
1

MASTER THESIS

MIDDLEWARE FOR INTERNET OF
THINGS

Shirin Zarghami

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS
AND COMPUTER SCIENCE
SOFTWARE ENGINEERING

EXAMINATION COMMITTEE
dr. Luís Ferreira Pires
dr. Maya Daneva
ir. A. Dercksen
ir. drs. T. Garthoff

November 2013

2

I

Abstract

 The Future Internet enables us to have an immediate access to information about the physical
world and its objects. As such, Internet of Things (IoT) has been introduced to integrate the
virtual world of information and the real world of devices. Internet of Things covers the
infrastructure, which can be hardware, software and services, to support the networking of
physical objects. IoT aims to provide a simple interaction between the physical world and the
virtual world, by integrating a large numbers of real-world physical devices (or things) into the
Internet.

IoT has increasingly gained attention in industry to interact with different types of devices. This
popularity cause a demand to use IoT vision for different types of device. While each type of
devices can support its own communication protocol and required data to provide data for each
interaction. This heterogeneous device interaction cause difficulties to interact with the devices to
gather information from the environment. The solution that has introduced in the literatures is
defining a middleware layer between the devices and the user of the IoT- based system.

In this research, we investigate on developing a middleware for an IoT-based system like video
Monitoring System (VMS), to facilitate configuration and deployment for non-expert end-users.
A VMS is responsible to provide full video coverage to monitor an area for an end-user, such as a
guard. The configuration and deployment can be facilitated by providing a homogeneous
Graphical User Interface to interact with different types of camera in a uniform way.

A VMS must support the technical details of different types of cameras. However, these
variations should be hidden from non-expert end-users. Thus, we extract a model from the
required features to configure different types of cameras. In this project, we developed a VMS
that consist of a Middleware for video Monitoring System (MVMS) and applications, which run
on top of the middleware. Our VMS let non-experts end-users configure cameras through
communicating with third-party camera service providers which is responsible to apply end-
users configuration on cameras.

To evaluate our VMS to achieve the ease of configuration and deployment for non-expert end-
users, we developed a prototype and interview with the practitioners in a company which has
developed VMS.

II

IV

1

Table of Contents

Abstract .. I

Acknowledgment .. III

Chapter 1 Introduction ... 3

1.1 Background .. 3

1.2 Motivation ... 3

1.3 Objective and Research Questions .. 4

1.4 Empirical Research Approach .. 5

1.5 Structure .. 6

Chapter 2 Background for this research .. 7

2.1. IoT definition .. 7

2.2 Challenges.. 9

2.3 IoT_based Middleware .. 10

2.3.1 Interface protocols ... 11

2.3.2 Device Abstraction (DA) ... 12

2.3.3 Central control, Context detection & Management (CCM) ... 14

2.3.4 Application Abstraction .. 14

2.4 Conclusion ... 15

Chapter 3 Review of IoT-based Middleware ... 17

3.1 AURA .. 18

3.2 HYDRA ... 20

3.3. TinyDB ... 21

3.4 WISeMid ... 22

3.4.1 WISeMid power saving mechanisms ... 23

3.4.2 WISeMid architecture .. 24

3.4.3 WIOP protocol.. 26

3.5 Comparative Analysis of the Middleware ... 28

3.6 Conclusion ... 29

Chapter 4 Video Monitoring System Requirements ... 31

4.1 VMS High-level Architecture ... 31

2

4.2 Requirements Capturing Approach ... 32

4.3 Functional requirements ... 33

4.4 Non-functional requirements .. 37

4.5 Conclusion ... 38

Chapter 5 Proposed architecture .. 39

5.1 Overview of the system ... 39

5.2 APIs .. 42

5.3 Registry .. 44

5.3.1 Resource configuration ... 44

5.3.2 Services repository ... 46

5.3 Service proxy ... 49

5.4 Conclusion ... 49

Chapter 6 Implementation .. 51

6.1 Deployment ... 51

6.2 Client Application .. 52

6.3 Registry .. 55

6.4 Service proxy ... 57

6.5 Conclusion ... 60

Chapter 7 Preliminary Evaluation .. 61

7.1 Evaluation process ... 61

7.2 The experiment and its results .. 63

7.3 Discussion: ... 66

7.4 Validity Threats .. 67

7.5 Conclusion ... 68

Chapter 8 Conclusion .. 69

8.1 Contributions ... 69

8.2 Future Research ... 70

References ... 73

Appendix A: Questionnaire sample ... 77

Appendix B: Questionnaire Results ... 79

5

Q3. How to facilitate the interaction of non-expert users with different types of devices?

Q4. How to verify ease of this interactions with different types of devices ?

In this work we answer these questions for the special case of Video Monitoring System
(VMS)

1.4 Empirical Res earch Approach

To achieve the main objective of this research and answer the research questions, the
following research process has been taken (Figure 1.1):

1. Study the literature about IoT-based system definition and challenges.

2. Interviews practitioners of a company that develops IoT-based systems to identify their
requirements on the middleware for these systems.

3. Design and implement a middleware for VMS, which accomplish with the both
functional and non-functional requirements that have been identified.

4. Test the middleware of a case study in which a prototype application has been
built as support a usage scenario.

5. Interview with the practitioners in the company, and analyzing its results. In order
to evaluate if the middleware can meet the defined objective.

Figure 1.1 Research approach

6

The research approach has been inspired by the design science method of Hevner
[7]

1.5 Structure

The remainder of this thesis is structured as follows:

Chapter 2 gives the background of our work. We explain IoT vision and discuss the
functionalities that a middleware for an IoT-based system should support.

Chapter 3 reviews some middleware for IoT- based systems and discusses their
features.

Chapter 4 reports of both functional and non-functional requirements that our
middleware should address. We extract these requirements based on reviewing the
literature and the result of interviews, which we performed with practitioners in a
commercial company

Chapter 5 proposes middleware architecture to support most of the requirements
identified in Chapter 4.

Chapter 6 reports implementations of a prototype of a middleware for VMS.

Chapter 7 evaluates our middleware with respect to ease of configuration and
deployment for non-expert end-users.

Chapter 8 provides answer to the research questions of this thesis, the key
conclusions and the recommendations for the further research.

11

Figure 2.2 Functional components of a middleware for IoT-based systems

2.3.1 Interface protocols

This component is in charge of providing technical interoperability. Interoperability in
the context of Interface protocols means: the ability of two systems to interoperate by
using the same communication protocols. According to ETSI (European
Telecommunications Standards Institute) [14] technical interoperability is defined as the
association of hardware or software components, systems and platforms that enable
machine-to-machine communication to take place. This kind of interoperability is often
centered on (communication) protocols and the infrastructure needed for those protocols
to operate[14].

The Interface Protocol component defines protocols for exchanging information among
different networks that may work based on different communication protocols, in order to

15

(nodeid) nearby and temperatures that are sensed by this sensor during the past 10
seconds before executing the query:

SELECT nodeid, temp
FROM sensors
SAMPLE PERIOD 1s FOR 10s

2.4 Conclusion

In this chapter, we defined IoT and identified common IoT layers. Furthermore, we
discussed a reference middleware architecture for IoT-based systems. This
architecture has been proposed by Bandyopadhyay, S. et. al based on a study on the
existing middleware frameworks for IoT-based systems [1].

16

20

3.2 HYDRA

Hydra [24] is a well-known middleware framework for IoT-based system This
middleware covers almost all the functional components discussed in Chapter 3. To
provide the ease of deployment and configuration, we are looking for a Service Oriented
Architecture that interacts with devices in a loosely couple way. The reason is, a loosely
couple IoT-based system can support better system maintainability and extendibility in
case of handling changes in the type an number of devices. As Hydra is a SOA-based
middleware, and supports many required functionalities to support an IoT-based system,
we consider it as our related work,

This project was developed for three application domains, namely building automation,
healthcare, and agriculture scenarios [30]. Hydra middleware is intelligent software that
is placed between applications and the operating system to handle various tasks in a cost-
efficient way. This middleware provides a web service interface to interact with any
physical devices, actuators, sensors or subsystems, irrespective of their network interface
technologies, e.g. Bluetooth, RF, ZigBee, RFID, WiFi, etc.

This middleware has been designed to facilitate the interaction with devices by
abstracting from the detailed information about these devices and their networks. Hydra
considers each device as a service, and uses ontology languages, e.g. OWL, OWL-s and
SAWSDL, to define semantic descriptions of these devices. Moreover, it provides an
intelligent service layer that allows end-users to interact with these devices without
dealing with the communication technology that is supported by the devices.

Figure 3.2 shows the components of Hydra architecture and the components that Hydra
middleware communicates with.

21

Figure 3.2 Components inside and outside of Hydra middleware.

3.3. TinyDB

TinyDB[19] middleware was the first project to propose the idea of abstracting from
devices. TinyDB allows end-users to interact with devices without knowing about the
details of the devices specification, such as the communication protocols that are
supported by these devices. Since we are looking for a way to abstract from details of
devices to facilitate interactions with them, this topic can be relevant to our work.

TinyDB provides a Domain Specific Language (DSL) for end-users to interact with
devices. Its DSL is a query language that supports selection, join, projection, and
aggregation to work with an embedded sensing environment. This DSL allows an end-
user to get information about the time, place, type and method of sampling in an
embedded sensing environment. TinyDB supports the following types of queries:

24

1) Fire and forget

This pattern supports one-way operations, which have no return values or
exception errors. This pattern cannot report any errors to the end-user when an
error occurs either when sending the invocation to the remote service, or during
the execution of the remote invocation.

2) Sync with Server

 This pattern is used when we want to be sure that the request has been received
by the server, even if a request has no exception or returned value. In this case,
the service invokes a service provider, and then waits for an acknowledgment
message from the service provider. We can use this pattern in case a service
should be invoked before other services.

3) Poll object

This pattern is based on request and response operations. It checks if an
asynchronous response has arrived, and if so, it receives the return value.

4) Result callback

This pattern can trigger an event in end-user side whenever the requested result
becomes available.

3.4.2 WISeMid architecture

WISeMid uses a Interface Definition Language (IDL) [29], to describe a service in this
middleware. IDL is a unified language to describe a service irrespective of where
(Internet or WSN) or what implementation language is used. The IDL contains a module
(package) that is as a container for specifying service interfaces. Each service interface
includes name and the operation that can by supported by the service. Each operation
contains input/output parameters types and may raise exceptions. Its format is the
following:

26

Figure 3.3 shows WISeMid architecture

3.4.3 WIOP protocol

The WIOP protocol defines a format for request or response messages between clients
and servers. Each message consists of a header and a body part. There are two versions of
WIOP:

1) WIOPi supports communication through Internet.

2) WIOPs support communication in a Wireless Sensor Network (WSN).

Figure 3.4 shows WIOP header has three fields. The msgtype field indicates whether a
message is a Request or a Response.

Figure 3.4 WIOP message headers

29

Also, based on the research of Guinard. D.et. al [32] RESTful architecture is more
intuitive, flexible, and lightweight in compare with the SOAP-based web services. Since
in an IoT-based system we interact with many devices with limited computational
process capability, we think developing a middleware by using RESTful web service may
be more suitable than SOAP-based web service.

TinyDB is defined to be used together with TinyOS, which is a software suite. It is
designed to facilitate the access to the lowest level of hardware in an energy efficient
way. TinyDB only supports TinyOS-based devices. Therefore, service deploying in
TinyDB depends on the operating system that is supported by the required devices. The
end-user needs to know the device specifications before working with devices in
TinyDB.

WISeMid focuses on integrating the Internet and wireless sensor network at service level
by providing transparency of access. Location and technology. By providing these
transparencies, this middleware can provide ease of deploying, because we do not need to
have the detail information such as address of sensors to deploy a service.

3.6 Conclusion

In this chapter, we reviewed four middleware for IoT-based systems. To satisfy
application requirements and provide ease of configuration and deployment for an IoT-
based system, middleware requires having a uniform way to communicate with different
service providers (e.g. devices). Furthermore, middleware should support device
abstraction to provide semantic interoperability between the system parts. In the
following we discuss the ease of configuration and deployment of the reviewed
middleware.

30

32

user. Figure 4.1 shows the boundary of the VMS by presenting the VMS internal and its
operational environment.

Application 1 Application 2

Application 3

MVMS

3rd party camera service provider

VMS

Admin-user Guard

Figure 4.1 High-level architecture of a VMS

The VMS non-functional requirements affected the design of our MVMS. In this chapter,
we discuss the requirements which were identified by interviewing of practitioners
(mainly functional requirements), and by consulting the literature on IoT-based systems
(mainly non-functional requirements).

4.2 Requirements Capturing Approach

Our approach to capture the VMS requirements consists of two parts:

1) Practitioners interviews
To find out the requirements of the admin-user and guard, we had interviews with a
number of technical staff in a commercial company (Nedap4), who answered our

4 http://www.nedap.com/

http://www.nedap.com/

33

questionnaires on behalf of the admin-users and guards in the system. The company
develops a security management platform in order to provide security in different
domains, such as airports, companies. One of the services of this platform is current
VMS, which aims to support security by providing video streams to monitor different
locations. Since the security management platform has been used by many companies, it
is fair to assume that the technical staff of the company who have developed current
VMS, have sufficient knowledge about the VMS requirements. Therefore, interviews with
the technical staff at Nedap should yield a clear understanding of the VMS functional
requirements.

For capturing both functional and non-functional requirements of third-party camera
service providers, we interviewed the developers of an interface to handle the interactions
with the third-party camera service providers. Furthermore, we reviewed the RESTful
API that is provided by a third-party camera service provider to facilitate the interactions
with its cameras.

During the types of interviews, we also asked open-ended questions regarding the non-
functional requirements, such as, for example, the acceptable application response time.
After conducting the interviews, we first described a use case diagram that represents the
required VMS functionalities. Then, we provided a sequence diagram for this use case to
show how the application service providers, the third-party camera service provider, and
the VMS have to interact in order to deploy a video service.

2) Reviewing the related literature
In addition to the our interviews, we reviewed the related work ([13], [33], [34], [1]) on
IoT-based middleware to identify more non-functional requirements. Section 4.4
describes some of the non-functional requirements, which fall in the scope of our
middleware in an IoT-based system.

4.3 Functional requirements

The VMS functional requirements were identified by interviewing the practitioners in a
company, and with respect to our VMS scenarios. We defined a use case and a sequence
diagram to represent the VMS functional requirements. VMS has three external entities
who communicate with the system: (1) admin-user, (2) guard and (3) third-party camera
service provider.

The main functional requirement of the system is to provide the video monitoring
service. For this purpose, Figure 4.2 shows the use cases (1) monitoring a video service,
(2) configuring the camera, (3) deploying a camera configuration, (3) reporting about
the resources (4) configuring the video service. To provide each functionality, several
external entities should interact with each other. The functionalities and the involved
external entities are:

34

Figure 4.2 VMS functionalities and involved external entities

1. Monitoring a video service
This use case defines as a service that can be asked by guard. A guard sends a
monitoring request to monitor a video service. VMS extracts the address of the
third-party camera service providers that manage the cameras in the video service.
Then, VMS sends the monitoring request and the address of the guard to the
considered third-party camera service providers. Finally, the third-party camera
service provider starts up the requested video stream to the guard. Later, the guard
can send a request to the third-party camera service provider through the VMS to
stop the video stream.

2. Configuring the camera

This use case addresses the required camera configurations. Our VMS supports the
capability of saving more than one configuration for each camera. Only one of
these configurations can be applied on the cameras. Each configuration address the
required camera configuration fields to prepare a camera for probing. In fact, each

35

set of configuration identifies a state of a camera configuration that is desirable for
a guard.

3. Deploying a camera configuration

An admin-user can ask VMS to deploy the defined settings through a GUI. VMS
extracts the camera configuration from VMS data-base and then sends the
extracted data to the third-party camera service provider to apply the new
configuration on the camera.

4. Reporting

VMS is in charge of delivering reports with information on the state of cameras or
third-party camera service providers. Both admin-users and guards are able to ask
for these reports, which are provided by third-party camera service providers.
However, to decrease the number of interactions with third-party camera service
providers, VMS should have the capability of cashing the reported information. In
this way, if VMS receives the same request more than once in a specific period of
time and the reported information is still up to date, VMS can respond without an
additional interaction with the third-party camera service provider.

5. Configuring video service
This use case addresses the required configurations that are required to set a
collection of one or many camera(s) that can provide the full video stream
coverage for guards to monitor different places.

Figure 4.3 shows how the external entities interact with VMS according to the five
use cases described above.

36

Figure 4.3 Interactions with external entities to provide a Video monitoring
application

37

4.4 Non-functional requirements

The VMS non-functional requirements that we have identified in our interviews have also
been addressed in the literature. We identified the following non-functional requirements
for the VMS:

.

1. Ease of configuration for admin-user [10] [2]

VMS should be able to connect to different types of cameras, which each can
support specific communication protocols and standards. However, to facilitate the
configuration of different types of camera, VMS should support a single GUI
interface for admin-users to work with different cameras.

2. Facilitate monitoring[2]

VMS should facilitate monitoring by providing both configuration and location
transparency for guard. For example, the guard can refer to a location that has to
be monitored by using its video service name. For instance, to monitor Hall A,
which is covered by camera 1 and camera 2, guard only needs to send the name of
the location (Hall A). VMS is in charge of finding the address and the
configuration of the required cameras, which either has been set by an admin-user
or already, has a default value in the system.

3. Supporting new types of cameras [13]

VMS has to be able to support different types of camera in different domains.
Thus, VMS has to be extendable with minimum changes, and it also needs to
allow new cameras to be added to the system.

4. Scalability [10], [13], [2], [35]

The security management platform has to be capable of supporting different
numbers of camera. The company VMS as a main part of the security platform is
in charge of supporting a large number (more than 1000) of cameras. To support a
large scale system, VMS has to be able to integrate with the third-party camera
service provider to distribute part of the necessary process.

5. Security and privacy

38

The major security problem of IoT is related to authentication and data integration
[34]. To do the authentication, we need data exchange between authentication
servers and devices. This makes a problem when an application use passive RFID
tags in an IoT-based system, because a passive RFID does not have the capability
of handling many communications with an authentication server. This problem
has not been solved yet [36].

4.5 Conclusion

In this chapter, we identified both functional and non-functional requirements that should
be considered in the design and implementation of a VMS. In order to identify these
requirements, we conducted interviews with the technical staff of a commercial company
(Nedap). We interviewed the technical staff of the research and development department
in order to have a general understanding about both the current and next generation of
VMS. We also had interviews with the software architects and developers of the current
VMS to collect more information of the system.

Furthermore, we reviewed the literature on middleware for IoT-based systems to identify
those requirements that a VMS should be able to support.

In our project, we are going to answer to two of these non-functional requirements: (1)
providing ease of configuration for admin-user; (2) providing ease of monitoring for a
guard who is as an end-user in VMS.

40

defines the shop monitoring video service and the required configuration for the
camera services in VMS. Then, VMS sends the camera service request to the
considered third-party camera service providers. Finally the third-parties send the
requested video stream to the guard.

Figure 5.1 Example of a video service monitoring.

Figure 5.2 is the overview of the VMS system to show the main components which are
required to interact with the three aforementioned resources.

VMS consists of two main parts: (1) Client Application that receives the end-users
request through a GUI. Then, it sends the request in an appropriate format to third-party
camera service providers. (2) MVMS that consists of three main components to answer
the client application request.

43

service proxy, which is able to send it to the consider third-party camera service
provider. This API also allows an admin-user to set different PTZ preset for each
camera service, but only one of them can be deployed at the time.

MonitoringConfiguring ReportingDeploying

Abstract
services

Service
Repository

Service Proxy

Registry

Functionalities

. . .

Third party
camera
service

provider 1

Third party
camera
service

provider n

MVMS
Application 1 Application 2

VMS

Admin-user Guard

. . .

Video stream

Video stream

Figure 5.3 Overview of the VMS system including the applications and MVMS

44

5.3 Registry

Registry stores the required data to perform the MVMS APIs. This part is divided into
two sub-parts: (1) resource configuration that contains the required specification to
configure and define the resources that the both end-users would like to interact with (2)
service repository that contains services that are required to perform the APIs. We will
discuss each sub-part in more detail, in the following.

5.3.1 Resource configuration

 Resource configuration is responsible to provide the required data to define and
configure the three resources. Each Video session configuration refers to the required
camera(s) to provide full camera coverage to monitor, for instance, a location. Each
camera configuration defines the required data to configure a camera service to provide a
desirable video service for the guard. The third-party camera service provider can be
configured by admin-user or the third-party camera service provider. These resources will
be explained more in the section 6.2 Resource definitions.

The data about the resources is mostly defined by admin-users. We can have different
types of specifications in order to configure the resources. For instance, a resource like
camera service can be defined on different types of camera devices. However, different
types of camera devices can have their own specifications to be configured. An admin-
user only needs to set some specifications that are required to perform MVMS APIs.
These specifications can be common in most of the cameras devices. Therefore, to
facilitate configuration and definition of resources in VMS, we can extract a structural
model from the required specifications to define camera service resources.

To extract this structural model (as shown in Table 5.1) we reviewed three references: (1)
Pervasive System (PS) group5of Twente university research that has proposed a generic
WSN data model to interact with sensors in a WSN (2) The RESTful API that is going to
be used at Nedap to integrate the current video monitoring system with the third-party
camera service providers, (3) The ONVIF 6group specifications [37] that defines camera
attributes to develop a middleware framework between a client and different IP-based
camera devices.

5 http://ps.ewi.utwente.nl/
6 http://www.onvif.org

http://www.onvif.org/Documents/Specifications.aspx

45

Table 5.1. List of the specifications of resources in VMS

47

Table 5.3 Sub-functionalities of the APIs: Part 1

48

Table 5.3 Sub-functionalities of the APIs: Part 2

50

51

Chapter 6 Implementation
In this chapter, we explain the implementation of our prototype. Section 5.1 explains the
deployment architecture of internal and external components of VMS. Section 5.2
explains the client application and the way that the APIs have been used in the client
applications. Section 5.3 shows the database schema of the Registry. Finally, section 6.4,
explains the implementation of service proxy complement.

6.1 Deployment
Figure 6.1 shows how internal and external components of a VMS have been deployed
and the communication protocols which are used by them. As the Figure shows, client
applications send a RESTful request to the server that MVMS is hosted on. Then, MVMS
interacts through the communication protocols that can be used in either LAN or Internet
to interact with third-party service providers. Finally, third-party can send the required
information to answer the requesting query to the client application or MVMS.

End-user Admin-user

Client
Application

Client
Application

Internet

MVMS

Nedap Server

Restful request Restful request

Internet

Restful request

Third-party camera
service provider

Application 1

Third-party service
 provider 1 Server

Third-party camera
service provider

Application 2

Third-party service
 provider 2 Server

Local network protocols

VMS

Figure 6.1 the deployment architecture

52

A Camera service provider is located inside Nedap Company that deploys the VMS. The
third-party camera service provider uses some LAN protocol such as AMQP (Advance
message queuing protocols), which seems more light weight than HTTP, to interact with
MVMS.

6.2 Client Application
We used web service to implement the interaction between the client applications and
MVMS. Web service can be implemented based on two architectures: (1) SOAP-based
and (2) RESTful. we decided to use REST for two reasons: (1) VMS does not have
complex operations and (2) REST is easy to use for clients [32]

The client application supports two access levels, namely (1) end-user and (2) admin-
user. In our prototype the end-user client application uses monitoring API and also move
the camera in the form of changing its PTZ preset. The admin-user client application uses
configuring and deploying APIs to configure the cameras for endd-users. We explain two
types of client application as follows:

End-user client application:

As the monitoring-form (see Figure 6.2) shows, first an end-user enters a name of a video
service. MVMS by receiving the monitoring request shows the list of the required
cameras of the requested video service to the end-user. Also, MVMS extracts the name of
the required third-party camera service providers and ask them to send the video stream
to the requested user. Beside this, if end-user needs to change the one of the cameras
PTZ, he/she can see the list of available PTZ preset for the camera and then apply one of
the listed PTZ preset on them. By receiving the new PTZ preset MVMS updates the
registry information and informs the considered third-party camera service provider about
the changes.

Figure 6.2 End-user monitoring form

54

Table 6.1 the summary of our prototype forms

