(Sy).
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—— o —

Figure 17.1: The arrivals with the service times.

17.6 Solved Problems

Problem 17.1. Let N be a Poisson r.v. with mean X\, and M a binomial r.v. B(m,p), with
mp=A,m >0 ie.,

)p"(l—p)m”, foralln=20,...,m.

Show that P(N <n) < P(M <n), for any n > 0.
(Hint: write N as N = N(1) = > (N(i/m) — N((i — 1)/m)), where N(t) is a Poisson
process with rate X. Define a r.v. M for which N > M, and M =p B(m,p).)

Solution:
Let N(t) be a Poisson process with rate A, and let N = N(1). Observe that for any m > 0,

N= V() - M) 2 N - N (S
=1 =1
Since the r.v’s (N(i/m) — N((i —1)/m),i = 1,...,m) are independent, M =p B(m,p), with
p=P(N(L) - N(H

)>0}::M.

):0):1—6_)‘/7”.

Thus, for all m > 0, P(N <n) < P(M <mn).

Problem 17.2. In this problem we want to estimate the rate X of some Poisson process Ny,
given the observation (N : 0 < s <t), for some fized t > 0.

1. Show that N/t is the mazimum-likelihood estimate of X.
2. Compute Var(N/t), for t > 0.

Solution:

1. Let 17,75, ... be the arrival times of N, and suppose we observe these to be tq,to,...,
and N; = n. From class,

P[Ty € (ti,t +dt),..., Ty € (tn, ty + dt)] = Nle M (dt)" .

Thus, the value of A\ at maximizes the likelihood must satisfy

nAVlem M _\emAN = () = A = % .
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2.
Ny

Var(S1) = 5

t72 .
Problem 17.3. Under hypothesis X = 0, Ny is a Poisson process with rate Ag; under X =1,
Ny is a Poisson process with rate \1. Suppose we observe (Ng: 0 < s <t), for some fized t > 0.

~

1. Solve the hypothesis-testing problem, i.e., find a test that minimizes P[X = 1|X = 0],

A

such that P[X = 0|X =1] < 3.

2. Find t such that P[X =1|X =0] < a.

Solution:

1. Assume A; > Ag. By Problem 5, the likelihood-ratio is given by

)\f[te*/\lt
A0 55 <) = S
so the Neyman-Pearson test is
1 A((Ns,0<s< 1)) >k
X={1{U>7} A(N,0<s<t)=x,
0 JA((Ns,0<s< 1)) <k

where U is an independent r.v. uniform in [0, 1], and &, y are determined by P[X =0|X =

1] < 8.

2. We will use a suboptimal test to bound the errors. The test will be:

N, A1+A
. {1 , e > At

0 , otherwise

Notice that for any a > 0,

(N2 /t = Xo)?

Nt = dol} > af < S 2D IN/E = dol} > al

so taking expectations, conditional on X = 0, on both sides yields

E[(Ni/t — X0)*|X = 0]

PN/t — Xo| > a|X = 0] <

- 4
PX=1X=0{ —+—7—.
[ | 0]_ t(>\1—>\0)2

5 44X
PX=0X=1<—7—.
[ | ]_t(>\1—)\0)2
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Thus, for ¢ > 4max{\;/8, Ao/a}/(A1 — \o)?, we have max{P[X = 0|X = 1], P[X =
1|X = 0]} < min{g, a}.

Since P[ =0X =1 =p82> P[X = 0|X = 1], the Neyman-Pearson test guarantees
that P[X =1|X =0] < P[X =1|X =0].

Problem 17.4. [Two-sided stationary Poisson process.] Let Nt'", N, be two independent Pois-
son processes with rate \, and corresponding arrival times (T;F,n > 1), (T, ,n > 1) respectively.
For n >0, define T,, =T, , Ty_, = —T,, .

One can think of (Ty,n < 0), (Ty,n > 0) as describing arrivals occuring before and after
time 0, respectively. You will show that the arrival statistics do not depend on the choice of
t=0, i.e., (Ty,n € Z) is stationary.

For any fized s € R, let ng = max{n € Z: T,, < s}, and consider the sequence (Tp4n,—S,n €
7).

Show that (Ty4ny — S,n € Z) =p (Tn,n € Z).

Observe E(T) — Ty) = 2A~ 1, while E(Ty, 11 —Ty,) = A~ * for all n # 0! How do you explain
this?

Solution:
We must show s — T, =p Tho+1 — S =D Tnt14+no — Intne =0 Exp(A) for n € Z\ {0}, and that
these are mutually independent.

We may assume s > 0, since the setup is symmetric around 0.

Now, P(s —Tp, > t) = E(P[s — Ty, > t|no]). On ng =0, P[s — Ty, > t|no] = P(-Tp >
t—s) =1{t > s}. On ng =m > 0, the arrival times (71,-,T,,) are distributed as the order
statistics of i.i.d. uniform on [0, s], since N}t = ng. Thus,

—t
Pls — Tpy > tlno) = 1{s > t}(Z—

)"
Combining all the above yields,
P(s —Tpy >t) = P(N7 = 0)(e M)1{t > s} + 1{t < s})
> —t
14t P(NF =m) (2™
+{<S}Z (N m)(s)

= e*)‘s(e*)‘(tfs)_l{t > st 4+ 1{t < s}) (17.1)

e )\s s—t)m

+1{t < }Z (

—At

S

=€

We still need to show that Ty yn, — Thnine—1 are i.i.d. Exp(A), for all n < 0.

On Thing <0, Tning — Thing—1 is independent of (5, : m > n + ng) and exponentially
distributed with rate A. This is because ng depends only on (T, : m > 0), and (=T, : m < 0)
give the arrivals of a Poisson process of rate A, which are independent of (T, : m > 0).

Let’s assume Ty 4pn, > 0 (s0o n 4+ ng > 1) now. Then,

P[Tn+no — Tntng—1 > t|Tn+no] = E[P[TnJrno —Tning—1 > t|Tn+noa”0]|Tn+no] )
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but {140, = u, NS =m,ng =k} = {Tpin, = u,ng = —n +m}, so

PlTying — Tning-1 > tTnin, = u,no =k, (N ,u<r<s)]=
Plu — Tian_1 > t{Thyn = u, N =k +n,Ns — N = —n, (N;F,u <7 < 5)]
=Plu—Tpin1 >tIN, =k+n—1] (17.2)
=Plu—"T,, >t|N =k+n—1],

where N, = lim.o N,_.. Thus, by letting s = u in (17.1), P[Ty4ny — Tntno—1 > t{Tnine] =
e‘”, where we have always conditioned on {7}, + ny > 0}.
Now, by combining the above,

P(Tn+n0 - Tn+n071 > t) = €_>\t .

Also, (17.2) implies that Ty pny — Thine—1 is independent of s — T, (T, — Ti—1,m = n+mno +
1, <.y N

Finally, note that Tp,41 — S, (Tnino+1 — Tntng,n > 0) are ii.d. Exp()), independent of
everything that came before time s. This follows from the fact that (Nt";s — N ,t>0)isa
Poisson process, independent of (N, : 0 < r < s).

E(Ty —Ty) > E(Tp41 — T),Vn # 0 is called the “inspection” paradox: When an observer
suddenly looks at a system of arrivals, he sees that the spread between the next and previous
arrival, is “larger” than the average spread of the other inter-arrival times! The reason that this
occurs is not particular to Poisson; it is because the observer is more likely to fell into a longer-
than-usual interval. E.g., consider two types of alternating interarrival intervals; one that lasts
1 second, and another lasting 100 seconds. Although half of the intervals are short, there is a
higher likelihood of encountering a long one because they occupy more time. In this example,

the observed average interarrival interval is not %ls + %1003 = 50.5s, but 1(1]—113—1— %1003 ~ 99s.

Problem 17.5. Let 71, 72,... be i.i.d. Exp(\) r.v’s, independent of a geometric r.v. Z with
parameter p, 0 <p < 1, i.e., P(Z = k) = (1 —p)¥~1p, for k > 1.

Show that
z
Zﬁ =p Ezp(Ap) .
i=1
Solution:
Let N;,t > 0 be a Poisson process with rate A, and interarrival times 71, 79,.... Then, for all
s,t >0,

VA A
PIS 7 43 ri > a] = PIZ > (Niey = N) + Ni|Z > N
=1 =1

= P(Z > Niys — Ns) = P(Z > Ny)
Z

=P n>t),
=1

SO ZtZ:1 7; has the memoryless property, so it is exponentially distributed with mean

E) 7)) =E(Z)E(r) =p~'A7".

=1
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Problem 17.6. Let 11,...,7, be n i.i.d. Exp()\) r.v’s.
Calculate E(max{r,...,7,}).

Solution:
Let n > 1. Then,

E(max{r,...,m}) = E(max{r,...,Th-1})+

E(max{7,..., 7} —max{7ry,...,Th—1}) -
But,
E(max{7,...,mnt—max{7y,...,7-1}) = E((ry—max{r1,...,7n—1})1{m > max{7,...,7}}),
and
P(ry, > max{m,...,Th-1} + t|mn > max{m,...,7n_1}) = P(1p, > 1),
s0 .
Emax{ri,..., 7} —max{7,..., Tp—1 }|7p > max{r,...,7,}]) = 3
Hence,

1 11
E(maX{ﬁ,...,Tn}):E(max{Tl,...,Tn_l})—i-)\n:)\;i_



Chapter 18

Continuous Time Markov Chains:
Examples and Definition

18.1 Summary
We look at examples to illustrate the following key ideas.
e Exponential Holding Times

e Rate Matrix

Invariant Distribution, Convergence

Explosions

Definition

18.2 Examples

We discuss a few simple examples.

18.2.1 Two-State MC

We define a process {X;,t > 0} as follows. X is chosen in {0, 1} with P(Xy = 0) = m(0) and
P(Xo = 1) = m(1) where m(0) > 0,7m(1) > 0, and m(0) + mp(1) = 1. If Xg = ¢, then X; =4
for t € [0,71) where T1 =p Exp(g;) with ¢; > 0. Also, X7, =1 — 4. The construction of X; for
t > 11 then continues as before, independently of T7.

Figure 18.1 illustrates the construction.

LI

Figure 18.1: A tW(i—lséate Markov chain.
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The interesting questions concern the long-term fraction of time that Xy = ¢ and the
evolution of P(X; = 1), for 4 = 0,1. To study these questions, we establish a few preliminary
facts.

Fact 18.1. Fiz t > 0. Given {X,,s < t; Xy = i}, the process {Xs,s > t} has the same
distribution as {Xs,s > 0} given that Xy =1, for i € {0,1}.

Proof:
The exponential distribution is memoryless.

That property is called the Markov property. It states that X restarts afresh from X; at
time ¢, independently of the past.

Fact 18.2. Let my = (m(0), (1)) for t > 0 where m(i) = P(X; =14). Then
d

iﬂt = mQ
where
_ | 74 4qo
©= [ @ —q ] )
The matriz Q is called the rate matrix or the generator of X.
Proof:
We find that
P(Xt4e=0) =P(Xt3¢ =0, Xy =0) + P(Xt4e =0, Xy = 1)
= P[ X1 =0|Xy =0]P(X; =0) + P[ X4 = 0| Xy = 1]P(X; = 1)
= P[T} > €| Xo = 0]m(0) + P[T1 < €| Xo = 1]m(1) + o(e)
= (L = qoe)m(0) + qremy(1) + o(e) = m(0) — qoemy(0) + qrem(1).
Hence,

gwt(O) = —qom(0) + q1me(1).

Using the previous fact, one easily derives the following result.
Fact 18.3. (a) The distribution m; of Xy is given as follows:
T = 7T0€Qt,t > 0.
(b) T = mo, Yt > 0 if and only if
m@ = 0.
(¢) The unique solution of the equations above is

q1 qo

W:[ ; ]
Q +q1 qo0+q1

We note also the following fact.



18.2. EXAMPLES 121
Fact 18.4. (a) One has
T

lim X =1i}ds =mn(i),i € {0,1}, almost surely

T—o0 0

where 7 is as given in the previous fact.
(b) Moreover, for any my, one has

Ty — m, ast — oo.

Proof:
(a) Assume that Xy = 0. Then
1 /T1+...+Tn 1{Xt _ O}dt _ T1 4 T3 4 T2n71 N qal _ 0
Ty +--+To Jp Ty +To+ -+ Ty @ +at wta

(b) A simple proof is by coupling. Let X; be stationary version of this MC and Y; an
independent version of the MC with Yy = 0. Define Z; as follows. Let 7 = min{t > 0|X; = Y;}.
Let then Z; = Y; for t < 7 and Z; = X; for t > 7. The claim is that Z; is again a MC with
rate matrix @ and with Zy = 0, as you can easily verify. Now, since 7 < o0, it is clear that
P(X; = Z;) = 1 as t — oo. Since the distribution of X; is 7 for all ¢ > 0, it follows that the
distribution of Z; converges to m. However, the distribution of Z; is the same as that of Y;.
This concludes the proof.

18.2.2 Uniformization

Let Y = {Y,,n > 0} be a Markov chain with transition matrix P and N = {N;,t > 0} a
Poisson process with rate A that is independent of Y.

Fact 18.5. Define X = {X; = Yn,,t > 0}. Then

q(i,5)e +o(e) := AP(i,7)e + o(e), ifi # j

PlXire = jlXe =5 Xy s < 1] = { 1 gl i)e + ofe) = 1 — Ay Plis ke + o(e), if i = 5.

Proof:
The key idea is the memoryless property of the Poisson process.

18.2.3 Explosion

Here is a cute example. Xy is chosen in X = {0,1,2,...} according to some distribution . If
Xy =i, then X keeps that value for an Fzp(¢;) random time. It then jumps to ¢ + 1, and the
construction continues as before. We assume that

oo
Zq;l < 00.
i=0
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For instance, ¢; = (i + 1)2. In that case, one can see that X makes infinitely many jumps in
finite time. For instance, if Xy = 0. we have, for s > 0,

[e.e]
BT+ +T) =g +a ' + .ty = D g, asn— .
=0

Hence, by the Lebesgue convergence theorem,

X X
E) T)=) ¢'<x
n=1 1=0

This implies that P(} 2, T, < 00) = 1.

Thus our construction defines the process X only on [0,7) where 7 =3 >° | T, < co. To
continue the construction, we restart it at time 7 with the distribution .

What is quite interesting is that we have defined a process that makes infinitely many jumps
in finite time. Also, the fraction of time that this process spends in state 0 certainly depends
on mg. Consequently, this fraction of time is not uniquely determined by @), even though the
process is irreducible and positive recurrent if 7y(0) = 0, with the definitions that we adapt in
the obvious way from the discrete time case....

18.2.4 Definition and Construction
We define and construct a Markov chain.

Definition 18.1. Let X be a countable set. A rate matrix Q on X is a matriz Q = {q(4,7),4,j €
X} such that q(i,j) > 0 for all i # j and 3_; q(i,j) =0 for all i.
A process { Xy, t > 0} that takes values in X is a Markov chain with rate matriz Q if

iy _ Jali,g)e+o(e), ifi#j
P[Xt+f—J|Xt—Z’XS’5§ﬂ—{ 1+ gi, i)e + o(e), if i =

We already saw a few examples. We now construct the general case.

Definition 18.2. Construction

Let Q be a rate matriz and my a distribution on X. We define a process X = {Xy,t > 0}
as follows.

First we choose Xg in X according to mg. Second, if Xg =1, then we define an exponentially
distributed random variable T with rate —q(i,1). Third, we define Xy =1 for t € [0,7). Fourth,
given Xo = i and 7, we define X, = j with probability P(i,5) := —q(i,7)/q(i,i) for j # i.
Fifth, we continue the construction of X; for t > 7 as before, independently of Xq and of 7.

This construction defines the process X as long as there are no explosions.

We have the following fact.

Fact 18.6. The process X that we constructed is a Markov chain with rate Q if there are no
explosions.

Proof:
Exercise.

What about explosions? If they occur, we can restart after the explosion as we explained
in the example. Can we say when explosions occur? The following fact provides a strong clue.
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Fact 18.7. Forn > 1, let 7, =p Exzp(\,) and assume that these random variables are inde-
pendent. Then

- = _ 17 Zf Z;;O:OA;I < o0
P(r '_217"<°°)_{ 0, if S0 A" = oo

Proof:
We saw the first part earlier.
Assume Y °° /A 1 = oo. Then, for all s > 0,

n
E(e_s(7—1+...+7—n) _ %:1(1 + )\T—nls)—l S (1 4 Z )\;Lls)_l —0asn— oo.
m=1

Consequently, by Lebesgue’s Theorem, E(e™57) = 0 for all s > 0. This implies that P(e™*" =
0) =1, so that P(1 = o0) = 1.

18.3 Solved Problems

Problem 18.1. How would you simulate a continuous-time Markov chain (CTMC) with rate
matriz Q) and state-space {1,2,... , N}?

Solution:

Problem 18.2. Consider the CTMC with rate-matriz given by the figure.

Find the invariant distribution.

Solution:

Problem 18.3. Let Xy be a CTMC with state-space X. Assume that —q(i i) < \,Vi € X.
Show that one can write X, = Yy,, where (Ny,t > 0) is a Poisson process of rate X, and
(Yn,n > 0) is a discrete-time MC.

Solution:
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Problem 18.4. Consider the CTMC Xy with rate-matriz given by the figure on the next page.

1. Show that one can write
Xy = f(Xo; N}, NE, s < 1),

where Ns)‘, NE are independent Poisson processes of rate X, ji, respectively.

2. How would you generalize (a) to any CTMC X;?

Solution:

Problem 18.5. Let X; be a CTMC on X with rate-matriz Q = [q(i,j)]ijex, and define
T4 = min{t > 0|X; € A} for AC X.
Show that

P[XTA+€:j|XTA =1i; X, 8 STA] ZQ(iaj)e—i_O(e)ai#ja asel 0.

Solution:

Problem 18.6. Provide the details for the coupling argument we used in class to show that

7
P(X;=0) —- ——, ast —> 00,
(Xe=0) = 34

for the CTMC with rate matriz [_u)\ _AN] .
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Continuous Time Markov Chains:
Key Results

19.1 Summary
We explain the following ideas and results:

e Invariant Distribution
e (lassification Theorem
e M/M/1 queue

e Time-Reversal

19.2 Invariant Distribution

We have the following definition.

Definition 19.1. Invariant Distribution
The distribution © = {m (i), € X'} is said to be invariant for Q) if

mQ =0,

i.e., if
m(i)(=q(i,i) = > 7(j)a(i,), i € X. (19.1)
JEX
The relations (19.1) are called the balance equations.

The relevance is because of the following results.

Theorem 19.1. Kolmogorov Equations
Let X be a regular Markov chain (meaning, no explosions are possible) with rate matriz Q.
Fort >0, let 1y = {m(1),1 € X} where m¢(i) = P(Xy = i). We consider m; as a row vector.
Then

£7Tt = 7TtQ.

Consequently, my = 7 for all t > 0 if and %@%’ if mo = 7 and 7 is invariant.
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We discuss an interpretation of the balance equations (19.1). The number of transitions
from {i} to {i}° := {j € X | j # i} and the number of transitions from {i}* to {i} over any
interval [0, 7] differ by at most one. If the Markov chain is stationary with invariant distribution
7, then the rates of those transitions are given by both sides of (19.1).

Theorem 19.2. Let X be a reqular Markov chain with rate matriz Q and initial distribution
. It is stationary if and only if © is invariant.

19.3 Classification Theorem

We define irreducible, transient, null recurrent, and positive recurrent as in discrete time. We
have the following result.

Theorem 19.3. Classification

Let X = {X¢,t > 0} be an irreducible Markov chain on X.

(a) The states are either all transient, all null recurrent, or all positive recurrent. We then
say that the Markov chain is ....

(b) If X is transient or null recurrent, then

1 [T
T/ H{X;=i}dt -0, asT — oo,Vi € X, a.s.
0
Mortreover, there is no invariant distribution and
P(X;=1) —»0,Vie X.

(c) If X is positive recurrent, then
1 T
T/ H{X;=i}dt = n(i) >0, asT — oo,Vi € X, a.s.
0

Moreover, m is the unique invariant distribution and
P(X;=1) > w(1),Vi € X.

Proof:

Consider the jump chain Y = {Y,,n > 0} that specifies the sequence of successive values
of X. We can see that X and Y must be of the same type.

We leave the details as an exercise.

19.4 M/M/1 Queue

Customers arrive according to a Poisson process with rate A and get served one by one, with
independent service times that are exponentially distributed with rate i, by a single server.
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Theorem 19.4. The number of customers in the queue at time t, Xy, is a Markov chain with
rate matriz gn,n+ 1) = X, ¢(n + 1,n) = p for n > 0. All the other non-diagonal terms are
zero.

This Markov chain is positive recurrent if and only if A\ < u. In that case, the unique
invariant distribution is

w(n) = (1—p)p",n>0.

Proof:
Write the balance equations. You find w(n) = p"m(0),n > 0. There is a solution only if
p <l

19.5 Time Reversal

We want to examine the Markov chain X; observed in reverse time. Imagine a movie of the
Markov chain that you play in reverse.
The first observation may be a bit surprising.

Fact 19.1. Assume {X,t > 0} is a Markov chain. In general, {Y; := X7_4,0 <t < T} is not
a Markov chain.

Proof:
Exercise.

However, we have the nice result.

Theorem 19.5. Assume X is a reqular stationary Markov chain with rate matriz () and in-
variant distribution w. Then 'Y s a regular stationary Markov chain with invariant distribution
7w and rate matriz Q)" where

ql(i,j) _ W(])q(;,l)

(1
Definition 19.2. Time-Reversible A random process X is time-reversible if {X;,t € R} and
{X71_+,t € R} have the same distribution for all T € R.

Note that a time-reversible process must be stationary. (Prove that fact.)

Theorem 19.6. A Markov chain with rate matriz Q is time-reversible iff it is stationary and
its invariant distribution w is such that

m(i)q(i, j) = m(5)q(4,4),Vi,j € X. (19.2)
These relations are called the detailed balance equations.

Here is a cute application to the M/M/1 queue.
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Theorem 19.7. The stationary M/M/1 chain is time-reversible. In particular, the departures
from the stationary queue form a Poisson process with rate X whose past up to time t is inde-
pendent of Xy. It follows that two M/M/1 queue in tandem, when stationary, have independent
queue lengths at any given time.

Proof:

The stationary distribution satisfies the detailed balance equations (19.2), so that the sta-
tionary queue length process is time-reversible.

The departures up to time ¢ become the arrivals after time ¢ for the time-reversed queue.
Since the time-reversed queue is again an M/M/1 queue, the arrivals after time ¢ are a Poisson
process independent of X;. Therefore, the same is true of the departures before time .

19.6 Solved Problems

Problem 19.1. Let Xy be the queue length of an M/M/1 queue with arrival and service rates
A and p, respectively. Explain how to simulate X; with one Poisson process and a sequence of
1.9.d. Bernoulli random variables.

Solution:

Problem 19.2. Assume (N¢,t > 0) counts arrivals in [0,t] and is such that

P[Nt+€ = Nt + ].|Ns,8 < t] = )\64‘0(6) s
P[Nt+e = Nt|Ns,S < t] =1- )\6"‘0(6) .

Show that (N, t > 0) is a Poisson process with rate \.

Solution:

Problem 19.3. Show that a stationary CTMC Xy is time-reversible if and only only if

qeio, 11)q(i1,42) -+ - q(in—1,7n)q(in, i0) = q(i0,9n)q(in, in—1) - - - q(i2,91)q(i1, %0) ,
for any finite sequence of states ig,i1,...,in. [Hint: to show the ‘if’ part, fix a reference state
r, and for each j, define

() = a q(r, jo)q(j1, 52) - - - q(n, J)
Q(jajn)q(jnajnfl) T q(j07 ’I“) ’

where jo,j1,...,Jn is a sequence of states leading from r to j.]

Solution:

Problem 19.4. Consider an M/G/oc0 and an M/M/1 queue, in tandem as in the figure. Let
A be the rate of (Poisson) arrivals in the M/G /oo system, and p the service rate of the M/M/1
queue.
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M/G/oo M/M/1

1. How would you define the “state” X} of the M/G/x system? [Knowledge of the state
should determine the future evolution, statistically.]

2. Let X? be the state of the M/M/1 system.

Show that if the system is started at —oo, so stationarity is reached at any finite time,
X} and X} are independent.

Solution:

Problem 19.5. Consider a closed Jackson network where every customer can visit all the
queues, but that no customer enters or exits the system. An example is given in the figure.

S—

Show that
W(I) = 7'('1(:(:1) e -WJ(.’EJ) )
with mi(n) = pi(L—pi), pi = i/ s, is invariant, for any A;. (N; must satisfy \; = Zj NiR(j,1),
Ai < pi where R(-,-) is the routing matriz.)
[Hint: Use Kelly’s lemma.]

Solution:

Problem 19.6. Consider a G/M/1 queue with service rate . The arrival process is modulated
by the two-state CTMC'Y; as follows: when Yy = 0, arrivals are Poisson with rate \g, while
when Yy = 1 arrivals are Poisson with rate \1.

Let Xy be the queue length (including the customer in service, if any) at time t.
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1. Show that X; is not a MC.
2. Show that Zy = (X, Yy) is a MC.

3. What conditions on the rates are needed for positive recurrence of Zi? [Hint: Pake’s
lemma.]

4. [This part is optional.] Write n(z,y) = mz(y),y € {0,1} and let my = [15(0) m(1)].

Show that 7y = moR* for some matriz R, under the conditions of (c¢). [Hint: Assume
7y = moR® and write the balance equations, (7Q)(z,0) =0, (7Q)(z,1) =0.]

Solution:
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Jackson Networks

20.1 Summary
We explain the following ideas and results:

e Kelly’s Lemma
e Jackson Networks

e PASTA

20.2 Kelly’s Lemma

Here is a useful result. See [6] for these ideas and more.

Lemma 20.1. Kelly’s Lemma
Assume that QQ and Q' are two rate matrices and 7 a distribution on X such that

m(i)q(i, j) = 7(5)q' (4, 1), Vi, j € X. (20.1)
Then 7@ = 0 and Q' is the rate matriz of the Markov chain reversed in time.

Proof:
Summing (20.1) over 4 € X and using the fact that )" ¢'(j,7) = 0, we find that 7@ = 0.
The other statement then follows from Theorem 5 in Lecture 23.

This result enables us to prove that a distribution is invariant by guessing the rate matrix
of the process reversed in time. We examine an example next.

Example 20.1. Consider two M/M/1 queues in series, with arrival rate A at the first queue
and service rates p1 and pa, respectively. We assume XN < py,pe. Let Q be the rate matriz
of the pair (X}, X2) of queue lengths. Let also Q' be the rate matriz of the two queues with
arrivals into queue 2 whose departures go to queue 1. For instance,

Q((mvn)a (m —1n+ 1)) = :U‘lvq,((m -1n+ 1)7 (man)) = :U*Qaq((mvn)a (m + lan)) =A
ql((m + 17”)7 (man)) = /L17Q((m7n)v (m’&l_ 1)) = p2, and q,((man - 1)7 (mvn)) = A
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Define
A
7T(’I’I’L,’n,) = (1 - pl)/fln(]- - p2)p37man > 0 where p; = —,i=1,2.
223

We then see that
m(m,n)q((m,n),(m—1,n+1)) =x(m —1,n+ 1)¢'((m — 1,n+ 1), (m,n)).

Similarly,
m(m,n)q((m,n),(m+1,n)) = x(m+1,n)¢ ((m + 1,n), (m,n))

and
7(m,n)q((m,n),(m,n —1)) = n(m,n — 1)¢'((m,n — 1), (m,n)).

Thus, equations (20.1) hold and we conclude that 7 is the invariant distribution of the two
queues in series. Also, the process reversed in time behaves line arrivals into queue 2 attached
to queue 1.

20.3 Jackson Networks

We generalize the example of the previous section. Consider a set of J queues. Customers
arrive as independent Poisson processes, with rate ; into queue 7. Customers face independent
service times in all the queues and these are exponentially distributed with rate y; in queue
i. When a customer leaves queue 7, he goes to queue j with probability R(7,j) and leaves the
network with probability 1 — Z}]:1 R(i,7). This system defines a Jackson network.

Theorem 20.1. Assume that each customer can eventually leave.
(a) In that case, the equations

J

7=1

have a unique solution (Ay,...,Aj).
(b) Moreover, if p; :== Nj/p; < 1 fori =1,...,J, then the vector of queue lengths X; =
(X}, ..., X/) is a positive recurrent Markov chain with invariant distribution

w(ni,...,ny) =m1(ny) - -my(ny) where m(n) = (1 — p;)p;,n > 0.

Proof:

Part (a) is easy. We focus on (b). We show that the process X; reversed in time corresponds
to the network with the flows of customers going in the reversed directions.

The routing matrix R’ of the flows reversed in time is such that

Indeed, the left-hand side if the rate of flow going from i to j whereas the right-hand side is
the rate of flow going from j to ¢ in the reversed network. Also, the exogenous arrival rate into
queue ¢ for the reversed network should by
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Designate by @ the rate matrix of the original network and by @’ the rate matrix of the
reversed network. For instance, if e; designates the unit vector in direction 4, then

Q(IL‘ +ei, T+ e]) = MZR(laj) and ql(x +é5,T+ 61‘) = /‘LJR,(.%Z)
We can then verify that
m(z + e;)q(z + €,z + ¢;) = w(z + €j)q (z + €,z + ¢;),

i.e., that
m(e + e)uiR(i, §) = m(z + e ui R (7, 4).

To see this, note that

A Aj
m(z + e;) = n(z) = and 7(z + e;) = n(z) 2L,
i 1

so that the previous identity reads, after simplifying by 7 (z),

A . Aj .
JMZR(Z’]) = JM]R,(‘77 7’)7
i Hj
which we see is satisfied. Proceeding in a similar way, we can verify that m, Q, Q' satisfy the
conditions of Kelly’s Lemma.

20.4 PASTA

How large is the backlog that a customer finds when he arrives into a queue? Let us look first
at an example.

Assume customers arrive every two seconds into a queue where each service time takes
exactly one second. If the queue is initially empty, every customer finds an empty queue when
it arrives. However, the average queue length is 1/2 since the queue has one customer half of
the time and is empty the other half. Thus, an arriving customer does not see the average
queue length.

However, when the arrivals are Poisson, the situation is very simple.

Theorem 20.2. PASTA

Assume customers arrive as a Poisson process into a queuing system described by a station-
ary Markov chain Xy. Then, an arriving customer sees the state with its invariant distribution
.

Proof:
Designate the arrival process by A;. Then

P[X: = z|Atye = A + 1] = P(X; = z) = 7(z)

because the arrival process has independent increments, so that {A;s,s > 0} and Xy are
independent.
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This identity shows that the state X; just before an arrival time has its invariant distribu-
tion.

As an application, we study the delay of a customer through a stationary M/M/1 queue.

Theorem 20.3. The delay of a customer through a stationary M/M/1 queue with arrival rate
A and service rate p is exponentially distributed with rate p — X.

Proof:

Because of PASTA, an arriving customer finds n customers in the queue with probability
(1—p)p"™ for n > 0 where p = A\/p. When he joins n other customers, because of the memoryless
property of the service times, the customers finds a delay 7 equal to the sum of n+1 independent
service times that are exponentially distributed with rate . Hence,

o0

Ble ™) = Y (1 - p)p"E(e Ty

n=0

where T'=p Exzp(p). Thus,

o0
E(e*T) :/0 e Stue Mt = B ,

S+ p
so that
= o u o p—A
Eeis‘r e 1— 7 _— n+1: 1— 1— 71:7’
(e ) HEZO( p)p (s+u) ( p)5+u[ p5+ﬂ] Y

which shows that 7 =p Exp(u — A).

A more elegant proof is to view 7 as the interarrival time of a Poisson process with rate
1 sampled with probability 1 — p, i.e., of a Poisson process with rate y — A. Indeed, with
probability p™(1— p), this interarrival time is the sum of n+ 1 independent exponential random
variables with rate p.
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Convergence

21.1 Summary
We explain the following ideas and results:

e Types of Convergence
e Examples
e Key Results

e Large Numbers

21.2 Overview

Our objective is to give you a sense for the concepts of convergence of random variables. The
ideas are subtle but it important to understand them. The key results in probability are
convergence results.

It turns out that we need a few preliminaries before we can go anywhere with this topics.
We review them in Section 21.3. With these ideas out of the way, we define the different notions
of convergence in Section 21.4. We illustrate these notions on some representative examples
in Section 21.5. In Section 21.6 we clarify the relationships between the different modes of
convergence. Finally, in Section 21.7, we discuss some results that lead to the all-important
strong law of large numbers. We believe that the intermediate steps are useful to clarify the
notions of convergence.

This is a difficult lecture; we hope we can help you understand these very neat ideas.

21.3 Preliminaries

We need a few tools to study limits.
We first recall the following key result about real numbers.

Lemma 21.1. Cauchy
The sequence {xn,n > 1} converges to some finite x if and only if

€n 1= supm,k2n|wml—35ka| — 0 as n — oo. (21.1)
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A sequence that satisfies (21.1) is said to be Cauchy. Thus, Cauchy’s Lemma states that
Cauchy sequences converge in R.

Proof:
The only if part is obvious. We show the if part. Thus assume that the sequence is Cauchy.
For any n we find that
|T5| < |21]| + |2p — 21| < 21| + €10

Thus, the sequence {z,} is contained in I := [—|z1| — €1, |z1| + €1]. Half of that interval, either
the closed left-half or the closed right-half, must contain an infinite subsequence. Designate
that half interval by I. Continuing in this way, we form a set of closed intervals I whose
lengths go to zero and with the property that I, C Ij for all k. The intersection of all these
sets contains some point z which is the least upper bound of the a, = min{y|y € I,,}. Indeed,
the a, are nondecreasing and bounded. It is then easy to check that (21.1) implies z,, — z.

Next, we review

Lemma 21.2. Borel-Cantelli
Assume that events A, are such that ), P(Ay) < oo, then P(A,, i.0.)=0.

Proof:
Note that

{Apn, 1.0.} = Np>1 Umsn A, so that Up>, Ay | {4y, 10}

This implies that P(Up>nAm) | P(Ap, i.0.). But P(Up>ndm) < >,,5, P(AR), so that
O

Finally, we will need the following result.

Lemma 21.3. Kronecker
Let {zy,n > 1} be real number such that Y o> | xn = s is finite. Then

1 n
— E kxk — 0.
n

k=1

Proof:
To prove the lemma, we do a simple calculation. Let y, = Ziinﬂ xj so that yp = s and
Ty = Yn—1 — Yn. Then,

n n n—1 n n—1
D krp = ke —uk) =D (k+ Dy — Y kyk =Y gk + Y0 — 1.
k=1 k=1 k=0 k=1 k=1

We note that, since y; — 0, the right-hand side divided by n goes to 0 as n — oc.
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21.4 Types of Convergence

We explore the convergence of random variables. Since a random variable is a function, one
must define the meaning of convergence. We have the following definitions.

Definition 21.1. Types of Convergence
Let X and {X,,,n > 1} be random variables on some common probability space {Q, F, P}.
(a) One says that the random wvariables X, converge almost surely to X as n — oo, and
one writes
X, 255 X asn — oo

or
lim X, =X, a.s.

n—00

P{w| Xp(w) = X(w)}) = 1.

(b) One says that the random variables X, converge in probability to X as n — oo, and
one writes

X, £> X asn — oo
if
lim P{w | |Xn(w) — X(w)| > €}) =0,Ve > 0.
n—0o0
(c) One says that the random variables X, converge in distribution to X as n — oo, and

one writes
D
X, —=> X asn—

i
! nl;ngo P(X, <z)=P(X <z),Vr where P(X < x) is continuous.
(d) One says that the random variables X,, converge in L, to X as n — oo, and one writes
Xn L—p> X asn — oo
if

lim E(|X, — X|P) = 0.

n—oo

21.5 Examples

Let us quickly look at some examples to clarify these notions. In this example, {2, F, P} is
[0, 1] with the uniform distribution. See Figure 21.1 for an illustration.

Example 21.1. Let X =0 and X,, =n x l{w < 1/n}. Then, as n — oo, one has
X, “x, X, 5 x, Xx,2 X, but X, % X

Proof:
Note that X, (w) = 0 for all n. > 1/w, so that X,(w) — 0 for all w # 0. Hence X,, 2% X.

We find that, for any ¢ > 0, P(|X,, — X| >¢) <1/n — 0 as n — oo, so that X, x.
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N
X

0 1/n 1/3 1/2 1’

Figure 21.1: The random variables in Example 21.1.

Observe that P(X < z) = 1{z > 0} is continuous at every = # 0. Also, for z < 0 we have
P(X, <z)=0— P(X <z)=0. Moreover, for z > 0, we have P(X,, <z)>1—-1/n— 1=
P(X < z), so that X,, & X.

Finally, E(|X, — X|) =1 -» 0, so that X,, % X.

Example 21.2. Let {X,,n > 1} be i.i.d. N(0,1) random variables. Then X, Ly X but
X, % X, X, % X, and X, B X.

Example 21.3. Let X; = 1, Xs(w) = {w < 0.5}, X3(w) = H{w > 1/2}, Xy = Hw <
1/4}, X5(w) = Hw € (1/4,1/2]}, X¢(w) = H{w € (1/2,3/4]}, ete, as shown in Figure 21.2.
Then X, 25 0 but X, %% X.

AN
4

1

Figure 21.2: The random variables in Example 21.3.

Example 21.4. Forn > 1, let X, =p U[—1/(2n),1/(2n)], as shown in Figure 21.3. Let also
X =0. Then Xn 2 X. Note that P(X, <0) =1/2 » P(X <0) = 1.
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P(X < x)

TP(X, <x)
L 1
2n 2n

Figure 21.3: The random variables in Example 21.4.

21.6 Relationships

How do these types of convergence relate? How do we prove convergence and what can we
conclude from it?
We first review the following result we saw in Lecture 17 and that we do not prove here:

Theorem 21.1. Lebesgue Convergence Theorem

(a) Monotone Convergence Theorem: MCT. Assume that 0 < X, T4.5. X asn — oo. Then
E(X,) T E(X) asn — 0.

(b) Dominated Convergence Theorem: DCT. Assume that X, ~>3 X as n — oo and
| Xn| <Y forn>1 with E(Y) < co. Then E(X,) — E(X) as n — oo.

We start with a counterpart of Cauchy’s Lemma for random variables.

Lemma 21.4. We say that X, is Cauchy a.s., in P, in Ly (respectively) if, as n — oo and
for all € > 0,

sup | X — Xi| 250, sup P(| X — Xi| > €) = 0, sup E(| X, — Xi|) = 0, (respectively).
m,k>n m,k>n m,k>n

The result is that a sequence that is Cauchy a.s., in P, in Ly (respectively) converges in the
corresponding sense to some finite random variable.

Proof:
(a.s.): The result is obvious.
(P): Take € | 0 with >, €, < 0o and ny, such that n,m > n; implies that

P(| X — Xp| > e) <27F,
We now use Borel-Cantelli to conclude that

P(|X — Xp,| > €, 1.0.) =0.

Nk+1

Thus, for all w, one has | X. Xy, | < e forall k > k(w). This implies that, form > p > k(w),

g1

oo
X = Xy | < Xy = Xy | - 4 [ Xy = Xy | <D €6 = 0 25 p — o0,
k=p
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Thus, X,,, is Cauchy a.s. and it follows that X, 225 X for some finite X. We now show that
X, 2 X. To do this, we observe that

P(|X, — X|>¢) < P(|X, — Xy, | >¢€/2) + P(|X,, — X| >¢€/2)

and each term can be made as small as we wish by picking n and nj large enough.
(L1): Assume X, is Cauchy in L;. That is,

> E|Xpm— Xp| =0, as n - 0.
m>n

Using Chebyshev’s inequality, we see that X, is Cauchy in P, so that it converges in probability
to some random variable X. To see that it converges in L; to X, we use DCT.

Example 21.5. Assume that the random variables {X,,n > 1} are i.i.d. with E(X,) = p and
var(X,) = 0% < co. Then

Xi+Xo+--+ X, p
_>
n
This result is called the weak law of large numbers.

Proof:
Recall that el1{|Y]| > €2} < Y2, so that P(|[Y] > €¢) < E(Y?)/e?, which is Chebychev’s
inequality. It follows that
Xi+Xo+--4+X 2

o
P Tyl > < — =0
( - uze <5 =0,

which proves the result.

We use that result in the following example.

Example 21.6. Assume that the random variables X,, are independent and such that E(X,) =
0 for all n and Y o° | E(X2) < oco. Then Y p_; Xy 2z for some finite random variable Z.

Proof:
Let Z, =Y ;_; Xy for n > 1. Fix k < m and € > 0 and note that
m
P(Zn -2l > )< Y B(X2))E.
n=k+1

Hence,

sup P(|Zy — Zk| > €) = 0 as n — oo.
m>k>n

It follows that the sequence is Cauchy in P and converges in probability to some finite
random variable.

The next result shows the relationship between the convergence types.
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Theorem 21.2. Figure 21.4 indicates the relationships between the convergence types. The
positive results are the following:

e (1) A.s. convergence implies convergence in probability;

e (2) Convergence in probability implies convergence in distribution;
e (3) Convergence in Ly implies convergence in probability.

The other implications do not hold, except the following:

e (2’) Convergence in distribution to a constant implies convergence in probability to that
constant;

e (/) A.s. convergence with differences that satisfy one of the conditions or the Lebesgue
Convergence Theorem implies convergence in L.

SN

Unless... | (4) \ P @ p
y , 4—%(2')—
(f (3)7Z Unless...
ave

Figure 21.4: The relationships in Theorem 21.2.

Proof:
We sketch the proofs.
(1) Assume X,, 2 X and fix € > 0. Then

Zp = 1{|X, — X| > ¢} 225 0 as n — oo.
Moreover, |Z,| < 1 for n > 1. We conclude from DCT that E(Z,) — 0, i.e., that
P(|X, — X|>€) — 0, as n — oo.

(1) Example 21.3 shows that convergence in probability does not imply almost sure con-

vergence.
(2) We start with the following observation. Assume P(B,,) — 1. Then P(ANB,) — P(A).
To see this, note that

P(A)>P(ANB,)=1-P(A°UB,) >1—-P(A°) — P(B,) = P(A) — P(B) = P(A).
Assume X, 2 ox. Then, for any € > 0,
(X <z—e}N{|Xn— X| <€} C {X, <2},
Using our previous observation, we see

P(X <z —¢) <liminf P(X,, < z).
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Similarly, we see that
{X>z+en{|X, - X| <€} C{X, > z}.

Hence,
P(X >z +¢) <liminf P(X,, > z),

which is equivalent to
P(X <z+¢€) > limsup P(X, < z).

Letting € — 0 and assuming that P(X < z) is continuous at z, we find
P(X <z) <liminf P(X,, < z) <limsup P(X, <z) < P(X <z),

which proves that P(X, <z) - P(X < x).

[Recall that liminfx, := lim,_, inf;,>, 2, is well-defined because inf,,>, z,, is nonde-
creasing. Similarly, limsupz,, = limy,—c0 SUpy,>p T Also, z, — £ if and only if liminf z,, =
z = limsup z,,. Finally, liminf(—z,) = — limsup z,,.]

(2’) See Example 21.2. However, if X is constant, then this implication holds. To see this,

assume that X, 2> 0. Fix ¢ > 0. We claim that P(|X,| > €) — 0. Indeed, P(X, < —€) = 0
and P(X,, <€) — 1 because of the convergence in distribution.

(3) One has el{|X,, — X| > €} <|X,, — X|, so that P(|X,, — X| > €) < E(| X, — X|)/e.

(3’) See Example 21.1.

(4) In general, a.s. convergence does not imply convergence in Lq, as Example 21.1 shows.
However, if X,, — X satisfies the conditions of DCT or of MCT, then we can conclude that
E(| X, — X|) = 0, which implies convergence in L.

(4’) See Example 21.3.

21.7 Large Numbers

Our goal is to prove Theorem 21.3. We use the proof in [1], Section 3.6. Leo Breiman died on
July 5, 2005 at the age of 77. He had been a Professor of Statistics at U.C. Berkeley since 1980
and made numerous contributions to statistics, notably on classification methods. You might
enjoy his elegant book.

We first show that the convergence in Example 21.6 is almost sure.

Lemma 21.5. Levy Assume that the random wvariables X, are independent and such that
E(X,) =0 for all n and 3.°° | E(X2) < co. Then S.p_, Xp =2 Z for some finite random
variable Z.

Proof:

Let Z, = > ;_; Xi. Assume that Z, does not converge with some positive probability.
Let W, := sup,,~, |Zm — Zn|. When Z, does not converge, inf,,>1 W, > 0; for otherwise
the sequence would be Cauchy and converges. Thus, for a fixed n, P(W,, > 0) > 0 and,
consequently, there is some fixed € > 0 and some ¢ such that P(W, >¢€) > § > 0.
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We show that this is not possible. Define C(n, N) = sup, <<y P(|Zn — Zm| > €). Let
7 =min{k > n | |Zy — Zy,| > 2¢}. Then

N N
P( sup |Zm— Zn| >26,|Zn — Zn| > €)= Y P(Zx —Zu|>em=k)> > P(|Zy—Z| <e,7=k)
n<m<N k=n+1 kE=n+1
N N
= > P(Zy-Zi| <eP(r=k) > (1-C(n,N)) ¥ P(r=k) =(1-C(n,N))P(sup|Z — Z,| > 2e
k= — k<N
=n-+1 k=n+1
Hence,

1
sup |Z — Zn| > 2) < —
(k<N| | )< 1—-C(m,N)
Now, observe that since the series converges in probability, C(n,N) — 0 as n — oc.
Similarly that convergence in probability also implies that P(|Zy — Z,| > €¢) — 0 as n — oc.
Consequently, P(sup,,«,<n |Zk — Zn| > 2¢) — 0, which proves the contradiction.

P(|Zy — Zy| > o).

The following theorem is very important. It “confirms” the frequentist interpretation of
probability.

Theorem 21.3. Strong Law of large Numbers
Let X, be i.i.d. random variables with E(|X,|) < co. Then

X1+X2++Xn a.S.
n

> B(X1) as n — oo.

Proof:

Step 1: The result holds if E(X,) = 0 and var(X,,) = o2.

By Kronecker’s Lemma, to show that (3", X;)/n — 0, it suffices to show that Y, (Xj)/k
converges to a finite random variable. (Indeed, let 2, = kXj in Kronecker’s Lemma.) To show
that, in view of Levy’s Lemma 21.5, it suffices to prove that

Y B(XP)/E < o,
k=1

which is seen to hold.
Step 2: The result holds under the conditions of the theorem.
Define X,, = X,,1{|X,,| < n}. We also define Y;, = X,, — E(X,,). We show below that

Z niE (21.2)
n=1

Step 1 then implies that

n

1 & 1 . N
- § Yy, == 0, so that f§ (X — B(Xg) 22> 0.
mn — nk:l

Moreover, DCT implies that E(X,) — E(X,), so that

R

=X 5 B(X).
n

k=1
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In addition, we claim that P(|X,,| > n, i.0.) =0, so that the result above proves the theorem.
To see the claim, note that

%)
S P(Xa] > n) < o0,
n=1

because E(|X,|) < oc.
It remains to prove (21.2). We have

o0 o0 n

3 %E(Xﬁ) - Zl % /|x<n 2dF@) =YY % /k 22dF ()

n—1 n—1 k=1 I<]z|<k

0 o 1
DI IO
ek ¥ Jk=1<z|<k

k=1

o0

2 O
/ 224 (z) < 22/ 2|dF(z) < 2E(|X1]) < co.
=k Je—1<jol<k = Je—1<a|<k

We used the fact that S°°° , 1/n? < 2/k.
n=k

21.8 Solved Problems

Problem 21.1. Suppose (X,,n > 1) is a sequence of (not necessarily independent) r.v’s.
Assume €, | 0 and

1
P(|Xg| > €n) < 3 ,Vn > 1.

Show X, =250, as n — co.
[Hint: Use Borel-Cantelli lemma.]

Solution:

Problem 21.2. Assume €, | 0 and
P(| Xy — Xp| > €p) <277, forallk,m>n>1.

Show that (X,,n > 1) is Cauchy, a.s., and conclude that X, 2% X, for some finite r.v.
X.
[Hint: Use Borel-Cantelli lemma.]

Solution:

Problem 21.3. Assume

sup P(| Xy — Xpm| >€) =0, asn — 00,Ye > 0.
k,m>n

Show that X, 2 X, for some finite r.v. X.
[Hint: Choose €; | 0, and define n; such that

P(| Xy — X > &) <27 for all k,m > n; .

Use the previous problem to conclude X,, 2% X, for some finite r.v. X. Conclude that
X, & X.]
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Solution:

Problem 21.4. Construct an example of random variables (X,,n > 1), such that
P(| X, — Xim| >€) <0.01, for alln,m,
but
P(sup | X, — Xpn| >€)=1.
n#m

Solution:

Problem 21.5. Let Xj be a positive recurrent discrete-time MC, and f(-) any bounded func-
tion. Assume Y is distributed according to the invariant distribution of the MC.
Use SLLN to show

S (X S5 B((Y).
k=1

Solution:

Problem 21.6. Consider a renewal process with events at times Ty, Th, .. ., i.e., (Tn—Tp—1,n >
1) are i.i.d. Assume Ty = 0, and define X; = min{Ty, — t|k > 0,T, —t > 0} the residual time
for the first event after time t > 0.

Solution:

Problem 21.7. Show

e as.. E((T1 — Ty)?)
= Xdt =5 TS 0o,
T/O t 2B(Ti —Tp) ¥ o0
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Solution:

Problem 21.8. Let N; be the number of events up to including time t > 0, i.e., N; = min{n >

1: Tn—l 2 t}.
Show
N ws, 1
t BT -Tp)
Solution:

Problem 21.9. Let Xy be a positive recurrent CTMC with invariant distribution w. The chain
Xy modulates the arrivals of some counting process Ny as follows: while Xy = i, Ny increases
according to an independent Poisson process of rate A(i). Assume max; A(i) < 0o.

Show that
Nt a.S.
— =5,

where X =Y. A(i)m(i).

Solution:
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Renewal Processes

22.1 Summary

We introduce a few basic ideas of renewal processes:

e Renewal Process

e Variations

22.2 Overview

As the name indicates, a renewal process is one that “renews” itself regularly. That is, there
is a sequence of times {7T},,n € Z} such that the process after time T, is independent of what
happened before that time and has a distribution that does not depend on n. We have seen
examples of such processes before. As a simple example, one could consider a Poisson process
with jump times T},. As another example, we could consider a positive recurrent Markov chain
and 7T, to be successive visits to a given state.

The basic tool to study such processes, as you probably expect, is the strong law of large
numbers, with a twist. The theory we look at is very cute and certainly useful.

We start with a the simple case: the renewal process. We then examine variations.

22.3 Renewal Process
A renewal process is an arrival process with i.i.d. interarrival times.

Definition 22.1. Renewal Process

Let {T,,,n > 1} be such that T, < Tp41 and {Tp41 — Tp,n > 1} are i.i.d.. If Ty has the
same distribution as To — T4, this process is called a renewal process; otherwise, it is a —em
delayed renewal process. We also define Ny = max{n > 1| T, <t} with Ny =0 for t <T for
t > 0. See Figure 22.1.

For simplicity, we assume throughout this section that \' := E(Ty — T}) < oc.

Here are a few representative questions we can ask about a delayed renewal process.

1. In what sense is the long term rate of jlﬁg}ps equal to A7
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Figure 22.1: Renewal process in Definition 22.1.

2. How do we choose T to make IV; stationary in the sense that the jump times after time
t look like the jump times after time 07

3. How many jumps do we expect to see in an interval of T seconds?

4. How long after ¢t do we have to wait for the next jump?

We examine these questions below.
The rate of jumps is obtained from the strong law of large numbers that implies the following

result, as you proved in a homework assignment.

Fact 22.1. One has
Ni as.
- —3 A ast — oo.
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We now examine stationarity. We start with a definition.

Definition 22.2. (a) A point process is a collection T := {T,,,n > 1} of random variables such
that 0 < Ty < Ty < ---. We also define the corresponding counting process N = {Ny, ¢t > 0}
where Ny =0 if t < T} and Ny = max{n > 1| T, <t} otherwise.

(b) A counting process N is stationary if N o 05 := {Nyrs — Ns,t > 0} has the same
distribution for all s > 0. Thus, the process N o 0 is simply the jump process watched after
time s. See Figure 22.1.

The following result explains how to make N stationary.

Theorem 22.1. Let {N;,t > 0} be a delayed renewal process and F(t) = P(Ty —T1 < t) and
G(t) = P(Ty <t) fort > 0. The process {Ny,t > 0} is stationary if and only if

G(t) = )\/Ot(l — F(s))ds,t >0 where A™' = /000 sdF(s) = E(Ty —Ty). (22.1)

In particular, if the process is stationary, the average time until the next jump, E(Ty) is
given by

A
E(T)) = 5E((T2 —T)?). (22.2)
Before we attempt a proof, let us look at a few examples.

Example 22.1. (a) If T» —T1 =1, then Ty =p U[0,1] and E(T1) =1/2 = E(T> —T1)/2, as
we would expect.

(b) If Ty =Ty =p Exp(N), then Ty =p Exp(\) and E(Ty) = E(Ty —Ty), which follows from
the memoryless property of the exponential distribution but is nevertheless somewhat counter-
intuitive when we compare with (a).

(c) If To — Ty =p U[0,1], then F(t) =t(2 —t) fort €[0,1] and F(t) =1 fort > 1. In this
case, E(T1) = 2/3 which is a bit larger than E(Ty —T1) = 1/2.

(d) If P(T, — Ty =a) =p=1—P(Ty, — Ty = b) with 0 < a < b, then G(t) = at + (1 —
p)(min{t,b} —a)". Here, we find

Ipa®+ (1 —p)b? 1
— ,w > —E(Ty —TY) unless a = b.

B(T) = 2 pa+(1—p)b 2

These examples show that the average time until the next jump, for a stationary process, is
larger than half the average time between two successive jumps. This paradox can be explained
by observing that a time ¢ picked “randomly” is more likely to fall in a large gap between two
jumps than in a small one. Thus, stationarity yields a bias in favor of the large gaps.

We can pursue this intuitive discussion by noting that the probability that ¢ falls in a gap
of length u should be proportional to u times the probability that a gap has this length, and
should thus be yudF(u). For this density to sum to one, we need v = A. If ¢ falls in a gap of
length u, then the time until the next jump should be uniform in [0, u]. This suggests that

P(Ty € (s,5+¢)) = /W[AudF(u)] x i = %[1 — F(s)]e.

This argument justifies (e.renewall). We now turn to a proof.
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Proof of Theorem 22.1

Here is a sketch. Designate by Gs(t) the probability that N has a jump in [s, s 4 ¢]. This is
the cpdf of the first jump time of N o §;. The process N is stationary iff G5 does not depend
on s. Let 0 < e < 1 and observe that

Tio0sye <teTiols€le,t+€) orTiobs €[0,¢) and (T5 —T1) 065 < L.
Hence,

Gste(t) = Gs(t+e) — Gs(e) + Goe) F (1)
= G4(t) + GL(t)e — Gs(e){1 — F(t)}.

Subtracting G4(t) and dividing by €, we find

Gs+e(t) — G, (t)

€

= G(t) — G5(0){1 = F(1)}.

The left-hand side is zero ift G%(t) = G',(0){1 — F(¢)}, which proves the result.

Here is a simple consequence of stationarity.

Fact 22.2. Assume that N is a stationary point process. Then
E(Nyyp — Ny) = AL,VL,t >0
where X := E(Nyp).

Proof:
By stationarity, E(N¢y. — N;) does not depend on ¢. By decomposing the interval in
segments of length €, we conclude that E(N;y; — N) is proportional to L.

We now turn to the expected number of jumps in an interval of length L. To appreciate
the issue, consider the following examples.

Example 22.2. (a) Assume Ty = T — T1 = «, for some positive constant . Then we see
that E(Nyy1r — Nt) does not converge unless L is an integer multiple of c.

(b) Assume that Ty = 0 and Ty — Ty takes values in a set of integer multiples of o > 0.
Then, the same conclusion holds as in (a).

In case (b), we say that the distribution of 75 — T} is “lattice.” We rule out that case below
to avoid having to consider special values of L. The following remarkable result is due to David
Blackwell (a Professor in Statistics at Berkeley).

Theorem 22.2. Blackwell
Assume that F' is non-lattice. Then, for all L > 0,

E(Ngyp, — N¢) = AL as t — oo.
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Proof:

There are two types of proof. One is analytical and studies distributions through charac-
teristic functions. The other is probabilistic and is essentially a coupling argument. We briefly
comment on the second proof which is due to Linvall.

Counsider two independent versions of the process N. We call one version the process N
and the other the process N’. Assume that N’ is stationary. Couple the two processes the
first time they jump within e seconds of each other. If ¢ is after the coupling time, they have
essentially the same number of jumps in [¢,¢ + L], so that the expected number is AL as we
saw for a stationary point process. The trick is to show that they couple in finite time. The
details are a bit too long to cover here.

The last question is the time until the next jump.

Theorem 22.3. If F' is non-lattice, then the distribution of the time until the next jump after
time t converges to G, where G is defined in (22.1).

Proof:
This result follows from the same coupling argument as in the proof of the Blackwell’s
theorem.

22.4 Variations

The renewal process only involves times. We can make more complex constructions.

Example 22.3. Markov Chain
Let X = {X;,t € R} be a positive recurrent Markov chain on X. Let {T,,n € Z} be the
successive return times to a give state © € X with the convention that Ty < 0 < Ty. Then, for
any n € Z,
{ X7, 44,1 > 0}
is independent of { X1, ++,t < 0} and has a distribution that does not depend onn. In particular,

the cycles
Cn = {(t - TnaXt)at € [Tn’TTH‘l}

are i.i.d. forn € Z. Thus, {Ty,n € Z} is a delayed renewal process.

We can view C), as a graph as shown in Figure 22.2.
Using the fact that the cycles are i.i.d., we can apply the law of large numbers and get
results of the following form, as you did in a homework assignment.

Fact 22.3. Let f(.) : X — R be bounded function. Then

T
Y RECOTEES SIOND

)

where w is the invariant distribution of the Markov chain.
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Al [

Figure 22.2: Cycle n in Example 22.3.

Another interesting variation concerns semi-Markov processes. Here is a definition.

Definition 22.3. Semi-Markov Process

Define the process {Xy,t > 0} on a countable set X as follows. One is given a transition
matriz P on X. For i € X, let F; be a cpdf on [0,00). Let also mp be a pmf on X. Choose
Xy in X according to the pmf my. If Xo = 1, then pick some random variable 7 with cpdf F;.
Define Xy =i fort € [0,71). Let P[X,; =j|Xo =1,71] = P(i,j). Resume the construction
from time 11 as if it started at time 0.

This process is called a semi-Markov process with transition probabilities P, holding time
distributions F;, and initial distribution my.

You see that this definition is a simple extension of the continuous-time Markov chain where
we replaced the exponential holding times by more general distributions.

Of course, this process is no longer Markov. Nevertheless, we expect many of the key
properties to hold. For instance, if the holding times are non-lattice, finite mean, and if
the jump chain is positive recurrent, then we expect asymptotic stationarity and almost sure
convergence of the fraction of time in the states. All this requires a little bit of work.
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Review: Part 1 - Preliminaries,
Detection & Estimation

23.1 Overview

These notes summarize the key results of the first part of the course. Make sure you understand
these results and that you can apply them.

23.2 Linear Algebra

Linear Algebra is the study of linear transformations.

We used the following result on how to diagonalize an Hermitian matrix:

II.1. Theorem: Diagonalization of Hermitian Matrix (Notes on Linear Algebra -

Theorem 6)
Let H € C™™™ be a Hermitian matriz, i.e., such that H = H*.
The eigenvalues A1, ..., A\, of H are real (they are not necessarily distinct);
H has n orthonormal eigenvectors {uy,...,u,} that form a basis for C*. That is, ufuj =

1{i = 5}
If P=[u1]...|upl, then

P*HP = A = diag(A1, ..., \n)
and

n
H = PAP* = Z A
i—1

In particular, H maps a unit hypercube with sides u; into a box with orthogonal sides Pu;
and volume det(H).

We use the first part of II.1 to study covariance matrices. Here is the main result:

II.2. Theorem: Properties of Covariance Matrix (Lecture 6 -Theorem 1)

A covariance matriz K is a symmetric positive semi-definite matriz and conversely.

There is an orthonormal matriz QQ such that KQ = QA where A = diag(\1,...,\,). Here,
the A; are the eigenvalues of K; they are Teallagéd nonnegative.
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There is a unique positive semi-definite matriz R such that K = R? and
R=QAQT.
We use the second part of I1.1 in IV.1 below (change of variables).
When we studied linear systems, we used

II.3. Lemma: Cayley-Hamilton (Lemma 1 in Lectures 13-14)
If A € R"¥", then A* is a linear combination of {I,A,..., A" 1}.

A consequence of that result is

II.4. Fact: Observability and Reachability (Fact 1 of Lectures 13-14.)

rank{CT|ATCT|(AHTCT|- -] = rank[CT|ATCT| .- |(A™ YT CT] and rank[C|AC|A*C|---] = rank[C|AC)|- - -

The rank of the first (resp., second) matriz is full if and only if the corresponding system
is observable (resp., reachable).

23.3 Probability

Let us review only a few of the important ideas. Typical probability spaces {Q,F, P} are
(Q,2%, P(A) = ¥",c4pi) when Q is finite, (R, B(R), P) where P is o-additive and P(R) = 1.
The o-additivity means that if A, | A, then P(A,) | P(A). We use that fact many times, in
particular to prove Borel-Cantelli that states that if ) P(B,) < oo, then P(B,, i.0.) =0. We
also use that continuity below in III.1. In the previous example, F/(z) = P((—o0, z]) is then a
cpdf (the o-additivity of P implies the right-continuity of F' and its convergence to 0 and 1).

Key ideas are then conditional probability and independence. We explained that pairwise
independence does not imply mutual independence.

A random variable on {§2, F, P} is a function X : Q@ — R such that X~*(B) € F,VB € B(R),
equivalently, if {w : X(w) < z} € F,Vz € R. This condition is precisely what we need to be
able to define F'x and its derivative fx. You are familiar with some standard distributions.

Expectation is the next important topic. In particular, we used a number of times, but did
not prove the following result. It shows that expectation inherits the continuity of probability.

ITII.1. Lebesgue Convergence Theorem

(a) MCT: Assume that 0 < X, 1+ X asn — co. Then E(X,) T E(X) as n — oc.

(b) DCT: ssume that X, - X as n — oo and | X,| <Y with E(Y) < co. Then E(X,) —
E(X) as n — oo.

23.4 Jointly Gaussian Random Variables

What makes jointly Gaussian random variables tick is that any linear combination is Gaussian.
First, one defines X = N(u,02) if E(e*X) = es#+(s70)/2,
Second, one observes that i.i.d. N(0,1) random variables X are jointly Gaussian since

E(exp{s(a1 X1 + -+ anXn)}) = L[l %0/ == N(0,0?) with 0? =Y afo}.
k

|A™
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Third, one has the following result that shows that this is essentially it. This result derives
directly from II.2.

IV.1. Theorem: Representation of JG - (Lecture 6 - Theorem 1)
Assume Y = N(0,K). Then' Y =p RX where X =p N(0,I).
In particular, if |K| # 0, then

1

lop .
Wexp{—ifTK 1€} (23.1)

fx(§) =

Fourth, we have the very useful observation, easily obtained from the joint characteristic
function, that

IV.2. Theorem: Uncorrelated JG are Independent (Lecture 4 - Theorem 1)
Jointly Gaussian random variables are independent if and only if they are uncorrelated.

This result directly implies the following:

IV.3. Conditional Distribution of JG (Lecture 5 - Theorem 1) Assume that (X,Y)
are N(0, K) with |K| # 0. Then, given Y =y, X = N(Ay, %) where

A=KxyKy' and £ = Kx — Kxy Ky 'Ky x. (23.2)

23.5 Detection

Recall the basic setup. The RV X takes values in a finite set and is not observed. One observes
Y and the conditional distribution of Y given X is known. The detection problem is to guess
X from the observed value of Y. We have two formulations: Bayesian when we know the prior
distribution of X and non-Bayesian when we do not.

An example of formulation in the Bayesian case is the Mazimum A Posteriori estimate of
X given Y defined by MAP[X|Y = y] = argmax, P[X = z|Y = y|.

An example of the non-Baesian formulation is the Maximum Likelihood Estimator of X
given Y defined by MLE[X|Y = y] = argmax, P[Y = y|X = z|. When appropriate, use
conditional densities.

Another non-Bayesian formulation is the hypothesis testing problem when X € {0, 1}: Find
X calculated from Y that maximizes P[X = 1| X = 1] subject to P[X =1 | X =1] < . The
solution of this problem is given by

V.1. Theorem - Neyman-Pearson (Lecture 10 - Theorem 1)
The solution to the binary hypothesis testing problem is as follows:

17 Zf A(y) L fY|X[y‘1] > >\7

T fyix o]
W) =19 ., if Aly) = X; (23.3)
0, if Ay) <A,

where A > 0 and v € [0,1] are the only values such that

P[Z=1|X =0]=p when P[Z=1|Y =y] = ¢(y). (23.4)
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Quite remarkably the solutions of the MLE, MAP, or HT problems are all based on the
likelithood ratio
_ f Y|X[y|$]

f Y\X[y|$0]‘

Thus if A(y;z) = g(h(y); z), the solution is a function of h(y). In that case, we say that h(Y)
is a sufficient statistic for detecting X from Y. The interpretation is that h(Y") contains all the
information in Y that is useful for detecting X.

Aly; ) :

23.6 Estimation

The formulation of estimation is similar to that of detection, except that X takes values in a
general set. We can define MLE and MAP as before.

We focus on MMSE and LLSE.

One useful way to understand these ideas is through the concept of projections in the space
of random variables with finite second moment. In that space, the scalar product of X and Y
is defined as E(X?Y) and it corresponds to a norm ||X|| = y/E(XTX). This space is Hilbert
and, consequently, the projection onto a subspace is well-defined. Moreover, a projection is
characterized by the fact that the difference between the random variable and its projection is
orthogonal to the subspace.

Recall from Lecture 11 that the MMSE of X given Y is the function ¢g(Y) that minimizes
the mean squared error E(||X — g(Y)|[?). We have

VI.1. Theorem: The MMSE is the Conditional Expectation (Lecture 11 - Theorem

1)
The MMSE of X given Y is E[X]|Y].

We explained that, if A(Y) is a sufficient statistic for X, then E[X|Y] = g(h(Y)).

We then define the LLSE of X given Y as the linear function AY + b that minimizes the
mean squared error E(||X — (AY + b)||?). The key result is

VI.2. Theorem: Calculating the LLSE (Lecture 11 - Theorem 2) L[X|Y] = E(X) +
Kx vyKy' (Y — E(Y)) if Ky is nonsingular.
LIX|[Y] = E(X) + Kx yQ1A, 'QT (Y — E(Y)) if Ky is singular.

It follows from the projection interpretation that E[- | Y] and L[- | Y] are linear operations.
Of course, if X and Y are JG, then E[X | Y] = L[X | Y]. The converse is certainly not true.
One nice result is

VI.3. Fact: Innovation (Lecture 12 - Example A)
Let X, Y, Z be three random vectors such that Y 1 Z and that all the random variables are
zero-mean. Then

LIX|Y,Z) = Kx yK{'Y + Kx zK,;'Z = L[X|Y] + LIX|Z]. (23.5)

Moreover,
cov(X — LIX|Y,Z]) = cov(X — L[X|Y]) - Kx zK; 'Kz x. (23.6)

We also explained the relationship between linear regression and LLSE.
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23.7 Kalman Filter

Consider a system whose state evolves according to linear dynamics with uncorrelated noise and
assume one makes linear observations in the state, also with uncorrelated noise. The Kalman
filter computes recursively the LLSE of the state given the observations to date. (Of course,
in the JG case, the filter computes the conditional expectation and we know the conditional
distribution.)

The key result is

VIIL.1. Theorem: Kalman Filter (Lectures 13-14 - Theorem 1)
Assume
Xpt1 =AX, +V, and Y, =CX, + Wy,n >1

where X1, Vy, W, are all orthogonal and zero-mean, cov(V,) = Ky, and cov(W,) = Ky .
Then

X, = L[X,|Y1,...,Y,] = L[X,|Y"]
is obtained by the Kalman Filter:

X, =AX,_1+ R, (Y, — CAX,_))

where
R, = 8,0T[CS,CT + Ky,
S, = AL, AT + Ky,

Thus,

Spi1 = Ky + AS, AT — AS,CT[CS,CT + Kw] 1CS,AT.

Moreover, the matrices S, and 3, have the following significance:

S, = cov(Xn—AXn,l),

X = cov(X, —X,).

One interesting question is what happens to the estimate as time goes to infinity. One
important result is

VII.2. Theorem: Filter Asymptotics (Lecture 13-14 - Theorem 3)
Let Q be a square root of Ky . Suppose that the following conditions hold:

(A, Q) is reachable, (A, C) is observable, and Ky > 0. (23.7)

Then, if So =0,
Yip > 5,5, =2 S, R, — R, asn — .

The limiting matrices are the only solutions of the equations
R = ScTcsc™ + Ky,

S = ADAT + Ky,
Y = (I-RO)S.
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Equivalently, S is the unique positive semidefinite solution of
S =A(S - SCT[CSCT + Kw] 1C9)AT + Ky (23.8)
Moreover, the time-invariant filter
Zn=AZ, 1+ R(Y, —CAZ, 1)

s such that
cov( Xy — Zy) = 3, as n — 0o.

We don’t expect you to know the proof of this result. However, you should understand
why the error covariance is bounded when the system is observable, even if the system itself is
unstable. You should also realize that this result is possible because the assumptions guarantee
that A— RC A is stable. The convergence itself is proved through a connection with an optimal
control problem that we analyze using dynamic programming and we did not have really enough
time to explore these ideas.

23.8 Wiener Filter

Whereas Kalman consider processes defined by dynamic equations, Wiener explore wide sense
stationary processes.
We have

VIIIL.1. Definition - WSS (Lecture 15 - Definitions 3 and 7)
{Xpn, Yy, n € Z} are wide sense stationary (wss) if

E(X,) = px, E(Y,) = py, EXptmX,) = Rx(m), E(Yn4mY,) = Ry(m), E(Xp+nY,) = Rxy(m),Yn,m € Z.

Then the spectral and cross-spectral densities are defined as follows:

o0

Sx(f) = Y Bx(m)e™>™™ and Sxx(f):= Y Rxy(m)e™ ™ feR.

m=—o0 m=—0oc

The following result explains how linear time-invariant systems modify the spectral density.

VIIL.2. Theorem - Effect of LTI System on WSS Processes (Lecture 15 - Theorem
1)

oo o0

Vo= > hi(n—m)Xy and Wy = > hy(n—m)Yn,

m=—0oo m=—0oo

where hy(n) and hy(n) are summable. Then

Svw (f) = Hi(f)Sxv (f)H5(f)
where H;(f) is the transfer function that corresponds to hi(n), for i =1,2. That is,

H;(f) = i hi(n)e 7*™/ f e R.

n=—oo
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With these definitions, we can construct the Wiener filter as follows. We have processes X
and Y that are WSS. The Wiener filter is a causal LTI system with input Y and whose output
at time n is X, = L[ X,|Ym,m < n].

VIIL.3. Theorem: Wiener Filter (Lecture 15, Section VI.)
Let X, Y be WSS. Assume that Sy (f) = |H(f)|? where H(f) = N(f)/D(f) with N and
D are polynomials in 2z~ = e~ 27 with roots z inside the unit circle. The Wiener filter has

transfer function

[Sxy () Sy H(F)+H ™ (f)-

In this expression, [K(f)]+ designates the causal part of an LTI system with transfer function
K(f), i.e., an LTI system with impulse response ki (n) = k(n)1{n > 0}.

The key idea is that the filter H~! is the whitening filter. When its input is Y, its output
is a white process Wy. It is easy to see that the filter S XyS'}?1 with input Y has output
X, = L[X,, | Yo, m € Z)]. Tt follows that X,, is the output of a filter K(f) = Sxy (f)Sy H(f)

when its input is Wy, so that the output of K is indeed X,,.
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Chapter 24

Review: Part 2 - Markov Chains,
Poisson Process, and Renewal
Process

24.9 Overview

We review the second part of the course. As with the review of the first part, use these notes
as a guide to your review. However, do not assume that what is not in the review is not part
of the final.

24.10 Markov Chains: Discrete Time

A DTMC is a sequence of random variables that take value in a discrete set and are such
that the evolution starts afresh from its current value, at any given time. This is the Markov

property.

The basic definition is
X.1. Definition: Narkov Chain (Lecture 16)

Let X be a countable set and P = {P(i,j),i.j € X} a matriz of nonnegative numbers whose
rows add up to one. Let also mg = {mp(i),i € X'} be a collection of nonnegative numbers that

add up to one. The sequence of random wvariables X = {X,,n > 0} is a Markov chain on X
with transition probability matrix P and initial distribution mg if

PXyi1=jlXpn=10,Xmnm=0,1,...,n—1] = P(i,j),i,j € X,n > 0.
It may help to realize the following:

X.2. Fact: Dynamic Representation (Homework)
We can represent a Markov chain X as

Xnt1 = f(Xm Vn)an >0

where {V,,n > 0} are i.i.d. and independent %IYO.
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In fact, one can choose V,, =p UJ0, 1], but this is not saying much.

A deeper observation is that a Markov chain X starts afresh from its value at some ran-
dom times called stopping times. Generally, a stopping time is a random time 7 that is non-
anticipative. That is, we can tell that 7 < n from {Xy, X1,..., X, }, for any n > 0. A simple
example is the first hitting time T4 of a set A C X'. Another simple example is T4+ 5. A simple
counterexample is T4 — 1. This property is the strong Markov property. It is that property
that enables us to say that the successive hitting times of a given state form a renewal process.
We have

X.3. Theorem: Strong Markov Property (Homework)
Let 7 be a stopping time of X. Then

P[X7'+1 =7 | Xr :i;XmamST] :P(Z,j),V’L,j St e

Moreover, the distribution of {X:in,n > 0} given {X; = i; X, m < 7} is the same as the
distribution of X given that Xy = 1.

Proof:

Although you worked this out in a homework, let us give a more general and probably more
compact derivation.

Let V=1{X,11 =7}, Y = 1{X; =i}, Z = {X;,,m < 7}. Then we know that

E[V|Y=1Z=E[EV|Y=121|Y =1,2]

However, E[V | Y =1,Z,7 =n] = P Xp4y1 =j | Xo =4, Xm,m <n;7 =n| = P X,y =
J | Xn =1, Xm,m <n] =P(i,7). The next to last equality comes from the fact that {r = n}
is determined by {X,,,m < n} and is consequently independent of X, given X,. This is
precisely where we need 7 to be a stopping time. Hence, it follows that E[V | Y = 1,Z] =

E(P(i,j)) = P(i, j)-
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We then defined a few concepts.

X.4. Definition: Irreducible, etc ((Definition 1 - Lecture 17)

The Markov chain X is irreducible if ..., aperiodic, transient, null recurrent, positive recur-
rent, ...

A distribution m is invariant if it satisfies the balance equations 7P = w. The Markov chain
1s stationary if and only if my is invariant.

We then get to the key result:

X.4. Theorem: Classification (Theorem 1 - Lecture 18)

(a) If a Markov chain is irreducible, then all the states have the same recurrence properties
(T, NR, or PR). The MC is then said to be T, NR, or PR, correspondingly. All the states also
have the same period...

(b) If a MC is irreducible, then it is T if and only if P[X,, =1, i.0. |Xo = j] =0,Vi,j.

(¢) If a MC is irreducible, then it is R if and only if P| X, =i, i.0. |Xo = j] = 1,Vi, .

(d) If an irreducible MC is T or NR, then

N
]. . a.S. .
NE X, =i} 22 0,Vi € X.

Moreover, there is no invariant distribution. A finite irreducible MC cannot be T or NR.

(e) If an irreducible MC' is PR, then
LN
NZl{Xn =4} L5 n(i) > 0,Vi € X.

Moreover, w is the unique invariant distribution. A finite irreducible MC' is necessarily PR.
(f) If the MC is irreducible, PR, and aperiodic, then

P(X, =i) — n(i),Vi € X.

You understand these results and you know how to derive them. For (d)-(e) we only needed
the strong law of large numbers applied to the i.i.d. inter-visit times to state 1.

One cute argument to prove (f) uses coupling. We comment on this idea because it seems
to confuse a few of you. By coupling we mean the construction of two random variables X,Y
or two random processes X,Y that have desired marginal distributions and have a particular
joint distribution that enables to prove a relationship between the marginal distributions.

As an example, assume that X =p Exp(\) and Y =p Ezp(pu) with A > p. We want to
show that if f(.) is a nondecreasing function, then E(f(X)) < E(f(Y)). The coupling proof
uses that fact that we can assume that Y = (A/u)X since this does not affect the marginal
distributions of X and Y and since the inequality we want to prove depends only on the marginal
distributions, not on the joint distribution. One then notices that Y > X, so that f(Y) > f(X)
and E( f (Y)) > E( f(X)). A proof based on the distributions would go as follows. We have

= [° f(@)Ae Mdz = f(0) + [;° e *df (2) + [; e *df (z) = E(f(Y)). Note
that in the couphng proof, one ﬁnds an almost sure relationship between the random variables.
That is, all the realizations have that relationship. In the distribution proof, one calculates.

The result (f) can be proved by coupling; so can the corresponding result for continuous-time

Markov chains. We also indicated that a proof of Blackwell’s renewal theorem uses coupling.
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We examined a number of examples of Markov chains, such as a random walk and a reflected
random walk. We also discussed the Viterbi algorithm for estimating a hidden Markov chain.
In discussions, we explained a criterion for positive recurrence.

X.5. Theorem: Criterion for Positive Recurrence (Discussion)

Let X be an irreducible Markov chain on X. Assume there is a function V : X — [0, 00)
with the following properties:

(a) E[V(Xnt1) = V(Xy) | Xn =1] < 00,Vi € X;

(b) ElV(Xp41) —V(Xpn) | Xpn=1] <=0 <0,Yi ¢ A where A is a finite subset of X.

Then X is positive recurrent.

This result can be understood as follows. Since V decreases outside of A and since V is
nonnegative, X must spend a positive fraction of time inside A. By Theorem X.4, this implies
that X is positive recurrent.

24.11 Poisson Process

A Poisson process with rate A > 0 is a point process with the property that a jump occurs in
[t,t + €] with probability Ae + o(e€), independently of the jump times less than ¢. Consequently,
the Poisson point process is memoryless. In particular, this implies that the times between
jumps must be independent and exponentially distributed with rate A. If we define the Poisson
process to have a jump at time 0, then it is not stationary. Indeed, in that case the probability
that the process has a jump in (—e¢, +¢€) is one, which is not the same as the probability that it
has a jump in (¢t —€,t + €) for ¢t # 0. One the other hand, if the process has not jump at time
0, then it is stationary. This is related to the discussion of stationary renewal processes that
we review later.
The key result is

XI.1. Theorem: Properties of Poisson Process (Theorem 1 - Lecture 20)
Let {Ny,t > 0} be a Poisson process with rate .
(a) For any s > 0, {Nyrs — Ns,t > 0} is a Poisson process with rate A and is independent

of { Ny, t < s}.
(b) For any n > 2 and 0 < t; < to < --- < tp, the random wvariables Ny , Ny, —
Niy..., Ny, — Ny, are mutually independent and Poisson distributed with respective means

Atq, )\(tQ — tl), ceey )\(tn — tnfl).

(¢) Given that Ny = n, the jump times {T1,...,T,} are the ordered values of n i.i.d. UJ0,1]
random variables.

(d) Color each jump time T,, independently red with probability o and blue with probability
1 — a where a € (0,1). Fort > 0, let A; be the number of red jumps and By the number of
blue jumps in [0,t]. Then {As,t > 0} and {B¢,t > 0} are independent Poisson processes with
respective rates aX and (1 — a)\.

We then generalized the Poisson process to a Poisson measure in R¢. This is a distribution
of isolated points with the property that the number of points in disjoint sets are mutually
independent and have Poisson distribution in each set A with mean A\(A). You see that a
standard Poisson process is a Poisson measure on R with A([t,¢ + s]) = As.

We applied the notion of Poisson measure to the analysis of the M/G /oo queue with Poisson
arrivals with rate A and i.i.d. service time distributed like S;. There are infinitely many servers,
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so that the departures are equal to the arrival times delayed by i.i.d. service times. The result
is

XI.2. Fact: Property of M/G /oo Queue (Fact 3 - Lectures 20)

(a) The departure process is Poisson with rate \.

(b) The number of customers in the queue at time t is independent of the departure times
up to time t and is Poisson with mean \E(S).

24.12 Continuous Time Markov Chains

A continuous time Markov chain is essentially a discrete time Markov chain that specifies the
successive values, modified so that the process stays in state ¢ for a random holding time that is
expounentially distributed with a rate that depends on the state. Given the sequence of values
of the Markov chain, all the holding times are independent.

From the memoryless property of the exponential distribution, we find that this process
has the Markov property. We observed that the construction runs into a problem if jumps can
accumulate (explosion). For simplicity, we assume that they cannot and we call such Markov
chains regular. One key result is the following.

XII.1. Theorem: Invariant Distribution and Stationarity (Theorems 1-2 - Lecture
23)
Let X be a regular Markov chain (meaning, no explosions are possible) with rate matriz Q.
Fort >0, let m; = {m(i),i1 € X} where my(i) = P(Xy =1i). We consider m; as a row vector.
Then
%Wt = mQ.
Consequently, 7y = m for all t > 0 if and only if 1o = m and 7 is invariant.
Let X be a reqular Markov chain with rate matrixz Q and initial distribution w. It is sta-
tionary if and only if w is invariant.

The classification result corresponds to Theorem X.4.

XII.2. Theorem: Classification of Markov Chains (Theorem 3 - Lecture 23)

Let X = {Xy,t > 0} be an irreducible Markov chain on X.

(a) The states are either all transient, all null recurrent, or all positive recurrent. We then
say that the Markov chain is ....

(b) If X is transient or null recurrent, then

1 /T
T/ H{X;=i}dt -0, asT — oo,Vi € X, a.s.
0
Mortreover, there is no invariant distribution and
P(X;=1) = 0,Vie X.
(¢) If X is positive recurrent, then

1 T
T/ WX, =id}dt - n(i) >0, as T — oo,Vi € X, a.s.
0

Moreover, m is the unique invariant distribution and

P(Xy =1i) = n(i),Vi € X.
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24.13 Jackson Networks

A Jackson network is a collection of J queues. Customers arrive as independent Poisson
processes, with rate -y; into queue 7. Customers face independent service times in all the queues
and these are exponentially distributed with rate p; in queue ¢. When a customer leaves
queue i, he goes to queue j with probability R(i,j) and leaves the network with probability
1-— ijl R(7,j). The basic result is

XIII.1. Theorem: Product-Form (Theorem 1 - Lecture 24)
Assume that each customer can eventually leave.
(a) In that case, the equations

J
N=i+ Y NR(G )i =1,
j=1

have a unique solution (A1,...,\y).
(b) Moreover, if p; := Nj/pu; < 1 fori =1,...,J, then the vector of queue lengths X; =
(X}, ..., X/) is a positive recurrent Markov chain with invariant distribution

w(ni,...,ny) =m1(ny) - my(ny) where mi(n) = (1 — p;)pi',n > 0.

The key idea of the proof is to guess that the process reversed in time corresponds to the
Jackson network with the same queues but where the flows of customers are reversed. One
uses the following lemma.

XIII.2. Lemma: Kelly (Lemma 1 - Lecture 24)
Assume that QQ and Q' are two rate matrices and 7 a distribution on X such that

m(i)q(i,5) = 7(5)qd'(§,1), Vi, j € X.
Then 7@ = 0 and Q' is the rate matriz of the Markov chain reversed in time.

PASTA is a useful result that derives directly from the independence of the increments of
a Poisson process.

XIII.3. Theorem: PASTA (Theorem 2 - Lecture 24)

Assume customers arrive as a Poisson process into a queuing system described by a station-
ary Markov chain Xy. Then, an arriving customer sees the state with its invariant distribution
.

We applied this result to show

XIII.4. Theorem: Delay through stationary M /M/1 queue (Theorem 3 - Lecture
24)

The delay of a customer through a stationary M/M/1 queue with arrival rate X\ and service
rate p 1s exponentially distributed with rate p — A.
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24.14 Convergence

We observed that there are different forms of convergence and we explored the relationships
between these forms. You should know the definitions of these forms of convergence. You
should remember the following results: a.s. = P — D and L; — P. You should be able to
show that the reverse implications are not true.

The following result is very useful. We don’t expect you to know the proof.

XIV.1. Theorem: Strong Law of Large Numbers (Theorem 3 - Lecture 25)
Let X,, be i.i.d. random variables with E(|X,|) < co. Then

X1+X2+"'+Xn a.s.
n

» E(X1) as n — oo.

24.15 Renewal Processes
We start with

XV.1. Definition: Renewal Process (Definition 1 - Lecture 26)

Let {Ty,,n > 1} be such that T, < Typy1 and {Tph41 — Tn,n > 1} are ii.d.. If Ty has the
same distribution as Te — 11, this process is called a renewal process; otherwise, it is a —em
delayed renewal process. We also define Ny = max{n > 1|71, <t} with Ny =0 for t <1y for
t > 0. See Figure 22.1.

For simplicity, we assume throughout this section that \™' := E(Ty — T}) < oc.

We saw two nice results. The first theorem tells us how to choose the first jump time to
make the process stationary. We explained that this corresponds to picking the origin randomly
along the real line among jumps separate by i.i.d. times.

XV.2. Theorem: Stationary Renewal Process (Theorem 1 - Lecture 26)
Let {N¢,t > 0} be a delayed renewal process and F(t) = P(To —T1 <t) and G(t) = P(T} <
t) for t > 0. The process {Ny,t > 0} is stationary if and only if

G(t) = )\/Ot(l — F(s))ds,t >0 where \™' = /000 sdF(s) = E(Ty —T).

In particular, if the process is stationary, the average time until the next jump, E(Ty) is
given by

B(T) = JB((1, ~T1)°).

The second theorem says that the process becomes stationary if the distribution is not
concentrated on multiples of some fixed quantity.

XV.3. Theorem: Blackwell’s Renewal Theorem (Theorem 2 - Lecture 26)
Assume that F' is non-lattice. Then, for all L > 0,

E(Nyyp, — Ny) = AL as t — o.



168CHAPTER 24. REVIEW: PART 2- MARKOV CHAINS, POISSON PROCESS, AND RENEWAL PROCESS



Appendix A

Notes on Probability

A.1 Introduction

Probability Theory models uncertainty and develops methods to make decision in the face of
such uncertainty. We briefly review a few concepts that you learned in elementary probability
and we add some important results that you may not be familiar with yet.

e Probability Space
e Random Variables

e Expectation

A.2 Probability Space

A probability space is a triplet {Q, F, P} where 2 is a nonempty set, F a o-field of €, and
P probability measure on F. That is, F is a collection of subsets of 2 that is closed under
countable set operations and P : F — [0, 1] is a o-additive function such that P(2) = 1. The
elements of F are called events.

The o-additivity of P means that if A = U | A, where A, € F for n > 1 are pairwise
disjoint, then P(A) = > >°, P(Ay). Equivalently, assume that A, | A in F. That is, A, € F
with Apy1 C Ap forn > 1 and A =N, A,. Then P(A,) | P(A), ie., P(A,41) < P(4,) for
n>1and P(A) = lim, o P(Ay).

In particular, the following result holds.

Lemma A.1l. Borel-Cantelli
Assume that events Ay, are such that ) P(Ay) < oo, then P(A,, i.0.) =0.

Proof:

The notation i.0. means “infinitely often.” That is, {A,, i.0. } is the collection of w that
belong to infinitely many events A,.

One observes that omega belongs to infinitely many A, is and only if for each n > 1 there
is some m > n such that w belongs to A,,. That is,

{An, 1.0.} = Np>1 Usn A, so that Up>, A | {4y, 10}

This implies that P(Up>nAm) 4 P(Ap, i0.). But P(Upn>ndm) < Y5, P(An), so that
P(UmznAm) ~L 0. 169 -
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0

Here are a few commonly used probability spaces.

Example A.1. Finite Space

Let Q be a countable set, F = 22 be the collection of all the subsets of Q, and {p(w),w €
Q} be a collection of nonnegative numbers that add up to one. One then defines P(A) =
Y oweaP(w),AC Q. The {Q,F, P} is a probability space.

The only nontrivial part of this result is that P is o additive. To show it, assume that
A, C Q with Apy1 C Ay forn > 1 and let A = N2, A,. To show that P(A,) — P(A), we
argue by contradiction. Since P(Ay) |, let a = lim P(Ay,) and assume that « > P(A). That
implies that there must be at least some w € A, \ A for alln > 1, a contradiction.

Example A.2. Real Line

Let B(R) be the smallest o-field that contains the intervals (a,b) for all a < b in R. The
o-field B(R) is called the Borel o-field of the real line. This o-filed exists because an arbitrary
intersection of o-fields is a o-field. Also, 2% is a o-field that contains all the intervals. Thus,
B(R) is the intersection of all the o-fields that contain all the intervals.

Similarly, for a < b € R, one defines B([a, b]) to be the smallest o-field of [a, b] that contains
all the intervals of [a,b].

Recall that a set G of real numbers is open if every point z € G is surrounded by points of
G. That is, for every z € G, there is some € > 0 such that (z — e,z +€) C G. It follows that
every € G is such that =z € (r(z) — epsilon(z),r(z) + €(x)) C G where both r(z) and €(z)
are rational numbers. Consequently, we can write G = Uzcq(r(z) — epsilon(z),r(z) + €(z)).
Moreover, this union is in fact countable since all the r(x) and €(z) are rational and the set
of rational numbers is countable. Thus, G is a countable union of intervals and this implies
G € B(R). We have shown that B(R) contains all the open sets of R.

By definition, a set is closed if its complement is open. Consequently, B(R) contains all the
closed sets of .

Example A.3. Uniform Distribution on [0,1]

Let @ —[0,1], F = B([0,1]) and define P such that P((a,b)) =b—a for 0 <a <b < 1.
One can show that P(.) extends uniquely to a probability measure on B([0,1]). The resulting
probability space {Q,F, P} describes the random experiment “choosing a point uniformly in
[0,1].”

Example A.4. Uniform Distribution on [0,1]?

The previous definitions extend to multiple dimensions. One defines B([0,1)?) as the small-
est o-filed that contains all the rectangles of the form [a,b] x [c,d] C [0,1]?. The uniform dis-
tribution on [0,1]2 is the unique probability measure on B([0,1]%) such that P([a,b] X [c,d]) =
(b—a) x (d—c¢) for all [a,b] x [c,d] C [0, 1]2.

A.3 Independence
Let {Q, F, P} be a probability space. You recall the following definitions.

Definition A.1. Conditional Probability
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The conditional probability of A given B is designated by P[A|B] and is defined by

P(AN B)

P = =55

, if P(B) #0.

It follows that if {By,..., By} C F are pairwise disjoint and such that Uy, _, B, = Q, then

 P(Bun4)  PlAIBP(B)
Pl = =) = S PLABP(By) (A1)

This expression is known as Bayes’ Rule.

Definition A.2. Independence

(a) A, B € B are independent if P(AN B) = P(A)P(B).

(b) The events {A;,i € I} C F are pairwise independent if A; and A; are independent for
alli#jel.

(c) The events {A;,i € I} C F are mutually independent if, for any finite J C I, one has
P(NjesAj) = e P(4;).

It is important not to confuse pairwise independence and mutual independence.

A.4 Random Variables

You recall that a random variable X on a probability space {2, F, P} is a function X : Q@ — R
with the property that X ~1(B) € F for all B € B(R). Here, X }(B) := {w € Q| X(w) € B}
is the inverse image of B under X. The point of this definition is that one can then define
P(X € B) for B € Bas P(X~(B)). In particular, one defines

Fx(z):=P(X <z),z € R

and one calls Fy the cumulative probability distribution function (c..p.d.f.) of X. Observe that

F(b) — F(a) = Pla < X <b) for a < b e R. Note that Fx is right-continuous, that it tends

to 1 at 400 and to 0 at —oo. These properties follow directly from the cadditivity of P. For

instance, one sees that if z,, | x, then X ~1((—o0,z,]) } X 1((—o0,z]), so that Fx(x,) | Fx(z).

Also, P(X = a) = limyy, P(z < X < a) = limgy,(Fx(a) — Fx(z)) = Fx(a) — Fx(a—). That

is, the size of the jump (discontinuity) of F'x at a is the probability that X takes the value a.
It may happen that Fx has a derivative fx, so that

Fx(z) = /_x fx(y)dy.

In such a case, fx is called the probability density function (p.d.f.) of X. The interpretation of
fx is that fx(z)dz = P(X € (z,z + dx)).
Consider the following simple example.

Example A.5. Let Q =[0,1] and F = {[0,1],[0,0.5].(0.5,1],0} where O designates the empty
set. Note that F 1is closed under countable set operations, so that it is a o-field. Define
P(]0,0.5]) = 0.3, P((0.5,1]) = 0.7, P(0) = 0, and P([0,1[) = 1. Then {Q,F, P} is a probability
space. Consider the function X : Q@ — R defined by X (w) = w. Then we claim that X is not a
random variable on {Q, F, P}. Indeed, X~1([0,0.2]) = [0,0.2] ¢ F. In particular, P(X < 0.2)
s not defined.
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Fact A.1. Function of Random Variable

Let X be a random wvariable on {Q,F,P} and g : R — R be some function such that
g Y (B) € B(R) for all B € B(R). A function g with that property is called a Borel function.
Then Y := g(X) is a random variable on {Q, F, P}.

Proof:

One must show that Y !(B) € F for all B € B(R). But Y '(B) = X (A) where
A = g7Y(B). The assumption on g implies that A € B(R). The fact that X is a random
variable implies that X ~1(4) € B(R).

The same ideas extend to multiple random variables. Thus, if X = (Xy,...,X,) where
each X,, is a random variable on the same probability space {Q,F, P}, then one defines
Fx(zy,...,2q) = P(X1 < z1,...,X, < x,). Note that the set {X; < z1,..., X, < z,} =
N _ X (=00, ,,]) is in F since each X,, is a random variable. The function Fx is the
joint cumulative probability distribution function (j.p.d.f.) of the random variables. If it has a
density fx, we call it the joint probability density function (j.p.d.f.) of the random variables.
You know that the j.c.p.d.f. contains much more information than the marginal c.p.d.f. Fyx, .

You should review the standard distributions: Bernoulli, binomial, Poisson, geometric,
uniform, and exponential.

We recall the following

Definition A.3. Independent Random Variables
(a) Two random variables X and Y on {Q,F, P} are independent if

P(X €AY eB)=P(X € A)P(Y € B).VA, B € B(R).

(b) The random variables {X;,i € I} on {2, F, P} are pairwise independent if X; and X;
are independent for all i # j € I.

(¢) The random wvariables {X;,i € I} on {Q,F, P} are mutually independent if, for any
finite subset J C I, one has

P(X; € Aj,jelJ)=1LiesP(X; € Aj),VA; € B(R).
We use the following observation repeatedly.

Theorem A.l. Let {X;,i € I} be mutually independent random variables on {Q,F, P}. Let
Ji and Jo be two finite subsets of I and g : R — R and h : R2 — R be Borel functions where
d1 == |J1| and dg = |J2| Then

g(Xj,j S Jl) and h(Xj,j S JQ)

are independent random variables.
The conclusion is generally not valid if the random variables are only pairwise independent.

A.5 Expectation

One defines the ezpected value E(X) of a random variable X as

EX) = /OO zdFx(x),

—0
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provided that the integral does not yield co — oco. If fx exists, then

0.9}

E(X) :/ zfx(x)dzx.
— 00

One can be a bit more precise here. Assume that X takes only finitely many values, so
that we can write X = > | a;,1{w € A} for some events A,,. Then one defines E(X) =
S L amP(Ay). The general definition is obtained by approximating X by simple random
variables. Thus, if X > 0, one defines X,, = max{k2™"|k > 0,k272" < min{X,n}}. One
sees that each X, is a simple random variable. Moreover, X, 1(w) > X,(w) for all w. It
is easy to show that F(X,) is nondecreasing and must therefore converge to some limit that
defines E(X). In the general case, one writes X = X — X~ where X := max{X,0} and
X~ := X—X7T. One then defines E(X*) and E(X ) as before, and E(X) := E(XT)-E(X™),
provided that the result is not co — oc.

We now state a very convenient result.

Theorem A.2. Let X be a random variable on {Q, F, P} with ¢,p.d.f. Fx and let g be a Borel

function. Then

[e¢] e ¢

9(x)dFx (z) = / o(@) fx ()da,

— o0

B(F() = [

— 00

where the second identity holds if fx exists.
Recall also the following definition:

Definition A.4. The variance of the random variable X is designated by var(X) and is defined
as var(X) = E((X — E(X))?) = E(X?) — E(X)2

We will use the following simple inequalities.

Fact A.2. Let X be a random variable.
(a) Markov: If h : [0,00) — R is nondecreasing, then

E(f(X])
fle) -

, one gets Chebychev’s inequality:

P(|X| =€) <

In particular, for h(z) = 22

E(X?)
e

P(|X| =€) <

(b) Jensen: Assume that g : R — R is a convex function. Then
E(9(X)) = g(B(X)).

Proof:

(a): Note that f(e)1{|X| > €) < f(|X]) as you can verify by considering separately the
cases | X| < € and | X| > e. The result then follows by taking expectations.

(b) Since g is convex, it lies above the tangent line to its graph at the point (E(X), g(E(X))).
If we designate the slope of that tangent by «, we conclude that

9(X) = g(E(X)) + a(X — E(X)).

Taking expectation on both sides yields the result.
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0

The o-additivity of P implies continuity properties of the expected value. For instance, let
Xn(w) = H{w € An} where A, T A as n — co. Then X,, T X where X(w) = 1{w € A} and we
see that E(X,,) = P(4,) T E(X) = P(A).

However, one must be careful, as the following example demonstrates. Let {Q,F, P} =
([0,1], B([0,1]), P) where P([a,b]) =b—a for 0 <a <b < 1. Define X, (w) =n x H{w < 1/n}
and X(w) = 0 for all w € [0,1]. We see that X,(w) - X(w) for all w # 0. However,
E(X,) =1 -» E(X) = 0. Thus, in general X,, — X does not imply FE(X,) — E(X). The
important positive result is as follows.

We need the following definition.

Definition A.5. Almost Sure Convergence

Let X,, and X be random variables on {2, F, P}. One says that X, converges almost surely
to X, and one writes X, —= X if the set of w such that the numbers Xp(w) converge to the
number X (w) has probability one. That is,

X, X & P(lim X, =X)=1.
n—oo
Theorem A.3. Lebesgue Convergence Theorem
(a) Monotone Convergence Theorem: MCT. Assume that 0 < X, T4.5. X as n — oo. Then
E(X,) T E(X) asn — .
(b) Dominated Convergence Theorem: DCT. Assume that X, ~>> X as n — oo and
| Xn| <Y forn>1 with E(Y) < co. Then E(X,) — E(X) as n — oo.



Appendix B

Notes on Linear Algebra

B.1 Introduction

Linear Algebra is the theory of linear transformations. Applications abound in estimation,
control, and Markov chains. You should be familiar with the following concepts that we review
in these notes:

e Linear transformation, vector, matrix, determinant
e Basis

e Eigenvector, eigenvalue

e Range, rank, null space

e Diagonalization

e Rotation

e Projection

e Singular Value Decomposition

B.2 Preliminaries

Matrix Notation

You remember the matrix notation. For instance,

3 4 7 =2

1 5 6 9

[ 3xT+4x6 3Ix(—2)+4x9
| IxT745x6 1x(=2)+5x%x9

| 45 30

| 37 43
Thus, element (AB);; (meaning row ¢ and column j) of AB is the product of row i of A
times column j of B, where the product of P?fé) vectors is the sum of the products of their
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corresponding elements. This makes sense if A € C™** meaning hat A has m rows and k
columns, and B € C¥*™ and then AB € C™*".
Observe that, with z € C™ and vy, ..., v, € C",

[1lva] - [om]z = zju;.
J
Also,
A(B +C) = AB + BC.

Recall that
(AB)* = B*A*

where A* is the transposed of A defined by Aj; = Aj;.

Also, in general, AB # BA.

If A€ C™", then A™! is a matrix in C"*” such that AA™! is the identity matrix I. It is
easy to see that A~! is unique, if it exists. Also, (AB) ! =B 1AL

Inverse of 2 x 2

Note that, with A := ad — bc,

MR L

so that

provided that A # 0.

For instance,

3517 1[7 -5
2 7 S -2 3]

which enables us to state that the unique solution of the equations

tHIBEH
2] 1308

- H[n Sl

Note also that the matrix
3 5
6 10

does not have an inverse, because ad — bc = 3 x 10 — 6 x 5 = 0. Observe that

[2 150][2]:[2]x1+[150]$2:[;](3:514—5:52).

18
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3 5 I _ b1
6 10 zo | | b2
] _ [
by | 2

for some a. In that case, there are infinitely many solutions that correspond to 3z1 + 5x2 = a.

Consequently, the equation

has no solution unless

Solving Homogeneous Linear Equations

2 6 4117 o
311 8| ™| o]

z3

Consider the equations

We can subtract from the second equation the first one multiplied by 3/2 without changing the
solutions. Accordingly, these equations are equivalent to the following:

2% 2]]= |- [0]
02 2 xi —lo |
Let us fix x3 = u € C. The second equation is 2zs 4+ 2z3 = 0 and it yields
Tog = —U.
The first equation is 2z + 6x9 + 4z3 = 0 and it yields
] = =319 — 223 = —3(—u) — 2u = u.
We conclude that the general solution of the equations is
T1 = U, Tg = —U, T3 = U.

The procedure that we used consists in performing elementary row manipulations of the
equations to bring them into a row echelon form. In that form, the column index of left-most
nonzero term of a row is called the pivot. The index of the pivot is increasing for successive
rows. We then solve recursively “bottom up.”

The elementary row operations consist in interchanging rows or subtracting a multiple of
one row from another row. Let A be an arbitrary matrix. Assume column i is the left-most
nonzero column. By interchanging rows, one makes sure that element (1,4) is nonzero. By
subtracting row 1 multiplied by aj;/a1; from row 4, the new matrix has all entries ji equal to
zero for j > 2. We then interchange rows below row 1 to make sure that the leftmost nonzero
term in those rows is in row 2. We continue in this way to obtain the row echelon form.

Theorem B.1. A system of m homogeneous linear equations with n variables has infinitely
many solutions if n > m.

Proof:

First reduce the equations to the row echelon form. Since there are more columns than
rows, there must be columns without pivots. One can fix the variables x; arbitrarily for the
values of 7 such that column ¢ has no pivot; these are free variables. Proceeding bottom up, one
solves for the last pivot variable in terms of the free variables. One then continues recursively,
solving for the other pivot variables. 0



178 APPENDIX B. NOTES ON LINEAR ALGEBRA
B.3 Range, Rank, Null Space, etc.

B.3.1 Linear Independence

The vectors {vi,...,vp} € C" are linearly independent if
a1v1 +---agvgp =0only ifa; = --- =a; = 0.

A linear subspace V of C" is a subset of C” such that a linear combination of two elements
of V is again in V. That is, v1,v9 € V and a1,as € C implies a1v1 + asvs € V. For instance,
the collection of vectors z € C? such that 2o = 3z is a linear subspace of C2.

Let V be a subspace of C". A basis of V is a collection {v1,...,vn,} of vectors of V that are
linearly independent and such that every v € V can be written as v = ajv; + - -+ + apvy, for
some a; € C.

A linear map @Q : V — V is invertible if it is a bijection.

Fact B.1. Let {vi,...,vm} be a basis of the linear subspace V. For any v € V, the represen-
tation v = aqvy + - - - + Uy s unique. That is, if

v =a1v] + -+ + AU, = bivy + -+ by,

then a; = b; fori=1,...,m.
Proof:
Note that

0= (a1 — bl)'Ul + -+ ((Zm — bm)vm

Since the v; are linearly independent, it follows that a; —b; =0 for ¢ =1,...,m. 0

Fact B.2. Let {v1,...,un} be a basis of the linear subspace V. Let {wy,...,wx} C V with
k > m. Then the vectors {wy,...,wg} are linearly dependent.

Proof:
We want to find {b,...,b;} that are not all zero and such that bywy + - - - + byw, = 0. We
know that

m
w; = E a;jvj, fori=1,...k.
j=1

Hence,
k k m m k
0= Z b,w; = Z Z biaijvj = Z[Z biaij]vj'
i=1 i=1 j=1 Jj=1 =1

It follows that
k

Zbiaij :0, forj: 1,...,m.

i=1
This is a system of m homogeneous equations with £ > m variables. We know from Fact B.1
that there are infinitely many solutions. In particular, there are nonzero solutions {b1,...,b;}. g
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B.3.2 Dimension

Theorem B.2. Let V be a subspace of C™. If {v1,...,vm} and {wy,...,wi} are two bases of
V, then m =k <mn. The value of m is called the dimension of V that we designate by dim(V).
If Q :V =V is a linear invertible map, then dim(QV) = dim(V).

Proof:

Since {v1,...,vm} is a basis, Fact B.2 implies that £ < m. A symmetric argument shows
that m < k. It follows that k& = m.

To show that m < n, note that {e; = (1,0,...,0)*,...,e, = (0,0,...,0,1)} is a basis, so
that no more than n vectors can be linearly independent, again by Fact B.2.

With V' = [vi]|- - |vm], we claim that QV is a basis for QV. Indeed, QVz = 0 implies
Vx = 0 because (@ is invertible, which implies z = 0.

B.3.3 Range, Rank, Null Space

Let V = {v1,...,vy} be a collection of vectors in C" and V = [v1] - - |vy,] € C*™ the matrix
with columns v;. By V* we designate the conjugate of the matrix V. That is, (V*);; is the
complex conjugate of Vj;. Thus, V* € C"*™.

Definition B.1. We define R(V'), the range of V, to be the collection of linear combinations
of the vectors v;. That is

R(V)={Val|aecC"}.

The range of V is a linear subspace of C™. The dimension of that subspace is called the rank
of V.
The null space of V', N(V), is defined as the following set:

N(V):={2€C"|Vz=0}.
Theorem B.3. Let V € C"*™. Then
dim(R(V)) = dim(R(V™)).

Mortreowver,

dim(R(V)) + dim(N(V)) = m.

Proof:

Convert the matrix V' to the echelon form by performing row operations. Since these op-
erations are invertible, they do not change the dimension of the range of V. Also, they do not
change N (V). Now, say that the reduced matrix has k& nonzero rows, and therefore k pivot vari-
ables. The k nonzero rows are linearly independent, and there are only k linearly independent
row, so that dim(R(V*)) = k. Also, the k columns that correspond to the pivot variables are
linearly independent and there cannot be more than £ linearly independent columns. Hence,
dim(R(V)) = k.

In the previous argument, there are m — k£ columns that do not have pivots and they cor-
respond to independent free variables. Consequently, dim(N(V)) =m — k. 0
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R(A%) R(A)
dim=r dim=r

N(A*)
dim=n-r

Figure B.1: The actions of A and A*.

Lemma B.1. Let A € C™*" be a matriz of rank r.
(a) One has the decompositions

C" = R(A*) ® N(A) and C™ = R(A) & N(A*)

where R(A*) L N(A) and R(A) L N(A*). That is, any © € C" can be written uniquely as
z =u+ v where u € R(A*) and v € N(A) and similarly for C™.
(b) The restriction of A on R(A*) is a bijection of R(A*) onto R(A) and

N(AA*) = N(AY),R(AA*) = R(A).
(c) The restriction of A* on R(A) is a bijection of R(A) onto R(A*) and
N(A*A) = N(A), R(A*A) = R(A").

Proof:
Figure B.1 illustrates the statements of the Lemma.
The key observation is that

R(A)t :={z € C™|z*y =0,Vy € R(A)} = N(A*).
To see this, note that

z€R(A)T & z*Az=0,Yz € C"
& 2fA*r =0,Vz e C"
S A'r=0s1ze NAY).

Consequently, replacing A by A*, one finds that R(A*)~ = N(A).

Since R(A*)* = N(A), any vector x can be written uniquely as z = u +v where u € R(A*)
and v € N(A). Consequently, Az = Au and we see that A restricted to R(A*) is onto R(A).
Moreover, we claim that A restricted to R(A*) is one-to-one on R(A). That is, if Au; = Aus
for ui,uz € R(A*), then u; = us. Equivalently, let Au = 0 for some u € R(A*); we show that
u = 0. To see this, observe that u € N(A4) N R(A*) = {0}.

We now verify that N(AA*) = N(A*). Assume that z € N(AA*). Then AA*z = 0, so that
||A*z||? = 2* AA*z = 0, which shows that A*z =0 and x € N(A*). Hence, N(AA*) C N(A*).
Obviously, N(A*) C N(AA*) since A*x = 0 implies AA*z = 0. Hence, N(AA*) = N(A").

To show that R(AA*) = R(A), assume that z € R(A), so that x = Ay. We decompose y
as y = u + v where u = A*z € R(A*) and v € N(A). Then, z = A(u +v) = Au = AA*z, so
that © € R(AA*). Hence, R(A) C R(AA*). Also, R(AA*) C R(A) since any z € R(AA*) is of
the form z = AA*y = A(A*y) € R(A).

The other statements of the lemma are obtained by replacing A by A*.
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B.4 Determinant

We define the determinant det(A) of a square matrix A. This concept is essential to understand
the inverse of matrices and also the change of variables in multivariate calculus.

Before introducing the definition, we need to review the notion of index of a permutation.

B.4.1 Permutations

Call a transposition of a list of numbers the interchange of two successive numbers in the list.

Consider the numbers (1,2,3). They are in increasing order. Thus, the minimum number
s(1,2,3) of transpositions required to put these numbers in increasing order is equal to zero;
that is, s(1,2,3) = 0.

Now counsider (3, 1,2). To arrange these elements in increasing order we can interchange the
first two elements to obtain (1, 3,2), then interchange the last two elements to obtain (1,2, 3).
That is, we can reorder the three elements with two transpositions of successive elements. You
can also see that this is the minimum number of such transpositions required since no single
transposition does the job. Hence, s(3,1,2) = 2.

Consider a permutation p = (p1,p2,...,pn) of (1,2,...,n). There is certainly a sequence of
transpositions that reorders these numbers. For instance, let py = 1. We can bring 1 back in
the first position by interchanging the elements £ and k£ — 1, then the elements £ —1 and k — 2,
..., then the elements 2 and 1. After these & — 1 transpositions, the permutation p has been
modified to (1 = pg,p1,---,Pk_1,Pkr1s---,Pn). One can then repeat the procedure to bring 2
in second position with a finite number of transpositions, and so on. We define s(p) to be the
minimum number of transpositions required to arrange the elements in p in increasing order.

Assume that one can reorder the elements of a permutation p with & transpositions. We
claim that k — s(p) must be an even number. Equivalently, if we perform a number & of
transpositions of the elements (1,2,...,n) that brings them back to the same order, then k
must be even. To see this, note that the result is obvious for two elements. Assume that the
result holds for n elements and we color these elements blue. Let us add one element that
we color red. Consider then the set of k transpositions that bring back the elements to their
original order. Among these transpositions, a number k; do not move the red element. By
induction, k; must be even. The other ko = k — k1 transpositions move the red element to the
right or to the left in the set of blue elements. It is obvious that ko must be even to bring the
red element back to its original position.

Consider A € C"*". Let « be a selection of n entries of A taken from different rows and
different columns. We can list the elements of « in increasing order of their rows. Thus, a =
a(p) = (@1p,,2pys - - -, np, ) Where p := (p1,p2,...,pn) is some permutation of (1,2,...,n).
Thus, there are n! such selections «, one for each permutation p.

B.4.2 Definition

Definition B.2. Let A € C™*"™ for some n > 2. The determinant det(A) of matriz A is
defined as

det(A) = aip s, -+ ang, (~1)*P) =Y~ a(p)(—1)*")

p P

where the sum is over all the possible permutations p of (1,2,....n).
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To clarify this definition, let us look at some examples. For a,b,c,d € C,

det < Z Z > = Oé(l, 2) - 01(2, 1) = ai11a22 — 412021 = ad — be.

As another example,

a b c

det | d e f

g h 1
=a(1,2,3) —a(1,3,2) —a(2,1,3)

+a(2,3,1) +a(3,1,2) —a(3,2,1)
= 011022033 — 411023032 — 12021033

+ a12a23a31 + 13621032 — A13022031
=aei —afh —bdi+bfg+ cdh — ceg.

Fact B.3. (a) Assume the matriz B is obtained from A € C"*™ by interchanging two rows or

two columns, then
det(B) = —det(A).

(b) Assume the matriz B is obtained from A € C™*™ by multiplying one row or one column

by a constant vy, then
det(B) = ydet(A).

(c) Assume the matriz A has two identical rows or two identical columns, then
det(A) = 0.

(d) Let A* designate the transposed of matriz A, defined so that the entry ij of A* is the
entry ji of matriz A. Then
det(A™) = det(A).

Proof:

For (a), note that the interchange modifies the index of every permutation by one. Fact (b)
is obvious. Fact (c) follows from (a).

For fact (d), consider the term a(p) = aip, ---anp, in det(A). That term appears in
det(A*) := det(B) as b1+ -bp,n. Let us rearrange the terms (b, 1,...,bp,n) so that they
are in increasing order of the rows. To do this, we need to perform s(p) transpositions. We
end up with the terms by, - - - byg,. But then we know that s(p) transpositions of the terms
q=(q1,...,qn) bring them back in the order (1,2,...,n). That is, s(q) = s(p). Accordingly,
the term aip, - - - anp, that appears with the sign s(p) in det(A) appears with the sign s(q) = s(p)
in det(A*) and we see that det(A) = det(A*).

Definition B.3. Let A € C*". For i,j € {1,...,n}, the matriz A7 ¢ Cr—1x(n=1) 4
obtained from A by deleting row i and column j. We then define the cofactor of the entry a;;
of matriz A as

Cij = (—1)i+j det(Aij).
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Fact B.4.
det(A) = Z Qi Cik = Zakjckj, for all Z,j
k k

Proof:
Consider a generic term in a;;c;;. Such a term is

i+ k
/6 = (_1)Z+ Q1p, ."ai*l:piflai+1ypi+lanpn(_]‘)S(p)

where p = (p1,...,pn) is a permutation of the numbers (1,2,...,n) from which k£ has been
removed. Consequently,
p= Aipy " aiflypiqaikaﬂrlmiﬂanpn(_1)s(p)+(i+k)-

We claim that
(_1)5(p)+(’i+k?) — (_1)5(p1,...7pi,17k7pi+1,...,pn).

Let us first perform ¢ — 1 transpositions of (p1,...,pi—1,k,Pit1,---,Pn) to get

(kapla <oy Di—15Pit15 - - - apn)

We then perform s(p) transpositions to get
(k,1,....k—1Lk+1,...,n).
Finally, with £ — 1 other transpositions, we get
(L,2,....,k—1Lkk+1,...,n).

That is, we can reorder the terms (pi,...,pi—1,k, pi+1,--.,Pn) With s(p) + i+ k — 2 trans-
positions. We know that this may not be the minimum number of transpositions, but the
difference with the minimum number must be even, as we explained when we introduced the
index of permutations. This proves the claim.

It follows from this observation that the terms in a;;c;; as k ranges over all possible values
are all the terms in det(A).

Fact B.5. Let B be a matriz obtained from A by subtracting from one row a multiple of a
different row. Then
det(B) = det(A).

Proof:

Assume that all the rows of B are the same as the rows of A, except that row 4 is equal to
row i of A minus « times row j of A, for some i # j. Let ¢;; be the cofactor of a;, and ¢}, be
the cofactor of b;z. Then ¢, = ¢}, since these cofactors involve only elements of the matrices
that are not on row . The expansion of the determinants gives

det(A) = Zaikcik and det(B) = Z(alk — aajk)cik.
k k

Now, >, ajrci is the determinant of the matrix obtained from A by replacing row i by a copy

of row j. Since this matrix has two identical rows, its determinant is zero. We conclude that
det(A) = det(B).
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Fact B.6. Let A,B € C"*™. Then

det(AB) = det(A) det(B).

Proof:

The trick in the proof is to reduce the matrices to a row echelon form by performing simple
row operations where we subtract from one row a multiple of a row above. For instance, say
that we replace row 2 in matrix A by row 2 minus « times row 1. We then obtain a matrix A’
with

a;j =a;; —oajl{i =2},j=1,...,n.

Note that

J
= (AB)ix — a(AB)1{i = 2}.

(AIB)ik = Zaéjbjk = Z(aij - aaljl{z’ = 2})bjk
J

That is, the rows of A’B are those of AB, except that o times row 1 is subtracted from row
2. That is, the elementary row operation performed on A results in the same row operation
on AB. We know from Fact B.5 that such row operations do not modify the determinant of a
matrix.

Similarly, if we interchange two rows in matrix A, then the corresponding rows of AB are
interchanged. Indeed, row i of AB is equal to row ¢ multiplied by B. Such an operation
multiplies the determinant of A and that of AB by —1.

Let us then perform elementary row operations on A to reduce it to a row echelon form.
The determinant of the reduced matrix A is nonzero only if the reduced matrix has a triangular
form. That is, if the diagonal elements are nonzero and the terms below the diagonal are zero.
The determinant of a matrix in triangular form is the product of the diagonal elements, as is
easy to see by induction on the size of the matrix from Fact B.4. These operations do not
modify the identity between the determinants of A and of AB,

We now perform elementary column operations on B to reduce it to row echelon form. These
operations correspond to the same operations on AB. For instance, if b}k = bjr —abj1 1{k = 2},
then

(ABYir = Y aij(bjk — abj1{k =2})
j
= (AB)iy — a(AB)j1{k = 2}.

Once again the determinant of B is nonzero only if after reduction B is triangular. so that
B is also triangular. But now, both A and B are triangular and it is immediate that AB is
triangular. Moreover, the diagonal terms of AB are the product of the corresponding diagonal
terms of A and B. That is, the determinant of AB is the product of the determinants of A
and B.

Since the identity between the determinant of AB and those of A and B has not been modi-
fied by the elementary row and column operations, we conclude that det(AB) = det(A) det(B)
for the original matrices.
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B.5 Inverse

Consider the matrix A € C"*"™. We know that the span of A, span(4) := {Az | z € C"}, is
a linear space with dimension rank(A). If the columns of A are linearly independent, i.e., if
rank(A) = n, span(A) = C" and for every y € C", there is some x € C" such that Az = y.
Moreover, that  must be unique since we know that the representation of a vector as a linear
combination of basis vectors is unique. We can then define that unique x to be the inverse of
y under A and we designate it by z = A~ ly.

If rank(A) < n, then span(A) is a proper subset of C", so that there are some y € C" for
which there is no x such that Az = y. Also, if y is in span(A), then there are infinitely many
x such that Az = y and any two such values of z differ by an element in the null space of A.

We now discuss the calculation of A~! in terms of determinants.

Theorem B.4. Let A € C"*". Then rank(A) = n if and only if det(A) # 0. Moreover, in
that case, there is a unique matriz A~' € C™*™ such that AA™" = I where I designates the
identity matriz, i.e., the matriz whose elements are I;j = 1{i = j}. That matriz has entries

1
Al = .
i~ det(A)

where cj; is the cofactor of aj; in A.

Proof:
Define B to be the matrix with entries b;; = ¢j;. We show that AB = det(A)I. First we
check the diagonal elements of AB. We find

(AB)ii = Y airbpi = Y aixci, = det(A),
k: k

by Fact B.4.
Second, we check the off-diagonal terms. Thus, let ¢ # j. Then

(AB)ij = aikbej = Y airCjk-
k: p

Now, consider the matrix D obtained from A by replacing row j of A by a copy of row 7 of A.
Note that the cofactor of dj; is not affected by this replacement since that cofactor involves
terms that are not on row j. Accordingly, that cofactor is ¢j;. Hence, we can write, using Fact

B4,
det(D) = Zdjk?cjk = Z Ak Cik-
k k

But we know that det(D) = 0, because that matrix has two identical rows (see Fact B.3(b)).
Putting these conclusions together, we see that AB = det(A)I. This shows that if det(A) #
0, then the matrix A~! := B/ det(A) is such that AA~! = I. Tt follows that Az = y has a unique
solution z = A1y, so that the column of A must be linearly independent and rank(A) = n.
Now assume that rank(A) = n. We want to show that det(A) # 0. Since rank(A) =
n, for every ¢ € {1,2,...,n}, there must be some v; € C" such that Av; = e;, where
ei(j) = 1{¢ = j}. The matrix D with columns v; must then be such that AD = I. Since
det(AD) = det(A) det(D), this implies that det(A) # 0. 0
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Theorem B.5. Let A € C"*". Then Az = 0 has a nonzero solution if and only if det(A) = 0.

Proof:
If det(A) # 0, then we know that A has an inverse A~!, so that Az = 0 implies z = 0.
Agsume that det(A) = 0. By performing elementary row operations, one converts A to a
row echelon form B with det(B) = 0. Now, det(B) is the product of the diagonal elements
of B. Consequently, B has a zero diagonal element which corresponds to a nonzero z; solving
Bx = 0, and therefore Az = 0.

B.6 Eigenvalues and Eigenvectors
These concepts are very useful. We start with an example.

B.6.1 Example
Counsider the matrix
4 3
A= .
12
An eigenvector of A is a nonzero vector v such that Av is proportional to v; that is, Av = Av.
The constant A is called the eigenvalue associated with the eigenvector v. You can check that

o[ s [2]

Avy = vy and Avy = bvo.

are such that

Accordingly, v; and vy are two eigenvectors of A with respective eigenvalues Ay = 1 and Ay = 5.
This concept is useful because we can write any other vector x as a linear combination of
v1 and vo. For instance,

L V1 + Y2v
To = Y1U1 T Y202

with y; = (—z1 + 3z2)/4 and y2 = (z; + z2)/4. We then find that
Az = A(y1v1 + yav2) = y1Av1 + Y2 Ava = y1A1v1 + Y2 Agv2.

We can write the above calculations in matrix form. We have

z=Vy = [v]vs] [ z; ] where y = [ _11/{14 i’ﬁ ] = Vg,

so that
Az = AVy = AVV e = N | Aawa]V e = AVV 1z

where A = diag(A1, A2) is the diagonal matrix with diagonal elements A, Ao.
Repeating these operations n times, we find

Az = A"VV g

where A" = diag(A}, \g).
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B.6.2 General Case

Definition B.4. Let A € C". An eigenvector of A is a nonzero v € C" such that Av = \v.
The constant A € C is called the eigenvalue associated with v.

Fact B.7. Av = A\v for some v # 0 if and only if det(A — XI) = 0.

Proof:
(A—AI)v = 0 admits a nonzero solution v if and only if det(A—AI) = 0, by Theorem B.5.

The fact above tells us how to find the eigenvalues. One can then find the eigenvectors
corresponding to an eigenvalue A by solving the homogeneous equations (A — AI)v = 0. One
procedure to do this is to reduce the matrix to row echelon form.

Fact B.8. Assume that A admits the linearly independent eigenvectors {vi, ..., vy} with cor-
responding eigenvalues {1, ..., \,}. Then

VYAV = A := diag(\, ..., \p) where V = [vy] - - - |vg].

Proof:
This is identical to the example we explained earlier. 0

Fact B.9. Assume that the eigenvalues of A are distinct. Then the corresponding eigenvectors
are linearly independent.

Proof:
Assume otherwise, so that Z?Zl ¢;v; = 0 for some nonzero c;. Then

n n
0= A(Z cjvj) = Z CiAjU;.
j=1 j=1

It follows that

n n n—1
0= ZCj)\j’Uj - >\n ZC]"UJ' = Z Cj()\j — )\n)vj.
j=1 j=1 j=1
Hence, the eigenvectors {v1,vg,...,v,_1} are linearly dependent. We can repeat the argument
and show that the eigenvectors {vy,ve,...,v,—2} are linearly dependent. Continuing in this
way shows that the eigenvector v; must be linearly dependent, clearly a contradiction. 0

B.7 Rotation and Projection

The length of a vector x € C” is defined as
] := (Y 2§)'? = (a*a) '/,
i=1

Picture a vector x and imagine that you rotate it around the origin, by some angle. Intuitively,
this operation is linear. It should therefore correspond to some matrix R. The rotation must
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preserve the length and also the angles between vectors. In particular, the rotated axes must
be orthogonal and have a unit length. Since the rotated axes are the columns of the matrix R,
this implies that

R'R=1.

In other words, R* = R~L.

By definition, a rotation matriz is a real matrix with the property above. It is immediate
that the product of two rotation matrices ia again a rotation matrix. Not surprisingly, one can
represent an arbitrary rotation matrix as a product of rotations around the axes.

The concept of projection is also important.

Definition B.5. Assume that V is a linear subspace of C". Let x € C". The projection of z
onto V is the vector v € V that is the closest to x, i.e., that achieves

min{||z —v|| s.t. v € V}.
We write v = x|y if v is the projection of x onto V.
Fact B.10. (a) v =zx|y if and only ifveE Y and z —v LV, i.e.,
(x —v)*w=0,Yw e V.

(b) The projection is unique.
(¢) The projection is a linear operation.
(d) Assume thatV = span(V') = span(vy, ..., vy) where the column vectors of V' are linearly
independent. Then
x|y = VMz where M = (V*V) 1V,

Proof:

(a) Take any w € V, so that v + Aw € V. Then

|z — (v + 2 w)||? = (z — v — dw)*(z — v — dw)
= ||z — v||? = 2X(z — v)*w + X?||w||*.

Taking the derivative with respect to A at A = 0, we find that the value of A = 0 achieves the
minimum if and only if (z — v)*w = 0.

(b) Assume that both v and w achieve the minimum distance to z in V. We claim that
v =w. Note that z —v L V and z —w L V. It follows that w —v = (z —v) — (z —w) L V.

But w —v € V. Hence,
0= (w—0)"(w—wv) = |lw—ol|

so that v = w.
(c) Assume v; = z;|y for i = 1,2. We show that

a1v1 + ague = (a1 + agwe)|y.
To show this, we verify that
a1x1 + agwe — (a1v1 + agve) L V.
This follows from

l[a121 + a7 — (a1v1 + azv2)]*v = a1 (w1 — v1)*v + az(z2 — v2)*v = 0.
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(d) Note that VMx € V. Moreover, we observe that, for any v =Vz €V,

(x —VMz)'Vz=2"Vz—2"M*'V*Vz
=2'Vz—2*V(V*V) 'V V2 =0.

A little example might help. Let v; = (1,2,3)* and vy = (1,1,2)*. The V = span(vy,v3) is
a linear subspace of C3? that consists of all the vectors of the form zv1 + 22v9 = V2 where V
is the matrix with columns v; and vy and z = (21, 22)*. Note that

wir |14 9]
VV—[9 6|
so that
1 17
1 _
MY = vVVV)l=|2 1 B[g j]
3 2 |
-3 5
1
- g 3 —4. y
0 -1
or
11-3 3 0
M_3[5 —41}
We conclude that
1 1
17 —
x|y:VM:1::217330x
3 9 3 5 —4 1

For instance, if z = (2,1,1)*, then

7
a)|y = —v1+ =vg E V.

3
Also, if we choose some v € V, say v = V z, then
2 TEIANER
(x —z|y)v = 1 ~3 1 2 1 [z=0
1 5 3 2

B.8 Singular Value Decomposition

B.8.1 Some Terminology

A matrix U € C™*" is said to be unitary if U*U = I, where U* is the complex conjugate of the
transposed of U. The matrix U is said to be orthogonal if it is unitary and real.

A matrix H € C"*" is called Hermitian if H* = H; moreover, it is positive semidefinite if
z*Hx > 0 for all x € C"; it is positive definite if *Hx > 0 for all nonzero z € C".
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B.8.2 Decomposition of Hermitian Matrices

Theorem B.6. Let H € C"*™ be a Hermitian matriz.

(a) The eigenvalues A1, ..., N\, of H are real (they are not necessarily distinct);

(b) Eigenvectors u; and u; that correspond to distinct eigenvalues are orthogonal, i.e.,
uiu; = 0.

(c) H has n orthonormal eigenvectors {ui,...,u,} that form a basis for C". That is,
uiuj = 1{i = j}.

(d) If P = [uy] ... |up], then

P*HP = A = diag(A1, ..., \n)

and

n
H = PAP* = Z Aiuiu.
i—1

(e) H is positive semidefinite (resp., definite) if and only if \; > 0 (resp., > 0) for all i.
(f) One has

max <z Hzx = max{\;
{olllzl[=1} )

and
min  z*Hz = min{\;}.
{allx]|=1}
Proof:

(a) The eigenvalues of H are the zeros of det(A — H). This polynomial of degree n has n
zeros (not necessarily distinct). We show that every eigenvalue \; must be real. Since H = H*,
we see that (ufHu;)* = u;H*u; = u;Hu;, so that ufHu; is real. However, ufHu; = Ajufu;
and uwiu; = ||u;||? is real. It follows that ); is also real.

(b) Assume that X; # A\; and if Hu; = A\ju; and Huj = Ajuj. Observe that

uj Huj = \jujuyg,
so that, by taking the complex conjugate,
)\ju;ui = (uj Hu;)* = u;‘HuZ = Aiu;‘-ui,
which shows that (\; — )\j)u;ui = 0. Since \; # ), it follows that uju; = 0.
(c) We show that H has n linearly independent eigenvectors. Let u; be such that Hu; =
Arug and ||uy]| = 1. Let also Vi be the space of vectors orthogonal to u;. Note that if z € Vy,
then Hx € V. Indeed,

(uyHzx)* = x*H*up = 2" Huy = M\z*u; = 0.

Pick an orthornormal basis {ba,...,b,} for V. Let P = [uy|ba]---|bs]. Any z € C" can be
written uniquely as Py with y = P*x since P*P = I. Also,

n n
HPy = \uiys + H(Z bjyj) = \Muy1 + Z bjzj
j=2 j=2
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because H (> ", bjy;) € V1. By linearity,

j=2
22 Y2
z.
Sl=m| ¥,
2n Yn

so that

oF =~ | A0
HP—PHwhereH—[0 M]
Note that M* = M. We claim that the eigenvalues of M are the eigenvalues of H other than

A1. Indeed,

det(\ — H) = det(\ — PHP*) = det(P(\ — H)P*)
= det(\ — H)

because det(P) = det(P*) = 1 since PP* = I. Now,
det(AN — H) = (A — \;) det(A,_, — M).

Let vo be an eigenvector of M with eigenvalue Ay. That is, Mvy, = Aguy. Let also wy =
[0v3]*. Note that
H wo = )\211)2,

so that
HP’LUQ = PH'U)2 = )\QP’U)Q,

which shows that uo = Pw» is an eigenvector of H with eigenvalue A\2. Moreover, us € Vi, so
that uso is orthogonal to u;. We can normalize us so that ||lug|| = 1. Continuing in this way,
we define Vs to be the subspace of C" orthogonal to u; and us. Repeating the previous steps,
we find a collection of vectors {u1,ug, ..., u,} that are orthonormal and such that Hu; = Aju;.
(d) This is immediate.
(e) and (f) follow from (d).

B.8.3 Illustration of SVD

The goal of this section is to illustrate that an m x n matrix A can be decomposed as UXV*
where ¥ is diagonal and U,V are unitary. This decomposition, called the singular value de-
composition of A, enables us to view the action of A as a combination of scaling and rotations.
We use that result to explain the transformation of a sphere into an ellipsoid and to show how
volumes gets mapped, which is essential in calculus.
Consider the matrix
A= [ L3 ] |

2 0
Then
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Y
,/’ 205
A // u
I, 2

Figure B.2: The action of A combines rotations and scaling.

By solving det(Al — AA*) = 0, one finds the eigenvalues 0? = 6 and 03 = 2 of AA*. These
are also the eigenvalues of A*A. Solving AA*u; = ojzuj- and A*Av; = O'JQ-'UJ‘ for j = 1,2, one
finds the following orthonormal eigenvectors of AA* and A*A:

e =

11 —v3 1
V—[’l)1|1)2]—2|: 1 _\/§:|
You can verify that A = UXV* with ¥ = diag{oy, 02} = diag{/6,v2}.

Since A = UXV™, it follows that AV = UX. That is, Av; = u;o;, which shows that A
rotates v; into u; and scales it by o;.

For instance, consider the sphere S = {z € C? | ||z||> = 1}. Thus, S = {a1v1 + vy |
a? + a3 = 1}. The mapping under A of S is AS = {Az | z € S}. Thus,

AS

{AVa|llall2 =1} = {USa | |jo|* = 1}

= {oioquy + ora0us | a% + a% =1}

We conclude that AS is an ellipsoid with principal axes along u; and us and of lengths o
and os.

The mapping S — AS is illustrated in Figure B.2.

As another application, consider the transformation of the square Q = {ajv; + agvy |
ay,ag € [0,1]} under the mapping A. As the figure shows,

AQ = {ﬁlolul + ,8202U2 | 51aﬁ2 € [07 1]}

We conclude that A maps the square ) with area 1 into a rectangle AQ with area o109 =
| det(A)|. We can write this result ‘differentially’ as

|Adv| = | det(A)]||dv]
where dv = {z | z; € (vj,v; + dv;),7 = 1,2} and |dv| = dvidvy. This identity states that A

maps a small area dv into an area that is multiplied by |det(A)|.
We now turn to the derivation of that decomposition in the general case.
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B.8.4 SVD of a matrix

Theorem B.7. Let A € C™*" be a matriz of rank r. The matriz A has a singular value
decomposition

A =UXV* with ¥ = diag{o1,...,0,,0,...,0}

where

e 01 > 09 > -+ >0, >0 are the square roots of the common positive eigenvalues of A*A

and AA*;

o V = [V1|V5] is unitary; the columns of V1 are a basis of R(A*) and those of Vo are a basis
of N(A); the columns of V are a basis of eigenvectors of A*A;

o Uy := AVlEfl;

o U = [U1|Uy] is unitary; the columns of Uy are a basis of R(A) and those of Uy are a basis
of N(A*); the columns of U are a basis of eigenvectors of AA*.

Proof:

The matrix H = A* A is Hermitian and positive semidefinite since z*Hx = (Az)*(Az) > 0.
Moreover, H has rank r because R(A*A) = R(A), by Lemma B.1. By Theorem B.6, H has
the eigenvalues o? with

2

to which corresponds an orthonormal basis of eigenvectors {vi,...,v,} of A*A. Let V =
[vi] -+ |vn] = [V1|V2] where Vi = [v1]- - - |vr], so that V*V = I. Also, by Lemma B.1, R(A*A) =
R(A*), N(A*A) = N(A), and R(A*)*+ = N(A). Tt follows that V; is a basis of R(A*) and V3 a
basis of N(A).

With ¥y = diag{oy,...,0,}, one sees that A*AV; = V%2, Let

Uy := Az L

It follows that U;U; = I.. Moreover, AA*U; = U1X%. Let {uy,...,u,} be the columns of Uj.
We conclude that
ujuj = 1{i = j} and AA*u; = olu;.

But AA* and A*A have exactly the same r nonzero eigenvalues. Indeed, if A*Ay = Ay and
r = Ay, then AA*z = AA* Ay = AAy = Az, so that the eigenvalues of A*A are eigenvalue of
AA*. By symmetry, A*A and AA* have the same eigenvalue. It follows that the columns of
U; form an orthonormal basis for R(AA*) = R(A).

Define now an m x (m —r) matrix Uz with orthonormal columns such that UjU; = 0. Then
U = [U;|Us] is a unitary matrix with C™ = R(U;) & R(Uz). Since C™ = R(A) & N(A*) and
R(Uy) = R(A), it follows that R(Uz) = N(A*) with the columns of Uy forming an orthonormal
basis for N(A*). We conclude that the columns of U form a basis of eigenvectors of AA*.

Finally, since U; = AV;X~!, we find that

U1V = AV SIS,V = A,
and

. > 0] vy
Usv :[U1|U2][ 01 0] [Vl
2

] = U5V = A,
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which completes the proof.

B.9 Cayley-Hamilton

The Cayley-Hamilton Theorem states that a square matrix is a root of its characteristic poly-
nomial.

Lemma B.2. Cayley-Hamilton
Let A € R™™ and f(s) :=det(s] — A) = ag +a15 + -+ ap_15™ ' +5™. Then

f(A) = apl + a1 A+ +ap, (A" A™ = 0.
In particular, span{I, A, A% ...} = span{I, A,..., A™ 1},

Proof:

There are many proofs of this result. We give two proofs.

Proof 1

First assume that A can be diagonalized, i.e., such that A = PAP~! with A = diag{\;}
where the ); are the eigenvalues of A . Then A¥ = PA¥P~! and f(A) = Pdiag{f(\;)}P~! = 0.

Second, if A is not diagonalizable, one can find a sequence of matrices A, that are and
such that A, — A componentwise. The idea to find these matrices A, is to perturb the
entries of A slightly so that A, has distinct eigenvalues. (See Facts B.8-B.9.) We then have
0= f(An) = f(A), so that f(A) =0.

Proof 2

Recall that the inverse of a matrix is the adjoint divided by the determinant. Thus, if A is

not an eigenvalue of A,
1 _ B

(A-XI) " = o
where B()) is a matrix of polynomials of degrees at most n — 1 in A. That is,
B(\) =By+BiA+ -+ B, \"L
Now, (A — AI)B(\) = f(A)1, so that
(A= XI)(By+ BiA+ -+ B, 1 A" 1) = f(VI.

Thus, matching coefficients,

ABO = a()I

AB1 - BO = 0[1[

ABQ - Bl = 0421
AB, 9 —B, 3 = ap 11

ABn,_1—Bp—2 = 0.
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Taking the first identity plus A times the second, plus A? times the third, and so on, we
find

(ABo)+A(ABl—BO)+A2(AB2_B1)+' . '+An72(ABn—2_Bn—3)+An71(ABn—l_Bn—Q) = f(A),

but the left-hand side collapses to 0.

B.10 Notes on MATLAB

MATLAB is a software package that provides many mathematical functions and visualization
tools. It is particularly suited for matrix operations. We illustrate some useful functions. It is
not a bad idea to become familiar with MATLAB, even though we will not require it for this
version of the course.

B.10.1 Matrix Notation

The matrix

3 4 2
B=|51 3
1 4 2

is written in MATLAB as
B=1[342;513; 14 2]
The product of two matrices B and C with compatible dimensions is written as

BxC

B.10.2 Eigenvectors

We find the eigenvalues of matrix A as follows:
eig(A)
which returns

ans =

2.4272
-1.4272

To find the eigenvectors, we write
[V, D] = eig(h)

which returns
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vV =
0.7718 -0.5809
0.6359 0.8140

D:
2.4272 0
0 -1.4272

B.10.3 Inverse

The inverse of A is obtained as follows:
C = inv(A)

which returns

0 0.5000
0.5774  -0.2887

and you can verify that

AxC

B.10.4 Singular Value Decomposition

Here is the code you need to calculate the singular value decomposition of matrix A in Section
B.8.3.

[U, S, V] = svd([1 370.5; 2 0])

That function returns
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U=
-0.7071 -0.7071
-0.7071 0.7071

S:
2.4495 0
0 1.4142

v:

-0.8660 0.5000
-0.5000 -0.8660

B.11 Exercises

Calculations can be done in MATLAB. However, it is useful to know the steps to understand
what is going on. We solve some of the problems and we let you work on the others.

Exercise 6. Cualculate the inverse of the following matrices:

2 3 5 4 213
1 20112 3]’ Lal
3 1 3

Solutions
2 317" [2 3] 7[5 41" 1[3 —4
1 2 -1 2 |2 3 7l -2 5 |7
Let )
2 1 3
A=11 4 1
3 1 3

The matrix C of cofactors of A is

1 0 -11
C= 0o -3 1
-11 1 7

The determinant of A can be found using Fact B.4. We get, by expanding over the first column,

det(A) =2x114+1x 043 x (=11) = —11.
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Finally, we get

11 0 —11
=4 tlA = _% 0 = 1
et(4) 11 1 7

Exercise 7. Perform the elementary row operations to reduce the following matrices to row
echelon form:

53 1 2 3 1 2 2 3 1 2
A=12 4 2|,|4 4 23|,]46 2 3
2 3 6 2 3 6 1 121 2

Solution: For matrix A, the first step is
, 2
ry =Ty T = [02.80.2].

The second step is to cancel the first two elements of r3. The first element is canceled as follows:

We cancel the second element by subtracting a multiple of r4:

" 1.8
Ty =Th — ﬁré =rz — 0.14r; — 0.64ry = [004.6].

Thus, we perform the operation

1 0 0 5 3 1
—-0.4 1 0 |A= | 0 28 1.6
—-0.14 —-0.64 1 0 0 46

We let you perform the same steps for the other matrices.

Exercise 8. Perform the elementary row operations and the elementary column operations
step by step to explain that the determinant of the product of the following two matrices is the
product of their determinants:

4 3 5 4
A_[g 2] andB—[3 3].

Solution: Note that
det(AB) = det(LABU')

where

[ 1 0 A
L‘[—0.751]andU_[—11]'
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Indeed, elementary row operations LAB do not modify the determinant of AB. Also, elemen-

tary column operations LABU' do not modify the determinant of LAB. Now,

, 4 3 1 4 4 25
LABU = (LA)(BU') = [ 0 —0.25 ] [ 0 3 ] - [ 0 —0.75 ]
But,
det(A) = det(LA) = (4)(—0.25),det(B) = det(BU') = (1)(3).
Moreover,
det((LA)(BU')) = (4)(—0.25 x 3),
so that

det(AB) = det(A) det(B).

The same argument goes for the other examples.

Exercise 9. Repeat the previous exercise for the following two matrices:

4 2 3 5 2

1
23 5| and |1 3 1
2 47 3 2 6

Exercise 10. Find a basis for the span of the following vectors:

(17 17 37 2)*’ (27 37 ]‘7 2)*7 (27 ]‘7 2’ 3)*'

Exercise 11. Find the rank and the dimension of the null space of the following matrices:

31 2 2 2 4 11 2
4 2 3 4 2 3 4 2 3
57205120 ™ |53 9
2 6 0 16 3 350

Exercise 12. Find x|y where V = span(V') for the following values of x and V :

31 2 2 2 4 11 2
4 2 3 4 2 3 4 2 3

Vils 720005 1 2 ™ |5 3 o
2 6 0 1 6 3 3 5 0

and
‘T;: (1’37 173)*’(27 174’2)*7 and (2’2’171)*'

Exercise 13 (Optional). Use MATLAB to find the decomposition H = PAP* of the following

Hermitian matrices:

W N
(G2 ]
~N Ot W

5 2 1
and 2 3 2
1 2 6
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>>

v:

Solution
Here are the steps.

[V, D] = eig([4 2 3;2 1 5;3 5 7])

-0.0553 0.9009
0.8771 -0.1622
-0.4771 -0.4025

-1.8455 0
0 2.2997
0 0

Hence, H =V DV'.

0.4304
0.4520
0.7813

0
0
11.5458

APPENDIX B. NOTES ON LINEAR ALGEBRA
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