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ABSTRACT

Hashing is one of the fundamental techniques used to imple-
ment query processing operators such as grouping, aggrega-
tion and join. This paper studies the interaction between
modern computer architecture and hash-based query pro-
cessing techniques. First, we focus on extracting maximum
hashing performance from super-scalar CPUs. In particu-
lar, we discuss fast hash functions, ways to efficiently han-
dle multi-column keys and propose the use of a recently
introduced hashing scheme called Cuckoo Hashing over the
commonly used bucket-chained hashing. In the second part
of the paper, we focus on the CPU cache usage, by dy-
namically partitioning data streams such that the partial
hash tables fit in the CPU cache. Conventional partition-
ing works as a separate preparatory phase, forcing materi-
alization, which may require I/O if the stream does not fit
in RAM. We introduce best-effort partitioning, a technique
that interleaves partitioning with execution of hash-based
query processing operators and avoids I/0O. In the process,
we show how to prevent issues in partitioning with cache-
line alignment, that can strongly decrease throughput. We
also demonstrate overall query processing performance when
both CPU-efficient hashing and best-effort partitioning are
combined.

1. INTRODUCTION

Hashing is one of the fundamental techniques used to im-
plement query processing operators such as aggregation and
join [2, 9]. For a long time, the major optimization for
hashing in a DBMS was handling a situation when a hash-
table did not fit in RAM. This research has been usually
done within the context of join processing and resulted in
algorithms like Grace Join [8] and Hybrid Hash Join [6].
Recently, in-memory partitioning [14] and data prefetch-
ing [3] techniques were proposed to improve main-memory
performance for a hash-table that does not fit in the CPU
cache. Especially the former technique can be seen as an
application of the I/O-optimized hashing methods to the
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in-memory scenario. All these techniques focused on opti-
mizing the disk or main memory access time, ignoring the
CPU cost of hash-table processing.

MonetDB/X100 [1] is a novel DBMS introducing the idea
of wectorized in-cache processing. The first term, wvector-
ized, refers to the fact that all the processing is performed
using simple functions working on arrays consisting of sin-
gle attribute values. Such processing reduces the control-
flow overhead and allows the code to be efficiently executed
on modern CPUs. The second term, in-cache, means that
the system concentrates on performing all the computa-
tion inside the CPU cache, minimizing the amount of main-
memory traffic. These two features combined allow Mon-
etDB/X100 to achieve high-performance in large-volume data
processing tasks. However, the novel architecture brings a
challenge of developing new data processing algorithms that
follow the design principles of the system.

Outline. In this paper we investigate the design and im-
plementation of the hash-based algorithms developed for
MonetDB/X100. In particular, we concentrate on lookup-
intensive scenarios, typical in an aggregation or a hash-join.
First, in Section 2, we focus on efficient utilization of modern
CPU resources during hash-table processing. We introduce
the ideas of vectorized hash processing, compound key han-
dling and a CPU-friendly Cuckoo Hashing implementation.
Then, in Section 3 we show how to scale the high in-cache
performance of our hashing routines to a main-memory sce-
nario using the idea of best-effort partitioning. Additionally,
we analyze the impact of cache associativity on the parti-
tioning performance. Finally, Section 4 concludes the paper
and discusses future work.

2. CPU-EFFICIENT HASHING

Accessing the hash table can be divided into three major
parts: (i) hash-value computation, (ii) hash-table position
lookup and possibly insertion, and (74) modifying tuples
stored in the hash-table. For simplicity, we initially explain
our hashing techniques using a query which performs a sim-
ple duplicate removal, where step (%ii) is absent and hash-
table keys are unique. We will extend these techniques to
more general scenarios in Section 2.6.

2.1 Vectorized Hash-Functions

The MonetDB/X100 database system achieves high CPU
efficiency by means of wvectorized processing [1]. It uses a
Volcano-style iterator tree to implement the relational alge-
bra operators. However, each next () call, these operator ob-
jects yield a vector of tuples, instead of a single tuple (which



is usual in most RDBMS implementations). Tuples inside
the operator tree are represented as vectors — small arrays
using vertical decomposition [4]. The vector size is tuned
such that all vectors needed by a running query comfort-
ably fit inside the CPU cache (typically 100-10000 tuples).
The main benefit of the array layout (vertically decomposed)
of tuples inside the query processor is that primitive func-
tions need not be aware of the actual record format on disk,
allowing them to be vectorized. These primitive functions
perform the computational work for the relational operators,
such as arithmetic, but also hashing.

Vectorized primitive functions are efficient because: ()
they are called only once per vector so function call overhead
is amortized, and () they express their work as a simple
loop over aligned arrays. Modern compilers generate highly
efficient code for this, as they can use loop pipelining. As
a result, the primitives manage to keep multiple CPU pro-
cessing pipelines busy and achieve high IPC (instructions-
per-cycle) efficiency. For example, consider the primitives
for hash computation:

void hash<TYPE>(unsigned int N, output[N]; <TYPE> input[N]) {
for(i=0; i<N; i++)
output [i] = HASH_TYPE(input[il);
}
void rehash<TYPE>(unsigned int N, output[N]; <TYPE> input([N]) {
for(i=0; i<N; i++) {
h = HASH_TYPE(input[i]);
output[i] "= (h << 11) ~
T}

(h >> 7);

Such specialized hashing primitives are generated for each
supported data type. The symbol HASH_TYPE is a macro that
calculates an integer hash number for a value of a particu-
lar type. For simple data types, our hash functions perform
a number of simple arithmetic operations (bit-shifts, XOR
etc.). Including load/stores they consist of a 8-10 instruc-
tion sequence per tuple. On Itanium2 the hash and rehash
primitives run at just 2.5 cycles per tuple (4.3 on Pentium4),
thus achieving very high IPC.

As we must be able to support hashing on multi-column
keys, the rehash() primitive combines computation of a hash
number with mixing it with a previous hash number. Thus,
to calculate a vector of hash numbers for a <int,float> key,
one needs to first call hash_int() and then rehash float().

Note, that our primitives are not optimized for the hash-
function quality, like perfect hash-functions [5]. Instead,
they are designed for high computational efficiency. The
rationale for this is optimizing the algorithms for the most-
common case, treating the possibly increased number of
hash-function collisions as special cases. This is in line with
our previous research on compression [18], where most values
were decompressed using optimized routines and a patching
technique was used to fix the problematic values.

2.2 Bucket-Chained Hash Tables

Having hash-values computed, a hash-table lookup can
be performed. The most commonly used hash data struc-
ture is the bucket-chained hash table, considered the simplest
and fastest hash data structure for main-memory applica-
tions [12]. The top part of Figure 1 presents an example
implementation, where a sparse buckets array stores point-
ers to the dense “data” part keeping all so-far seen keys.
To insert a tuple, its hash value is first converted into a
bucket number. Usually, tables with a size of a power of
2 are used, to allow for fast modulo computation using the
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Figure 1: Data organization in bucket-chained and
Cuckoo hash-tables. Hash function used is (value
mod 100). For indexing we use (hash mod 5) (for
both) and ((hash div 10) mod 5) (for Cuckoo only).

bitwise-AND operation. When different values map onto the
same bucket, a hash-table collision occurs. The amount of
collisions is strongly related to the load factor of the hash
table, which is the amount of values stored in the hash ta-
ble divided by the amount of buckets, following a binomial
distribution. Even with a load factor of 1, the expected col-
lision rate is 1/e (36%), and with smaller amounts of buckets
it quickly rises.

In bucket-chained hashing all colliding tuples are stored
in a linked list connected to each bucket (values 129 and 234
in our example). Hash lookup thus consists of computing a
bucket, and traversing the collision list behind it until the
found value matches the search key. The following routine
takes a vector of hash values as input and produces a vector
of group ids (indices into the keys array), with a zero-value
for missing keys:
void lookup(unsigned int N, output[N], input[N];

// the hash table

unsigned int NBITS, NKEYS;

unsigned int buckets[1 << NBITS];

unsigned int next[NKEYS], hash[NKEYS])
{

unsigned int buck, group_id;

unsigned int mask = (1 << NBITS) - 1;

for(int i=0; i<N; i++) {

buck = input[i] & mask;

group_id = buckets[buck];

while(group_id != O && hash[group_id] != input[i])
group_id = nextl[group_id]l; /* follow linked list */

output [i] = group_id;
}r

Note, that the input hash values are also used for compar-
ison against values stored in the hash table. This is further
explained in Section 2.4.

Regrettably, the code pattern of traversing a linked list is
known to limit IPC, as it introduces both control and data
dependencies. Perfect hash functions could help in avoiding
collisions, but their computational cost makes them inappli-
cable in our system. In the next section we present another
way of avoiding the linked list traversal during hash lookup.

2.3 Cuckoo Hashing

Our proposed solution is based on a recently introduced
dynamic hash-table algorithm called Cuckoo Hashing [15]. It



does not require in-advance knowledge of the data distribu-
tion, and a hash table can be constructed incrementally, at
a relatively low cost. The idea is to have two hash functions
to get two possible buckets for each tuple. When inserting
a new tuple, one of the positions is chosen. If that bucket is
occupied, the old tuple is "kicked out” and put in its other
position, possibly kicking out another tuple. The process
continues until the insertion succeeds. In the example in
the bottom part of Figure 1 the value 234 causes a conflict
at offset 4 with 129, making it move to its second offset,
2. Since it is already occupied by 312, that value is again
moved to offset 1, which is free. Note, that the data part of
the hash-table is the same as with bucket-chained hashing,
making the further processing steps identical.

It may happen that Cuckoo Hash gets into a loop and
cannot insert a certain value. It was shown that in prac-
tical situations with a load factor of < 0.5, this is highly
unlikely [15]. Still, the chain search process can take a very
long time (again, with a small probability). To overcome
this problem, our insertion routine limits the depth of this
search, and store problematic values in a separate linked list,
that needs to be checked for all misses. As in practice this
linked list is empty or contains only a few tuples, the extra
overhead is negligible.

The Cuckoo Hash lookup function needs to check two po-
sitions as indicated by its two hash functions. Since the size
of the hash table is usually significantly smaller than the
range of the hash function, we take two disjunct parts of
the same hash value as our bucket positions. The following
is a straightforward implementation of Cuckoo Hashing:

void cuckoo_lookup( ..same as before.. ) {
for(int i=0; i<N; i++) {
// find the possible locations
buckl = input[i] & mask ; // use different parts
buck2 = (input[i] >> NBITS) & mask ; // of the hash number
idx1 = buckets[buckl]; // O for empty buckets,
idx2 = buckets[buck2]; // 1+ for non empty
// check which one matches
if (idx1 && hash[idx1] == input[il)
group_id = idx1l; // first position matches
else if (idx2 && hash[idx2] == input[i])
group_id = idx2; // second position matches
else
group_id = 0; // nothing matches, mark as a miss
output [i] = group_id;
}

Since the searched key can be either in the first, in the sec-
ond or in neither of the locations, the if-then-else branches
in the second part of the algorithm are hard to predict by
the branch-predictor, thereby resulting in suboptimal perfor-
mance. To overcome this problem, we replace these branches
with some integer arithmetic, similar as in [16]. This con-
verts the control dependency into a data dependency, which
is less limiting on CPU instruction throughput:

// check which one matches

maskl = -(input[i] == hash[idx1]); // OxFF..FF for a match,
mask2 = -(input[i] == hash[idx2]); // O otherwise

group_id = maskl & idx1 | mask2 & idx2; // at most 1 matches
output [i] = group_id;

Thanks to this optimization, the Cuckoo Hash lookup can
be fully vectorized, as each iteration of the loop (%) is inde-
pendent of the previous iterations, (i) contains no func-
tion calls, (74) no if-then-else, and (%v) no nested loops.
Such loops exhibit maximal instruction independence, can
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Figure 2: Hash table lookup for compound keys

be loop-pipelined by compilers, and obtain high IPC on
modern CPUs.

2.4 Compound Keys and Miss Detection

During the search in both hash-table implementations, the
values stored in the hash table need to be compared against
the input values. In case of compound (multi-attribute)
keys, it is impossible to generate a specialized primitive func-
tion for each combination of possible data types. One so-
lution is to pass an array of type-specific comparison func-
tions and in each search phase perform multiple compar-
isons. However, the cost of an extra nested loop and func-
tion calls would dramatically reduce the performance.

Our approach to that problem is based on the observation
that while hash-table collisions are quite likely, the probabil-
ity of a hash-function collision is orders of magnitude lower.
As Figure 2 shows, during the hash-table lookup process we
compare the hash values instead of the actual keys. How-
ever, this solution can result (again, with a low probability)
in a false hit, if two key values have the same hash value.
To overcome it, a special validation step is required, which
compares actual key values from the input and a hash table.
It uses a series of type-specific routines, one for each key
attribute: !
void check<TYPE>(unsigned int N, NKEYS, group_id[N];

bool output [N];
<TYPE> input[N], keys[NKEYS]) {
for(int i=0; i<N; i++)
output [i] = (input[i] != keys[group_id[il]);

void recheck<TYPE>(..same parameters..) {
for(int i=0; i<N; i++)
output[i] |= (input[i] != keys[group_id[ill);

A list of hard cases (misses or hash-function collisions) is
finally produced with the select() primitive:
unsigned int select(unsigned int N, output[N]; bool input([N]) {
for(int nsel=i=0; i<N; i++)
if (input[i]) output[nsel++] = ij;

return nsel;

}

The final output is a group.id vector with the offsets for
each key, and a vector of selected problematic input values.
The ones with group-ID 0 are search misses, and have to be
inserted in the hash table. The other cases are hash-function
collisions, which require a slower but precise search function
call. In the end, the group_id vector will contain hash table
indices for all the input tuples. They can later be used for
additional processing, as discussed in Section 2.6.

A final observation to be made is that hard cases are ex-
pected to be rare. Thus, the select() will in general only

!The hash table slot 0 (used to mark search misses) repre-
sents "impossible” values. Thus, check() will identify these
misses as a hard case.



Table 1: Hash Lookup Performance for selecting dis-
tinct single-column keys (20M tuples, 512 buckets).

Pentium4 Ttanium?2
primitive (cycles/tuple) | (cycles/tuple)
[hash (per attribute) | 43 ] 2.5]
cuckoo lookup 25.2 6.7

bucket-chained lookup

load-factor 0.50 23.2 13.2

load-factor 0.75 34.1 16.3

load-factor 1.00 38.7 17.8
(only for multi-attribute keys)

check (per attribute) 6.7 ] 54

select a low percentage of tuples (and often will select noth-
ing). This can be exploited by a special version of the selec-
tion primitive that treats the vector of byte-sized boolean
values as a vector of 64-bits integers with only one eighth
of the entries, making a sub-selection. Only for that sub-
selection a byte-by-byte-check is done. This implementation
of select() reduces the cost of selection by roughly a factor
8, such that its cost drops below 1 cycle per tuple. We thus
ignore the cost of selecting the hard cases in the remainder.

2.5 Micro-Benchmarks

Table 1 shows lookup performance on our 3GHz Pentium4
Xeon (16KB L1, 1IMB L2) and 1.3GHz Itanium2 (16KB L1,
256KB L2. 3MB L3) test platforms, both with 4GB RAM.
The performance of bucket-chained hashing degrades when
the load factor rises, as the average length of the collision
list increases. Since Cuckoo Hashing does not use the linked
list, its performance does not depend on the load factor.
Moreover, since the next array is obsolete, it requires less
memory. Therefore, with respect to memory consumption,
a load-factor of 1.00 in bucket-chaining corresponds with a
load factor of 0.50 in Cuckoo Hash (its maximum — otherwise
its failure rate increases).

On Pentium4, Cuckoo beats bucket-chained hashing above
50% fill-ratio. On Itanium2, however, it beats bucket-chained
hashing in all situations, by up to a factor 3. The large dif-
ference between Itanium2 and Pentium4 occurs because the
former architecture can achieve high IPC (we get above 5
here) when abundant instruction independence is present
in the code, whereas the Pentium4 is notorious for staying
below 2 despite this. Thus, Cuckoo Hashing clearly favors
wide-issue CPU architectures (such as Itanium2, but also
the new Intel Core CPU generation).

2.6 Extensions

Simple Keys. The presented algorithms can be easily op-
timized for single-attribute keys. Since all the functions are
type-specialized, it is possible to express the whole vector-
ized hash lookup in one primitive. The main reason to do so
is to eliminate the cost of accessing intermediate results be-
tween the primitives. Additionally, a single-attribute com-
parison can be directly used, making the hash part of the
hash-table and the check phase obsolete.

Aggregation. The result of a hash lookup is a group_id
vector with offsets in the data part of the hash table. For
aggregation, extra columns can be added there for storing
the current results of aggregate functions. Having group-id
together with the input data, these can be easily updated.

Hash-join. To use the described data structures for a hash-
join, one simply needs to add an extra column in the data
part for the non-key attributes. If the join-key is not unique,
an extra data structure is necessary to store lists of values
with the same key.

3. CACHE-OPTIMIZED HASHING

The CPU-efficient hashing algorithms described in the
previous section can only achieve high performance when
they operate on data stored in the CPU cache, as the main-
memory access cost is an order of magnitude higher than
the entire per-tuple processing time. Two main techniques
were proposed to improve the hash-table performance in a
main-memory scenario.

The first technique, proposed by Chen et al., uses explicit
memory prefetching instructions inside the hash lookup rou-
tine [3]. This transforms hash-lookup throughput from a
memory latency-limited into a memory bandwidth-limited
workload, which can strongly improve overall hash-join per-
formance. Our CPU-optimized hashing, however, has be-
come too fast for memory bandwidth. Given that a hash
lookup takes 7 cycles and touches at least two cache lines,
on a 1.3GHz CPU this implies bandwidth usage of 24GB/s,
which exceeds RAM bandwidth available in current hard-
ware (4-6GB/s). For that reason, we employ the second
technique, based on hash-table partitioning. This idea was
originally introduced for I/O based hashing in Grace Join [§]
and Hybrid Hash Join [6] algorithms. More recently, with
Radix-Cluster [14], this work has been extended to hash-
partitioning into the CPU cache.

The problem with these partitioned hashing techniques is
that all the data needs to be first fully partitioned, and only
then processed [9]. This works fine in the disk-based sce-
nario, as the temporary space for the partitions is usually
considered unlimited. Main memory capacity, however, can
not be assumed to be unlimited, meaning that if the data
does not fit in RAM during partitioning, it has to be saved
to disk. Since using the disk when optimizing for in-cache
processing is reasonable only in extreme scenarios, we pro-
pose a new hash partitioning algorithm that, while providing
in-cache processing, prevents spilling data to disk.

3.1 Best-Effort Partitioning

Best-effort partitioning (BEP) is a technique that inter-
leaves partitioning with execution of hash-based query pro-
cessing operators without using I/O. The key idea is that if
the available partition memory is filled, data from one of the
partitions is passed on to the processing operator (aggrega-
tion, join), freeing space for more input tuples. In contrast
to conventional partitioning, BEP is a pipelinable operator
that merely reorders the tuples in a stream so that many
consecutive tuples come from the same partition. Opera-
tors that use BEP, like Partitioned Hash Join and Parti-
tioned Hash Aggregation, create a separate hash table per
partition, and detect which hash table should be used at
a given moment looking at the input tuples. When one of
the hash tables is active, the operations on it are performed
for many consecutive tuples, hence the cost of loading the
hash-table into the cache is amortized among them.

Algorithm 1 presents an implementation where each par-
tition consists of multiple buffers. When no more buffers are
available, we choose the biggest partition to be processed,
for two reasons. Firstly, it frees most space for the incoming



Algorithm 1 Best-Effort Partitioning (BEP)

InitBuffers(numBuffers)
while tuple = GetNextTuple(child) do
p < Hash(tuple) mod numPartitions
if MemoryExhausted(p) then
if NoMoreBuffers() then
mazp — ChooseLargestPartition()
ProcessPartition(mazp)
FreeBuffers(maxp)
end if
AddBuffer(p)
end if
Insert(p,tuple)
end while
for p in 0..numPartitions — 1 do
ProcessPartition(p)
FreeBuffers(p)
end for

tuples. Secondly, with more tuples passed for processing,
the time of loading the hash-table is better amortized due
to increased cache-reuse

3.2 Partitioning and Cache Associativity

The main-memory performance of data partitioning algo-
rithms, with respect to the number of partitions, number of
attributes, sizes of the CPU cache and TLB. has been stud-
ied in [14] and [13]. However, to our knowledge, one other
important property of modern cache memories has been ig-
nored so far: cache associativity.

A typical cache memory is organized as a collection of
cache-lines. For example, a simple 64 KB cache with 64-
byte cache-lines consists of 1024 cache-lines. If the cache is
fully-associative, the global LRU policy guarantees that the
most recently used lines will be kept in the cache. However,
even on this small scale, the LRU policy turns out to be too
expensive. Instead, the CPU manufactures either use N-
way associative or directly mapped (1-way) caches. For each
memory address there is a set of N cache lines that this
address can go to, and a LRU replacement policy is used
within this set. As Figure 3 presents, the cache-line offset is
usually determined by using the lowest bits of the memory
address. Due to associativity, the meaningful set of bits of
the memory address is decreased, by 2 in our example case.

Partitioning Primitive. Like all MonetDB/X100 query
processing operators, the functionality of best-effort parti-
tioning is provided by a primitive function, that partitions
a vector of tuples in the following inner loop:

associativity
* (LRU) "
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Figure 3: Organization of a 64 kilobyte 2-way asso-
ciative cache memory with 64-byte cache-lines
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for(i=0; i<mn; i++) {
partno = HASH_TYPE(src[i]) & PARTITION_MASK;
dst [partno] [counts [partno]++] = src[il;

}

It is a common situation that the addresses of these dst [p]
buffers are aligned to the page size. As a result, using the
cache from Figure 3 and a page size of 8KB, all these ad-
dresses will map onto only 4 separate cache addresses, hold-
ing 2 cache-lines each. That means, that if we partition
into more than 8 buffers, there is a high probability that,
when we refer to a buffer that has been recently used, the
cache-line with its data has already been replaced, possibly
causing a cache-miss. Since the partitioning phase is usually
performed using hash-values, data is roughly uniformly dis-
tributed among partitions. As a result, this cache associa-
tivity thrashing may continue during the entire execution of
this primitive. Since the previous experiments with Radix-
Cluster [14] were primarily performed on a computer archi-
tecture where high fan-out partitioning deteriorated due to
slow (software) TLB miss handling, these issues had previ-
ously not been detected. A simple solution for this problem
is to shift each buffer address with a different multiple of a
cache line size, such that all map to different cache offsets.

Figure 4 presents the performance of the partitioning phase
with both aligned and non-aligned buffers on Pentium Xeon
and Itanium2 CPUs As the number of partitions grows, the
performance of aligned buffers goes down, quickly approach-
ing the cost of random-memory access per each tuple. The
non-aligned case, on the other hand, manages to achieve
speed comparable to simple memory-copying even for 256
partitions. When more partitions are needed, it is possible
to use a multi-pass partitioning algorithm [14]. BEP can be
easily extended to handle such a situation.
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3.3 BEP Performance

Performance of hash processing with best-effort partition-
ing is influenced by a number of factors presented in Table 2.
The first group, data and query properties define the num-
ber of tuples stored in a hash table and their width, de-
termining a size of the hash table. The second group, par-
titioning settings, determine the size of per-partition hash
tables. Finally, the hardware factors influence the recom-
mended size of the small hash tables, hence the partitioning
fan-out. Moreover, cache and memory latencies influence
the desirable cache-reuse factor, which determines the amor-
tized cost of data access.

We now discuss in detail one particular scenario of using
BEP for partitioned hash aggregation. This setting is later
used in experiments on our Itanium2 machine. The relevant
hardware and algorithm parameters are listed in Table 2,
which in its rightmost column also contains the specific hard-
ware characteristics of [tanium2. Note that Itanium2 has a
large and fast L3 cache, which is the optimization target (in
case of Pentium4, it is best to optimize for L2).

Example Scenario. Assume we need to find 1M unique
values in a 20M single-attribute, 4-byte long tuples using
50MB of RAM on our Itanium2 machine with a 3SMB L3
cache with 128-byte cache-lines. A hash table with a load
factor of 0.5 occupies 20MB using optimized single-column
Cuckoo Hashing: 16MB for the bucket array and 4MB for
the values. Using 16 partitions will divide it into 1.25MB
(cache-resident) hash-tables. There will be 30MB of RAM

left for partitions, and assuming uniform tuple distribution
(which is actually the worst case scenario for our algorithm),
the largest partition during overflow occupies 1.875MB, hold-
ing 480K 4-byte tuples. Thus, when this partition is pro-
cessed, 480K keys are looked-up in a hash-table, using 4
random memory accesses per-tuple, resulting in 1875K ac-
cesses. Since the hash table consists of 10240 128-byte cache
lines, each of them will be accessed 188 times. With main-
memory and (L3) cache latencies of 201 and 14 cycles, re-
spectively, this results in an average access cost of 15 cycles.

Experiments. Figure 5 compares in a micro-benchmark
naive (non-partitioned) and best-effort partitioning hash ag-
gregation, in a "SELECT DISTINCT key FROM table" query on
a 20M 4-byte wide tuples table, with a varying number of
distinct keys. When this number is small, the hash table fits
in the CPU cache, hence the partitioning only slows down
execution. When the number of keys grows, the hash table
exceeds the cache size, and best-effort partitioned execu-
tion quickly becomes fastest. Figure 6 shows a performance
break-down into partitioning cost, hash table maintenance
(lookup and inserts) and hash function computation. With
more partitions, the data locality improves, making the hash
table maintenance faster. On the other hand, more parti-
tions result in a slower partitioning phase. Finally, we see
that with partitioned execution the cost of the hash-function
is two times higher, as it is computed both in partitioning
and lookup phases. Depending on the cost of computing
this function (especially when it is computed over multiple
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Figure 7: Impact of Available Buffer Space (20M tuples, 1M unique values)

Table 2: Best-Effort Partitioning parameters

l Description [ Symbol [ Example ]
Query properties
Number of distinct values D 1M
Number of tuples T 20 M
Input width G 4B
Hash-table: data width i 4B
Hash-table: buckets width Ry 8B
Hash-table: per-key memory = l;; 20B
ha+ 2 hy (Cuckoo, 50% fill ratio)
Hash-table: size = D - fiyp |H| 20 MB
BEP settings
Available buffer memory | M| 30 MB
Number of partitions P 16
Partition: size = 31 |M,| |1.875 MB
Partition: tuples buffered = M%pl T, 480 K
Partition: hash-table size = % |Hp| 1.25 MB
Number of per-lookup random a 4
accesses (Cuckoo)

Hardware properties (Example = Itanium2)
Cache size |C| 3 MB
Cache line width c 128 B
Cache latency lo 14 cycles
Main-memory latency Inr 201 cycles

attributes), it can be more beneficial to store it during par-
titioning and reuse it during lookup.

The performance of partitioned execution depends highly
on the cache-reuse ratio during one processing phase, which
in turn depends on the amount of buffer space. As Figure 7
shows, with an increasing number of buffered tuples, perfor-
mance improves since more tuples hit the same cache line. If
the number of partitions is big enough to make the hash ta-
ble fit in the cache, adding more partitions does not change
performance given the same buffer space. Finally, we see
that the performance curve quickly flattens, showing that
the performance can be close to optimal with significantly
lower memory consumption. In this case, processing time
with a buffer space of only 2M tuples is the same as with
20M tuples (which is equivalent to full partitioning). We
see this reduced RAM requirement as the main advantage
of best-effort partitioning.

Cost Model. We now formulate a cost model to answer the
question what is the amount of buffer memory that should
be given to BEP to achieve (near) optimal performance.
The cost of the amortized average data access cost during
hash-table lookup depends on the cache-reuse factor:

I

access_cost =l + ——————
reuse_factor

The cache-reuse factor is the expected amount of times a
cache line is read while looking up in the hash table all
tuples from a partition. It can be computed looking at the
query, partitioning and hardware properties from Table 2:
Ty-a-C |M|-a-C

| Hp| Dy
A good target for the cache-reuse factor is to aim for an
amortized RAM latency close to the cache performance, for
example 25% higher:

reuse_factor =

e
reuse_factor 4

This, in turn, allows us to compute the required amount of
memory BEP needs:

Ing-4-5-D - hu
lc-a- 6
In the case of our Itanium2 experiments we arrive at:
201-4-4-1M -20
14-4-128
and in case of the Pentium 4:
370-4-4-1M -20
24-4-128
This prediction is confirmed in Figure 7, where a buffer of
2M tuples results in the optimal performance.

As a final observation, it is striking that the amount of
partitions does not play a role in the formula. The cost
model does assume, though, that the hash table fits in the
CPU cache. This once again is confirmed in Figure 7, which
shows that once partitions are small enough for them to fit
in the CPU cache, performance does not change. Note that
on Pentium4, the 16 partition line is in the middle, because
at that setting the hash-tables (20MB/16 = 1.25MB) are

just a bit too large to fit L2, but average latency has gone
down with respect to pure random access.

|M| =

|M| =

= 9,409,096 B = 2,352,274 tuples

|M| = = 10,103,464 B = 2,525,866 tuples



3.4 BEP Discussion

Best-effort partitioning can be easily applied to all re-
lational operations. In aggregation, the ProcessPartition()
function simply incrementally updates the current aggregate
results. In joins and set-operations, the partitioning can first
be used for the build relation, and then for the probe rela-
tion, using the same small hash tables. This allows, for
example, cache-friendly joining of two relations if only one
of them fits in main memory. This can be further extended
to multi-way joins using hash teams [10].

The flexibility of BEP memory requirements is useful in a
scenario where the memory available for the operator changes
during its execution. If the buffer manager provides BEP
with extra memory, it can be simply utilized as additional
buffer space. If, on the other hand, available memory is re-
duced, BEP only needs to pass some of the partitions to the
processing operator and free the buffers they occupied.

The ideas behind BEP can be applied in a scenario with
more storage levels. For example, it is possible that the
hash-table does not fit in main memory, and the partitioned
data is too large to fit on disk, calling for the use of tertiary
storage [17], e.g. a magnetic tape. In this situation, BEP
can be used to buffer the data on disk and periodically pro-
cess memory-size hash tables, again using BEP to make it
cache-friendly. This scenario raises the question whether it
is possible to build a cache-oblivious data structure [7] with
properties similar to those of BEP.

BEP is related to a few other processing techniques be-
sides vanilla data partitioning. Farly aggregation [11] al-
lows computing aggregated results for part of the data and
later join combine them. In parallel local-global aggrega-
tion [9], tuples can be distributed using hash-partitioning
among multiple nodes. If the combined memory of these
nodes is enough to keep the whole hash table, I/O-based
partitioning is not necessary. In hybrid hashing [6], the ef-
fort is made to keep as much data in memory as possible,
spilling only some of the partitions to disk. While there are
clearly similarities between BEP and these techniques, BEP
provides a unique combination of features: (i) it allows ef-
ficient processing if the data does not fit in the first-level
storage (cache), (i) it optimizes data partitioning for a lim-
ited second-level storage (main memory), (i) it allows a
non-blocking partitioning phase, and, finally, (iv) it can be
easily combined with dynamic memory adjustments.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we have taken an in-depth look at the
interaction between computer architecture and hashing in
database operators. This work was done in the context
of the MonetDB/X100 system that uses a vectorized in-
cache processing model. We first explained how a bucket-
chained hash table can be employed in such an engine and
why its linked-list traversal violates the spirit of vectorized
processing. Then we presented a vectorized version of the
recently introduced Cuckoo Hash algorithm, that improved
the lookup performance by a factor 3 on Itanium2 systems.

In the second part of the paper we turned our attention
to hash partitioning, which is required for scalable hashing
algorithms. We proposed a new hash partitioning variant,
called best-effort partitioning, that can be used in a pipelined
fashion and provides the same performance as traditional
full partitioning, with significantly lower memory require-
ments. On the way, we exposed CPU cache associativity

thrashing as a threat to partitioning performance, and pro-
posed a simple solution for this.

In the future we plan to study the performance of pre-
sented algorithms in large-scale scenarios, e.g. on a TPC-H
benchmark. Furthermore, we will investigate novel hashing
schemes and their properties when applied in database sce-
narios, both during hash-table based operator execution and
value lookup during data (de) compression.
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