4. LLL

In this chapter we investigate the Lenstra-LenstraLovász algorithm for lattice reduction: it is designed to find short vectors in a lattice.

Lattices

A lattice in \mathbb{R}^{m} is a discrete \mathbb{Z}-module. Here discrete means: that any bounded subset of \mathbb{R}^{m} contains (at most) finitely many lattice elements; and a \mathbb{Z}-module is just an additive subgroup of the vector space.

Most obvious example: \mathbb{Z}^{n} in \mathbb{R}^{m} for $n \leq m$.

Remark. Note that in some texts a lattice is required to be of full rank m, so it contains a basis for \mathbb{R}^{m}. Not here.

Lemma 1. L is a lattice in \mathbb{R}^{m} if and only there exist $n \leq m$ and n independent vectors $v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$ such that $L=\mathbb{Z} \cdot v_{1}+\cdots+\mathbb{Z} \cdot v_{n}$.

If w_{1}, \ldots, w_{n} is a maximal independent set then $M=\mathbb{Z} \cdot w_{1}+\cdots+\mathbb{Z} \cdot w_{n}$ is a subgroup of L, and every $v \in L$ can be written as $v=r_{1} \cdot v_{1}+$ $r_{2} \cdot v_{2}+\cdots r_{n} \cdot v_{n}$. Take $r_{i}=k_{i}+h_{i}$, met $k_{i} \in \mathbb{Z}$; then

$$
v=\sum k_{i} \cdot v_{i}+\sum h_{i} \cdot v_{i}=z+y
$$

with $z \in L$ and y in the bounded box P of $\sum x_{i} \cdot v_{i}$ with $0 \leq x_{i}<1$. But $y=v-z \in L$, so in the finite set $P \cap L$. Hence L is the sum of finitely many cosets $M+y$, so $k \cdot y \in L$ for some $k \in \mathbb{N}$ and every $y \in P \cap L$. Thus L is contained in $\frac{1}{k} M$, which is generated by $\frac{1}{k} v_{i}$.

Lemma 2. v_{1}, \ldots, v_{n} of $L=\left\langle w_{1}, \ldots, w_{n}\right\rangle$ form a basis for L if and only if the transformation matrix $\left(\alpha_{i j}\right)_{i, j=1}^{n}$ is in $\mathrm{GL}_{n}(\mathbb{Z})$.

Quadratic form

An alternative way of specifying a lattice is by means of its Gram matrix. For this our space \mathbb{R}^{m} needs to be equiped with a positive definite quadratic form. A quadratic form for a vector space V over a field K of characteristic not equal to 2 is a map q from V to K such that $q(\lambda \cdot v)=\lambda^{2} \cdot v$ for $\lambda \in K$ and $v \in V$, and such that $\frac{1}{2}(q(v+w)-q(v)-q(w))$ is a symmetric bilinear form on V. The form is positive definite for $K=\mathbb{R}$ if $q(v)>0$ for every non-zero v.

Gram matrices

If V has basis $b_{1}, b_{2}, \ldots, b_{n}$ and the coordinate vector of x is $\left(x_{1}, \ldots, x_{n}\right)^{\top}$, then
$q(x)=\sum q_{i j} x_{i} x_{j}=\left(x_{1}, \ldots x_{n}\right) Q_{i j}\left(x_{1}, \ldots, x_{n}\right)^{\top}$, where $q_{i j}=B\left(b_{i}, b_{j}\right)$, the value of the bilinear form, and $Q_{i j}$ is the positive definite symmetric $n \times n$ matrix with entries $q_{i j}$.

The matrix Q is called the Gram matrix for the lattice L.

We think of q as the squared length, and B as the inner product; we will sometimes simply write $|\cdot|$ for $\sqrt{q(\cdot)}$ and $\langle\cdot, \cdot\rangle$ for $B(\cdot, \cdot)$.

Determinant

Note that a base change for L changes the Gram matrix Q into $P \cdot Q \cdot P^{\top}$ for some $P \in$ $\mathrm{GL}_{n}(\mathbb{Z})$; so the Gram matrix is unique up to similarity by an orthogonal matrix (isometry), and $\operatorname{det} Q>0$ is invariant.

The determinant $d(L)$ of L is $d(L)=\sqrt{\operatorname{det} Q}$.

A geometric interpretation of this is that $Q_{i j}$ are the values $B\left(b_{i}, b_{j}\right)$, the inner products of the basis vectors for the lattice, and hence $Q=$ $U^{\top} \cdot U$, where U is the coefficient matrix when writing the b_{i} on an orthonormal basis. Hence

$$
\operatorname{det} L=\sqrt{\operatorname{det}} Q=|\operatorname{det} U|=\operatorname{vol}\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

the volume of the parallepiped spanned by the basis vectors, which we called P before.

Gram-Schmidt orthogonalisation

The goal of lattice reduction is to change basis (without changing the lattice) in order to improve, that is to shorten the basis. Since the volume of the lattice is an invariant, it is equivalent to require that the basis becomes more orthogonal.

This shows the relation with Gram-Schmidt orthogonalisation

Algorithm [Gram-Schmidt orthogonalisation] Let $v_{1}, v_{2}, \ldots, v_{n}$ form a basis for V. Define inductively for $i=1,2, \ldots n$ vectors $v_{i}{ }^{*}$ by:
$v_{1}{ }^{*}=v_{1}$, and for $i \geq 2$:

$$
v_{i}^{*}=v_{i}-\sum_{j=1}^{i-1} \mu_{i j} v_{j}^{*}
$$

where

$$
\mu_{i j}=\frac{\left\langle v_{i}, v_{j}^{*}\right\rangle}{\left\langle v_{j}^{*}, v_{j}^{*}\right\rangle} .
$$

The vector v_{i}^{*} is the projection of v_{i} onto the orthogonal complement of $\mathbb{R} \cdot v_{1}+\cdots+\mathbb{R} \cdot v_{i-1}=$ $\mathbb{R} \cdot v_{1}{ }^{*}+\cdots+\mathbb{R} \cdot v_{i-1}{ }^{*}$.

The result, basis $v_{1}{ }^{*}, \ldots, v_{n}{ }^{*}$, is orthogonal, and can be turned into an orthonormal basis by dividing the entries by their lengths.

Note that M, expressing the $v_{i}{ }^{*}$ in the v_{j}
$V^{*}=\left(\begin{array}{llll}v_{1}{ }^{*} & v_{2}{ }^{*} & \cdots & v_{n}{ }^{*}\end{array}\right)=\left(\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right) \cdot M$
is upper triangular with ones on the diagonal:
$\left(\begin{array}{ccccc}1 & -\mu_{21} & -\mu_{31}+\mu_{32} \mu_{21} & \cdots & -\mu_{n 1}+\mu_{n 2} \mu_{21}+\cdots \\ 0 & 1 & -\mu_{32} & \cdots & -\mu_{n 2}+\mu_{n 3} \mu_{32}+\cdots \\ 0 & 0 & 1 & \cdots & -\mu_{n 3}+\mu_{n 4} \mu_{43}+\cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \\ & & & 1\end{array}\right)$
so $\operatorname{det} V^{*}=\operatorname{det}(V \cdot M)=\operatorname{det} V \cdot \operatorname{det} M=\operatorname{det} V$.

Corollary.

$$
d(L)^{2}=\prod_{i=1}^{n}\left|b_{i}^{*}\right|^{2} .
$$

Immediate since the b_{i}^{*} are orthogonal:
$d(L)^{2}=|\operatorname{det} B|^{2}=\left(\operatorname{det} B^{*}\right)^{2}=\operatorname{det} B^{* \top} \operatorname{det} B^{*}$ but $\left\langle b_{i}{ }^{*}, b_{j}{ }^{*}\right\rangle=\delta_{i j} \cdot\left|b_{i}^{*}\right| \cdot\left|b_{j}^{*}\right|$.

The vectors b_{i}^{*} have the desired property, but are not generally in the lattice. The reason is of course that the $\mu_{i j}$ are not necessarily integers.

Corollary. (Hadamard-inequality)

$$
d(L) \leq \prod_{i=1}^{n}\left|b_{i}\right| .
$$

This follows from

$$
\begin{aligned}
\left|b_{i}\right|^{2} & =\left\langle b_{i}, b_{i}\right\rangle= \\
& =\left\langle b_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} b_{j}^{*}, b_{i}^{*}+\sum_{j=1}^{i-1} \mu_{i j} b_{j}^{*}\right\rangle= \\
& =\left|b_{i}^{*}\right|^{2}+\sum_{j=1}^{i-1} \mu_{i j}^{2}\left|b_{j}^{*}\right|^{2}
\end{aligned}
$$

and the previous Corollary.

Minkowski reduction

Minkowski showed in a theoretic sense how short vectors of minimal length in a lattice basis can be: he defined Minkowski reduced bases for a lattice as bases minimal with respect to the partial ordering of bases given by using the length as order and calling a basis $a_{1}, a_{2}, \ldots, a_{n}$ shorter than $b_{1}, b_{2}, \ldots, b_{n}$ when for $1 \leq i<k$ the lengths of a_{i} and b_{i} agree, but a_{k} is shorter than b_{k}. This reduced basis is not unique; more seriously, for $n>3$ nobody knows how to find such basis!

Minkowski theorem

Minkowski formulated the following theorem for convex bodies (with every pair $x, y \in C$ also $x+\lambda(y-x)$ (voor $0 \leq \lambda \leq 1$ will be in C):

Theorem If C is convex in \mathbb{R}^{n}, symmetric around the origine (so, with $x \in C$ also $-x \in C$), and if L is a lattice in \mathbb{R}^{n} then:

$$
\operatorname{vol}(C)>2^{n} d(L) \quad \Rightarrow \quad \exists \overrightarrow{0} \neq \vec{r} \in L \cap C .
$$

Intuitively this seems clear.

Successive minima

For $j=1,2, \ldots, n$ will M_{j} be the smallest positive integer such that there exist independent vectors $r_{1}, r_{2}, \ldots, r_{j}$ in L for which $\left|r_{i}\right|^{2} \leq M_{j}$ for $1 \leq i \leq j$.

Hence M_{1} is (square of) the length of a shortest vector in L.

Theorem. For every $n \geq 1$ there exists constant $\gamma_{n} \in \mathbb{R}_{>0}$ for which

$$
\prod_{i=1}^{n} M_{i} \leq \gamma_{n} d(L)^{2}
$$

for every lattice L in \mathbb{R}^{n}.

The best possible γ_{n} is called Hermite's constant; its value is only known for $1 \leq n \leq 8$:

$$
\begin{gathered}
\gamma_{1}=1, \gamma_{2}=\sqrt{\frac{4}{3}}, \gamma_{3}=\sqrt[3]{2}, \gamma_{4}=\sqrt[4]{4}, \gamma_{5}=\sqrt[5]{8} \\
\gamma_{6}=\sqrt[6]{\frac{64}{3}}, \gamma_{7}=\sqrt[7]{64}, \gamma_{8}=\sqrt[8]{256}
\end{gathered}
$$

Generally, $\gamma_{n} \leq \gamma_{n-1}^{\frac{n-1}{n-2}}$.

One of the problems with successive minima is that for $n>4$ the existence of independent vectors b_{i} if length $\sqrt{M_{n}}$ does not mean that there is a basis of such vectors in the lattice.

Example

For example, in \mathbb{R}^{5}, take the lattice spanned by

$$
\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right) .
$$

Because also the fifth standard base vector is in the lattice, is will be clear that $M_{1}=M_{2}=$ $M_{3}=M_{4}=M_{5}=1$, but there is no basis of 5 vectors of length 1 !

Gauss reduction

In dimension 2 there is an easy algorithm to compute the shortest vector in a lattice. This generalizes the Euclidean algorithm.

Let a and b generate the lattice.

If $q(a)<q(b)$ interchange a and b.

Compute the nearest integer r to $B(a, b) / B(b, b)$.

If $q(a)-2 r B(a, b)+r^{2} q(b) \geq q(b)$ then terminate; else replace a by b and b by $a-r \cdot b$.

This works since

$$
q(a-x \cdot b)=x^{2} \cdot q(b)-2 x \cdot B(a, b)+q(a) .
$$

LLL-reduction

A basis $b_{1}, b_{2}, \ldots b_{n}$ for the lattice L is called LLL-reduced if for $1 \leq j<i \leq n$:
[R] $\quad \mu_{i j}=\frac{\left\langle b_{i}, b_{j}^{*}\right\rangle}{\left\langle b_{j}^{*}, b_{j}^{*}\right\rangle} \leq \frac{1}{2}$,
en voor $2 \leq i \leq n$:
$[L] \quad\left|b_{i}^{*}+\mu_{i, i-1} b_{i-1}^{*}\right|^{2} \geq \frac{3}{4}\left|b_{i-1}^{*}\right|$.
The latter is equivalent with
$\left[L^{\prime}\right] \quad\left|b_{i}^{*}\right|^{2} \geq\left(\frac{3}{4}-\mu_{i, i-1}^{2}\right)\left|b_{i-1}^{*}\right|^{2} \geq \frac{1}{2}\left|b_{i-1}^{*}\right|^{2}$.

Theorem If $b_{1}, b_{2}, \ldots, b_{n}$ form an LLL-reduced basis kor L, then:
(i) $d(L) \leq \prod_{i=1}^{n}\left|b_{i}\right| \leq 2^{n \frac{n-1}{4}} d(L)$,
(ii) $\left|b_{j}\right| \leq 2^{\frac{i-1}{2}}\left|b_{i}^{*}\right|$, for $1 \leq j \leq i \leq n$,
(iii) $\left|b_{1}\right| \leq 2^{\frac{n-1}{4}} \sqrt[n]{d(L)}$,
(iv) $\left|b_{1}\right| \leq 2^{\frac{n-1}{2}}|r|$, for all $0 \neq r \in L$,
(v) $\left|b_{j}\right| \leq 2^{\frac{n-1}{2}} \max \left(\left|r_{1}\right|, \ldots,\left|r_{t}\right|\right)$, for independent $r_{1}, \ldots, r_{t} \in L$ en $j \leq t$.

Proof The first part of (i) is the Hadamard inequality we saw before; the second part will follow from (ii), $\left|b_{i}^{*}\right| \leq\left|b_{i}\right|$ and $d(L)=\Pi\left|b_{i}^{*}\right|$.

From [L'] we see that $\left|b_{j}^{*}\right|^{2} \leq 2^{i-j}\left|b_{i}^{*}\right|^{2}$ for $j \leq i$ by induction, hence

$$
\left|b_{i}\right|^{2}=\left|b_{i}^{*}\right|^{2}+\sum_{j=1}^{i-1} \mu_{i j}\left|b_{j}^{*}\right|^{2}
$$

which is at most

$$
\left(1+\frac{1}{4}\left(2^{i}-2\right)\right) \cdot\left|b_{i}^{*}\right|^{2} \leq 2^{i-1} \cdot\left|b_{i}^{*}\right|^{2},
$$

proving (ii).

We obtain (iii) from (ii) by taking $j=1$ in (ii), taking the product over all i, and taking n-th roots.

For (iv) write $r=\sum z_{i} \cdot b_{i}=\sum s_{i} \cdot b_{i}^{*}$ with $z_{i} \in \mathbb{Z}$ and $s_{i} \in \mathbb{R}$. Then $s_{i}=z_{i}$ for the largest i with non-zero s_{i}, hence

$$
|r|^{2} \geq s_{i} \cdot\left|b_{i}^{*}\right|^{2} \geq\left|b_{i}^{*}\right|^{2}
$$

but

$$
2^{n-1}\left|b_{i}^{*}\right|^{2} \geq 2^{i-1}\left|b_{i}^{*}\right|^{2} \geq\left|b_{1}\right|^{2}
$$

by (ii).

Finally, as above, we write $r_{j}=\sum_{i} z_{i j} b_{i}$ and then

$$
\left|r_{j}\right|^{2} \geq\left|b_{i(j)}^{*}\right|^{2},
$$

for the maximal $i=i(j)$ with $z_{i j}$ non-zero. Renumbering to get $i(1) \leq i(2) \leq \cdots \leq i(t)$ we find that $j \leq i(j)$ and therefore

$$
\left|b_{j}\right|^{2} \leq 2^{i(j)-1} \cdot\left|b_{i(j)}^{*}\right|^{2} \leq 2^{n-1}\left|r_{j}\right|^{2},
$$

implying (v).

The LLL algorithm alternates between reduction steps, in which an integral version of a Gram-Schmidt type combination of vectors is subtracted from another, and swaps where the latter vector is moved up front in accordance with its relative size.

Example (Using the notation from Cohen)
Let a basis b_{1}, b_{2}, b_{3} for \mathbb{R}^{3} be given by the columns of

$$
\left(\begin{array}{ccc}
1 & -1 & 3 \\
1 & 0 & 5 \\
1 & 2 & 6
\end{array}\right) .
$$

Then $b_{1}^{*}=b_{1}$ and $B_{1}=3$.
$\mu_{21}=<b_{2}, b_{1}^{*}>/ B_{1}=\frac{1}{3}$, so

$$
b_{2}^{*}=b_{2}-\frac{1}{3} b_{1}^{*}=\left(\begin{array}{c}
-\frac{4}{3} \\
-\frac{1}{3} \\
\frac{5}{3}
\end{array}\right)
$$

and $B_{2}=\frac{42}{9}=\frac{14}{3}$.

$$
\mu_{31}=<b_{3}, b_{1}^{*}>/ B_{1}=\frac{14}{3}, \text { so }
$$

$$
b_{3}^{*}=b_{3}-\frac{14}{3} b_{1}^{*}=\left(\begin{array}{c}
-\frac{5}{3} \\
\frac{1}{3} \\
\frac{4}{3}
\end{array}\right)
$$

$$
\text { and } \mu_{32}=<b_{3}, b_{2}^{*}>/ B_{2}=\frac{13}{14}, \text { so }
$$

$$
b_{3}^{*}=b_{3}^{*}-\frac{13}{14} b_{2}^{*}=\left(\begin{array}{c}
-\frac{18}{42} \\
\frac{27}{42} \\
-\frac{9}{42}
\end{array}\right)=\left(\begin{array}{c}
-\frac{6}{14} \\
\frac{9}{14} \\
-\frac{3}{14}
\end{array}\right)
$$

and $B_{3}=\frac{9}{14}$.

In the REDuction step we then get

$$
b_{3}=b_{3}-b_{2}=\left(\begin{array}{l}
3 \\
5 \\
6
\end{array}\right)-\left(\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right)=\left(\begin{array}{l}
4 \\
5 \\
4
\end{array}\right) .
$$

Apply SWAP and continue with the columns of

$$
\left(\begin{array}{ccc}
1 & 4 & -1 \\
1 & 5 & 0 \\
1 & 4 & 2
\end{array}\right) .
$$

Then $b_{1}^{*}=b_{1}$ is unchanged,
$\mu_{21}=<b_{2}, b_{1}^{*}>/ 3=\frac{13}{3}$, so

$$
b_{2}^{*}=b_{2}-\mu_{21} b_{1}^{*}=\left(\begin{array}{c}
-\frac{1}{3} \\
\frac{2}{3} \\
-\frac{1}{3}
\end{array}\right),
$$

and $B_{2}=\frac{2}{3}$.

As $\left\lfloor\mu_{21}\right\rfloor=4$, we get

$$
b_{2}=b_{2}-4 b_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

We need to swap again and arrive at the reduced basis

$$
\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right) .
$$

