
4. LLL

In this chapter we investigate the Lenstra-Lenstra-

Lovász algorithm for lattice reduction: it is de-

signed to find short vectors in a lattice.
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Lattices

A lattice in Rm is a discrete Z-module. Here

discrete means: that any bounded subset of

Rm contains (at most) finitely many lattice el-

ements; and a Z-module is just an additive sub-

group of the vector space.

Most obvious example: Zn in Rm for n ≤ m.

Remark. Note that in some texts a lattice is

required to be of full rank m, so it contains a

basis for Rm. Not here.
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Lemma 1. L is a lattice in Rm if and only

there exist n ≤ m and n independent vectors

v1, . . . , vn ∈ Rm such that L = Z ·v1+ · · ·+Z ·vn.

If w1, . . . , wn is a maximal independent set then

M = Z · w1 + · · · + Z · wn is a subgroup of L,

and every v ∈ L can be written as v = r1 · v1 +

r2 ·v2+ · · · rn ·vn. Take ri = ki +hi, met ki ∈ Z;

then

v =
∑

ki · vi +
∑

hi · vi = z + y,

with z ∈ L and y in the bounded box P of
∑

xi · vi with 0 ≤ xi < 1. But y = v − z ∈ L,

so in the finite set P ∩ L. Hence L is the sum

of finitely many cosets M + y, so k · y ∈ L for

some k ∈ N and every y ∈ P ∩ L. Thus L is

contained in 1
kM , which is generated by 1

kvi.

Lemma 2. v1, . . . , vn of L = 〈w1, . . . , wn〉 form

a basis for L if and only if the transformation

matrix (αij)
n
i,j=1 is in GLn(Z).
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Quadratic form

An alternative way of specifying a lattice is

by means of its Gram matrix. For this our

space Rm needs to be equiped with a positive

definite quadratic form. A quadratic form for a

vector space V over a field K of characteristic

not equal to 2 is a map q from V to K such

that q(λ · v) = λ2 · v for λ ∈ K and v ∈ V ,

and such that 1
2(q(v + w) − q(v) − q(w)) is a

symmetric bilinear form on V . The form is

positive definite for K = R if q(v) > 0 for every

non-zero v.
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Gram matrices

If V has basis b1, b2, . . . , bn and the coordinate

vector of x is (x1, . . . , xn)T, then

q(x) =
∑

qijxixj = (x1, . . . xn)Qij(x1, . . . , xn)
T,

where qij = B(bi, bj), the value of the bilinear

form, and Qij is the positive definite symmetric

n × n matrix with entries qij.

The matrix Q is called the Gram matrix for the

lattice L.

We think of q as the squared length, and B

as the inner product; we will sometimes simply

write | · | for
√

q(·) and 〈·, ·〉 for B(·, ·).
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Determinant

Note that a base change for L changes the

Gram matrix Q into P · Q · PT for some P ∈
GLn(Z); so the Gram matrix is unique up to

similarity by an orthogonal matrix (isometry),

and detQ > 0 is invariant.

The determinant d(L) of L is d(L) =
√

detQ.

A geometric interpretation of this is that Qij

are the values B(bi, bj), the inner products of

the basis vectors for the lattice, and hence Q =

UT ·U , where U is the coefficient matrix when

writing the bi on an orthonormal basis. Hence

detL =
√

detQ = |detU | = vol(b1, b2, . . . , bn),

the volume of the parallepiped spanned by the

basis vectors, which we called P before.
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Gram-Schmidt orthogonalisation

The goal of lattice reduction is to change ba-

sis (without changing the lattice) in order to

improve, that is to shorten the basis. Since

the volume of the lattice is an invariant, it is

equivalent to require that the basis becomes

more orthogonal.

This shows the relation with Gram-Schmidt or-

thogonalisation

Algorithm [Gram-Schmidt orthogonalisation]

Let v1, v2, . . . , vn form a basis for V . Define in-

ductively for i = 1,2, . . . n vectors vi
∗ by:

v1
∗ = v1, and for i ≥ 2:

vi
∗ = vi −

i−1
∑

j=1

µijvj
∗,

where

µij =
< vi, vj

∗ >

< vj
∗, vj

∗ >
.
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The vector vi
∗ is the projection of vi onto the

orthogonal complement of R·v1+· · ·+R·vi−1 =

R · v1
∗ + · · · + R · vi−1

∗ .

The result, basis v1
∗, . . . , vn

∗, is orthogonal, and

can be turned into an orthonormal basis by di-

viding the entries by their lengths.

Note that M , expressing the vi
∗ in the vj

V ∗ =
(

v1
∗ v2

∗ · · · vn
∗

)

=
(

v1 v2 · · · vn

)

·M

is upper triangular with ones on the diagonal:
























1 −µ21 −µ31 + µ32µ21 · · · −µn1 + µn2µ21 + · · ·
0 1 −µ32 · · · −µn2 + µn3µ32 + · · ·
0 0 1 · · · −µn3 + µn4µ43 + · · ·

... ... ... . . . ...

0 0 0 · · · 1

























so detV ∗ = det(V ·M) = detV ·detM = detV .
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Corollary.

d(L)2 =
n
∏

i=1

|b∗i |2.

Immediate since the b∗i are orthogonal:

d(L)2 = |detB|2 = (detB∗)2 = detB∗TdetB∗

but < bi
∗, bj

∗ >= δij · |b∗i | · |b∗j |.

The vectors b∗i have the desired property, but

are not generally in the lattice. The reason

is of course that the µij are not necessarily

integers.

94



Corollary. (Hadamard-inequality)

d(L) ≤
n

∏

i=1

|bi|.

This follows from

|bi|2 = < bi, bi >=

= < b∗i +
i−1
∑

j=1

µijb
∗
j , b

∗
i +

i−1
∑

j=1

µijb
∗
j >=

= |b∗i |2 +
i−1
∑

j=1

µ2
ij|b∗j |2,

and the previous Corollary.
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Minkowski reduction

Minkowski showed in a theoretic sense how

short vectors of minimal length in a lattice ba-

sis can be: he defined Minkowski reduced bases

for a lattice as bases minimal with respect to

the partial ordering of bases given by using the

length as order and calling a basis a1, a2, . . . , an

shorter than b1, b2, . . . , bn when for 1 ≤ i < k

the lengths of ai and bi agree, but ak is shorter

than bk. This reduced basis is not unique; more

seriously, for n > 3 nobody knows how to find

such basis!
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Minkowski theorem

Minkowski formulated the following theorem

for convex bodies (with every pair x, y ∈ C also

x + λ(y − x) (voor 0 ≤ λ ≤ 1 will be in C):

Theorem If C is convex in Rn, symmetric around

the origine (so, with x ∈ C also −x ∈ C), and

if L is a lattice in Rn then:

vol(C) > 2nd(L) ⇒ ∃ ~0 6= ~r ∈ L ∩ C.

Intuitively this seems clear.
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Successive minima

For j = 1,2, . . . , n will Mj be the smallest pos-

itive integer such that there exist independent

vectors r1, r2, . . . , rj in L for which |ri|2 ≤ Mj

for 1 ≤ i ≤ j.

Hence M1 is (square of) the length of a short-

est vector in L.

Theorem. For every n ≥ 1 there exists con-

stant γn ∈ R>0 for which

n
∏

i=1

Mi ≤ γnd(L)2,

for every lattice L in Rn.
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The best possible γn is called Hermite’s con-

stant; its value is only known for 1 ≤ n ≤ 8:

γ1 = 1, γ2 =

√

4

3
, γ3 =

3
√

2, γ4 =
4
√

4, γ5 =
5
√

8,

γ6 =
6

√

64

3
, γ7 =

7
√

64, γ8 =
8
√

256.

Generally, γn ≤ γ
n−1
n−2
n−1.

One of the problems with successive minima

is that for n > 4 the existence of independent

vectors bi if length
√

Mn does not mean that

there is a basis of such vectors in the lattice.
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Example

For example, in R5, take the lattice spanned

by

















1
0
0
0
0

















,

















0
1
0
0
0

















,

















0
0
1
0
0

















,

















0
0
0
1
0

















,



















1
2
1
2
1
2
1
2
1
2



















.

Because also the fifth standard base vector is

in the lattice, is will be clear that M1 = M2 =

M3 = M4 = M5 = 1, but there is no basis of 5

vectors of length 1!
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Gauss reduction

In dimension 2 there is an easy algorithm to

compute the shortest vector in a lattice. This

generalizes the Euclidean algorithm.

Let a and b generate the lattice.

If q(a) < q(b) interchange a and b.

Compute the nearest integer r to B(a, b)/B(b, b).

If q(a) − 2rB(a, b) + r2q(b) ≥ q(b) then termi-

nate; else replace a by b and b by a − r · b.

This works since

q(a − x · b) = x2 · q(b) − 2x · B(a, b) + q(a).
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LLL-reduction

A basis b1, b2, . . . bn for the lattice L is called

LLL-reduced if for 1 ≤ j < i ≤ n:

[R] µij =
< bi, b

∗
j >

< b∗j , b
∗
j >

≤ 1

2
,

en voor 2 ≤ i ≤ n:

[L] |b∗i + µi,i−1b∗i−1|2 ≥ 3

4
|b∗i−1|.

The latter is equivalent with

[L′] |b∗i |2 ≥ (
3

4
− µ2

i,i−1)|b∗i−1|2 ≥ 1

2
|b∗i−1|2.
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Theorem If b1, b2, . . . , bn form an LLL-reduced

basis voor L, then:

(i) d(L) ≤
n

∏

i=1

|bi| ≤ 2nn−1
4 d(L),

(ii) |bj| ≤ 2
i−1
2 |b∗i |, for 1 ≤ j ≤ i ≤ n,

(iii) |b1| ≤ 2
n−1
4

n
√

d(L),

(iv) |b1| ≤ 2
n−1
2 |r|, for all 0 6= r ∈ L,

(v) |bj| ≤ 2
n−1
2 max(|r1|, . . . , |rt|), for independent

r1, . . . , rt ∈ L en j ≤ t.
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Proof The first part of (i) is the Hadamard

inequality we saw before; the second part will

follow from (ii), |b∗i | ≤ |bi| and d(L) =
∏ |b∗i |.

From [L’] we see that |b∗j |2 ≤ 2i−j|b∗i |2 for j ≤ i

by induction, hence

|bi|2 = |b∗i |2 +
i−1
∑

j=1

µij|b∗j |2,

which is at most

(1 +
1

4
(2i − 2)) · |b∗i |2 ≤ 2i−1 · |b∗i |2,

proving (ii).

We obtain (iii) from (ii) by taking j = 1 in (ii),

taking the product over all i, and taking n-th

roots.
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For (iv) write r =
∑

zi · bi =
∑

si · b∗i with zi ∈ Z

and si ∈ R. Then si = zi for the largest i with

non-zero si, hence

|r|2 ≥ si · |b∗i |2 ≥ |b∗i |2,

but

2n−1|b∗i |2 ≥ 2i−1|b∗i |2 ≥ |b1|2

by (ii).

Finally, as above, we write rj =
∑

i zijbi and

then

|rj|2 ≥ |b∗i(j)|
2,

for the maximal i = i(j) with zij non-zero.

Renumbering to get i(1) ≤ i(2) ≤ · · · ≤ i(t)

we find that j ≤ i(j) and therefore

|bj|2 ≤ 2i(j)−1 · |b∗i(j)|
2 ≤ 2n−1|rj|2,

implying (v).
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The LLL algorithm alternates between reduc-

tion steps, in which an integral version of a

Gram-Schmidt type combination of vectors is

subtracted from another, and swaps where the

latter vector is moved up front in accordance

with its relative size.

Example (Using the notation from Cohen)

Let a basis b1, b2, b3 for R3 be given by the

columns of






1 −1 3
1 0 5
1 2 6






.

Then b∗1 = b1 and B1 = 3.

µ21 =< b2, b∗1 > /B1 = 1
3, so

b∗2 = b2 − 1

3
b∗1 =









−4
3

−1
3

5
3









and B2 = 42
9 = 14

3 .
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µ31 =< b3, b∗1 > /B1 = 14
3 , so

b∗3 = b3 − 14

3
b∗1 =









−5
3

1
3
4
3









and µ32 =< b3, b∗2 > /B2 = 13
14, so

b∗3 = b∗3 − 13

14
b∗2 =









−18
42

27
42
− 9

42









=









− 6
14
9
14
− 3

14









,

and B3 = 9
14.
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In the REDuction step we then get

b3 = b3 − b2 =







3
5
6






−







−1
0
2






=







4
5
4






.

Apply SWAP and continue with the columns

of






1 4 −1
1 5 0
1 4 2






.

Then b∗1 = b1 is unchanged,

µ21 =< b2, b∗1 > /3 = 13
3 , so

b∗2 = b2 − µ21b∗1 =









−1
3

2
3
−1

3









,

and B2 = 2
3.
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As ⌊µ21⌋ = 4, we get

b2 = b2 − 4b1 =







0
1
0






.

We need to swap again and arrive at the re-

duced basis






0 1 −1
1 0 0
0 1 2





 .
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