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Abstract
The performance of particle colliders is usually quantified by the beam energy
and the luminosity. We derive the expressions for the luminosity in case of
bunched beams in terms of the beam parameters and the geometry. The im-
plications of additional features such as crossing angle, offsets and hourglass
effect on the luminosity are calculated. Important operational aspects like in-
tegrated luminosity, space and time structure of interactions etc. are discussed.
The measurement of luminosity for e+e− as well as hadron colliders and the
methods for the calibration of the absolute luminosity are described.

1 Introduction
In particle physics experiments the energy available for the production of new effects is the most im-
portant parameter. The required large centre of mass energy can only be provided with colliding beams
where little or no energy is lost in the motion of the centre of mass system (cms). Besides the energy the
number of useful interactions (events), is important. This is especially true when rare events with a small
production cross section σp are studied. The quantity that measures the ability of a particle accelerator
to produce the required number of interactions is called the luminosity and is the proportionality factor
between the number of events per second dR/dt and the cross section σp:

dR

dt
= L · σp . (1)

The unit of the luminosity is therefore cm−2s−1.

In this lecture we shall first give the main arguments which lead to a general expression for the
luminosity and derive the formula for basic cases. Additional complications such as crossing angle
and offset collisions are added to the calculation. Special effects such as the hourglass effect and the
consequences of different beam profiles are estimated from the generalized expression.

Besides the absolute value of the luminosity, other issues are important for physics experiments,
such as the integrated luminosity and the space and time structure of the resulting interactions.

In the final section we shall discuss the measurement of luminosity in both, e+ e− as well as
hadron colliders.

2 Why colliding beams ?
The kinematics of a particle with mass m can be expressed by its momentum ~p and energy E which form
a four-vector p = (E, ~p) whose square p2 is (with the appropriate norm):

p2 = E2 − ~p 2 = m2 . (2)

In the collision of two particles of masses m1 and m2 the total centre of mass energy can be
expressed in the form

(p1 + p2)2 = E2
cm = (E1 +E2)2 − (~p1 + ~p2)2 . (3)

This is the available energy for physics experiments.
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In the case of a collider where the collision point is at rest in the laboratory frame (i.e. ~p1 = −~p2),
the centre of mass energy becomes:

E2
cm = (E1 +E2)2 . (4)

When one particle is at rest, i.e. in the case of so-called fixed target experiments, (i.e. ~p2 = 0), we
get:

E2
cm = (m2

1 +m2
2 + 2m2E1,lab) . (5)

A comparison for different types of collisions is made in Table 1. From this table it is rather obvious

Table 1: Centre of mass energy for different types of collisions.

Ecm as collider (GeV) Ecm with fixed target (GeV)

p on p (7000 on 7000 GeV) 14000 114.6

e on e (100 on 100 GeV) 200 0.32

e on p (30 on 920 GeV) 235 7.5

why colliding beams are necessary to get the high centre of mass energies required for particle physics
experiments.

3 Computation of luminosity
3.1 Fixed target luminosity
In order to compute a luminosity for fixed target experiment, we have to take into account the properties
of both, the incoming beam and the stationary target. The basic configuration is shown in Fig.1 The
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Fig. 1: Schematic view of a fixed target collision.

incoming beam is characterized by the flux Φ, i.e. the number of particles per second. When the target
is homogeneous and larger than the incoming beam, the distribution of the latter is not important for the
luminosity.

The target is described by its density ρT and its length l. With a definition of the luminosity like:

LFT = ΦρTl (6)
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we write the interaction rate
dR

dt
= ΦρTl · σp = LFT · σp (7)

as desired.

3.2 Colliding beams luminosity
In the case of two colliding beams, both beams serve as target and ”incoming” beam at the same time.
Obviously the beam density distribution is now very important and the generalization of the above ex-
pression leads to the convolution of the 3-D distribution functions. We treat the case of bunched beams,

dR
dt =  σpL

N particles bunch/

ρ1
2

(x,y,s,s  )0

ρ (x,y,s,−s  )0

0s

1
2N 

N 

ρ density = const.

Fig. 2: Schematic view of a colliding beam interaction.

but it can easily be extended to unbunched beams or other concepts like very long bunches. A schematic
picture is shown in Fig.2. Since the two beams are not stationary but moving through each other, the
overlap integral depends on the longitudinal position of the bunches and therefore on the time as they
move towards and through each other. For our integration we use the distance of the two beams to the
central collision point s0 = c · t as the ”time” variable (see Fig. 2). A priori the two beams have different
distribution functions and different number of particles in the beams.

The overlap integral which is proportional to the luminosity (L) we can then write as: ¡

L ∝ K ·
∫∫∫ +∞

−∞
ρ1(x, y, s,−s0)ρ2(x, y, s, s0)dxdydsds0 . (8)

Here ρ1(x, y, s, s0) and ρ2(x, y, s, s0) are the time dependent beam density distribution functions. We
assume, that the two bunches meet at s0 = 0. Because the beams are moving against each other, we
have to multiply this expression with a kinematic factor [1]:

K =
√

(~v1 − ~v2)2 − (~v1 × ~v2)2/c2 . (9)

In the next step we assume head-on collisions (~v1 = −~v2) and that all densities are uncorrelated
in all planes. In that case we can factorize the density distributions and get for the overlap integral:

L = 2N1N2fNb

∫∫∫∫ +∞

−∞
ρ1x(x)ρ1y(y)ρ1s(s− s0)ρ2x(x)ρ2y(y)ρ2s(s+ s0) dxdydsds0 . (10)

We have completed the formula with the beam properties necessary to calculate the value of the
luminosity: N1 and N2 are the intensities of two colliding bunches, f is the revolution frequency and Nb

is the number of bunches in one beam.

To evaluate this integral one should know all distributions. An analytical calculation is not al-
ways possible and a numerical integration may be required. However in many cases the beams follow
”reasonable” profiles and we can obtain closed solutions.
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4 Luminosity of Gaussian beams colliding head-on
Often it is fully justified to assume Gaussian distributions. The luminosity is determined by the overlap
of the core of the distributions and the tails give practically no contribution to the luminosity. We shall
come back to this point in a later section.

For the first calculation we assume Gaussian profiles in all dimensions of the form:

ρiz(z) =
1

σz
√

2π
exp

(
− z2

2σ2
z

)
where i = 1, 2, z = x, y , (11)

ρs(s± s0) =
1

σs
√

2π
exp

(
−(s± s0)2

2σ2
s

)
. (12)

Furthermore we assume equal beams, i.e.: σ1x = σ2x, σ1y = σ2y, σ1s = σ2s

Next we assume the number of particles per bunch N1 and N2, a revolution frequency of f and
the number of bunches we call Nb. In the case of exactly head-on collisions of bunches travelling almost
at the speed of light, the kinematic factor becomes 2.

Using this in equation (10) we get the first integral:

L =
2 ·N1N2fNb

(
√

2π)6σ2
sσ

2
xσ

2
y

∫∫∫∫
e
− x2

σ2
x e
− y

2

σ2
y e
− s2

σ2
s e
− s20
σ2
s dxdydsds0 (13)

integrating over s and s0, using the well known formula:
∫ +∞

−∞
e−at

2
dt =

√
π/a (14)

we get a first intermediate result:

L =
2 ·N1N2fNb

8(
√
π)4σ2

xσ
2
y

∫∫
e
− x2

σ2
x e
− y

2

σ2
y dxdy . (15)

Finally, after integration over x and y:

=⇒ L =
N1N2fNb

4πσxσy
. (16)

This is the well-known expression for the luminosity of two Gaussian beams colliding head-on. It shows
how the luminosity depends on the number of particles per bunch and the beam sizes. This reflects the
2-dimensional target charge density we have seen in the evaluation of the fixed target luminosity.

For the more general case of: σ1x 6= σ2x, σ1y 6= σ2y , but still assuming approximately equal bunch
lengths σ1s ≈ σ2s we get a modified formula:

L =
N1N2fNb

2π
√
σ2

1x + σ2
2x

√
σ2

2y + σ2
2y

. (17)

This formula is easy to verify and also straightforward to extend to other cases. Here it is worth
to mention that the luminosity does not depend on the bunch length σs. This is due to the assumption of
uncorrelated density distributions.

5 Examples
In Table 2 we give some examples of different colliders and their luminosity and other relevant parame-
ters. One may notice the very different interaction rate, in particular between hadron colliders and high
energy lepton colliders. This is due to the small total cross section of e+e− interactions. Furthermore,
since so-called B-factories such as PEP and KEKB operate near or on resonances, the interaction rate
varies very strongly with the precise energy. Therefore we write the term NA in the table.
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Table 2: Example of different colliders. We show the energy, luminosity, beam sizes and interaction rate for a
comparison.

Energy L rate σx/σy Particles
(GeV) cm−2s−1 s−1 µm/µm per bunch

SPS (pp̄) 315x315 6 1030 4 105 60/30 ≈ 10 1010

Tevatron (pp̄) 1000x1000 50 1030 4 106 30/30 ≈ 30/8 1010

HERA (e+p) 30x920 40 1030 40 250/50 ≈ 3/7 1010

LHC (pp) 7000x7000 10000 1030 109 17/17 11 1010

LEP (e+e−) 105x105 100 1030 ≤ 1 200/2 ≈ 5 1011

PEP (e+e−) 9x3 3000 1030 NA 150/5 ≈ 2/6 1010

KEKB (e+e−) 8x3.5 10000 1030 NA 77/2 ≈ 1.3/1.6 1010

6 Additional complications in real machines
So far we have assumed ideal head-on collisions of bunches where the particle densities in the three
dimensions are uncorrelated. In practice, we have to include additional effects in our computations,
some of the most important are:

• Crossing angle
• Collision offset (wanted or unwanted)
• Hour glass effect
• Non-Gaussian beam profiles
• Non-zero dispersion at collision point
• δβ∗/δs = α∗ 6= 0

Crossing angles are often used to avoid unwanted collisions in machines with many bunches (e.g.
LHC, CESR, KEKB). Such crossing angles can have important consequences for beam-beam effects [2]
but also affect the luminosity. When beams do not collide exactly head-on but with a small offset, the
luminosity is reduced. Such an offset can be wanted (e.g. to reduce luminosity or during measurements)
or unwanted, for example as a result of beam-beam effects [2]. The so-called hourglass effect is a geo-
metrical effect which includes a dependence of the transverse beam sizes on the longitudinal position and
therefore violates our previous assumption of uncorrelated particles densities. When the beam profiles
deviate from a Gaussian function, we may have to apply some correction factors and when the dispersion
at the interaction point is not zero, the effective beam sizes are increased, leading to a smaller luminosity.
In case of optical imperfections the collision point may not be at the minimum of the betatron function
β∗, i.e. at the waist, but slightly displaced with implications for the effective beam sizes.

Some of the most important of these additional effects we shall investigate in the following sec-
tions.

6.1 Crossing angles
A very prominent collider with a crossing angle is the LHC presently under construction at CERN. In the
LHC one has almost 3000 closely spaced bunches and to avoid numerous unwanted interactions, the two
beams collide at a total crossing angle of around ≈ 300 µrad. The Fig.3 shows a schematic illustration
of the collision region. Colliders with unbunched, i.e. coasting beams such as the ISR need a sizeable
crossing angle to confine the interaction region (e.g. ≈ 18o at the ISR).

In the following we shall assume without loss of generality that the crossing angle is in the hori-
zontal plane. The overlap integrals are evaluated in the x and y coordinate system and therefore we have
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Fig. 3: Schematic view of two bunches colliding at a finite crossing angle.
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Fig. 4: Rotated reference system for collisions at a finite crossing angle.

to transform our bunches into the proper system. The geometry of a collision at a crossing angle Φ is
shown in Fig.4. To make the treatment more symmetric, we have assumed that the total crossing angle
is made up by two rotations Φ/2 and −Φ/2 each of the two beams in the x-s plane (see Fig.4).

To compute the integral we have to transform x and s to new, rotated coordinates which are now
different for the two beams:

x1 = x cos
φ

2
− s sin

φ

2
, s1 = s cos

φ

2
+ x sin

φ

2
(18)

x2 = x cos
φ

2
+ s sin

φ

2
, s2 = s cos

φ

2
− x sin

φ

2
(19)

The overlap integral becomes:

L = 2 cos2 φ

2
N1N2fNb

∫∫∫∫ +∞

−∞
ρ1x(x1)ρ1y(y1)ρ1s(s1 − s0)

ρ2x(x2)ρ2y(y2)ρ2s(s2 + s0)dxdydsds0 . (20)

The factor 2 cos2 φ
2 is the kinematic factor when the two velocities of the bunches are not collinear (from

Eq. (9)).
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After the integration over y and s0, using the formula:
∫ +∞

−∞
e−(at2+bt+c)dt =

√
π/a · e b

2−ac
a (21)

we get:

L =
N1N2fNb

8π2σsσ2
xσy

2 cos2 φ

2

∫∫
e
−x

2 cos2(φ/2)+s2 sin2(φ/2)

σ2
x e

−x
2 sin2(φ/2)+s2 cos2(φ/2)

σ2
s dxds . (22)

We make the following approximations: since both x and sin(φ/2) are small, we drop all terms of the
type σkxsin

l(φ/2) or xksinl(φ/2) for all k+l ≥ 4 and approximate sin(φ/2) ≈ tan(φ/2) by φ/2. After
the final integrations we get for the luminosity an expression of the form:

L =
N1N2fNb

4πσxσy
· S . (23)

This looks exactly like the well known formula we have derived already, except for the additional factor
S, the so-called luminosity reduction factor which can be written as:

1√
1 + (σxσs tan φ

2 )2

1√
1 + ( σsσx tan φ

2 )2
. (24)

For small crossing angles and σs � σx,y we can simplify the formula to:

S =
1√

1 + ( σsσx tan φ
2 )2
≈ 1√

1 + ( σsσx
φ
2 )2

. (25)

A popular interpretation of this result is to consider it a correction to the beam size and to introduce
an ”effective beam size” like:

σeff = σ ·
√

1 + (
σs
σx

φ

2
)2 . (26)

The effective beam size can then be used in the standard formula for the beam size in the crossing plane.
This concept of an effective beam size is interesting because it also applies to the calculation of beam-
beam effects of bunched beams with a crossing angle [5].

As an example we use the parameters of the LHC. The number of particles per bunch is 1.15 1011,
the beam sizes in the two planes ≈ 16.7 µm, the bunch length σs = 7.7 cm and the total crossing angle
Φ = 285 µrad. With the revolution frequency of 11.245 kHz and 2808 bunches, we get for the head-on
luminosity 1.2 1034 cm−2s−1. For the luminosity reduction factor S we get 0.835 and the final LHC
luminosity with a crossing angle becomes ≈ 1.0 1034 cm−2s−1.

6.2 Crossing angles and offset beams
A modification of the previous scheme is needed when the beams do not collide head-on, but with a
small transverse offset. In order to be general, we shall treat the case with crossing angle and offsets.
The Fig. 5 shows the modified geometry when we have the same crossing angle as before, but beam 1 is
displaced by d1 and beam 2 is displaced by d2 with respect to their reference orbits.

The coordinate transformations are now:

x1 = d1 + x cos
φ

2
− s sin

φ

2
, s1 = s cos

φ

2
+ x sin

φ

2
, (27)

x2 = d2 + x cos
φ

2
+ s sin

φ

2
, s2 = s cos

φ

2
− x sin

φ

2
. (28)
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Fig. 5: Schematic view of two bunches colliding at a finite crossing angle and an offset between the two beams.

Following the previous strategy and approximations for the integration, we get after integrating y and s0:

L =
N1N2fNb

8π2σsσ2
xσy

2 cos2 φ

2

∫∫
e
−x

2 cos2(φ/2)+s2 sin2(φ/2)

σ2
x e

−x
2 sin2(φ/2)+s2 cos2(φ/2)

σ2
s (29)

× e−
d21+d22+2(d1+d2)x cos(φ/2)−2(d2−d1)s sin(φ/2)

2σ2
x dxds .

After the integration over x we obtain:

L =
N1N2fNb

8π
3
2σs

2 cos
φ

2

∫ +∞

−∞
W
e−(As2+2Bs)

σxσy
ds (30)

with:

A =
sin2 φ

2

σ2
x

+
cos2 φ

2

σ2
s

, B =
(d2 − d1) sin(φ/2)

2σ2
x

(31)

and
W = e

− 1

4σ2
x

(d2−d1)2

. (32)

We can re-write the luminosity with three correction factors:

L =
N1N2fNb

4πσxσy
·W · eB

2

A · S . (33)

This factorization enlightens the different contributions and allows straightforward calculations. The last
factor S is the already calculated luminosity reduction factor for a crossing angle. One factor W reduces

the luminosity in the presence of beam offsets and the factor e
B2

A is only present when we have a crossing
angle and offsets simultaneously.

6.3 Hourglass effect
So far we have assumed uncorrelated beam density functions in the transverse and longitudinal planes. In
particular, we have assumed that the transverse beam sizes are constant over the whole collision regions.
However, since the β-functions have their minima at the collision point and increase with the distance
this is not always a good approximation. In a low-β region the β-function varies with the distance s to
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Fig. 6: Schematic illustration of the hourglass effect. β(s) is plotted for two different values of β∗.

the minimum like:

β(s) = β∗(1 +

(
s

β∗

)2

) (34)

and therefore the beam size σ =
√
β(s) · ε increases approximately linearly with the distance to the

interaction point. This is schematically shown in Fig. 6 where the functions β(s) are shown for two
different values of β∗ (0.50 m and 0.15 m). Because of the shape of the β(s) function this effect is
called the hourglass effect. It is especially important when the β(s) function at the interaction point
approaches the bunch length σs (Fig. 6) and not all particles collide at the minimum of the transverse
beam size, therefore reducing the luminosity. Other effects such as a coupling between the transverse
and longitudinal planes are ignored in this discussion.

In our formulae we have to replace σ by σ(s) and get a more general expression for the luminosity:

L =

(
N1N2fNb

8πσ∗xσ∗y

)
2 cos φ2√
πσs

∫ +∞

−∞

e−s
2A

1 + ( s
β∗ )2

ds (35)

with

A =
sin2 φ

2

(σ∗x)2[1 + ( s
β∗ )

2]
+

cos2 φ
2

σ2
s

. (36)

Usually it is difficult to compute this integral analytically and it has to be evaluated by numerical
integration.

To estimate the importance and relevance of this effect, we shall use the parameters of the LHC,
i.e., N1 = N2 = 1.15 × 1011 particles/bunch, 2808 bunches per beam, a revolution frequency of
f = 11.2455 kHz, and a crossing angle of φ = 285 µrad. The nominal β-functions at the interaction
point are β∗x = β∗y = 0.55 m, leading to beam sizes of σ∗x = σ∗y = 16.7 µm, and we use a r.m.s. bunch
length of σs = 7.7 cm.

In the simplest case of a head on collision we get for the luminosity L = 1.200 × 1034 cm−2s−1.
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The effect of the crossing angle we can estimate by the evaluation of the factor S and get: L =
1.000 × 1034 cm−2s−1.

When we further include the hourglass effect we get: L = 0.993 × 1034 cm−2s−1.

While the effect of the crossing angle is very sizeable (S = 0.835), the further reduction by the
hourglass effect is small, at least for the nominal LHC parameters. For smaller β-functions at the inter-
action point this may not be the case.

6.4 Sensitivity to beam profiles
So far we have assumed Gaussian distribution functions in all dimensions. However this is not always
the case, in particular for hadron beams, and it is necessary to evaluate the validity of this assumption,
i.e., the importance for the derived results. Since it is mainly the core of the beam distribution which
contributes to the luminosity, we can hope that the r.m.s. as a measure of the beam size (and therefore
implying a Gaussian profile) is a good approximation.

To make a quantitative study, we can compute the luminosity for a flat beam using the complete
overlap integral and compare to the simplified calculation, i.e. compute the r.m.s. and use them in the
standard formula.

We assume flat distributions of the form:

ρ1(x, y) = ρ2(x, y) =
1

2a
, for[−a ≤ z ≤ a], z = x, y (37)

and calculate the r.m.s. in x and y:

< (x, y)2 > =

∫ +∞

−∞
(x, y)2 · ρ(x, y) dxdy . (38)

We compute the correct luminosity (without the constants which are equal for all cases) from the integral:

L =

∫ +∞

−∞
ρ1(x, y)ρ2(x, y) dxdy . (39)

The quantity L
√
< x2 >< y2 > gives a measure for the quality of the approximation when it is

compared to the same expression for a Gaussian beam. The astonishing result is that the error one makes
with this approximation is only a few % [3]. The same result holds for other ”reasonable” distributions
such as parabolic of cosine-like [3].

7 Other luminosity issues
There are further issues related to the luminosity which are important for the experiments, such as:

– Integrated luminosity
– Time structure of interactions
– Space structure of interactions

The geometry of the interaction regions as well as some basic parameters entering the standard luminosity
formulae are very important for the above issues and may need reconsideration to trade off between the
different requirements.
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7.1 Integrated luminosity
7.1.1 Definition of integrated luminosity
The maximum luminosity, and therefore the instantaneous number of interactions per second, is very
important, but the final figure of merit is the so-called integrated luminosity:

Lint =

∫ T

0
L(t′)dt′ (40)

because it directly relates to the number of observed events:

Lint · σp = number of events of interest . (41)

The integral is taken over the sensitive time, i.e., excluding possible dead time. For an evaluation one
needs a realistic model for the decay of the luminosity with time. Different possibilities exist and usually
one assumes some behaviour (e.g., exponential) with a given lifetime τ :

L(t) −→ L0 exp

(
− t
τ

)
. (42)

Contributions to this life time we have from the decay of beam intensity with time, the growth of the
transverse emittance, increase of the bunch length etc. The advantage of assuming an exponential decay
is that the contributions from different processes can be easily added. The differences between the
different models is very small in practice.

7.1.2 Optimization of integrated luminosity
The aim of the operation of a collider must be to optimize the integrated luminosity. Two parts of the
operation must be distinguished: the luminosity run with a lifetime τ and the preparation time between
two luminosity runs tp. The optimization problem is very similar to the challenge of a formula 1 racing
team: the length of running with decreasing performance (slowing down with ageing tires) and the time
needed to restore the performance (changing tires). The best strategy should minimize the overall time
needed.

In principle, the knowledge of the preparation time allows an optimization of L int.

If we assume an exponential decay of the luminosity L(t) = L0 · et/τ we want to maximize the
average luminosity < L >:

< L >=

∫ tr
0 L(t)dt

tr + tp
= L0 · τ ·

1− e−tr/τ
tr + tp

. (43)

Here tr is the length of a luminosity run and tp the preparation time between two runs. Since tr is a
”free” parameter, i.e. can be chosen by the operation crew, we can optimize this expression and get a
(theoretical) maximum for:

tr ≈ τ · ln(1 +
√

2tp/τ + tp/τ) . (44)

Assuming some parameters for the LHC [4]: tp ≈ 10h, τ ≈ 15h, we get: ⇒ tr ≈ 15h.

7.2 Luminous region and space structure of luminosity
In addition to the number of events, the space structure is important for the design and running of a
particle physics experiment. The questions we asked are therefore:

– What is the density distribution of interaction vertices ?
– Which fraction of collisions occur ± s from the interaction point ?
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Fig. 7: Schematic illustration of luminous regions.

The answers depend on beam properties such as σx, σy, and σs but also on the crossing angle φ. This
is very schematically indicated by the overlap regions in Fig. 7. Depending of the beam and machine
parameters, this region can be very different, with important consequences for e.g., trigger system or
pattern recognition. We evaluate:

L0 =

∫ +∞

−∞
L(s′)ds′ −→ L(s) =

∫ +s

−s
L(s′)ds′ (45)

and get:

L(s) =

(
N1N2fNb

8πσ∗xσ∗y

)
2 cos φ2√
πσs

√
π

A
erf
(√

A s
)
. (46)

For the integrated luminosity this becomes:

Lint(s) =

∫ T

0

∫ +s

−s
L(s′, t)ds′dt . (47)

In order to evaluate this numerically, we use again LHC nominal parameters as above. The results
of our calculations are shown in Tab.2. While practically all luminosity is seen at a distance of ± 12 cm
from the interaction point, about 20% is lost when only a region of± 5.5 cm is covered by the detector or
the software. This does strongly depend on the crossing angle. A detailed examination of this property
was done in [6].

7.3 Time structure of luminosity
In addtion to the space structure, the time structure of the interactions is an important input for the setup
of an experiment and even on the possible physics that can be studied.
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Table 3: Percentage of visible luminosity as a function of distance to interaction point.

integration range percentage of luminosity

s = ± 12 cm 1.000

s = ± 8 cm 0.950

s = ± 7 cm 0.900

s = ± 6 cm 0.850

s = ± 5.5 cm 0.800

In the LHC the bunches cross every 25 ns and it can be calculated easily that for proton-proton
collisions one has to expect ≈ 20 simultaneous interactions per bunch crossing. They must be digested
by the detectors before the next bunch crossing occurs, a non trivial task for the experiments. Some
physics studies that cannot be done with such an event pile up may require to run at a lower luminosity.

8 Luminosity measurement
The knowledge of the luminosity is of vital interest for both, the experiments and the accelerator physi-
cists. The most important issues are:

– Determine the cross section from counting rates
– Optimize the luminosity
– Measure machine parameters from luminosity

This list could easily be extended.

8.1 Relative luminosity measurement
Since the luminosity is directly proportional to the interaction rate, luminosity measurement usually
consists of fast counting devices which provide such a signal. However, some of the challenges for such
an instrument are:

– Must cover a large dynamic range: 1027 cm−2s−1 to 1034 cm−2s−1

– Very fast, if possible for individual bunches
– Reproducible from run to run
– Should run with different machine conditions (e.g. with and without crossing angle, different

optics (β∗), etc.)
– Works for different types of particles (p, ions)
– Can be used in a feedback system to optimize the luminosity

When these requirements are fulfilled, the instrument will give a reliable signal that is proportional to the
luminosity.
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8.2 Absolute luminosity measurement
The relative signal has to be calibrated to deliver the absolute luminosity. We have already seen some
effects that affect the absolute luminosity and therefore to a large extent the luminosity measurement.
In particular the crossing angle and the luminous region are of importance since they have immediate
implications for the geometrical acceptance of the instruments.

In principle one can determine the absolute luminosity when all relevant beam parameters are
known, i.e. the bunch intensities, beam sizes (r.m.s. in case of unknown beam profiles) and the exact
geometry. However the precise measurement of beam sizes is a challenge, in particular for hadron
colliders when a non-destructive measurement is required. When the energy spread in the beams is large
(e.g. some e+e− colliders, a residual dispersion at the interaction point increases significantly the beam
size and must be included.

There exist other methods which relate the counting rate to well known processes which can be
used for calibration. We shall discuss several methods for both, lepton and hadron colliders.

8.3 Absolute luminosity - lepton colliders
Once the relative luminosity is known, a very precise method is to compare the counting rate to well
known and calculable processes. In case of e+ e− colliders these are electromagnetic processes such
as elastic scattering (Bhabha scattering). The principle is shown in Fig. 8. Particle detectors are used
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Fig. 8: Principle of luminosity measurement using Bhabha scattering for e+ e− colliders.

to measure the trajectories at very small angles and with a coincidence of particles on both sides of the
interaction point. For a precise measurement one has to go to very small angles since the elastic cross
section σel has a strong dependence on the scattering angle (σel ∝ Θ−3).

Furthermore, the cross section diminishes rapidly with increasing energy (σel ∝ 1
E2 ) and the

result may be small counting rates. At LEP energies with L = 1030cm−2s−1 one can expect only about
25 Hz for the counting rate. Background from other processes can become problematic when the signal
is small.

8.4 Absolute luminosity - hadron colliders
For hadron colliders two types of calibration have become part of regular operation, the measurement of
the beam size by scanning the beam and the calibration with the cross section for small angle scattering.
The determination of the bunch intensities is usually easier, although non-trivial in the case of a collider
with several thousand bunches.
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8.4.1 Measurement by profile monitors and beam displacement
Typical profile measurement devices are wire scanners where a thin wire is moved through the beam
and the interaction of the beam with the wire gives the signal. For high intensity hadron beams this has
however limitations. Non-destructive devices such as synchrotron light monitors are available but the
emitted light from hadrons is often not sufficient for a precise measurement.

An alternative is to measure the beam size by displacing the two beams against each other. The
relative luminosity reduction due to this offset can be measured and is described by the formula (32)
developped earlier:

W = e−
d2

4σ2 (48)

where d is the separation between the beams and the measurement of the luminosity ratio

L(d)/L0 (49)

is a direct measurement of W .

This method was already used in the CERN Intersection Storage Rings (ISR) and known as ”van
der Meer scan”.

The expected counting rate of such a scan is shown in Fig.9. A fit to the above formula gives
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Fig. 9: Principle of luminosity measurement using transverse beam displacement.

the beam size. A drawback of this method is the distortion of the beam optics in case of very strong
beam-beam interactions [2]. This effect has to be evaluated carefully.

A further alternative is a so-called ”beam-beam deflection scan” where instead of the change of
counting rate the effect on the closed orbit is measured. This method was largely used at LEP and is
explained in [2].
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8.4.2 Absolute measurement with optical theorem
This method is similar to the measurement of Bhabha scattering for e+ e− colliders but requires dedicated
experiments and often special machine conditions.

The total elastic and inelastic counting rate is related to the luminosity and the total cross section
(elastic and inelastic) by the expression:

σtot · L = Ninel +Nel (Total counting rate) . (50)

The key to this method is that the total cross section is related to the elastic cross section for small values
of the momentum transfer t by the so-called optical theorem [7]:

lim
t→0

dσel

dt
= (1 + ρ2)

σ2
tot

16π
=

1

L
dNel

dt
|t=0 . (51)

Therefore the luminosity can in principle be calculated directly from experimental rates through:

L =
(1 + ρ2)

16π

(Ninel +Nel)
2

(dNel/dt)t=0
. (52)

Both counting rates, the total number of events Ninel + Nel and the differential elastic counting rate
dNel/dt at small t have to be measured with high precision. This requires a very good detector coverage
of the whole space (4π) for the inelastic rate and the possibility to measure to very small values of t.

A slightly modified version of the above uses the Coulomb scattering amplitude which can be
precisely calculated. The elastic scattering amplitude is a superposition of the strong (fs) and Coulomb
(fc) amplitudes, the latter dominates at small t. We can re-write the differential elastic cross section dσel

dt :

lim
t→0

dσel

dt
=

1

L
dNel

dt
|t=0 = π | fc + fs |2 ' π |

2αem

−t +
σtot

4π
(ρ+ i)eB

t
2 |2 ' 4πα2

em

t2
||t|→0 (53)

If the differential cross section is measured over a large enough range, the unknown parameters σ tot, ρ, B
and L can be determined by a fit. A measurement [8–10] together with some crude fits is shown in
Fig. 10 to demonstrate the principle. The advantage of this method is that it can be performed measuring
only elastic scattering without the need of a full coverage to measure N inel. It is therefore a good way to
measure the luminosity (and total cross section σtot and interference parameter ρ!) although the previous
method is of more practical importance for regular use.

The measurement of the Coulomb amplitude usually requires dedicated experiments with detectors
very close to the beam (e.g., with so-called Roman Pots) and therefore special parameters such as reduced
intensity and zero crossing angle. Furthermore, in order to measure very small angle scattering, one has
to reduce the divergence in the beam itself (σ ′ =

√
ε/β). For that purpose special running conditions

with a high β∗ at the collision point are often needed (β∗ > 1000 m ) [9]. The precision of such a
measurement is however as good as a few percent.

9 Not mentioned
At the end we would like to mention different types of colliders that were not treated explicitly, but the
results can be extended easily. Examples of such machines are:

– Coasting beams (e.g., ISR).
– Asymmetric colliders (e.g., PEP, HERA).
– Linear colliders (SLC, TESLA etc.).

In this lecture we have tried to include some of the problems encountered in present and foreseen colliders
which must be considered when a machine is built and the luminosity is optimized (not necessarily
maximized!) To design a machine with the optimum luminosity, other limiting effects such as beam-
beam effects [2] must be taken into account, but these are beyond the scope of this lecture.
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Fig. 10: Principle of luminosity measurement using optical theorem in proton proton (antiproton) collisions.
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